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ABSTRACT

The main goal of this paper is to employ longitudinal trajectories in a significant number of
sub-regional brain volumetric MRI data as statistical predictors for Alzheimer’s disease (AD) clas-
sification. We use logistic regression in a Bayesian framework that includes many functional
predictors. The direct sampling of regression coefficients from the Bayesian logistic model is dif-
ficult due to its complicated likelihood function. In high-dimensional scenarios, the selection of
predictors is paramount with the introduction of either spike-and-slab priors, non-local priors,
or Horseshoe priors. We seek to avoid the complicated Metropolis-Hastings approach and to
develop an easily implementable Gibbs sampler. In addition, the Bayesian estimation provides
proper estimates of the model parameters, which are also useful for building inference. Another
advantage of working with logistic regression is that it calculates the log of odds of relative risk
for AD compared to normal control based on the selected longitudinal predictors, rather than
simply classifying patients based on cross-sectional estimates. Ultimately, however, we com-
bine approaches and use a probability threshold to classify individual patients. We employ 49
functional predictors consisting of volumetric estimates of brain sub-regions, chosen for their
established clinical significance. Moreover, the use of spike-and-slab priors ensures that many
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redundant predictors are dropped from the model.

1. Introduction

The research literature on applied mathematical
approaches and classification methods using longitu-
dinal MRI data has seen massive growth over the
past decade. Among the broad range of methods
applied with variable degrees of success, several war-
rant mention. Misra et al. (2009) implemented a high-
dimensional pattern recognition method to baseline
and longitudinal MRI scans to predict conversion
from MCI to AD over a 15-month period. Zhang
and Shen (2012) used a multi-kernel SVM for classi-
fication of patients between MCI and AD, achieving
78.4% accuracy, 79% sensitivity, and 78% specificity.
Lee et al. (2016) applied logistic regression in predict-
ing conversion from MCI to Alzheimer’s, using fused
lasso regularization to select important features. Seixas
et al. (2014) proposed a Bayesian network decision
model for detecting AD and MCI which considered
the uncertainty and causality behind different disease
stages. Their Bayesian network used a blended effect
of expert knowledge and data-oriented modelling, and
the parameters were estimated using an EM algorithm.
Adaszewski et al. (2013) employed classical group anal-
yses and automated SVM classification of longitudinal
MRI data at the voxel level. Arlt et al. (2013) stud-
ied the correlation between the test scores over time

with fully automated MRI-based volume at the baseline.
However, few studies to date have developed methods
that increase the sensitivity, accuracy, and specificity of
classification in AD diagnosis or progression to more
than 80%.

