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ABSTRACT
The main goal of this paper is to employ longitudinal trajectories in a significant number of
sub-regional brain volumetric MRI data as statistical predictors for Alzheimer’s disease (AD) clas-
sification. We use logistic regression in a Bayesian framework that includes many functional
predictors. The direct sampling of regression coefficients from the Bayesian logistic model is dif-
ficult due to its complicated likelihood function. In high-dimensional scenarios, the selection of
predictors is paramount with the introduction of either spike-and-slab priors, non-local priors,
or Horseshoe priors. We seek to avoid the complicated Metropolis-Hastings approach and to
develop an easily implementable Gibbs sampler. In addition, the Bayesian estimation provides
proper estimates of the model parameters, which are also useful for building inference. Another
advantage of working with logistic regression is that it calculates the log of odds of relative risk
for AD compared to normal control based on the selected longitudinal predictors, rather than
simply classifying patients based on cross-sectional estimates. Ultimately, however, we com-
bine approaches and use a probability threshold to classify individual patients. We employ 49
functional predictors consisting of volumetric estimates of brain sub-regions, chosen for their
established clinical significance. Moreover, the use of spike-and-slab priors ensures that many
redundant predictors are dropped from the model.
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1. Introduction

The research literature on applied mathematical
approaches and classification methods using longitu-
dinal MRI data has seen massive growth over the
past decade. Among the broad range of methods
applied with variable degrees of success, several war-
rant mention. Misra et al. (2009) implemented a high-
dimensional pattern recognition method to baseline
and longitudinal MRI scans to predict conversion
from MCI to AD over a 15-month period. Zhang
and Shen (2012) used a multi-kernel SVM for classi-
fication of patients between MCI and AD, achieving
78.4% accuracy, 79% sensitivity, and 78% specificity.
Lee et al. (2016) applied logistic regression in predict-
ing conversion from MCI to Alzheimer’s, using fused
lasso regularization to select important features. Seixas
et al. (2014) proposed a Bayesian network decision
model for detecting AD and MCI which considered
the uncertainty and causality behind different disease
stages. Their Bayesian network used a blended effect
of expert knowledge and data-oriented modelling, and
the parameters were estimated using an EM algorithm.
Adaszewski et al. (2013) employed classical group anal-
yses and automated SVM classification of longitudinal
MRI data at the voxel level. Arlt et al. (2013) stud-
ied the correlation between the test scores over time

with fully automatedMRI-based volume at the baseline.
However, few studies to date have developed methods
that increase the sensitivity, accuracy, and specificity of
classification in AD diagnosis or progression to more
than 80%.

Classification using longitudinal data can be a chal-
lenge with a large number of predictors. The first sig-
nificant approach to handle longitudinal predictors is
to consider each multiple-occasion observation as a
single function observed over a time interval. Func-
tional predictors have a high correlation with adjacent
measurements, and the observational space is high-
dimensional. The number of predictors required for
estimation often exceeds the number of observations,
thus introducing the problem of dimensionality. A
regression framework is frequently the most suitable
to model all possible longitudinal effects across ROIs,
where the proposed method will select the important
predictors. Moreover, many biomedical studies have
shown that a limited number of specific brain regions or
ROIs are essential for AD classification. Thus, dimen-
sion reduction techniques can be applied, and classi-
fication can be limited to the reduced feature set. Zhu
et al. (2010) advanced a method for classification and
selection of functional predictors that entails calcula-
tion of functional principle component scores for each
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functional predictor, followed by the use of these scores
to classify each individual observation. They pro-
posed using Gaussian priors for selection and created a
hybrid Metropolis-Hastings/Gibbs sampler algorithm.
Although the method reported in the present study is
inspired by this method, we develop a simple Gibbs
sampler where MCMC samples are drawn from stan-
dard distributions.We also focus on applying penalized
regression for dimension reduction. In the Bayesian
variable selection literature, the spike-and-slab prior
has widespread applications due to its superior selec-
tion power. George and McCulloch (1993, 1997) ini-
tially proposed that each coefficient β can be modelled
either from the ‘spike’ distribution, where most of its
mass is concentrated around zero, or from the ‘slab’
distribution, which resembles a diffuse distribution.
Instead of imposing the spike-and-slab prior directly
on regression coefficients, Ishwaran and Rao (2005)
introduced a method in which they placed a spike-
and-slab prior on the variance of Gaussian priors. The
Bayesian variable selectionmethods also include differ-
ent Bayesian regularization methods, such as Bayesian
Lasso (Park & Casella, 2008), Bayesian Group Lasso,
Bayesian elastic net (Li & Lin, 2010). We employ a
Bayesian group lasso algorithm blended with a spike-
and-slab prior obtained from Xu and Ghosh (2015).
The group structure among coefficients in our model
comes from functional smoothing of the coefficients,
and group lasso facilitates the selection of the impor-
tant functional predictors. Thus, our proposed method
takes the idea of Bayesian variable selection to a gener-
alized functional linear model with binary responses.

The fundamental challenge of this work is to per-
form logistic regression in a Bayesian framework while
using a large number of functional predictors. The
direct sampling of regression coefficients from the
Bayesian logistic model is difficult due to its compli-
cated likelihood function. In high-dimensional scenar-
ios, selection of predictors becomes crucial with the
introduction of either a spike-and-slab prior, non-local
priors, or horseshoe priors. For all such priors, the
full posterior distribution of regression coefficients is
analytically inconvenient. We obtain the Pólya-gamma
augmentation method with priors proposed by Xu
and Ghosh (2015), which yields full conditional sam-
ples from standard distributions.Our aim is to avoid the
complications of Metropolis-Hastings and to develop
an easily implementable Gibbs sampler. In addition,
Bayesian estimation provides proper estimates of the
model parameters, which are also useful for build-
ing inference. The key advantage of this method is
that it calculates the log of odds of AD with respect
to CN based on the selected longitudinal predictors.
Moreover, we use a probability threshold for classifying
individual patients to validate our modelling perfor-
mance.We obtained the data used in the paper from the
ADNI server. The volumetric MRI brain data includes

parcellated sub-regions of the whole brain, with sep-
arate subdivisions for the left and right hemispheres.
Volumetric measurements of brain sub-regions across
multiple occasions over time demonstrate differential
patterns of brain atrophy betweenADpatients and nor-
mal aging people. Because not all brain regions are as
closely related to AD, the redundant features derived
from the unrelated brain regions can be removed by
limiting the selection to brain sub-regions important
to classification. The problem of identifying important
brain sub-regions from a large number of functional
predictors or longitudinal measurements is far from
simple. Various variable selection methods have been
designed for single-time-point data with respective tar-
get variables. We apply a Bayesian variable selection
method to select longitudinal features or functional
predictors for our data set. We work with 49 functional
predictors consisting of longitudinal volumetric mea-
surements in different sub-regional brain ROIs. The use
of the spike-and-slab prior ensures that a large number
of redundant predictors are dropped from the model.
The ROI sub-regions selected by our method will be
helpful for future studies to detect the progression of
dementia.

The paper is organized as follows. In Section 2, we
introduce Bayesian variable selection with a spike-and-
slab prior. Section 3 discusses functional smoothing
of the longitudinal predictors. In Section 4, we intro-
duce our methodology and algorithm for simultane-
ous selection and classification. Theoretical properties
and consistency results are shown in Section 5. We
then discuss the application results with simulated data
and real data in Sections 6 and 7. Finally, Section 8
covers the overall development and limitations of the
methodology.

