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Augmented Reality (AR) promises unprecedented interactive and immersive
experiences to users by augmenting physical objects in the real world with
computer-generated perceptual information. As such, a complete AR app often
needs to perform several challenging tasks to understand and interact with the
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Abstract. Augmented Reality (AR) has been widely hailed as a repre-
sentative of ultra-high bandwidth and ultra-low latency apps that will
be enabled by 5G networks. While single-user AR can perform AR tasks
locally on the mobile device, multi-user AR apps, which allow multiple
users to interact within the same physical space, critically rely on the cel-
lular network to support user interactions. However, a recent study showed
that multi-user AR apps can experience very high end-to-end latency
when running over LTE, rendering user interaction practically infeasible.
In this paper, we study whether 5G mmWave, which promises significant
bandwidth and latency improvements over LTE, can support multi-user
AR by conducting an in-depth measurement study of the same popular
multi-user AR app over both LTE and 5G mmWave.

Our measurement and analysis show that: (1) The E2E AR latency over
LTE is significantly lower compared to the values reported in the previ-
ous study. However, it still remains too high for practical user interaction.
(2) 5G mmWave brings no benefits to multi-user AR apps. (3) While 5G
mm Wave reduces the latency of the uplink visual data transmission, there
are other components of the AR app that are independent of the network
technology and account for a significant fraction of the E2E latency. (4)
The app drains 66% more network energy, which translates to 28% higher
total energy over 5G mmWave compared to over LTE.

Introduction

physical environment, such as pose estimation or object detection [1].

While single-user AR can potentially perform AR tasks locally on the mobile
device [9], multi-user AR apps, also known as networked AR apps, which allow
multiple users to interact within the same physical space, critically rely on the
cellular network and often a cloud server to support user interactions. Further,
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to provide high-quality, interactive experience, such networked AR apps need to
perform the needed AR tasks (e.g. pose estimation and synchronization to the
same physical environment) at very low latency, which places high uplink band-
width demand on the wireless network. It is because of this stringent network
requirement that networked AR has been widely viewed as one of the “killer”
apps for 5G [10,29,38], e.g., in the AT&T and Microsoft alliance as well as the
Verizon and AWS alliance to showcase 5G edge computing solutions [11,39].

Previously, Apicharttrisorn et al. conducted an in-depth measurement
study [8] of a popular two-user app that performs the most basic multi-user
interaction, i.e., displaying an object, to study whether LTE can support the
needed QoE of multi-user AR. That study showed that the latency from the
moment a user (host) places a virtual object in the physical environment to the
moment a second user (resolver) sees that object in their screen is 12.5 s in the
median case and can be as high as 26 s over LTE, which renders the most basic
user interaction in multi-user AR apps practically infeasible.

5G mmWave is being rapidly deployed by all major mobile operators promis-
ing ultra-high bandwidth and lower latency compared to 4G LTE. As an exam-
ple, Table 1 shows the uplink and downlink TCP throughput (measured with
iperf3), the end-to-end (E2E) round trip latency (measured with ping), and
the RAN latency (approximated as the round trip latency to the first hop
router) between a mobile device and a Google Cloud server. We observe that 5G
mmWave offers 16x higher downlink throughput and 3.4x higher uplink through-
put compared to LTE while it reduces the RAN (E2E) latency by 56% (42%).

Table 1. Throughput and Latency comparison over 5G mmWave and LTE.

Throughput (Mbps) | Latency (ms)
Downlink | Uplink |RAN |E2E
5G | 1715 £ 57152 £ 6|14 £2 |25 £ 4
LTE| 110 + 17| 44 + 8|32+ 5|43 +£4

Driven by these initial observations, in this paper we revisit the previous
feasibility study of multi-user AR over cellular networks by conducting an in-
depth measurement study of the same popular multi-user AR app side-by-side
over both LTE and 5G mmWave. Our dataset is publicly available [2]. Our
study tries to answer two key questions: (1) Can 5G mmWave provide much
better support for multi-user interactions in AR compared to LTE to the extent
that real-time multi-user interaction becomes feasible? (2) Does multi-user AR
drain significantly more energy under 5G compared to under LTE?

The main findings of our study are as follows: (1) The E2E latency over
LTE is significantly lower (by 6.6 s) compared to the values reported in [§],
however, it remains too high for real-time multi-user AR apps. (2) 5G mmWave
does not reduce the E2E latency of the AR app compared to LTE in spite of
its much higher bandwidth and lower RTT. (3) While 5G mmWave yields a
small reduction to the latency of the uplink visual data transmission, there are
other components of the AR app that contribute significantly to the E2E latency
regardless of the underlying cellular technology. In addition, we discovered a new
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Fig. 1. Cloud-based multi-user AR.

latency component between the cloud and the resolver, which was not reported
in [8], and is often a major contributor to the E2E latency. (4) The app drains
on average 66% more network energy over 5G mmWave compared to over LTE.
Since the network energy accounts for about 32% of the total energy, such high
network energy difference translates into smaller (but still significant) difference
in the total app energy drain, by 23% on the host and 43% on the resolver.