Classification using longitudinal data can be a chal-
lenge with a large number of predictors. The first sig-
nificant approach to handle longitudinal predictors is
to consider each multiple-occasion observation as a
single function observed over a time interval. Func-
tional predictors have a high correlation with adjacent
measurements, and the observational space is high-
dimensional. The number of predictors required for
estimation often exceeds the number of observations,
thus introducing the problem of dimensionality. A
regression framework is frequently the most suitable
to model all possible longitudinal effects across ROlIs,
where the proposed method will select the important
predictors. Moreover, many biomedical studies have
shown that a limited number of specific brain regions or
ROIs are essential for AD classification. Thus, dimen-
sion reduction techniques can be applied, and classi-
fication can be limited to the reduced feature set. Zhu
et al. (2010) advanced a method for classification and
selection of functional predictors that entails calcula-
tion of functional principle component scores for each
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functional predictor, followed by the use of these scores
to classify each individual observation. They pro-
posed using Gaussian priors for selection and created a
hybrid Metropolis-Hastings/Gibbs sampler algorithm.
Although the method reported in the present study is
inspired by this method, we develop a simple Gibbs
sampler where MCMC samples are drawn from stan-
dard distributions. We also focus on applying penalized
regression for dimension reduction. In the Bayesian
variable selection literature, the spike-and-slab prior
has widespread applications due to its superior selec-
tion power. George and McCulloch (1993, 1997) ini-
tially proposed that each coeflicient B can be modelled
either from the ‘spike’ distribution, where most of its
mass is concentrated around zero, or from the ‘slab’
distribution, which resembles a diffuse distribution.
Instead of imposing the spike-and-slab prior directly
on regression coefficients, Ishwaran and Rao (2005)
introduced a method in which they placed a spike-
and-slab prior on the variance of Gaussian priors. The
Bayesian variable selection methods also include differ-
ent Bayesian regularization methods, such as Bayesian
Lasso (Park & Casella, 2008), Bayesian Group Lasso,
Bayesian elastic net (Li & Lin, 2010). We employ a
Bayesian group lasso algorithm blended with a spike-
and-slab prior obtained from Xu and Ghosh (2015).
The group structure among coefficients in our model
comes from functional smoothing of the coeflicients,
and group lasso facilitates the selection of the impor-
tant functional predictors. Thus, our proposed method
takes the idea of Bayesian variable selection to a gener-
alized functional linear model with binary responses.
The fundamental challenge of this work is to per-
form logistic regression in a Bayesian framework while
using a large number of functional predictors. The
direct sampling of regression coeflicients from the
Bayesian logistic model is difficult due to its compli-
cated likelihood function. In high-dimensional scenar-
ios, selection of predictors becomes crucial with the
introduction of either a spike-and-slab prior, non-local
priors, or horseshoe priors. For all such priors, the
full posterior distribution of regression coeflicients is
analytically inconvenient. We obtain the Pélya-gamma
augmentation method with priors proposed by Xu
and Ghosh (2015), which yields full conditional sam-
ples from standard distributions. Our aim is to avoid the
complications of Metropolis-Hastings and to develop
an easily implementable Gibbs sampler. In addition,
Bayesian estimation provides proper estimates of the
model parameters, which are also useful for build-
ing inference. The key advantage of this method is
that it calculates the log of odds of AD with respect
to CN based on the selected longitudinal predictors.
Moreover, we use a probability threshold for classifying
individual patients to validate our modelling perfor-
mance. We obtained the data used in the paper from the
ADNI server. The volumetric MRI brain data includes

parcellated sub-regions of the whole brain, with sep-
arate subdivisions for the left and right hemispheres.
Volumetric measurements of brain sub-regions across
multiple occasions over time demonstrate differential
patterns of brain atrophy between AD patients and nor-
mal aging people. Because not all brain regions are as
closely related to AD, the redundant features derived
from the unrelated brain regions can be removed by
limiting the selection to brain sub-regions important
to classification. The problem of identifying important
brain sub-regions from a large number of functional
predictors or longitudinal measurements is far from
simple. Various variable selection methods have been
designed for single-time-point data with respective tar-
get variables. We apply a Bayesian variable selection
method to select longitudinal features or functional
predictors for our data set. We work with 49 functional
predictors consisting of longitudinal volumetric mea-
surements in different sub-regional brain ROIs. The use
of the spike-and-slab prior ensures that a large number
of redundant predictors are dropped from the model.
The ROI sub-regions selected by our method will be
helpful for future studies to detect the progression of
dementia.

The paper is organized as follows. In Section 2, we
introduce Bayesian variable selection with a spike-and-
slab prior. Section 3 discusses functional smoothing
of the longitudinal predictors. In Section 4, we intro-
duce our methodology and algorithm for simultane-
ous selection and classification. Theoretical properties
and consistency results are shown in Section 5. We
then discuss the application results with simulated data
and real data in Sections 6 and 7. Finally, Section 8
covers the overall development and limitations of the
methodology.