2. Bayesian variable selection

Wewill briefly discuss about Bayesian variable selection
below:

2.1. Spike–slab prior

A Bayesian model with a spike-and-slab prior can be
constructed as follows:

(Yi/xi,β , σ 2)
ind∼ N(x′

iβ , σ
2), (i = 1, . . . , n)

(β/γ ) ∼ N(0,Γ ),

γ ∼ π(dγ ),
σ 2 ∼ μ(dσ 2),

where 0 is a p-dimensional zero vector, Γ is the p × p
diagonal matrix diag(γ1, . . . , γp), π is the prior mea-
sure for γ = (γ1, . . . , γp)t and μ is the prior measure
for σ 2. Ishwaran and Rao (2005) proposed this setup
and developed optimal properties based on the prior
choice of (β/γ ).
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A popular version of the spike-and-slab model,
introduced by George and McCulloch (1993, 1997),
identifies zero andnon-zeroβi’s by using zero-one indi-
cator variables γi and assuming a scale mixture of two
normal distributions:

(βi/γi)
ind∼ (1 − γi)N(0, τ 2i )+ γiN(0, c2i τ

2
i ),

i = 1, .., p

The value for τ 2i > 0 is some suitably small value, while
ci > 0 is some suitably large value. γi = 1 represents the
βi’s which are significant, and these coefficients have
large posterior hypervariances and large posterior βi
values. The opposite occurs when γi = 0. The prior
hierarchy for β is completed by assuming a prior for γi.
When τ 2i tends to zero we provide more masses on 0, as
the prior for insignificant βs. The prior distribution for
the regression coefficients can then be written as:

(βi/γi)
ind∼ (1 − γi)I0 + γiN(0, ν2)

with I0 point mass at 0 coefficients; and ν2 is the limit
for c2i τ

2
i when τ 2i tends to zero and c2i is large enough.

2.2. Bayesian group lasso

We discussed extensively about Bayesian Group Lasso
in introduction. The form of Bayesian Group lasso we
extensively worked with initiated in Xu and Ghosh
(2015). A multivariate zero-inflated mixture prior can
bring sparsity in group level which is elaborately dis-
cussed in Xu and Ghosh (2015). The following hierar-
chical structure with independent spike-and-slab prior
for each βg :

Y|X,β , σ 2 ∼ N(Xβ , σ 2I)

βg |τ 2g , σ 2 ∼ (1 − π0)Nmg (0, σ
2τ 2g Img )

+ π0δ0(βg), g = 1, ..,G

τ 2g ∼ Gamma
(
mg + 1

2
,
λ2

2

)
, g = 1, ..,G

σ 2 ∼ IG(α, γ )

π0 ∼ Beta(a, b)

where δ0(βg) denotes pointmass at 0. Themixing prob-
ability π0 can be defined as a function of the number of
predictors to impose more sparsity as the feature size
increases. The choice of λ is very critical for Xu and
Ghosh’s prior setup. Large values of λ produce biased
estimates, while very small λ values impose diffuse dis-
tribution for the slab part. Xu and Ghosh (2015) men-
tioned an empirical Bayes approach to estimate λ. Due
to intractability of marginal likelihood, they proposed
a Monte Carlo EM algorithm for the estimation of λ.
Moreover, they showed theoretically and numerically
that the median thresholding of posterior βg samples
provides exact zero estimates for insignificant group
predictors.

3. Functional smoothing for longitudinal data

Classification with the selection of significant func-
tional predictors is challenging. Researchers commonly
observe high correlation values between functional pre-
dictors. In this paper, we work with the assumptions of
independence between predictors; hence, later we pro-
pose a corresponding prior in the coefficient space.The
main advantage of using functional predictors is that it
allows us to measure time trends present in data. We
start our methodology by smoothing functional obser-
vations using a cubic basis spline. We restrict our data
set to patients with at least four time period obser-
vations, such that smoothed curves are comparable.
James (2002) used a similar approach to obtain the esti-
mates of a generalized linear model with functional
predictors.

Let us assume that we observe n patients with their
functional observations and each patient has p func-
tions. We assume that not all p functional observations
are important. Let xij(t) be the jth function observed
from the ith patient. Let T be the compact domain of
xij(t) and xij(t) ∈ L2[T]. With the functional predic-
tors (xi1(t), .., xip(t)), we assume that we have binary
response variable yi which takes value 0 and 1. We also
assume that the predictors have been centred in this
work, so that we can ignore the intercept term. There-
fore, we have the following logistic regression equation:

log
{

P(yi = 1|xi1, .., xip)
1 − P(yi = 1|xi1, .., xip)

}
=

p∑
j=1

∫
T
xij(t)βj(t) dt

(1)
Next, we construct an orthonormal basis φk(t) that can
be used to decompose the functional predictors and the
corresponding logistic regression coefficients, such as

xij(t) =
q∑

k=1

cijkφk(t), βj(t) =
q∑

k=1

βjkφk(t)

where cijk and βjk are the coefficients of xij(t) and βj(t)
with respect to the kth orthonormal basis φk(t). For
notational convenience, we denote the basis coefficients
as βjk. These are different than the functional coeffi-
cients βj(t). We use cubic basis splines as the orthonor-
mal basis for our simulation examples and real data
applications. Hence, the choice of q completely depends
on the number of internal knots used in basis spline
constructions. The jth component in equation (1) can
thus be written as

∫
T
xij(t)βj(t) dt =

q∑
k=1

cijkβjk = c′ijβ j (2)

To fit the discrete observations xij(t), we assume that, at
any given time t, instead of xij(t), we observe Xij(t):

xij(t) = Xij(t)+ e(t)
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where e(t) is a zero-mean Gaussian process. We use the
same basis function expansion for Xij(t) of the form

Xij(t) =
q∑

k=1

cijkφk(t) = c′ijφ(t)

where φ(t) is the q-dimensional spline basis at time t
for jth function, cij the q-dimensional spline coefficients
for the jth predictor from ith patient. We use ordinary
least square estimates for estimating spline coefficients.
A simple linear smoother is obtained byminimizing the
least squares criterion ‖xij −Φcij‖2 as

ĉij = (Φ ′Φ)−1Φ ′xij (3)

Once the orthonormal basis coefficients have been esti-
mated, we can combine (1), (2) and (3) by plugging
x̂ij(t) in (1), which yields

log
{

P(yi = 1|xi1, .., xip)
1 − P(yi = 1|xi1, .., xip)

}

=
p∑

j=1

∫
T
ĉ′ijφ(t)βj(t) dt

=
p∑

j=1
ĉ′ijβ j

= c′iβ (4)

where βT
j = ∫T βj(t)φT(t) dt, the coefficient vector for

the jth functional predictor. Here, ci vector has its first
element as 1 and rest of the spline coefficients for ith
patient, and β contains intercept of themodel as its first
element. We use no intercept form for our real data and
simulation application where c′i = (ĉi1, .., ĉip)′ does not
have first element as 1 and βpqx1 = (β

Tqx1
1 , ..,βTqx1

p )T

has group structurewith each group size=q.Our selec-
tionmethod drops the redundant β ’s and will select the
important coefficient groups.

Functional principal component (FPC) analysis is
another popular method that can be applied here.
Instead of least square basis estimates, one can work
with FPC scores for classification. Zhu et al. (2010)
also used FPC scores in their classification model,
and they selected the functional predictors whose FPC
scores were significant. MÜLLER (2005) extended the
applicability of FPC analysis for modelling longitudi-
nal data. Specifically, FPC scores can be used when we
have few repeated and irregularly observed data points.
In our functional smoothing method, we expanded
the functional observation with spline basis functions
and used the basis coefficients for classification. The
same intuition can also be applied for FPC scores.
For functional component analysis, we assume that
longitudinal observations are from a smooth random
function X(t) and its mean function is μ(t) = E X(t)

and covariance function G(s, t) = cov(X(s),X(t)). The
covariance function can be represented as G(s, t) =∑∞

k=1 λkφk(s)φk(t) where φk’s are eigenfunctions and
λk’s are eigenvalues. Then, the underline process can be
written as:

X(t) = μ(t)+
∞∑
k=1

ξkφk(t),

where ξk’s are frequently referred to as FPC scores.
These scores can be used later in the classification
model. We do not work with an infinite number of
scores; instead, the above sum is approximated with a
finite K that explains the majority of the variance in
functional observations. For most cases, the first two
FPC scores are enough to build a good classification
model. In this paper, we work with the basis spline
smoothing method due to its ease of implementation
in statistical software. In R, we have the splines package,
which fits cubic basis splines on longitudinal data with
equally placed knots.We do not investigate any findings
using FPC scores instead of basis spline coefficients,
as our main focus is on the classification algorithm,
and basis spline coefficients work very well for our
classification model.

