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ABSTRACT

We revisit the performance of a canonical system design for edge-
assisted AR that simply combines off-the-shelf H.264 video encod-
ing with a standard object tracking technique. Our experimental
analysis shows that the simple canonical design for edge-assisted
object detection can achieve within 3.07%/1.51% of the accuracy of
ideal offloading (which assumes infinite network bandwidth and
the total network transmission time of a single RTT) under LTE/5G
mmWave networks. Our findings suggest that recent trend towards
sophisticated system architecture design for edge-assisted AR ap-
pears unnecessary. We provide insights for why video compression
plus on-device object tracking is so effective in edge-assisted object
detection, draw implications to edge-assisted AR research, and pose
open problems that warrant further investigation into this surprise
finding.
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1 INTRODUCTION

Augmented Reality (AR) promises unprecedented interactive and
immersive experiences to users in a real-world environment, and
along with VR/MR are the cornerstones of the emerging Meta-
verse [6].

A complex AR app often needs to perform a number of chal-
lenging tasks, e.g., pose estimation, object detection, and depth
estimation, in order to understand and interact with the physi-
cal environment. In recent years, Deep Neural Networks (DNN)-
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based solutions have been developed for these tasks and shown to
achieve high accuracy. Since such DNN models are too computation-
intensive to run on resource-constrained mobile devices in real time,
offloading DNN inference tasks to edge servers, known as edge-
assisted AR, has emerged as the de facto approach (e.g., [7, 16]).

As offloading high-resolution, high-rate frames to edge servers
conceptually requires ultra-high bandwidth, (edge-assisted) AR is
widely hailed as a 5G “killer” app [1, 2], e.g., in the AT&T and Mi-
crosoft alliance [3], and the Verizon and AWS alliance to showcase
5G edge computing solutions [5].

In this paper, we observe that previous work on edge-assisted
AR (object detection) did not systemically explore several basic,
legacy optimization techniques. We then present an in-depth evalu-
ation of the potential and limit of a canonical edge-assisted design
that simply combines off-the-shelf video encoding (H.264) with
a fairly standard object tracking technique (the Lucas-Kanade al-
gorithm [18]) running on mobile device in real time, denoted as
local tracking [7] thereafter. Specifically, we compare it with three
baselines (offloading raw frames, frames with image compression,
and ideal offloading which assumes infinite network bandwidth
and the total network transmission time of a single RTT), using
three diverse AR video datasets which cover all the datasets used
in previous work, and three representative DNN models for object
detection. Our evaluation shows that such a canonical edge-assisted
AR design can already achieve within 3.07%/1.51% of the accuracy
(mean Average Precision) of ideal offloading, under LTE and 5G
mmWave, respectively.

We further unravel the fundamental reasons for why the canoni-
cal design is so effective: (1) video encoding significantly reduces the
offloaded frame size; (2) in the mean time lossy video compression
at proper encoding bitrate causes negligible accuracy degradation of
DNN models for object detection, due to the robustness of the DNN
models; and (3) local tracking can uphold the estimation accuracy
of periodic offloaded frames for all frames.

Our findings suggest that additional benefits of sophisticated
system architecture designs for edge-assisted AR such as those pro-
posed recently [16] will bring only marginal accuracy improvement
over the canonical design. We conclude by drawing implications
to edge-assisted AR research and pose several open problems that
warrant further investigation as a consequence of this finding.

2 EDGE-ASSISTED AR: DESIGN OBJECTIVE
AND PRIOR WORK

We give a brief background of the edge-assisted DNN-based AR

problem, review optimization techniques in the literature, and dis-

cuss how two basic, legacy optimizations have not been systemati-

cally or properly explored.
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Figure 1: Frame offloading with E2E delay of L frame inter-
vals.

2.1 Background of Edge-assisted AR

We consider a single DNN-based AR task, e.g., object detection.
Given a sequence of frames F; captured in real time by the camera
on the mobile device, and a DNN model M that implements the
task, edge-assisted AR seeks to maximize the overall accuracy of the
AR task, ie., the DNN inference, on all the frames F;, by exploiting
offloading the computation-intensive DNN inference to an edge
server over the wireless network. The overall accuracy is typically
measured by summarizing the accuracy per frame, e.g., using mean
average precision (mAP) [9] for object detection.