2. Bayesian variable selection

We will briefly discuss about Bayesian variable selection
below:

2.1. Spike-slab prior

A Bayesian model with a spike-and-slab prior can be
constructed as follows:

ind
(Yi/xi, B,0°) ~= N(xiB,0%), (i=1,...,n)
(B/y) ~N(0, I,
y ~n(dy),

o?~ pu(do?),
where 0 is a p-dimensional zero vector, I” is the p x p
diagonal matrix diag(yi,. .., ¥p)> 7 is the prior mea-
sure for y = (y1,...,¥p)" and w is the prior measure
for o2. Ishwaran and Rao (2005) proposed this setup

and developed optimal properties based on the prior
choice of (B8/y).



A popular version of the spike-and-slab model,
introduced by George and McCulloch (1993, 1997),
identifies zero and non-zero f;’s by using zero-one indi-
cator variables y; and assuming a scale mixture of two
normal distributions:

ind
(Bi/vi) == (1 — y)N(0,72) + ¥iN(0, 2 T?),
i=1,.p

The value for 77 > 0 is some suitably small value, while
¢i > 0is some suitably large value. y; = 1 represents the
Bi’s which are significant, and these coefficients have
large posterior hypervariances and large posterior j;
values. The opposite occurs when y; = 0. The prior
hierarchy for B is completed by assuming a prior for y;.
When Tiz tends to zero we provide more masses on 0, as
the prior for insignificant Bs. The prior distribution for
the regression coefficients can then be written as:

Bi/vd 2L 1 =yl + yiN(©0,12)

with Iy point mass at 0 coefficients; and v? is the limit

for c2t? when 77 tends to zero and ¢ is large enough.

2.2. Bayesian group lasso

We discussed extensively about Bayesian Group Lasso
in introduction. The form of Bayesian Group lasso we
extensively worked with initiated in Xu and Ghosh
(2015). A multivariate zero-inflated mixture prior can
bring sparsity in group level which is elaborately dis-
cussed in Xu and Ghosh (2015). The following hierar-
chical structure with independent spike-and-slab prior
for each fq:

Y|X,B,0% ~ N(XB,0%I)
Beltg, 0 ~ (1 = 710) Ny, (0,672 Tpn,)
+ mdo(Bg), g§=1,..G

me+1 A2
12 ~ Gamma | =% , —
s 2 2

), g=1.,G

o? ~ IG(at,y)
g ~ Beta(a, b)

where 89 (B,) denotes point mass at 0. The mixing prob-
ability 7y can be defined as a function of the number of
predictors to impose more sparsity as the feature size
increases. The choice of A is very critical for Xu and
Ghosh’s prior setup. Large values of A produce biased
estimates, while very small A values impose diffuse dis-
tribution for the slab part. Xu and Ghosh (2015) men-
tioned an empirical Bayes approach to estimate . Due
to intractability of marginal likelihood, they proposed
a Monte Carlo EM algorithm for the estimation of .
Moreover, they showed theoretically and numerically
that the median thresholding of posterior B, samples
provides exact zero estimates for insignificant group
predictors.
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3. Functional smoothing for longitudinal data

Classification with the selection of significant func-
tional predictors is challenging. Researchers commonly
observe high correlation values between functional pre-
dictors. In this paper, we work with the assumptions of
independence between predictors; hence, later we pro-
pose a corresponding prior in the coefficient space.The
main advantage of using functional predictors is that it
allows us to measure time trends present in data. We
start our methodology by smoothing functional obser-
vations using a cubic basis spline. We restrict our data
set to patients with at least four time period obser-
vations, such that smoothed curves are comparable.
James (2002) used a similar approach to obtain the esti-
mates of a generalized linear model with functional
predictors.