4. Simultaneous classification of binary
response with selection of functional
predictors

4.1. Classification using Pólya-gamma
augmentation

In the following, we discuss Polson et al.’s (2013)
algorithm; these authors showed how a Gaussian vari-
ance mixture distribution with a Pólya-gamma mixing
density can approximate logit likelihood. We start by
defining Pólya-gamma density-

Random variable X ∼ PG(b, c), a Pólya-gamma dis-
tribution with parameters b>0 and c ∈ �, if

X d= 1
2π2

∞∑
k=1

gk
(k − 1

2 )
2 + c2

4π2

,

where gk ∼ Gamma(b, 1) are independent gamma ran-
dom variables and d= means equality in distribution.

Polson et al.’s (2013) main result parametrized the
log-odds of logistic likelihood as mixtures of Gaussian
with respect to Pólya-gamma distribution. The funda-
mental integral result, which is easily integrated into the
Gaussian prior hierarchy is that, for b>0 -

(eψ)a

(1 + eψ)b
= 2−beκψ

∫ ∞

0
e−

ωψ2
2 p(ω) dω (5)

where κ = a − b/2 and ω ∼ PG(b, 0). The introduc-
tion of latent variables (ω1, ..,ωn) later helped us in
deriving conjugate posterior distribution. R package
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BayesLogit has an efficient algorithm to sample from
Pólya-gammadistribution and it was proposed byWin-
dle et al. (2014).

4.2. Selection using Bayesian group lasso

As we discussed in the Section 2.2, Meier et al. (2008)
developed group lasso for logistic regression in a fre-
quentist setup. In ourmodel, we have p number of func-
tional predictors (xi1(t), .., xip(t) with binary response
yi ∈ {0, 1}, each group has q levels. We can write our
model as-

log
{

P(yi = 1|xi1(t), .., xip(t))
1 − P(yi = 1|xi1(t), .., xip(t))

}
=

p∑
j=1

c′ijβj

= ηβ(ci)

According to Meier et al. (2008) method, the logis-
tic group lasso estimator with basis spline coefficients
would look like

β̂GL = min
β

⎧⎨
⎩−l(β)+ λ

p∑
j=1

√
q‖βj‖2

⎫⎬
⎭

where l(β) =∑n
i=1(yiηβ(ci)− log(1 + exp{ηβ(ci)}) is

the log-likelihood function.
Beforemoving on to our proposed Bayesianmethod,

we want to mention a similar model presented by Zhu
et al. (2010): they used latent variables for Bayesian
logistic regression, and FPC scores represented the
functional predictors. They proposed a normal prior
for the concatenation coefficients, which is the same as
our coefficients βjs.

Now, motivated by Polson et al.’s (2013) integral
result, we construct a Bayesian prior formulation tar-
geted to handle binary logistic regression. Equation 4.4
has a Bernoulli likelihood function with logit link.
We propose a spike-and-slab prior motivated by Xu
and Ghosh (2015) with a zero-inflated mixture prior,
which helps us in selecting the important group coef-
ficients. As previously described, we introduce latent
variables (ω1, ..,ωn) to take advantage of the integral
identity described in Equation (5). Our prior setup is

yi|ci,β ∼ Bernoulli

(
exp(cTi β)

1 + exp(cTi β)

)
, i = 1, .., n

ωi ∼ PG(1, 0), i = 1, .., n

βj|τ 2j ,π0 ∼ (1 − π0)Nq(0, τ 2j Iq)+ π0δ0(βj),

j = 1, . . . , p

τ 2j |λ2 ∼ Gamma(
q + 1
2

,
λ2

2
), j = 1, . . . , p

π0 ∼ Beta(a, b)
(6)

4.2.1. Gibbs sampler
The likelihood for ith observation is:

Li(β) = (ec
T
i β)yi

1 + ec
T
i β

∝ exp{κicTi β}
∫ ∞

0
exp

{
−ωi(cTi β)

2

2

}

× p(ωi) dωi, from Equation (5)

where κi = yi − 0.5 and ωi ∼ PG(1, 0). If we consider
all n independent observations, given ωi we can write
the joint likelihood as-

n∏
i=1

Li(β|ωi) =
n∏
i=1

exp

{
κicTi β − ωi(cTi β)

2

2

}

= exp

{
ωi

2

(
cTi β − κi

ωi

)2}

= exp
{
−1
2
(z − Cβ)TΩ(z − Cβ)

}

where z = ( κ1
ω1
, .., κn

ωn
) andΩ = diag(ω1, ..,ωn).

Next, we combine the likelihood function with β
prior, given ω = (ω1, ..,ωn):

p(β , τ 2,π0|Y ,C,ω)

∝ exp
{
−1
2
(z − Cβ)TΩ(z − Cβ)

}

×
p∏

j=1

[
(1 − π0)(τ

2
j )

− q
2 exp

{
− 1
2τ 2j

βTj βj

}

I(βj 
=0) + π0δ0(βj)

]

× (λ2)
q+1
2 (τ 2j )

q+1
2 −1e−

λ2τ2j
2

× πa−1
0 (1 − π0)

b−1

Due to the introduction of Pólya-gamma augmenta-
tion, we can derive a block Gibbs sampler with a pos-
terior distribution of βj’s. The same method is derived
in Xu and Ghosh (2015) for continuous Y in linear
model setup. The blocks Gibbs sampler was introduced
by Hobert and Geyer (1998). To build this sampler, we
start with some notations. Let β(j) denotes the β vector
without jth group,

β(j) = (βT1 , ..,β
T
j−1,β

T
j+1, ..,β

T
p )

T

and the corresponding design matrix can be written as:

C(j) = (C1, ..,Cj−1,Cj+1, ..,Cp)

Cj is the corresponding design matrix for βj.
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When βj 
= 0:

p(βj|rest) ∝ exp
{
−1
2
(z − C(j)β(j) − Cjβj)

T

Ω(z − C(j)β(j) − Cjβj)

}

× exp

{
− 1
2τ 2j

βTj βj

}

∝ exp

{
−1
2

[
βTj (C

T
j ΩCj + 1

τ 2j
Iq)βj

− 2(z − C(j)β(j))TΩCjβj

]}

∝ exp
{
−1
2
(βj − Aj)

TBj(βj − Aj)

}

where, Bj = (CT
j ΩCj + 1

τ 2j
Iq) and Aj = B−1

j CT
j Ω(z −

C(j)β(j)) Hence the posterior full conditional of βj is a
spike-and-slab distribution,

(βj|rest) ∼ (1 − lj)Nq(Aj,B−1
j )+ ljδ0(βj), j = 1, .., p

(7)
where lj = p(βj = 0|rest). Now we will find the proba-
bility lj :

lj = p(βj = 0|rest)

=
p(βj = 0, y|C,ω, τ 2j ,π0)∫
βj 
=0 p(βj, y|C,ω, τ 2j ,π0) dβj

=
p(y|βj = 0,C,ω, τ 2j ,π0)p(βj = 0|τ 2j ,π0)
p(y|βj = 0,C,ω, τ 2j ,π0)p(βj = 0|τ 2j ,π0)

+ ∫
βj 
=0 p(y|βj 
= 0,C,ω, τ 2j ,π0)
p(βj 
= 0|τ 2j ,π0) dβj

= Mπ0
Mπ0 + N(1 − π0)

where π0 = p(βj = 0|τ 2j ,π0),
M = p(y|βj = 0,C,ω, τ 2j ,π0)

= exp
{
−1
2
(z − C(j)β(j))TΩ(z − C(j)β(j))