The end-to-end (E2E) latency of offloading the DNN inference
task for frame i is simply

Teze (1) = Typ (i) + Ty p (i) + Ty (3) (1)

where T,,; and Ty; denote the duration for the client to transmit the
frame to the server and for the server to send the inference result
to the client, respectively, and T, ¢ denotes the DNN inference time
on the edge server. Specifically, the uplink/downlink data transfer
time T,,;/Ty; consists of one-way network delay (half RTT) between
the client and the server and the delay in transmitting data over
the wireless network, e.g., T,,; (i) = }% + Dg;u(ll), where D, is size
of uplink data and B,; is uplink bandwidth.

In practice, the end-to-end offloading latency of the above simple
design when running under today’s wireless networks such as LTE
and 5G can exceed the duration of a frame capture (e.g., 16.7ms for
60 FPS). As a result, the client may only be able to offload frames
periodically. Figure 1 shows an example where the E2E delay in
offloading a single frame is L frame intervals.

The delay in offloading a frame in the simple design has two
implications: the longer the offloading delay T,z (e.g., L intervals),
not only the estimation result (e.g., for frame T) sent back by the
server (received at T+L-1) will be more stale, but also more frames
(e.g., L frames) will be using the stale result. Both factors will con-
tribute to reducing the overall estimation accuracy across all the
frames of the video.

2.2 Towards Improving Edge-assisted AR Task
Accuracy

The above analysis suggests the overall accuracy of an AR task
in the simple edge-assisted AR design above can be improved by
exploring two approaches: (1) reducing offloading latency T2, and
(2) improving the accuracy in using the result of last offloaded frame
for new frames.

Optimization 1: reducing offloading latency by video/ image
compression. A well-known technique in edge computing is to
reduce data transfer latency via data compression (e.g., [22]). In
edge-assisted AR, an uploaded frame and its inference result can
be encoded/decoded before/after data transfer to reduce the data

transfer time T,,;/T;;. When the result is small, the technique is
typically applied to the uploaded frame only, e.g., using video/image
compression techniques, and the offloading latency becomes

Teze = Ten (i) + Ty (1) + Tge (1) + Tinf(i) + Tq1 (i) (2)

where T,p, (i) and Ty, (i) denote the encoding and decoding latency
on the mobile client and the server, respectively.

Optimization 2: reducing offloading latency by partial DNN
oﬂ]oading. In contrast to frame compression, a much more com-
plex approach to reducing the offloading latency which was exten-
sively studied in recent years is to partition the DNN model for
inference between the mobile client and the server and find the
optimal partitioning point that minimizes the end-to-end latency,
e.g., that has a small model feature size (e.g., [8, 10, 12-15]). The
idea can be further combined with data compression, i.e., by com-
pressing the model features of the partitioned layer offloaded to
the edge server.

Optimization 3: improving estimation accuracy via local
tracking. Since directly reusing the result of the last offloaded
frame (T) for future frames (T+L, ..., T+2L-1) leads to poor estima-
tion accuracy (due to staleness), local tracking [7] was proposed to
improve the estimation accuracy by locally adjusting the estimation
result of the last offloaded frame T to derive a better estimation
for subsequent frames T+L, T+L+1, etc., based on the difference
between the features extracted from frames T and T+L+i. Since
local tracking is geometry-based, it is generally light-weight and
can be executed in a fraction of a frame interval.

Optimization 4: improving estimation accuracy via hybrid
DNN offloading. Instead of local tracking, the mobile client can
run a light-weight version of the DNN locally which may also
provide better accuracy than directly reusing the result of the last
offloaded frame.

2.3 Previous Work

We observe that the large amount of work on edge-assisted object
detection in recent years failed to systematically explore the com-
bination of two basic optimization techniques, frame compression
and local tracking. In particular, we contrast prior work with what
we denote as the canonical design of edge-assisted AR design where
the mobile device simply applies an off-the-shelf, standard video
compression technique (H.264) to the each offloaded, original frame
output by the camera, offloads the next frame as soon as the result
for the last offloaded frame comes back, and runs a standard lo-
cal tracking technique (the Lucas-Kanade algorithm [18]) for new
frames on the mobile device in real time.

First, the large body of work on DNN inference offloading (e.g., [12,
13, 27]) studied reducing the latency of object detection on individ-
ual frames, disregarding the inter-frame arrival time in a real AR.
It is unclear how much they can improve the accuracy of frames
captured in real-time AR.