Let us assume that we observe n patients with their
functional observations and each patient has p func-
tions. We assume that not all p functional observations
are important. Let x;;(t) be the jth function observed
from the ith patient. Let T be the compact domain of
x;j(t) and x;(t) € L2[T]. With the functional predic-
tors (xi1(t), .., Xip(t)), we assume that we have binary
response variable y; which takes value 0 and 1. We also
assume that the predictors have been centred in this
work, so that we can ignore the intercept term. There-
fore, we have the following logistic regression equation:

P(yi = 1|i1, .. Xip) } 2 /
lo = x;i (1) B;(t) dt
g{l_P(yi:Hxil)--axip) ; T’ &

(1)
Next, we construct an orthonormal basis ¢y (t) that can
be used to decompose the functional predictors and the
corresponding logistic regression coefficients, such as

q q
xi () =) (), B =) Bdr(r)

k=1 k=1

where cjjx and Bjx are the coefficients of x;(t) and B;(t)
with respect to the kth orthonormal basis ¢ (¢). For
notational convenience, we denote the basis coefficients
as Bjk. These are different than the functional coeffi-
cients f;(t). We use cubic basis splines as the orthonor-
mal basis for our simulation examples and real data
applications. Hence, the choice of q completely depends
on the number of internal knots used in basis spline
constructions. The jth component in equation (1) can
thus be written as

q
/T GOBOA = b= @
k=1

To fit the discrete observations x;;(t), we assume that, at
any given time t, instead of x;;(t), we observe X;;(t):

xii(t) = Xij(£) + e(t)
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where e(?) is a zero-mean Gaussian process. We use the
same basis function expansion for X;;(¢) of the form

q
Xii(1) = ) i) = ¢ (1)

k=1

where ¢ () is the g-dimensional spline basis at time ¢
for jth function, c;; the g-dimensional spline coefficients
for the jth predictor from ith patient. We use ordinary
least square estimates for estimating spline coefficients.
A simple linear smoother is obtained by minimizing the
least squares criterion ||x;; — d5c,‘j||2 as

&= (@'P) ' P'x; (3)

Once the orthonormal basis coefficients have been esti-
mated, we can combine (1), (2) and (3) by plugging
%;j(t) in (1), which yields

o { P(y; = 1|xi15 .., Xip) }
1 — P(y; = 1|xi1, .., Xip)

p
=Y [ gewpoa

Il
~.
M" i
1§

At
B

~.
Il
_

(4)

Il
2.
=

where 8 JT = fT ,Bj(t)¢T(t) dt, the coefficient vector for
the jth functional predictor. Here, ¢; vector has its first
element as 1 and rest of the spline coefficients for ith
patient, and B contains intercept of the model as its first
element. We use no intercept form for our real data and
simulation application where ¢; = (i1, .., ¢ip)” does not

have first element as 1 and gP%! = (B8 quxl,.., ﬂ;q“)T
has group structure with each group size = q. Our selec-
tion method drops the redundant 8’s and will select the
important coefficient groups.

Functional principal component (FPC) analysis is
another popular method that can be applied here.
Instead of least square basis estimates, one can work
with FPC scores for classification. Zhu et al. (2010)
also used FPC scores in their classification model,
and they selected the functional predictors whose FPC
scores were significant. MULLER (2005) extended the
applicability of FPC analysis for modelling longitudi-
nal data. Specifically, FPC scores can be used when we
have few repeated and irregularly observed data points.
In our functional smoothing method, we expanded
the functional observation with spline basis functions
and used the basis coefficients for classification. The
same intuition can also be applied for FPC scores.
For functional component analysis, we assume that
longitudinal observations are from a smooth random
function X(¢) and its mean function is u(t) = E X(¢)

and covariance function G(s, t) = cov(X(s), X(¢)). The
covariance function can be represented as G(s,t) =
Y req Mdr(s)@i(t) where ¢’s are eigenfunctions and
Ax’s are eigenvalues. Then, the underline process can be
written as:

X(t) =pn®+ Y &pr(d),

k=1

where &’s are frequently referred to as FPC scores.
These scores can be used later in the classification
model. We do not work with an infinite number of
scores; instead, the above sum is approximated with a
finite K that explains the majority of the variance in
functional observations. For most cases, the first two
FPC scores are enough to build a good classification
model. In this paper, we work with the basis spline
smoothing method due to its ease of implementation
in statistical software. In R, we have the splines package,
which fits cubic basis splines on longitudinal data with
equally placed knots. We do not investigate any findings
using FPC scores instead of basis spline coefficients,
as our main focus is on the classification algorithm,
and basis spline coefficients work very well for our
classification model.