2 Background and Related Work

2.1 Multi-user AR

Current mobile AR systems like Google ARCore [4], Apple ARKit [3], and
Microsoft Hololens [6] use SLAM to construct a 3D coordinate structure of the
physical world and get an estimation of the user’s location and orientation (pose).
The users first need to share their coordinates to create a common and consistent
real-world coordinate system. Once a virtual object is placed on the screen,
SLAM is run to get an estimation of the device’s current pose and the real-
world coordinate features, and objects in the user’s field of view are rendered
on the screen. Popular multi-user AR apps on the market, enabled by Google
ARCore, Apple ARKit, or Microsoft Hololens offload most of the computations
to cloud servers to reduce the workload on the phones. In the following, we briefly
describe the workflow of such applications, shown in Fig. 1.

The host initiates a connection with a cloud based Firebase [5] database
by creating a room ID (R). The resolver uses the same room ID and waits for
incoming connections from the host via the cloud. After an object is placed on
the host’s screen, the following events take place.

1. Hosting device: (a) Device Handshakes. The host places an object and
two connections to Google Cloud are instantiated for object positioning. (b)
Visual Data Transmission. The host sends the real world visual information
about the overlaid virtual object to the cloud. (¢) Cloud Processing. The
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cloud processes the host’s visual data. It sends back the SLAM-computed world
frame to the host and notifies the resolver to start the resolution process.

2. Resolving device:(a) Cloud Connection Initiation. The Firebase noti-
fies the resolver to start a connection with the Google Cloud instance. The
resolver scans the world frames through camera and pre-processes the data. (b)
Data Transmission. On getting notified by the cloud, the resolver uploads its
visual data to the cloud. (c¢) Cloud Processing. The cloud, on receiving the
resolver’s frames, tries to match them against the host’s SLAM-computed data,
estimates the pose of the resolver in the world frame and send its back to the
resolver. If the cloud processing fails (e.g., because the environment lacks visual
features, such as high contrast edges, colors, etc.), the cloud asks the resolver
to upload new visual data. Hence, this process might involve multiple rounds of
communication and cloud processing. In the following, we include only the first
round of communication in the data transmission delay (2b), while any addi-
tional rounds of communication are included in the cloud processing delay (2c).
(d) Object Rendering. The resolver uses the data from the cloud to estimate
the virtual object’s pose and display it on its screen.

We note that there may be an additional delay before the notification of the
hosted object is received by the resolver, denoted as 2x: Notification delay in
Fig. 1. This delay was not reported in [8], but it is often a major contributor to
the E2E latency in our experiments.

2.2 Related Work

Multi-user AR. Unlike single-user AR (e.g., [9,12,22,31]), there have been very
few works on multi-user AR. A few works [30,32,44] focus on application layer
sharing while our work focuses on the impact of the cellular network in multi-user
AR performance. In contrast to [8], which studies multi-user AR performance
over LTE, our work is the first to our best knowledge to study the performance
and energy consumption of multi-user AR over 5G mmWave. A few recent works
study edge-assisted [34] or P2P-based [33] multi-user AR. In contrast, our work
focuses on cloud-assisted multi-user AR, which is the default approach in most
popular AR apps on the market.

5G mmWave Performance. A few recent studies focus on early-stage 5G
mmWave performance and its impact on downlink-oriented mobile apps (web
browsing and video streaming) [24-26]. To our best knowledge, there is no other
work studying the impact of 5G mmWave on multi-user AR, which has very
different application and communication features compared to web browsing or
video streaming.

3 Methodology

Multi-user AR Application. Google’s Cloud Anchor API [4] forms the foun-
dation for most of the cloud-based, multi-user AR Android apps today. We used
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Table 2. 5G mmWave Uplink throughput for different operators and cities.

Operator and City | Throughput (Mbps)
Verizon, Boston 152+6

Verizon, Chicago 47+15

Verizon, Indianapolis| 43+5

AT&T, Indianapolis | 150 £ 50

Google’s popular multi-user application, Cloud Anchor, which was also used
in [8]. The application lets a user place a virtual object on a real-world surface
while another user can view it.

Devices. We used two Google Pixel 5 phones for our experiments. For the
measurements involving the LTE network, we disabled the 5G radio through the
phone’s settings.

5G Carrier and Location. We conducted uplink throughput measurements
in three different cities over two different cellular operators (Table 2). Based on
these measurements, we selected Boston and Verizon for our experiments in this
work, as that was the combination that provided the highest throughput. We
used Verizon’s NSA-based 5G service that provides mmWave coverage over the
28/39 GHz frequency bands (n260/261).