Second, other works on edge-assisted AR often resorted to much
more complex designs, such as partial/hybrid DNN inference of-
floading, dissecting each frame into subframes and applying com-
plex encoding, and leveraging specially-tuned DNN-based encoders
and decoders, as summarized in Table 1. We note one of the first



Table 1: Comparison between previous work and canonical design on edge-assisted object detection.

Previous work Video Image Partial DNN Local Hybrid DNN | Compared with
compression compression offloading  tracking offloading | ideal offloading

e.g., [12, 13, 27] No Yes for some, complex  Yes, complex No Yes, complex No

DeepDecision [22] Yes No No No Yes, complex No

Liu et al. [16] Yes, complex No No Yes No No

Canonical design Yes No No Yes No Yes

works on edge-assisted AR, Glimpse [7], did not consider DNN-
based object detection and only considered two simple object types.

DeepDecision [22] proposed hybrid DNN inference offloading
that uses a complex measurement-driven framework to decide
whether to run a small DNN model locally or a large model re-
motely on the server. However, the study was limited, because (1)
it did not consider local tracking, and (2) it did not compare the
accuracy of the proposed solution with that of ideal offloading.

Liu et al. [16] also considered both local tracking and frame
compression. However, the design significantly complicates the
canonical design in three ways: (1) Instead of simply applying video
encoding to whole frames, it resorts to a complex scheme where
the mobile client dissects each frame into subframes of different
importance and seeks to apply frame encoding of different bitrates.
(2) Instead of applying a single encoding bitrate to all frames for
diverse datasets and both LTE and 5G mmWave, it applies varying
bitrates in frame encoding, i.e., higher encoding bitrate to subframes
that are “regions of interest” and lower encoding bitrates to other
subframes. Such a heuristic does not directly optimize the AR task
accuracy for a given network bandwidth constraint. (3) Instead of
simply offloading frames back to back, it determines when to offload
frames via a heuristic, which estimates the difference between two
consecutive frames and decides to offload the new frame when
the difference is larger than some predetermined threshold to save
network bandwidth (as opposed to maximize the object detection
accuracy). Such a heuristic does not directly try to maximize the
overall object detection accuracy across the frames.

3 HOW GOOD IS THE CANONICAL
OFFLOADING DESIGN?

Our central hypothesis is that previous work on edge-assisted object

detection did not systemically explore several basic, legacy optimiza-

tion techniques, and that the canonical design, can already achieve

accuracy close to that of ideal offloading which assumes infinite net-

work bandwidth and the total data transfer time of a single RTT.
We next validate the hypothesis via extensive experiments.

3.1 Prototypes of Edge-assisted AR

We first developed four edge-assisted object detection apps running
on an Android device without local tracking:

Offload-RAW: This is the baseline offloading scheme where the
client directly transmits camera-captured raw frames to the server
for DNN inference as fast as it can. The server transmits inference
results, i.e, bounding boxes and confidence values, back to the
client. We consider it as a baseline design as raw frames do not
cause accuracy degradation in DNN inference.

Offload-IMG: The client first uses Android APIs to compress an
offloaded raw frame to JPEG. It then offloads the JPEG image to the
server for DNN inference.

Offload-VID: For each offloaded frame, the client first encodes
it using the built-in hardware encoder of H.264 which is widely
adopted on mobile devices. The client then offloads the encoded
frame to the server. The server decodes the encoded frame to ex-
tract the RGB frame, executes DNN inference and then sends the
inference result back to the client.

Offload-Ideal: This version is used to assess the upper-bound ac-
curacy of edge-assisted AR. It assumes infinite network bandwidth
and per-frame network transmission latency (sum of uploading and
downloading duration) is the same as the RTT between the client
and the edge server. To implement it, we first run the DNN model
offline over all the frames, save the inference result and record the
inference latency on the server. During the experiments, the client
only sends the frame name to the server. The server sleeps for the
inference latency and then sends the corresponding inference result
back. In this way, we emulate ideal offloading with the network
transmission latency of one RTT only.

We then extended all four versions to include the option for turn-
ing on local tracking: for every frame, the client runs the lightweight
Lucas-Kanade algorithm to track objects from the last offloaded
frame to the current frame.