4. Simultaneous classification of binary
response with selection of functional
predictors

4.1. Classification using Pélya-gamma
augmentation

In the following, we discuss Polsonetal’s (2013)
algorithm; these authors showed how a Gaussian vari-
ance mixture distribution with a Pélya-gamma mixing
density can approximate logit likelihood. We start by
defining Pélya-gamma density-

Random variable X ~ PG(b, ¢), a Pdlya-gamma dis-
tribution with parameters b > 0 and ¢ € N, if

d
=2n22(k_2

where g ~ Gamma(b, 1) are independent gamma ran-

2
) 47-[2

dom variables and < means equality in distribution.

Polson et al.’s (2013) main result parametrized the
log-odds of logistic likelihood as mixtures of Gaussian
with respect to Pélya-gamma distribution. The funda-
mental integral result, which is easily integrated into the
Gaussian prior hierarchy is that, for >0 -

(eV)"
(1+e¥)b

where k = a — b/2 and w ~ PG(b,0). The introduc-
tion of latent variables (wj,..,,) later helped us in
deriving conjugate posterior distribution. R package

_ —b k¢ * _e?
=2""¢ e 2 p(w)dw (5)
0



BayesLogit has an efficient algorithm to sample from
Pélya-gamma distribution and it was proposed by Win-
dle et al. (2014).

4.2. Selection using Bayesian group lasso

As we discussed in the Section 2.2, Meier et al. (2008)
developed group lasso for logistic regression in a fre-
quentist setup. In our model, we have p number of func-
tional predictors (x;1(f), .., xjp(¢) with binary response
yi € {0,1}, each group has q levels. We can write our
model as-

P(y; = 1111 (£), - Xip (1)) } Ry
{ 1= P(yi = 1xin (1), o xip(0) | ;CZJB]
= np(ci)

According to Meier et al. (2008) method, the logis-

tic group lasso estimator with basis spline coefficients
would look like

p
Por = min § —IB) +2. 3 ValBl:

j=1

where I(8) = Y1 (i (ci) — log(1 + explnp(c)) is
the log-likelihood function.

Before moving on to our proposed Bayesian method,
we want to mention a similar model presented by Zhu
et al. (2010): they used latent variables for Bayesian
logistic regression, and FPC scores represented the
functional predictors. They proposed a normal prior
for the concatenation coeflicients, which is the same as
our coefficients fs.

Now, motivated by Polson etal’s (2013) integral
result, we construct a Bayesian prior formulation tar-
geted to handle binary logistic regression. Equation 4.4
has a Bernoulli likelihood function with logit link.
We propose a spike-and-slab prior motivated by Xu
and Ghosh (2015) with a zero-inflated mixture prior,
which helps us in selecting the important group coef-
ficients. As previously described, we introduce latent
variables (w;, .., wy) to take advantage of the integral
identity described in Equation (5). Our prior setup is

exp(c/ B) .
————=—], i=1l.n
1+ exp(c; B)
i=1,.,n
ﬂj|fj2,770 ~ (1 — 7o) Nq(0, szfq) + 70d0(B))>

j=L...,p

21,2 qg+1 A2 :
oA~ G ,—), =1,...,
]| amma( 5 2) j p

yilci, B ~ Bernoulli (

w; ™~ PG(l, 0),

79 ~ Beta(a, b)
(6)
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4.2.1. Gibbs sampler
The likelihood for ith observation is:

T

eSi Byyi
Li(B) = ( )T
1+eiP

00 (T B)2

' exp{K,-c,-T,B}/ exp {—M}
0 2
x p(w;) dw;, from Equation (5)

where k; = y; — 0.5 and w; ~ PG(1,0). If we consider
all n independent observations, given w; we can write
the joint likelihood as-