}

N =
∫
βj 
=0

p(y|βj 
= 0,C,ω, τ 2j ,π0) dβj

=
∫
βj 
=0

exp
{
−1
2
(z − Cβ)TΩ(z − Cβ)

}

× (2πτ 2j )
− q

2 e
− βTj βj

2τ2j dβj

= M ×
∫
βj 
=0

exp

{
−1
2

[
βTj (C

T
j ΩCj + 1

τ 2j
Iq)βj

− 2βTj C
T
j Ω(z − C(j)β(j))

]}
(2πτ 2j )

− q
2 dβj

= M × (τ 2j )
− q

2 exp
{
1
2
AT
j BjAj

}∫
βj 
=0

(2π)−
q
2

× exp
{
−1
2
(βj − Aj)

TBj(βj − Aj)

}
dβj

= M × (τ 2j )
− q

2 exp
{
1
2
AT
j BjAj

}
|Bj|− 1

2

Hence,

lj = π0

π0 + (1 − π0)(τ
2
j )

− q
2 |Bj|− 1

2 exp
{
1
2A

T
j BjAj

} (8)

The posterior full conditional distributions of other
parameters are stated below, and the derivations of the
posteriors are described in appendix.(

1
τ 2j

|rest
)

∼

⎧⎪⎪⎨
⎪⎪⎩
Inverse − Gamma

(
q + 1
2

,
λ2

2

)
, if βj = 0

Inverse − Gaussian
(

λ

‖βj‖2 , λ
2
)
, if βj 
= 0

(9)

for all j = 1„., p. Let, Gj define whether a certain group
is selected or not

Gj =
{
1, if βj 
= 0
0, if βj = 0

Then,

(π0|rest) ∼ Beta

⎛
⎝p −

p∑
j=1

Gj + a,
p∑

j=1
Gj + b

⎞
⎠ (10)

Wewill sample our augmented variablesω= (ω1, ..,ωn)

using the posterior samples of β :

(ωi|β) ∼ PG(1, c′iβ), i = 1, .., n (11)

Finally, we are left with the values of λ. λ is the
most crucial parameter for our model and should be
treated carefully. A large λ shrinks most of the group
coefficients towards zero and produces biased esti-
mates. In our real data analysis, we try to control
the λ value by assigning a different range of values.
Xu and Ghosh (2015) proposed a Monte Carlo EM
algorithm for estimating λ. The following is the kth EM
update for λ from their paper-

λ(k) =
√√√√ p(q + 1)∑p

j=1 Eλ(k−1)

[
τ 2j |y
]

The expected value of τ 2j |y for binary response y is
intractable. In other words, this expected value can be
calculated by taking mean of posterior samples of τ 2j .
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5. Median thresholding and theoretical
properties

5.1. Marginal prior for β j

We first study the marginal priors of β j’s to examine
the theoretical properties of the Bayesian group lasso
estimators.We aim to establish the connection between
β j group priors and existing Group Lasso penaliza-
tion methods. We integrate out τ 2j from β j priors.
The marginal priors for β j’s are calculated based on
Xu and Ghosh (2015) work with extension to binary
response instead of continuous response. For β j 
= 0:

p(βj/π0) ∝
∫
τ 2j

p(βj/τ 2j ,π0)p(τ
2
j ) dτ

2
j

∝
∫ ∞

0
(1 − π0)(τ

2
j )

− q
2 exp

{
− 1
2τ 2j

βTj βj

}

× (λ2)
q+1
2 (τ 2j )

q+1
2 −1 exp

{
−λ

2

2
τ 2j

}
dτ 2j

∝ (1 − π0)(λ
2)

q+1
2

× exp
{−λ‖βj‖2}

∫ ∞

0
(α2j )

− 3
2

× exp

{
−1
2

βTj βj

α2j

[
α2j − λ

‖βj‖2

]2}
dα2j

∝ (1 − π0)
(
λ2
) q
2 exp

{−λ‖βj‖2}
where α2j = 1

τ 2j
. The marginal prior for β j’s are also

spike-slabwith pointmass at 0 and the slab part consists
of a Multi-Laplace distribution which same as the one
considered in Bayesian group lasso (Casella et al., 2010)
or matches with penalization mentioned in Bayesian
Adaptive Lasso (Leng et al., 2014).

βj/π0 ∼ (1 − π0)M − Laplace
(
0,

1
λ

)
+ π0δ0(β j)

(12)
Combining spike and slab both, the components facil-
itates variable selection at group level and shrinks the
coefficients of the selected groups.

5.2. Median thresholding as posterior estimates

We previously discussed obtaining the selected group
coefficient estimation through median thresholding of
the MCMC sample. Xu and Ghosh (2015) general-
ized the median thresholding proposed by Johnstone
and Silverman (2004) for multivariate spike-and-slab
prior. Johnstone and Silverman (2004) showed median
thresholding, under a spike-and-slab prior for nor-
mal means, has some desirable properties. In this
section, we generalize this idea to a binary classification
problem and show that the posterior median estima-
tor serves as group variable selection by obtaining a

zero coefficient for the redundant groups. We further
demonstrate the posterior median as a soft threshold-
ing estimator that is consistent in model selection and
has an optimal asymptotic estimation rate.

Focusing on only one group, then Xu and Ghosh
(2015) proposed the following theorem on Median
thresholding:

Zmx1 ∼ f (z − μ)

μ ∼ π0δ0(μ)+ (1 − π0)γ (μ)

whereZ is anm-dimensional randomvariable, and γ (.)
and f (.) are both density functions for m-dimensional
random vectors. f (t) is maximized at t = 0. Let
Med(μi|z) denote the marginal posterior median of μi
given data. By definition,

c =
∫
f (−ν)γ (ν) dν

f (0)
≤
∫
f (0)γ (ν) dν

f (0)
= 1

Theorem 5.1: Suppose π0 > c
1+c , then there exists a

threshold t(π0) > 0, such that when ‖z‖2 < t,

Med(μi|z) = 0, for any 1 ≤ i ≤ m

Next, we focus on our problem setup. If we assumeβj
follows a Gaussian prior, βj ∼ N(0,Bj) and the design
matrix satisfies the condition CT

j ΩC(j) = 0. Then the
posterior estimates of βj|rest is:

β̂j = βj|rest ∼ N(μj,Σj)

Σj = (CT
j ΩCj + B−1

j )−1

μj = ΣjCT
j Ωz

According to Theorem 5.1, assuming π0 > c
1+c , then

there exists t(π0) > 0, such that the marginal posterior
median of βjk under prior (6) satisfies

Med(βjk|β̂j) = 0 for any 1 ≤ k ≤ q

when ‖β̂j‖2 < t. We can interpret this result in the
context of the same explanation provided by Xu
and Ghosh (2015): the median estimator of the jth
group of regression coefficients is zero when the norm
of the posterior estimates under any other prior distri-
bution is less than a certain threshold.

Posterior Median as soft thresholding:
We assume thatCT

j ΩCj = nIq and Cmatrix is group
wise Orthogonal with CT

j ΩC(j) = 0. We are consid-
ering the model defined in (6) with fixed τ 2j,n and it
depends on n. In this set-up, the posterior distribution
of βj will be similar to the one derived in the previous
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section:

βj|C, y,ω

∼ (1 − lj)Nq

(
1
n
(1 − Dj,n)CT

j Ωz,
1
n
(1 − Dj,n)Iq

)

+ ljδ0(βj),

where Dj,n = 1
1+nτ 2j,n

and,

lj = π0

π0 + (1 − π0)(1 + nτ 2j,n)
− q

2

exp
{

1
2n (1 − Dj,n)‖CT

j Ωz‖22
}

Then, the marginal posterior distribution for βjk(1 ≤
k ≤ q) conditional on the observed data is a spike-and-
slab distribution,

βjk|C, y,ω
∼ ljδ0(βjk)+ (1 − lj)N

×
(
1
n
(1 − Dj,n)CT

jkΩz,
1
n
(1 − Dj,n)

)

whereCjk is the kth vector of theCjth groupmatrix. The
corresponding soft thresholding estimator is

β̂jk = Med(βjk|C, y,ω)
= sgn

(
CT
jkΩz
)

×
(
1
n
(1 − Dj,n)|CT

jkΩz| − 1√
n
Qj
√
1 − Dj,n

)
+

where z+ is the positive part of z and Qj = Φ−1

( 1
2(1−min( 12 ,lj))

). Our results also follow Xu and Ghosh
(2015)’s work to show the soft thresholding. One
should especially note that the termDj,n depends on τ 2j,n
which controls the shrinkage factor.