3.2 Experimental Setup

Client and server. The mobile client runs on a Samsung Note 20
Ultra 5G phone equipped with Qualcomm Snapdragon 865 Plus 5G
SoC. The edge server is equipped with an Intel Xeon W-2133 CPU
and a GeForce 2080Ti GPU.

DNN models. We selected three popular DNN models developed
for object detection running on the server, i.e., FasterRCNN [24],
SSD [17] and YOLOV3 [23].

Datasets. We chose three diverse video datasets which covers all
the datasets used by prior works on edge-assisted AR, ImageNet
2017 [25], MOT 2017 [20] and Xiph [4], which represent typical
AR scenarios. The videos we sampled from the three datasets have
resolution of 1280x720, 1920x1080, and 3840x2160, respectively.
Since the Xiph dataset does not come with ground truth labels, we
manually labelled them. We extracted YUV420 frames (the standard
camera output format) from the videos at 640x480 resolution, the
closest resolution to SSD and YOLOv3’s input resolution. Though
Faster-RCNN can take variable-sized inputs, we found downsizing
videos to 640x480 causes negligible accuracy degradation (1.61%
mAP at most). During the experiments, we replayed videos at their
original frame rate (i.e., 30 FPS for ImageNet 2017 and MOT 2017
and 60 FPS for Xiph).
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Figure 2: Comparison of average frame size, E2E latency and offloading accuracy without and with local tracking averaged
across the three datasets, for the three DNN models under LTE.
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Figure 3: Comparison of average frame size, end-to-end latency and offloading accuracy without and with local tracking
averaged across the three datasets, for the three DNN models under 5G.

Encoding parameters. For Offload-VID, we selected 5 different
bitrates {0.75, 1.5, 3, 6, 12} (unit: Mbps). For Offload-IMG, we adopted
the same JPEG quality level (i.e., 70) used by [7].

Network conditions. We consider two network conditions, LTE
and 5G mmWave, by emulating measured throughput and RTT
using the Linux tc tool. For LTE, the TCP upload/download through-
put are 10Mbps/100Mbps based on measurement using speedtest.net,
and the client-server RTT is 30 ms as measured between the client
and Verizon’s Wavelength edge server in Downtown Boston using
traceroute. For 5G, we used average upload and download band-
width calculated using public traces for 5G mmWave [21], of around
73Mbps/520Mbps when the client is walking/driving, and an RTT
of 12 ms based on our own measurement between the client and
Verizon’s Wavelength server under 5G mmWave. !

Metrics. We measure the following metrics for each offloading
version: (1) Accuracy: the accuracy of object detection using the
standard metric, mean Average Precision (mAP) [9] with the IoU
threshold of 0.5; (2) End-to-end latency: the average per-frame of-
floading latency; (3) Average frame size: the average size of encoded
frames offloaded to the edge server.

3.3 Results for LTE

We first compare the performance of the four online offloading
schemes under LTE network condition.

Figure 2 (1st) shows that as encoding bitrate increases from 750
Kbps to 12 Mbps, video encoding increases the average frame size
from 3.12 KB to 16.66 KB averaged across the three datasets for

1[26] reports similar median RTTs measured between a client and an Alibaba ENS
edge server over LTE and 5G in China, of 34.2 ms and 10.4 ms, respectively.
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all the three models, which is smaller than the average frame size
of image encoding (38.34 KB), and much smaller than raw frames
(450 KB). The sublinear increase of the frame size is because of the
default encoding technique used by Android, i.e, VBR (variable
bitrate) which applies higher compression ratio for less complex
frame content.

The reduced frame size translates into lower end-to-end (E2E)
offloading latency. Figure 2 (2nd) shows that Offload-VID achieves
the lowest E2E delay, 98.20—143.88 ms under the encoding bitrate
of 12 Mbps, which is smaller than the E2E delay of Offload-IMG
(106.9-160.07 ms) and much smaller than that of Offload-RAW
(465.98—528.57 ms). For Offload-VID, the latencies of encoding (on
the mobile device) and decoding (on the edge server), 7.47 ms and
5.47 ms, respectively, regardless of the encoding bitrate, are not
significant. For Offload-IMG, the latencies of encoding and decoding
are slightly smaller, i.e., 5.02 ms and 5.00 ms, respectively.