- - (T 32
HLi(mwi) = l_[exp {K,’ciTﬂ _ M}

. 5 2
i=1 i=1

. . 2
1 T
= exp { ——EE (Z — (jtg) 2 (Z - (jfg) }

where z = (2—11,.., Z)_Z) and 2 = diag(wy, .., wy).
Next, we combine the likelihood function with 8
prior, given w = (w1, .., wy):

p(B, %, m0|Y, C, w)

o exp {—%(z — B2z~ Cﬂ)}
p
X

J

_1 1
|:(1 — mo) (7)) 72 exp {_Z_sz.BjT,Bj}

1

g0y + 7T050(13j):|

A2¢2

g+l arl_ T
x (W) 7 (1) 7 e

-1 b—1
x 7y~ (1 — mp)

Due to the introduction of Pdlya-gamma augmenta-
tion, we can derive a block Gibbs sampler with a pos-
terior distribution of B;’s. The same method is derived
in Xu and Ghosh (2015) for continuous Y in linear
model setup. The blocks Gibbs sampler was introduced
by Hobert and Geyer (1998). To build this sampler, we
start with some notations. Let B;) denotes the 8 vector
without jth group,

T T QT T\T
,3(1') = (/31 > e lgj_p ,3]‘4_1: ) ,Bp )
and the corresponding design matrix can be written as:
Cj = (C1, ., Cj—1, Cjt15., Cp)

Cj is the corresponding design matrix for ;.
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When B; # 0:
1
p(Bjlrest) o exp {—5(2 — CBj — CB)"

2(z = CiBg) — Cjﬁj)}

1 o7
X exp —gﬂj B

J

- 2z- Co')ﬁ(j))TS?Cjﬁj} }

1
o exp {_E(,Bj — A" B;(; — Aj)}

where, B = (C[ G + #Iq) and Aj = B 'C] 2(z -

C(j)B(j)) Hence the posterior full conditional of g; is a
spike-and-slab distribution,

(Bjlrest) ~ (1 = [Ny(Aj, By ) + 180 (B)),  j=1,.p
(7)
where [; = p(B; = O|rest). Now we will find the proba-
bility ; :
li = p(Bj = O|rest)
_ p(ﬂ] = 0))’|C,CU,TJ-2,7T0)
fﬁﬂéo P(,B]))/|C> w, sza 7'[0) dIBJ

_ p()/|:3] = 0, C, w, ‘[].2’ ]'[0)1)([3] — O|Tj2> no)
" PUIB = 0.Con A mo)p(By = Ol mo)
+ fﬁﬁéop(y“g] ?é 0) C) w, sz, 7'[0)
p(Bj # 0It}, 7o) dB;
_ M]TO
~ Mo + N(1 — 7o)

where 7o = p(Bj = OIsz,ﬂo)’

M = p(y|B; = 0,C, 0,7}, m0)
1
Bj#0

=/ exp{—l(z— CATR(z— Cﬂ)}
Bi#0 2

7
Tg.
BB

- 2
x (2mj2)—%e 7 dg;

1 T AT 1
=M x exp -3 B; (G 2Ci + =1y B;
Bj#0 T

- 28/ C/ R~ C@ﬁ@)] } (2nt)) "t dp;

_1a 1 _4
=M x ()72 exp :EAJ.TBJ-AJ-} / 2r)”2
Bj#0

1
X exp {—ij — A)"Bi(B - Aj)} dp;
2y—1 1 r -1
=M x (‘L’]) 2 exp EAJ BjAj |B]| 2

Hence,
o

_4q _1
7o+ (1 — 7o) (T2 "4 [By{ 2 exp {%AJ.TBjAj}

= (8)

The posterior full conditional distributions of other
parameters are stated below, and the derivations of the
posteriors are described in appendix.