Oracle Property:
Let β0,βj

0,β0jk be the true values β ,βj,βjk, respec-
tively. The index vector of true model is A =
(I(‖βj‖2 
= 0), j = 1, .., p), and the index vector model
selected by certain thresholding estimator β̂ j is An =
(I(‖β̂ j‖2 
= 0), j = 1, .., p). Model selection consistency
is attained if and only if limn P(An→∞ = A) = 1.

Theorem 5.2: Assume the following design exists, CT
j

ΩCj = nIq. Suppose
√
nτ 2j,n → ∞ and log(τ 2j,n)/n → 0

as n → ∞, for j = 1,.., p, then the median thresholding
estimator has oracle property, that is, varaible selection
consistency,

lim
n→∞ P(AMed

n = A) = 1

The proof follows same as steps as the proof of
Theorem 4 in Xu and Ghosh (2015).

5.3. Posterior consistency

In this section, we conduct a theoretical investigation
regarding the convergence of the group lasso estima-
tor model to the true model. To show model consis-
tency, we refer to the results and theorems mentioned
in the paper titled ‘On the consistency of Bayesian
variable selection for high dimensional binary regres-
sion and classification’ by Jiang (2006). In this paper,
the author setup Bayesian variable selection similar
to Smith and Kohn (1996) by introducing a selection
indicator vector γ = (γ1, .., γp) where γi = 0/1. The
corresponding prior setup is as follows:

y = Xβ + ε

βγ ∼ N(0, cσ 2
(
XT
γ Xγ )

−1
)

γi ∼ Bernoulli(π), i = 1, .., p

(σ 2|γ ) ∼ 1/σ 2

We can establish a direct connection between our
model and the above penalized regression. We re-
parametrize the groups coefficient vector β j = γjbj
where γj, j = 1, .., p is the selection indicator 0/1 valued.
As in Section 5.1 we have shown the marginal prior of
βj follows a Multi-Laplace distribution, we can place a
Bernoulli prior in γj,

bj|λ ∼ Multi − Laplace
(
0,

1
λ

)

γj ∼ Bernoulli(1 − π0), j = 1, .., p
(13)

The marginal prior distribution of βj is same as in
Equation (12).

Next, we study the asymptotic results as n → ∞.
Let y be the binary response and 
c is the corre-
sponding basis coefficients for any given subject. Let

the true model be of the form μo(c) = e
∑pn

j=1 c
T
j βj

1+∑pn
j=1 c

T
j βj

=
ψ(
∑pn

j=1 c
T
j βj), βj is a qX1 vector with pn(↑ n) num-

ber of group vectors present in the model. As described
by Jiang (2006), we assume that the data dimension
satisfies 1 ≺ pn and log(pn) ≺ n, where an ≺ bn repre-
sents an = o(bn), or limn→∞ an

bn = 0. We assume spar-
sity of the regression coefficients on the group level, i.e.,
limn→∞

∑pn
j=1 ‖βj‖2 < ∞, which implies that only a

limited number of group coefficients are nonzero. We
further assume ‖cj‖2 ≤ 1, j = 1, .., pn for simplicity.

We assume n i.i.d. observations. Dn = (
c1, ..,
cpn ,
yi)ni=1 and f0 = μ

y
0(1 − μ0)

1−y. Before we move for-
ward with the results, we define the posterior estimator
of the true density f0 as-

f̂n(y, c) =
∑
γ

∫
βγ

f (y, c|γ ,βγ )πn(βγ , γ |Dn) dβγ
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and we define the posterior estimate of μ0 as

μ̂n(c) =
∑
γ

∫
βγ

ψ(cTγ βγ )πn(βγ , γ |Dn) dβγ .

We define the classifier as Ĉn(c) = I[μ̂n(c) > 0.5], so
that Ĉn(c)will be the validation tool for our algorithm’s
performance.

Next we define consistency using Jiang’s (2006)
description of density function, and measure the dis-
tance between two density functionswithHellinger dis-

tance dH(f , f0) =
√∫ ∫

(
√
f −√f0)2 dx dy. The below

definitions are quoted from Jiang’s (2006) article.

Definition 5.1: ‘Suppose Dn is i.i.d. sample based on
density f0. The posteriorπn(.|Dn) is asymptotically con-
sistent for f0 over Hellinger neighbourhood if for any
ε > 0,

πn
[
f : dH(f , f0) ≤ ε|Dn] P→ 1,

as n → ∞ (Density Consistency)

‘Next we define consistency in classification from
Jiang (2006) paper in terms of how the misclassifica-
tion errorEDnP[Ĉn(c) 
= y|Dn] approaches theminimal
error P[C0(c) 
= y], where C0(c) = I[μ0(c) > 0.5].

Definition 5.2: ‘Let B̂n(c) be a classification rule
obtained based on the observed dataDn. If limn→∞ EDn

P[B̂n(c) 
= y|Dn] = P[C0(c) 
= y], then B̂n(c) is called a
consistent classification rule.’

Combining Propositions 1 and 3 from Jiang (2006),
under conditions I, S, and L, density consistency
directly implies classification consistency. The proof
follows by checking conditions I, S, and L from Jiang’s
(2006) paper (Jiang, 2006), since our prior satisfies his
prior setup. To have density consistency and classifi-
cation consistency for posterior estimates, we need to
check whether our prior setup follows Jiang’s condi-
tions. The motivation for the proof and the technique
of checking conditions to establish the theorem were
discussed in theses Majumder (2017) and Shi (2017).

Condition I: (On inverse link function ψ)

Denote w(u) as the log odds function w(u) =
log[ψ(u)/(1 − ψ(u))]. The derivative of the log odds
w′(u) is continuous and satisfies the following bound-
aries condition when the size of the domain increases:
sup|u|≤C|w′(u)| ≤ Cq for some q ≥ 0, for all large
enough C.

Condition S: (For prior πn on small approximation
set.)

There exists a sequence rn increasing to infinity as
n → ∞, such that for any η > 0, and

∑
j/∈γ (rn) ‖βj‖2 ≺

ε2n, we have πn[γ = γ (rn)] > e−cnε2n and πn[βγ ∈
M(rn, η)|γ = γ (rn)] > e−cnε2n , for all large enough n.

Condition L: (For prior π outside a large region)

There exist some r̄n = o(n/ ln pn), r̄n ∈ [1, pn], and
some Cn satisfying C−1

n = o(1) and lnCn = o(n/r̄n),
such that for some c > 0, πn[|γ | > r̄n] ≤ exp(−cnε2n),
and πn(

⋃
j:γj=1[‖βj‖2 > Cn]|γ ) ≤ exp(−cnε2n) for all

|γ | ≤ r̄n, for all large enough n.

We checked for the conditions; corresponding
proofs are in the appendix.

6. Simulation results

We assess the performance of our proposed simultane-
ous classification and selection methodology with sim-
ulated data sets.We apply ourmethod to both simulated
and real data.We compare the results fromourBayesian
methodwith those from a frequentist group lasso selec-
tion method for binary response. To the best of our
knowledge, no other Bayesian method reported in the
literature is as convenient and efficient as the presently
proposed method. The following section reports the
method testing by creating three different examples
with varying numbers of predictors. We generate a
binary response with simulated functional predictors;
there are a significant number of inessential predictors.