Figure 2 (3rd) shows that without local tracking, Offload-RAW
achieves the lowest accuracy. For Offload-VID, as the encoding bi-
trate increases from 750 Kbps to 12 Mbps, the accuracy averaged
across the three datasets increases from 30.70%, 27.28%, and 38.74%,
to 48.25%, 38.82%, and 49.09%, for Faster-RCNN, SSD and YOLOVv3,
respectively. When the encoding bitrate reaches beyond 6 Mbps,
the offloading accuracy increase slows down, as the model infer-
ence accuracy does not keep increasing (discussed in §4), but the
EZ2E offloading latency increases because of the increased encoded
frame size. Offload-VID with 6 Mbps bitrate achieves notably 6.80%,
5.31%, and 5.08% lower accuracy than Offload-Ideal for the three
models. The gap is due to the higher E2E latency of Offload-VID
(104.1-132.8 ms, or 4 frame intervals) compared to that of Offload-
Ideal (62.7—90.4 ms, or 2—3 frame intervals). Offload-IMG achieves



worse accuracy than Offload-VID, i.e., 7.49%, 7.00% and 8.67% lower
accuracy than Offload-Ideal, because of lower model inference
accuracy and much larger compressed frame size (by 1.75X-2.83X).

Figure 2 (4th) shows that with local tracking, the accuracy of
Offload-RAW improves to 39.97%, 30.06% and 40.19%, for Faster-
RCNN, SSD and YOLOV3, respectively. For Offload-VID, local track-
ing also increases the accuracy across all the bitrates for the three
models. Offload-VID with 6 Mbps encoding bitrate achieves the
accuracy of 55.73%, 43.03% and 54.74% for the three models, re-
spectively, which is only 3.07%, 2.11%, and -0.17% smaller than
Offload-Ideal. The much smaller gap is because local tracking from
offloaded frames effectively captures the movement of objects and
the camera. Finally, local tracking also improves the accuracy of
Offload-IMG to 55.21%, 42.92% and 51.01% for the three models,
which are 3.59%, 2.22%, 3.56% lower than that of Offload-Ideal.

In summary, combined with local tracking, video encoding achieves
accuracy better than Offload-IMG and Offload-RAW, and within 3.07%
of the accuracy of Offload-Ideal, under LTE.

3.4 Results for 5G mmWave

Figure 3 shows that 5G mmWave’s lower RTT and higher band-
width result in shorter E2E latency than LTE. For Offload-VID, at
6 Mbps bitrate, the E2E latency is 99.86 ms, 76.69 ms, and 64.62
ms, averaged across the three datasets for Faster-RCNN, SSD, and
YOLOV3, respectively, which is significantly shorter than LTE’s
132.80 ms, 104.05 ms, and 105.08 ms.

The reduction in E2E latency translates to higher accuracy. With-
out local tracking, Offload-VID with 6 Mbps bitrate achieves accu-
racy of 53.88%, 42.15%, and 53.39% for the three models, respectively,
which are 6.40%, 3.33%, and 4.64% higher than that of LTE without
tracking. Local tracking further improves the accuracy to 57.95%,
44.22%, and 55.80%, i.e., 2.22%, 1.19%, and 1.06% higher than LTE
with tracking.

The lower RTT and higher throughput of 5G also reduce the
difference in E2E latency between different encoding schemes and
ideal offloading, which in turn reduces the difference in their accu-
racy. With local tracking, Offload-VID’s accuracy is 1.51%, 1.36%,
and -0.08% lower than Offload-Ideal, while Offload-IMG’s accuracy
is 1.51%, 0.44% and 2.51% lower than Offload-Ideal and Offload-
RAW’s accuracy is 1.91%, 2.03% and 2.01% lower than Offload-Ideal.

In summary, unlike LTE, under 5G mmWave, with local tracking,
both Offload-VID and Offload-IMG slightly outperform Offload-RAW,
and practically tie with Offload-Ideal.

4 WHY DOES THE CANONICAL DESIGN
WORK SO WELL?

We discuss the fundamental reasons why the canonical offloading
design based on video encoding works so well.

1. Video encoding significantly reduces offloaded frame size
and hence E2E offloading latency. Figure 2 shows even with
the highest chosen bitrate of 6 Mbps, the average frame size of
video encoding is only 18.72 KB, i.e., 48.83% smaller than the image-
encoded frames (38.34 KB), and only 4.16% of the uncompressed
frame (450.00 KB). Its E2E latency thus drastically reduces to 113.98
ms, smaller than Offload-IMG (130.43 ms) and Offload-RAW (498.04
ms) over LTE. The E2E latency of Offload-VID, Offload-IMG and
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Table 2: Comparison of frame size and average offline accu-
racy using original/compressed frames as input.