— |res
2
i
+1 A2

Inverse — Gamma <qT, ?) , ifBi=0

~

A2> , if B #0
©)

Inverse — Gaussian (

A
IB;ll2"

forall j = 1,,., p. Let, G;j define whether a certain group
is selected or not

G = 1, lf Bi #0
0, ifgj=0
Then,
p P
(mo|rest) ~ Beta | p — Z Gj+a, Z Gi+b | (10)
j=1 j=1

We will sample our augmented variables w = (w1, .., w,)
using the posterior samples of §:

(@ilB) ~ PG(L,cB), i=1,.,n (11)

Finally, we are left with the values of A. A is the
most crucial parameter for our model and should be
treated carefully. A large A shrinks most of the group
coefficients towards zero and produces biased esti-
mates. In our real data analysis, we try to control
the A value by assigning a different range of values.
Xu and Ghosh (2015) proposed a Monte Carlo EM
algorithm for estimating . The following is the kth EM
update for A from their paper-

3k _ p(g+1)
Zf:l Ejt-» [szb’]

The expected value of sz |y for binary response y is
intractable. In other words, this expected value can be
calculated by taking mean of posterior samples of rjz.




5. Median thresholding and theoretical
properties

5.1. Marginal prior for B;

We first study the marginal priors of B;’s to examine
the theoretical properties of the Bayesian group lasso
estimators. We aim to establish the connection between
B; group priors and existing Group Lasso penaliza-

tion methods. We integrate out sz from B; priors.
The marginal priors for B;’s are calculated based on
Xu and Ghosh (2015) work with extension to binary
response instead of continuous response. For §; # 0:

pCBy/mo) o [ pl/ et mop(e?) d?
Y

Oo 2y—1 L7
0</O (= mo)(7) 2 exp ) == F; B
)
)\42
X ()»2)%1(5-2)‘1%1_1 exp {—7er} dtjz
« (1= 1))

xexp{—xnﬁjuz}/o CoR:

188 PRk
X exp—- 12] |:aj2 - ] da?
o 1Bl

o (1 - m0) (1) exp [~ 116112}

where aj2 =

r%. The marginal prior for ;’s are also

spike-slab with point mass at 0 and the slab part consists
of a Multi-Laplace distribution which same as the one
considered in Bayesian group lasso (Casella et al., 2010)
or matches with penalization mentioned in Bayesian
Adaptive Lasso (Leng et al., 2014).

Bj/mo ~ (1 —mo)M — Laplace (0, %) + 7030(B;)

(12)
Combining spike and slab both, the components facil-
itates variable selection at group level and shrinks the
coeflicients of the selected groups.

5.2. Median thresholding as posterior estimates

We previously discussed obtaining the selected group
coeflicient estimation through median thresholding of
the MCMC sample. Xu and Ghosh (2015) general-
ized the median thresholding proposed by Johnstone
and Silverman (2004) for multivariate spike-and-slab
prior. Johnstone and Silverman (2004) showed median
thresholding, under a spike-and-slab prior for nor-
mal means, has some desirable properties. In this
section, we generalize this idea to a binary classification
problem and show that the posterior median estima-
tor serves as group variable selection by obtaining a
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zero coefficient for the redundant groups. We further
demonstrate the posterior median as a soft threshold-
ing estimator that is consistent in model selection and
has an optimal asymptotic estimation rate.

Focusing on only one group, then Xu and Ghosh
(2015) proposed the following theorem on Median
thresholding:

Zx1 Nf(z — )
r ~ modo(p) + (1 — mo)y (1)

where Z is an m-dimensional random variable, and y (.)
and f(.) are both density functions for m-dimensional
random vectors. f(¢) is maximized at # =0. Let
Med(11;|z) denote the marginal posterior median of 1;
given data. By definition,

[y dv [0y () dy
cC = <
f(0) - £(0)

Theorem 5.1: Suppose mo > 15, then there exists a
threshold t(;rg) > 0, such that when ||z||, < t,