6.1. Example

We first generate functional predictors xij(t) using a
10-dimensional Fourier basis φ0(t) = 1 and φk(t) =√
2 cos(kπ t), k = 1, .., 9, adding an error term. We

work with a similar simulation set up mentioned in
Fan et al. (2015), as Fan’s model setup is also based
on functional predictors. We generate our predictors as
follows:

xij(tk) = φ(tk)Tθ ij + εijk, εijk ∼ N(0, σ 2),

θ ij ∼ N10(0, I)

whereφ(tk) = (φ0(tk),φ1(tk), ..,φ10(tk))′.We take σ =
0.5 and we generate 200 i.i.d observations using 20
functional predictors. Each predictor is observed at 50
time points, and time points are equally distributed
between 0 and 1. θ ij and εijk are independently sam-
pled. It is easier to understand the set up notationally
as ‘i’ varies from 1 to 200, ‘j’ varies from 1 to 20 and ‘k’
varies from 1 to 50. We construct a cubic basis spline
on (0 = t1, .., t50 = 1) with four internal knots equally
spaced at 20%, 40%, 60% and 80% quantiles. We use
R-package ’splines’ and the ’bs’ function to construct the
basismatrixφ.With 4 internal knots, plus intercept and
degree = 3, we end up having eight columns in the
basis matrix for each predictor, i.e., q = 8. To validate
classification and selection performance, we use 75%
of the observations as training data, and the remain-
ing 25% for testing purposes.We repeat this process 100
times to limit sampling bias in data and concatenate all
results considering the 100 repetitions.
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6.2. Example 2 and 3

In example 2, we increase the number of predictors
from 20 to 50 while maintaining 200 observations with
50 time points for each observation. The functional
predictor generation in Example 3 follows the same
method as in Example 1, but generates 500 observa-
tions with 100 functional predictors and 20 time points
for each observation. We use three internal knots to
smooth the predictors.

In both cases, we chose the second and final predic-
tor, i.e., β2(t)and βp(t) as non-zero, and the rest of the
coefficients are zero. We generate the binary response
y ∈ (0, 1) from a Bernoulli distribution using the set
of pre-assigned β . In all of the examples, 75% of the
data is used for training and 100 repetitions are used
to normalize sampling bias. We obtain 20,000 Gibbs
samples, and the first one-third of these samples are
discarded as a burn-in period. All the parameter esti-
mates are obtained using the remaining samples. As
Xu and Ghosh (2015) showed that median threshold-
ing gives exact 0 estimates for the redundant group
coefficients, we apply a posterior median on posterior
samples to obtain β estimates. We choose a=1,b=1
as the initial parameter values for the prior distribu-
tion of π0 and β = 0 is used as the initial choice for the
first iteration.Althoughwehave pnumber of functional
predictors, the number of coefficients we need to esti-
mate is p∗q. In Example 2, we have p = 50, and with
four internal knots for each function we obtain q = 8.
Hence, the number of coefficients we need to estimate is
400 using 200 observations. From this perspective, our
algorithm is applicable to ‘large p, small n’ conditions.
The simulation results are presented below.

6.3. Example1 results

We obtain a 100% true positive rate and a 0% false pos-
itive rate in terms of selection, i.e., the two nonzero
coefficients are captured in all 100 iterations. More-
over, none of the predictors that originally had zero
coefficients are selected. In terms of classification, our
method shows 97% sensitivity, 93% specificity, 95%
accuracy, and AUC=0.99. Below are the rejection
probability plots for β2(t) and β1(t), of which the first
is nonzero and the second is zero in the true model. In
addition, we plot the posterior median estimates of the
coefficient function with respect to its true values. The
ROC curve establishes the differentiating power of our
method.

6.4. Example 2 and 3 results

In Example 2, we obtain a 100% true positive rate and
a 0.73% false positive rate out of 100 repetitions, with
97% sensitivity and 95% specificity. In Example 3, we
achieve a 100% true positive rate and a 0% false positive

rate with 98% sensitivity and 97% specificity. We com-
pare our simulation results with those of frequentist
group lasso for logistic regression for all the setups
above. Ourmethodology yields the best results in terms
of classifying subjects into the right class, far exceed-
ing frequentist group lasso. Although the frequentist
group lasso approach successfully identifies the true sig-
nificant predictors for the model, it also selects many
redundant functional predictors that have zero effect on
the true model. The false selection of predictors in the
model is very high compared to that of our algorithm.
The table below summarizes the numerical results of all
three aforementioned examples, with comparisons to
frequentist group lasso for logistic regression (Figure 1).

7. Application on ADNI MRI data

This section reports the results of the application of our
proposed method to ADNI data. The MRI data used in
all analyses was downloaded from the ADNI database
(http://www.adni-info.org/). The fundamental goal of
ADNI is to develop a large, standardized neuroimag-
ing database with strong statistical power for research
on potential biomarkers in AD incidence, diagnosis,
and disease progression. ADNI data available at this
time include three projects: ADNI-1, ADNI-GO, and
ADNI-2. Starting in 2004, ADNI-1 collected prospec-
tive data on cognitive performance, brain structure,
and biochemical changes every 6 months. Participants
in ADNI-1 included 200 CN, 200 MCI, and 400 AD
patients. Then, starting in 2009, ADNI-GO continued
the longitudinal study of the existing patients from
ADNI-1 and established a new cohort that included
early MCI patients, who were enrolled to identify
biomarkers manifesting at earlier stages of the disease.
ADNI-GO and ADNI-2 together contain additional
MRI sequences plus perfusion and diffusion tensor
imaging. The volumetric estimation for our data set
was performed using FreeSurfer by the UCSF/SF VA
Medical Center.

Considerable research has been conducted to
develop automatic approaches for patient classification
into different clinical groups, with many ADNI stud-
ies identifying ROIs associated with different disease
stages. A support vector machine (SVM) is a primary
tool utilized in many studies to evaluate the patterns
in training data sets and to create classifiers to identify
new patients. Fan et al. (2008) used neuroimaging data
to create a structural phenotypic score reflecting brain
abnormalities associated with AD. In classifying AD vs.
CN, a positive score in their framework identified AD-
like structural brain patterns. Their classifier obtained
94.3% accuracy in AD vs. CN, although their approach
used only left and right whole brain volumes as poten-
tial predictors. Some researchers have used Bayesian
statistical methods in studying Alzheimer’s data. Shen
et al. (2010) employed a sparse Bayesian learning

http://www.adni-info.org/
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Figure 1. Plots based on Example 1.

method, which they named automatic relevance deter-
mination (ARD) and predictive ARD, to classify AD
patients. This method outperformed an SVM classi-
fier. Yang et al. (2010) proposed a data-driven approach
to the automatic classification of MRI scans based on
disease stages. Their methodology was broadly divided
into two parts. First, they extracted the potentially
classifying features from normalized MRI scans using
independent component analysis. Next, the separated
independent coefficients were applied for the SVM
classification of patients. In contrast to this approach,
our proposed method selects important components
and classifies patients simultaneously. Moreover, we
consider multiple brain sub-regions to identify those
potential regions whose longitudinal trajectories are
specifically related to AD. Another seminal paper by
Jack et al. (1999) used MRI-based measurements of
hippocampal volume to assess the future risk of con-
version from MCI to AD. A bivariate model included
hippocampal volume and other factors like age and
APOE genotype, but only hippocampal volume was
identified as significant. Wang et al. (2014) employed
a functional modelling approach using Haar wavelets
and lasso regularization to findROIs in voxel-level data.
In that approach, large Haar wavelet coefficients were
related to most important features, with a sparse struc-
ture among redundant features. The majority of these
methods are based on SVM classification, which often
uses kernel-based methods for functional smoothing.
Casanova et al. (2011) utilized a penalized logistic

regression approach, and they calculated estimates
using coordinate-wise descent optimization techniques
from the GLMNET library. Similarly, our method
employs penalized logistic regression with group lasso
penalty. However, our approach differs in its use of both
functional predictors and a custom algorithm devel-
oped in-house.