Method Avg. Frame Offline Accuracy

Size (KB) Faster-RCNN SSD YOLOv3
Original 450 66.39% 47.21% 59.68%
IMG 38.24 64.98% 47.03% 58.10%
VID (0.75M) 3.15 62.14% 45.29%  55.77%
VID (1.5M) 6.15 64.44% 46.18% 58.87%
VID (3.0M) 11.58 65.68% 46.67% 59.76%
VID (6.0M) 17.69 66.32% 46.95% 60.13%
VID (12.0M) 20.20 66.39% 47.30% 60.07%

Offload-RAW further drops to 80.39 ms, 78.30 ms and 122.94 ms
over 5G. The smaller E2E delay of Offload-IMG is mainly because
Offload-IMG’s encoding take 5.02 ms, lower than Offload-VID (7.47
ms) running on the mobile client.

2. Yet lossy compression does not cause accuracy degrada-
tion of DNN inference. Conceptually, video encoding is lossy;
though it can reduce E2E offloading latency, it may comprise the
accuracy of object detection for each offloaded frame running on
the edge server and cancel out the benefits of frame compression.
To evaluate this, we compare the accuracy of running the DNN
models offline with three versions of each frame: the original frame,
decoded frame after image encoding, and decoded frame after video
encoding (following § 3.2). Table 2 shows that for video encoding, in-
creasing the encoding bitrate from 0.75 Mbps to 12.0 Mbps increases
accuracy from 62.14%, 45.29% and 55.77%, to 66.39%, 47.30% and
60.07% averaged over the three datasets for Faster-RCNN, SSD and
YOLOV3, respectively. Compared with using original raw frames
as input which achieves 66.39%, 47.21% and 59.68% accuracy for
the three models, respectively, when the encoding bitrate reaches 6
Mbps, video encoding achieves 66.32%, 46.95% and 60.13% accuracy
for the three models, i.e., with almost no accuracy loss (0.26% at
maximum) on DNN model inference.

3. Local tracking upholds estimation accuracy. We caculated
the per-frame mean IoU (Intersect over Union) of Offload-VID with-
out and with local tracking for all the models and videos, and found
the gap reduces from 4.22% to 2.16% under LTE and from 3.34% to
1.65% under 5G, on average.

5 IMPLICATIONS TO EDGE-ASSISTED AR
SYSTEM DESIGN

No need to design complicated offloading scheme. The key
takeaway from our study is that there appears no need to develop
complicated offloading system designs for edge-assisted AR, as the
canonical design, already achieves accuracy very close to that of
ideal offloading, and the gap further narrows with the improvement
of the network technology, e.g., within 3.07% for LTE and practically
comparable under 5G mmWave. We argue the small and narrowing
gap is well-justified by the simple offloading design which benefits
from well-studied and well-engineered building blocks such as
video encoding and local tracking. Further, it is unclear if complex
offloading designs can bridge the small gap as the frame transfer



time is only 14.98 ms and 2.05 ms beyond the RTT under LTE and
5G mmWave. 2

In this paper, we showed the canonical design works well un-
der steady LTE and 5G throughput. In practice, the wireless net-
works may exhibit dynamics. We believe the canonical design will
continue to work well as we have shown in §3 that it has low
requirement on network bandwidth.

Improving and picking DNN models. Given the canonical design
can already achieve accuracy close to that of ideal offloading, further
effort on improving the accuracy of edge-assisted AR should focus
on improving the accuracy of the DNN model and reducing DNN
inference time which currently accounts for a major fraction of
Te2e (41.11% under LTE and 54.88% under 5G mmWave). A related
question is how to pick the DNN models out of the many candidate
models that offer different tradeoffs between accuracy and inference
time (e.g., [19]).

Reducing network RTT will play a bigger role for accuracy
improvement. Our study shows that the accuracy improvement
from LTE to 5G comes from reduced E2E latency by 28.00 ms,
which is mainly caused by RTT reduction (from 30 ms to 12 ms)
compared with bandwidth improvement (from 10 Mbps to 75 Mbps)
which only cuts 10ms. Going forward, RTT reduction, e.g., with
the deployment of Standalone 5G, will more directly contribute
to further E2E offloading latency reduction, compared to further
bandwidth increase, given that the encoded frame size is relatively
small.