Med(pilz) =0, foranyl <i<m

Next, we focus on our problem setup. If we assume f3;
follows a Gaussian prior, B; ~ N(0, B;j) and the design
matrix satisfies the condition CJ-T.Q C(j) = 0. Then the
posterior estimates of f;|rest is:

Bj = Bjlrest ~ N(uj, Z))
T —1\—1
5= (C/2C+ B

T
Mj = chj 2z

According to Theorem 5.1, assuming 7y > 1i;, then
there exists # () > 0, such that the marginal posterior
median of Bj; under prior (6) satisfies

Med(Bjlpj) =0 foranyl <k <gq

when || ,3j||2 < t. We can interpret this result in the
context of the same explanation provided by Xu
and Ghosh (2015): the median estimator of the jth
group of regression coefficients is zero when the norm
of the posterior estimates under any other prior distri-
bution is less than a certain threshold.

Posterior Median as soft thresholding:

We assume that C]TQ Cj = nl; and C matrix is group
wise Orthogonal with C].TQ C(j) = 0. We are consid-
ering the model defined in (6) with fixed tﬁn and it
depends on n. In this set-up, the posterior distribution
of B; will be similar to the one derived in the previous
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section:
,3;|C’y,w
1 T 1
~ (1— lj)Nq ;(1 — Dj,n)Cj 2z, ;(1 — Djn)ly
+ ;80 (B)),

1
—an
T2 @ d,

jon

where D; , =

o
7o + (1 — o) (1 + nt?) 72
exp {%(1 — Dj,n)ncfszzug}

=

Then, the marginal posterior distribution for Bj(1 <
k < g) conditional on the observed data is a spike-and-
slab distribution,

Bik|C. y, @
~ lido(Bjx) + (1 — )N

1 o1
x (=~ (1 = Dy G2z, (1 = Dj)

where Cj is the kth vector of the Cjth group matrix. The
corresponding soft thresholding estimator is

Bix = Med(Bjx|C, y, w)

= sgn (C},;.Qz)

X (;(1 — Dj)n)|cjk.QZ| - ﬁQj,/l - Dj,n)

+

where z; is the positive part of z and Q; = ¢!
(=———+—). Our results also follow Xu and Ghosh
2(1-min(3.}))
(2015)’s work to show the soft thresholding. One
should especially note that the term D; , depends on tfn
which controls the shrinkage factor.
Oracle Property:
Let 8°, /3]-0, ﬁ( be the true values B, B, Bj, respec-
tively. The index vector of true model is A=
(I(IBjll2 # 0),j = 1,..,p), and the index vector model

selected by certain thresholding estimator B iis Ay =

(I(”ﬁj”z #0),j = 1,., p). Model selection consistency
is attained if and only if lim, P(4,— 0 = A) = L.

Theorem 5.2: Assume the following design exists, C]-T
2C;j = nly. Suppose \/ﬁrﬁn — 00 and log(tﬁn)/n -0
as n — oo, for j = 1,.., p, then the median thresholding
estimator has oracle property, that is, varaible selection
consistency,

lim P(AY = A) =1

The proof follows same as steps as the proof of
Theorem 4 in Xu and Ghosh (2015).

5.3. Posterior consistency

In this section, we conduct a theoretical investigation
regarding the convergence of the group lasso estima-
tor model to the true model. To show model consis-
tency, we refer to the results and theorems mentioned
in the paper titled ‘On the consistency of Bayesian
variable selection for high dimensional binary regres-
sion and classification’ by Jiang (2006). In this paper,
the author setup Bayesian variable selection similar
to Smith and Kohn (1996) by introducing a selection
indicator vector y = (y1,..,¥p) where y; = 0/1. The
corresponding prior setup is as follows:

y=Xp+e
B, ~ N(O, co? (X;Xy)fl)
y; ~ Bernoulli(r),

(@*ly) ~ 1/o?

i=1,.,p

We can establish a direct connection between o