We consider the longitudinal volume of various
brain regions, such as the Para hippocampal gyrus,
cerebellar cortices, entorhinal cortex, fusiform gyrus,
and precuneus, among many others. Although the
accessed ADNI data set includes corresponding vol-
ume, surface area, and cortical thickness information,
we work with only the volume information to acquire
uniformity over longitudinal predictors. Because the
brain is divided into right and left hemispheres, the data
includes sub-regional brain volumes for both hemi-
spheres. Our main objective is to identify the brain
sub-regions whose volumetric trajectories can differ-
entiate AD patients from the normal aging control
group. As mentioned in the introduction, dementia is
associated with widespread brain atrophy, although the
time course and magnitude of shrinkage varies across
regions.

The initial sample includes 761 patients’ data from
the ADNI database, classified as AD, MCI, or CN
throughout their visits for the study. We exclude all
patients classified as MCI, and any AD or CN patients
whose diagnostic status changed over time. This is
because our model assumes that response does not
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depend on time. Of the remaining patients, we include
those with data from at least four longitudinal mea-
surement occasions. This yields 296 patients who have
at least four data points and unchanging diagnoses
of either AD or CN. The final sample is composed
of 174 AD patients and 122 normally aging con-
trols. All patients underwent a thorough initial clinical
evaluation to measure baseline cognitive and medical
scores, including MMSE, the 11-item Alzheimer Cog-
nitive Subscale (ADAS11), and other standardized neu-
ropsychological tests. In addition, at baseline, APOE
genotyping information was obtained from patients.
Longitudinal structural MRI scans were parcellated
into sub-regional brain volumetric measurements. Our
initial model includes 49 sub-regional brain volumes
chosen by Dr. Andrew Bender, based on knowledge
of the extant literature regarding atrophy patterns in
AD. Although these 49 sub-regions are not assumed to
change in uniform magnitude, the direction of change
over time is hypothesized to be consistent (i.e., shrink-
ing). Thus, the model includes 49 longitudinal pre-
dictors that we consider as functional predictors. We
assume that not all predictors are potential candidates
for classifying patients, and that the sparse assumption
is valid. However, because some patients’ visits were
irregular, we do not have an equal number of time
points across patients. We start by comparing the base-
line measurements between the AD and CN groups, as
shown in Tables 1 and 2.

Table 2. Patients baseline characteristics.

AD CN p-value
n 174 122

Age (Mean± sd) 74.76 ± 7.23 75.61 ± 5.45 0.25
Gender (F/M) 69/105 55/67 0.35
MMSE (Mean± sd) 25.43 ± 2.40 28.96 ± 1.17 < .0001
ADAS11 (Mean± sd) 14.78 ± 5.44 5.95 ± 2.94 < .0001
APOE (+/−) 119/55 30/90 < .0001

Note: Comparison of Baseline Age, Gender ratio, MMSE score, ADAS11 score
and APOE ratio between AD and CN groups.

In the next stage, we smooth the longitudinal trajec-
tories for the observed volumes of all brain sub-regions.
A simple least squares approximation is sufficient, as we
assume that the residuals of the true curve are indepen-
dently and identically distributed withmean 0 and have
constant variance.We use the cubic B-spline basis func-
tions for spline smoothing of observed volumes. Three
internal knots are used for spline smoothing with inter-
cept, which gives us seven basis functions. We seek to
ensure that the smoothed estimated curve is a good fit
for each patient’s observed curve. As we do not have
a large number of data points for each patient, we do
not consider controlling for potential overfitting of our
estimated curve. Besides least squares smoothing, func-
tional principle component scores can also be used for
this analysis.

Prior to analysis, we scale the brain volumes to
the corresponding patient’s brain ICV measurement

Table 1. Classification and selection performance table.

Bayesian classification with
Bayesian Group Lasso

Sensitivity Specificity TPR FPR −2 Log likelihood

Example1
n = 200
p = 20
t = 50

0.97 (0.01) 0.93 (0.01) 1 (0) 0 (0) 3.65

Example2
n = 200
p = 50
t = 50

0.97 (0.01) 0.95 (0.01) 1 (0) 0.0073 (0.05) 0.219

Example3
n = 500
p = 100
t = 20

0.98 (0.001) 0.97 (0.01) 1 (0) 0 (0) 6.87

Logistic regression
with frequentist group lasso

Sensitivity Specificity TPR FPR −2 Log likelihood

Example1
n = 200
p = 20
t = 50

0.92 (0.01) 0.86 (0.01) 1 (0) 0.114 (0.04) 69.23

Example2
n = 200
p = 50
t = 50

0.81 (0.01) 0.88 (0.01) 1 (0) 0.34 (0.05) 53.66

Example3
n = 500
p = 100
t = 20

0.91 (0.001) 0.94 (0.001) 1 (0) 0.05 (0.02) 190.23

Note: Simulation result comparisons between Bayesian and Frequentist methods.
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Figure 2. Brain volume changes of Left Hippocampus, Left Lateral Orbitofrontal cortex, and Left Posterior Cingulate over time for
Normal and Dementia patients.

by fitting a simple regression to adjust volume mea-
surements for individual brain volume changes. The
aim is to remove systematic variation in brain volumes
due to differences in physical size. The formula we use
is ROIadj = ROIvol − β0(ICV − ICVmean), where β0 is
the regression coefficient by regressing ROIvol on ICV
(Jack et al., 1998; Raz et al., 2005). We adjust or correct
the volumes using the above method for each gender
group: male and female. Next, we scale the corrected
volumes between 0 and 1 to bring all brain regions
onto the same scale. We then divide the data set into
two parts: two-thirds of the patients are reserved for
the training data set (n = 198), and the rest are kept
for testing (n = 98). We gather the basis coefficients
for each patient in the training data set and use them
as predictors for classification. We initialize choice of
β with all zero to start iterations. The π0 probability
has a Beta(a,b) distribution with a and b both set up
as 1. As a first step, we examine λ using Pólya-Gamma
transformation of our sample with a spike-slab penalty
on the training data. After estimating λ, we evaluate
the remainder of the algorithm on the training data
with 30,000 MCMC samples. The first one-third of
observations are left out as a burn-in period. We pro-
pose a spike-and-slab prior on the β coefficient, which
transforms into posterior estimates of zero for most
the functional predictors. We run our model 100 times
with different training samples to nullify sampling bias
in the training and test data. In the 100 iterations,
the model does not consistently or uniformly select
many of the brain sub-regions; therefore, we choose

the brain regions that frequently appear as significant
in each iteration. The median thresholding selects the
left hippocampus, left lateral orbitofrontal cortex, and
left posterior cingulate gyrus with 100% probability.
Other brain regions that are selected as important are
the right Para hippocampal gyrus, left caudate nucleus,
left medial orbitofrontal cortex, left putamen, left supe-
rior temporal gyrus, left thalamus, right hippocampus,
and right middle temporal gyrus. In Figure 2, we plot
the brain volume changes of the left hippocampus, left
lateral orbitofrontal cortex, and left posterior cingulate
gyrus over time. Orange and green signify the normal
aging and dementia group, respectively. The bold thick
line represents the mean curve for the corresponding
group. The plot shows that there are significant differ-
ences in volume between the groups, and our model
identifies these regions as significant. In Figure 3, we
plot the acceptance probability of the MCMC sample
for the left hippocampus and left lateral orbitofrontal
brain regions.

Themethod classifies patients into the correct group
with 77% accuracy. We achieve 72% sensitivity, 85%
specificity, and a corresponding AUC of 0.87. We use
the median predicted probability from the training
sample as the threshold for classification validation.
We also test the classification by adding clinical mea-
surements such as the ADAS11 (11-item Alzheimer
Cognitive subscale), MMSE scores, ‘CDRSB,’ ‘RAVLT
immediate,’ and ‘RAVLT forgetting,’ measured over
time. In this classification, we initially select longitu-
dinal brain volumes that are significant, and then we
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Figure 3. Acceptance probability of MCMC sample for Left Hippocampus and Left-Lateral Orbitofrontal brain regions.