Open questions. Our study also raises several open questions. (1)
Will video encoding be equally effective in offloading other DNN-
based AR tasks such as pose estimation and depth estimation? (2)
A complex AR app or Mixed Reality app may need to perform
multiple vision tasks on each frame. How should video encoding be
applied in multi-task AR offloading? (3) Will the canonical design
be equally effective in saving the mobile device power consumption
in edge-assisted AR? (4) What is the limit of video encoding for
edge-assisted object detection in non-AR context? For example,
though the three video datasets used in our study are diverse, video
captures in special video analytics systems may contain a large
number of small objects [11]. How much will encoding such frames
affect the accuracy of object detection DNN models?

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful comments.
This project is supported in part by NSF grant 2112778 and by
Charter Communications.

REFERENCES

[1] 2017. Augmented and Virtual Reality: the First Wave of 5G Killer Apps: Qual-
comm — ABI Research. https://gsacom.com/paper/augmented-virtual-reality-
first-wave-5g-killer-apps-qualcomm-abi-research/.

2018. The mobile future of augmented reality. https://www.qualcomm.com/
media/documents/files/the-mobile-future-of-augmented- reality.pdf.

2019. AT&T integrates 5G with Microsoft Azure to enable next-generation solu-
tions on the edge. https://www.business.att.com/learn/top-voices/at-t-integrates-
5g-with-microsoft-azure-to-enable- next-generatio.html.

[4] 2019. Xiph. https://media.xiph.org/video/derf/.

(2]
(3]

2We could not directly compare to those complex designs (e.g., [16]), as their imple-
mentation are not available.

12

[9]

(10]

[11

[12

ey
&

[14

[15

[16

[19

[20

[21]

[22]

[23

[24]

[25

[27

2021. Verizon teams with NFL, AWS to showcase 5G edge.  https://www.
fiercewireless.com/operators/verizon-teams-nfl-aws-to-showcase-5g-edge.
2022. Metaverse. https://en.wikipedia.org/wiki/Metaverse.

Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and Hari
Balakrishnan. 2015. Glimpse: Continuous, real-time object recognition on mobile
devices. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor
Systems. 155-168.

Amir Erfan Eshratifar, Mohammad Saeed Abrishami, and Massoud Pedram. 2019.
JointDNN: an efficient training and inference engine for intelligent mobile cloud
computing services. IEEE Transactions on Mobile Computing (2019).

Mark Everingham, SM Eslami, Luc Van Gool, Christopher KI Williams, John
Winn, and Andrew Zisserman. 2015. The pascal visual object classes challenge:
A retrospective. International journal of computer vision 111, 1 (2015), 98-136.
Chuang Hu, Wei Bao, Dan Wang, and Fengming Liu. 2019. Dynamic adaptive
DNN surgery for inference acceleration on the edge. In IEEE INFOCOM 2019-IEEE
Conference on Computer Communications. IEEE, 1423-1431.

Shiqi Jiang, Zhiqi Lin, Yuanchun Li, Yuanchao Shu, and Yunxin Liu. 2021. Flex-
ible high-resolution object detection on edge devices with tunable latency. In
Proceedings of the 27th Annual International Conference on Mobile Computing and
Networking. 559-572.

Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason
Mars, and Lingjia Tang. 2017. Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge. ACM SIGARCH Computer Architecture News 45, 1
(2017), 615-629.

Stefanos Laskaridis, Stylianos I Venieris, Mario Almeida, Ilias Leontiadis, and
Nicholas D Lane. 2020. SPINN: synergistic progressive inference of neural net-
works over device and cloud. In Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking. 1-15.

En Li, Zhi Zhou, and Xu Chen. 2018. Edge intelligence: On-demand deep learning
model co-inference with device-edge synergy. In Proceedings of the 2018 Workshop
on Mobile Edge Communications. 31-36.

Hongshan Li, Chenghao Hu, Jingyan Jiang, Zhi Wang, Yonggang Wen, and
Wenwu Zhu. 2018. Jalad: Joint accuracy-and latency-aware deep structure de-
coupling for edge-cloud execution. In 2018 IEEE 24th International Conference on
Parallel and Distributed Systems (ICPADS). IEEE, 671-678.

Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge assisted real-time
object detection for mobile augmented reality. In The 25th Annual International
Conference on Mobile Computing and Networking. 1-16.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. 2016. Ssd: Single shot multibox detector.
In European conference on computer vision. Springer, 21-37.

Bruce D. Lucas and Takeo Kanade. 1981. An Iterative Image Registration Tech-
nique with an Application to Stereo Vision. In Proceedings of the 7th International
Joint Conference on Artificial Intelligence - Volume 2 (Vancouver, BC, Canada)
(IJCAI’81). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 674-679.
Jiayi Meng, Zhaoning Kong, Qiang Xu, and Y Charlie Hu. 2021. Do Larger (More
Accurate) Deep Neural Network Models Help in Edge-assisted Augmented Real-
ity?. In Proceedings of the ACM SIGCOMM 2021 Workshop on Network-Application
Integration. 47-52.

Anton Milan, Laura Leal-Taixé, Ian Reid, Stefan Roth, and Konrad Schindler. 2016.
MOT16: A benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831
(2016).

Arvind Narayanan, Eman Ramadan, Rishabh Mehta, Xinyue Hu, Qingxu Liu,
Rostand AK Fezeu, Udhaya Kumar Dayalan, Saurabh Verma, Peiqi Ji, Tao Li, et al.
2020. Lumos5G: Mapping and Predicting Commercial mmWave 5G Throughput.
In Proceedings of the ACM Internet Measurement Conference. 176-193.

Xukan Ran, Haolianz Chen, Xiaodan Zhu, Zhenming Liu, and Jiasi Chen. 2018.
Deepdecision: A mobile deep learning framework for edge video analytics. In IEEE
INFOCOM 2018-IEEE Conference on Computer Communications. IEEE, 1421-1429.
Joseph Redmon and Ali Farhadi. 2018. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767 (2018).

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. Advances in
neural information processing systems 28 (2015), 91-99.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV) 115, 3 (2015), 211-252. https:
//doi.org/10.1007/s11263-015-0816-y

Mengwei Xu, Zhe Fu, Xiao Ma, Li Zhang, Yanan Li, Feng Qian, Shangguang
Wang, Ke Li, Jingyu Yang, and Xuanzhe Liu. 2021. From cloud to edge: a first look
at public edge platforms. In Proceedings of the 21st ACM Internet Measurement
Conference. 37-53.

Shuochao Yao, Jinyang Li, Dongxin Liu, Tianshi Wang, Shengzhong Liu, Huajie
Shao, and Tarek Abdelzaher. 2020. Deep compressive offloading: Speeding up
neural network inference by trading edge computation for network latency.
In Proceedings of the 18th Conference on Embedded Networked Sensor Systems.
476-488.


https://gsacom.com/paper/augmented-virtual-reality-first-wave-5g-killer-apps-qualcomm-abi-research/
https://gsacom.com/paper/augmented-virtual-reality-first-wave-5g-killer-apps-qualcomm-abi-research/
https://www.qualcomm.com/media/documents/files/the-mobile-future-of-augmented-reality.pdf
https://www.qualcomm.com/media/documents/files/the-mobile-future-of-augmented-reality.pdf
https://www.business.att.com/learn/top-voices/at-t-integrates-5g-with-microsoft-azure-to-enable-next-generatio.html
https://www.business.att.com/learn/top-voices/at-t-integrates-5g-with-microsoft-azure-to-enable-next-generatio.html
https://media.xiph.org/video/derf/
https://www.fiercewireless.com/operators/verizon-teams-nfl-aws-to-showcase-5g-edge
https://www.fiercewireless.com/operators/verizon-teams-nfl-aws-to-showcase-5g-edge
https://en.wikipedia.org/wiki/Metaverse
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y

	Abstract
	1 Introduction
	2 Edge-assisted AR: Design Objective and Prior Work
	2.1 Background of Edge-assisted AR
	2.2 Towards Improving Edge-assisted AR Task Accuracy
	2.3 Previous Work

	3 How Good is the Canonical Offloading Design?
	3.1 Prototypes of Edge-assisted AR
	3.2 Experimental Setup
	3.3 Results for LTE
	3.4 Results for 5G mmWave

	4 Why does the Canonical Design Work so Well?
	5 Implications to Edge-assisted AR System Design
	Acknowledgments
	References