Figure 4. Pictorial representation of selected brain ROI’s discriminating diseased group fromnormal control. (a) Left Hippocampusa.
(b) Posterior Singulatea. (c) Middle Temporal Gyrusa and (d) Left lateral orbitofrontal cortexa.
a Plot obtained from on-line resources.

add the clinical variables. We achieve very high classi-
fication measures of 97% accuracy, 97% sensitivity, and
98% specificity. If we ignore the MMSE score and run
the model with the rest of the functional predictors,
we observe similar classification accuracy. In all scenar-
ios, we model diseased patients as 1 and CN as 0 for

the interpretation of classification sensitivity/specificity
(Figure 4).

In addition to finding functional models of longi-
tudinal trajectories in sub-regional brain volumes to
differentiate between the AD and normal groups, we
also apply our method for MCI converters vs. MCI
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nonconverters. We select patients who entered the
study as MCI, and we assign the label of MCI noncon-
verter (MCI-nc) to those who did not transition to AD
across all measurement occasions and a label of MCI
converter (MCI-c) for any who did transition to AD.
The total subsample includes 163 patients who were
either MCI-c or MCI-nc. We use three-quarters of the
patients to train our model. We note the significant
brain ROIs that are selected after 100 iterations. Among
the selectedROIs that contribute to classification are the
right posterior cingulate gyrus, right superior parietal
cortex, right thalamus, right isthmus cingulate gyrus,
right fusiform gyrus, left thalamus, and left precuneus.
However, the classification performance is not as good
as compared to the previous model: 62% accuracy and
0.66 AUC. The biological explanation for this result is
critical to acknowledge. The mean difference of func-
tional predictors between MCI-c vs. MCI-nc is not
significant for segmenting patients. Moreover, we also
neglect some time points’ data for this set of patients.

8. Discussion

This paper discusses the use of Bayesian group lasso
penalization combined with Pólya-Gamma augmenta-
tion to build a simultaneous classification and selection
method. The Bayesian spike-and-slab prior helps in
identifying functional parameters generated from lon-
gitudinal trajectories of multiple brain ROIs, and dis-
criminates the patient group fromnormal controls. The
inclusion of Pólya-Gamma augmentation helps avoid
the Metropolis-Hastings algorithm or the incorpora-
tion of other expensive sampling algorithms related
to latent variables. We consider the longitudinal brain
ROI volume measurements as functional predictors,
and the cubic basis splines smooth the curves over time.
The next steps include using those smoothed func-
tional predictors as discriminating inputs with sparsity
assumptions among them.

The consistency property of the posterior distribu-
tions provides a theoretical justification regarding the
convergence of posterior samples whichwe sampled for
simulation and real data analysis. The posterior distri-
bution Π(θ |X1, ..,Xn) is said to be consistent at θ0 if it
converges to θ0 with somemeasure. It ensures if we gen-
erate enough observations from posterior we would get
close to the true value. Our density consistency prop-
erty ensures that derived posterior distribution will
achieve classification consistency for the classification
problem we are interested. We would like to men-
tion Doob’s theorem regarding this discussion which
ensures posterior consistency in Bayesian literature by
choosing proper prior. Some priors are problematic
which could raise questions regarding any Bayesian
methods. We believe our prior selection is reasonable
such that posterior consistency holds at every point of
the parameter space.

We assumed functional predictors are independent
for this paper. In order to capture the dependency
between functional predictors, one could introduce a
proper prior with some correlation structure between
group coefficients. This will increase the model com-
plexity and moreover it would be practically hard to
validate these dependency structures in real data anal-
ysis. Further research on this topic will definitely be
an improvement upon current modeling proposal. Our
proposedmethod performs well on simulated data sets,
outperforming available frequentist methods. Further-
more, ourmethod is applied on a data set that has a large
number of predictors.
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Conditions:

(i) pn log(1/ε2n) ≺ nε2n

(ii) pn log(pn) ≺ nε2n

(iii) pn log
(
D
(
pn
λn

B̄(rn)nε2n

))
� nε2n

(iv) rn � pn

(v) rn log(B̄(rn)n) � nε2n and Δ(rn) � nε2n

(vi) log
(
rn
pn

)
≤ −4nε2n

pn

Proof of Condition I: If ψ(u) = eu/(1 + eu), then

w(u) = log[ψ(u)/(1 − ψ(u))] = u

=⇒ w′(u) = 1

=⇒ |w′(u)| ≤ Cq �

Proof of Condition S: The proof starts with defining set and
notations used in condition S. Let rn be a large integer > 0
and η is small> 0, then

S(rn, η) = {(γ ,βγ )) : γ = γ (rn),βγ ∈ M(rn, n)
}

M(rn, n) =
{
(b1, .., brn)

T : bj ∈ βj ± nε2n
rn

, j = 1, .., rn
}

Here rn is the model size and γ (rn) = (1, 2, .., rn, 0, ...) is an
increasing sequence whose first rn components take value 1.

�

Let, 1 ≺ rn ≺ min(pn, n/ log(pn)) and
∑∞

j=1 ||βj||2 < ∞.

πn

[
βγ ∈ βj ± nε2n

rn
|γ = γ (rn)

]

≥
rn∏
j=1

[
(λ2n)

(q/2)

(2π)(q−1)/2 exp
(
−λn
√
β̄Tj β̄j

)(nε2n
rn

)]

where β̄j is some intermediate value which achieves the min-

imum density over (βj ± nε2n
rn )j∈γ (rn). Then,

λn

rn∑
j=1

√
β̄Tj β̄j ≤ C1B(rn)

as
∑rn

j=1

√
β̄Tj β̄j ≤ limn→∞

∑pn
j=1

√
β̄Tj β̄j + nε2n

rn is bounded.
In addition we can show that,

rn∏
j=1

(λ2n)
(q/2)

(2π)(q−1)/2 ≥ exp(−C2rn − C3rn log(B̄(rn))

where B̄(rn) = supγ=γ (rn)Ch(Grn). Therefore,

πn

[
βγ ∈ βj ± nε2n

rn
|γ = γ (rn)

]

≥ exp
(

− C2rn − C3rn log(B̄(rn)

− C1B(rn)− rn log
(

rn
nε2n

))

≥ exp(−cnε2n)

To prove the prior condition: Let r̄n such that rn <
r̄n ≤ pn & r̄n ≺ n/ ln(pn). For our model we have placed
π0,n ∼ Beta distribution which is equivalent way of propos-
ing Bernoulli distribution on γ = γ (rn) where γ (rn) ∼
Bernoulli(π0,n) (Smith & Kohn, 1996).

Now,

lnπn = rn lnπ0,n + (pn − rn) ln(1 − π0,n)

if rn ≈ pnλn then for π0,n = rn/pn small and 1 ≺ rn ≺
min(pn, n/ ln pn)

=⇒ lnπn ≥ −rn ln pn > −cnε2n for large n

=⇒ πn[γ = γ (rn)] > exp(−cnε2n)

Satisfying condition (S).

Proof of Condition L: Let us assume D(R)= 1+R.sup|h|≤R|
a′(h)|sup|h|≤R|ψ(h)| and there exists some Cn such that

r̄n ln
(

1
ε2n

)
≺ nε2n

r̄n ln(pn) ≺ nε2n

r̄n lnD(r̄nCn) ≺ nε2n
then,

πn(|γ | > r̄n) = πn(|γ | = pn) =
(
rn
pn

)pn
=⇒ ln(πn(|γ | > r̄n)

= pn ln
(
rn
pn

)
≤ −cnε2n

=⇒ πn(|γ | > r̄n) ≤ e−cnε2n

Next,

πn(||βj||2 > t|γ ) ∝
∫ ∞

t
e−λn

√
βTj βj dβj

≤ 1
λn

e−λnt

If t = Cn = cnε2n
λn

and nε2n � 1, then

1
λn

e−λnt ≤ e−cnε2n , as λn ≥ 1

Satisfying condition (L). �
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