Experimental Methodology. We conducted our experiments near the down-
town of Boston, at two different locations. At each location, we stood 80 ft away
from the base station (BS); we confirmed via SpeedTest measurements that this
distance yielded the maximum possible uplink throughput. The experiments at
each location spanned a 1-week period. All measurements were done at day time,
from 9 am to 5 pm. For 5G mmWave, we consider two cases — when the users
face towards the BS and when they face away from the BS; in the later case,
their bodies block the Line of Sight (LOS) between the BS and the UE.

Measurement Tools. To extract the end to end latency of the AR app, we mod-
ified the app to log the Unix timestamps and captured packets with timestamps
via tcpdump. We also extracted low-level, signalling messages using Mobileln-
sight [20].

4 Performance of Multi-user AR

We begin our study by comparing the E2E latency of the AR app over LTE
and 5G mmWave in Sect.4.1 and then study the individual app components
in Sect.4.2-4.5. Finally, in Sect. 4.6, we study the impact of two optimizations,
which were shown in [8] to improve the latency over LTE networks. Figure 2
plots the E2E latency as well as the latency of the individual components over
20 runs.
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Fig. 2. Multi-user AR latency breakdown.

4.1 End to End Performance

From Fig. 2, we make the following observations: (i) The E2E latency over LTE
is significantly lower compared to the numbers reported in [8]. The median (max-
imum) latency is 5.9 s (14 s) vs. 12.5 s (27 s) in [8]). We conjecture that this
reduction may be due to different levels of congestion in the LTE network and
the cloud and/or technological advances in the LTE network and the UEs. How-
ever, the latency remains unacceptably high and severely impacts the user QoE.
(ii) 5G mmWave, when the user faces the BS, reduces the worst-case E2E latency
by more than 2 s. However, surprisingly, the median latency and the 75-th per-
centile over 5G mmWave are higher than over LTE by 0.4 s and 1.4 s, respec-
tively, despite the much higher speeds and lower RTTs brought by 5G mmWave
compared to LTE (Table1). (iii) Self-blockage has minimal impact on the per-
formance of the multi-user AR app, increasing the median E2E latency by about
0.5 s and the 75-th percentile by about 0.2 s. (v) Similar to the results in [8], the
key contributors of the E2E latency are on the hosting side for both 5G mmWave
and LTE. Together, the handshakes (1a), the visual data transmission (1b), and
the cloud processing (1c) account for about 60% of the E2E latency over both
5G mMWave and 64% over LTE. In contrast, the resolving side components (2a
- 2d) contribute together only 12% of the median E2E latency.

Overall, 5G mmWave brings practically no improvements to the performance
of multi-user AR apps. In the following, we take a closer look at the latency of the
individual app components and try to uncover the root causes of this surprising
result and the factors that prevent 5G mmWave to unleash its potential.

4.2 Latency 2x: Resolver Notification

In our experiments, we often observed a substantial delay between the last data
packet sent by the cloud to the host and the moment the notification from the



186 M. Ghoshal et al.

cloud of a new hosted object is received by the resolver. In Fig.2, we observe
that this delay, which we call 2x and was not reported in [8], varies from under
100 ms to as high as 7 s, and can be a significant contributor to the E2E latency
over both LTE and 5G mmWave, accounting for about 16%, 26% and 23% of
the E2E latency in the median case for 5G-towards (1.05 s), 5G-away (1.77 s)
and LTE (1.4 s), respectively.

To understand the root cause of this delay, we set up a proxy between the
cloud server and the resolver UE. The proxy is a server on Google Cloud, and
is connected to the resolver UE through an L2TP tunnel. We synchronized the
proxy and the two UEs using NTP and used tcpdump to capture and analyze
packet traces on both sides. By comparing timestamps, we further broke down
the 2x latency into two parts: between the last data packet sent by the cloud
to the host and the moment the notification from the cloud is received by the
proxy (2x-1) and between the moment the notification is received by the proxy
and the moment the notification is finally received by the resolver (2x_2).

We found that 2x_1 is always short (about 100 ms), suggesting that the
load on the server has minimal impact on the total 2x latency. Hence, the main
contributor to the 2x latency is 2x_2 (varying from a few about 100 ms to more
than 6 s) and the the root cause of the high 2x latency lies somewhere on
the path from the proxy to the UE. We further found that every time the 2x
latency was higher than a few 100 s of ms, there was a TCP retransmission of the
notification packet from the server. In contrast, no retransmission was observed
for the cases when 2x_2 was comparable to 2x_1. Since the TCP retransmission
packet was always received by the proxy within 100 ms and retransmissions over
the wireless link (at the MAC and RLC layers) are unlikely to cause a delay
of several seconds, we conjecture that the root cause of the high 2x latency lies
in the cellular packet core network and the various middlebox (NATs, firewalls)
policies implemented by the operator, which have been shown to often have a
significant impact on E2E TCP performance [40].

4.3 Latency la and 2a: Connection Handshakes

In [8], it was shown that TCP connection handshakes between the app and the
cloud take 3 s on average on the hosting side (1a), contributing significantly to
the E2E latency, while the handshakes and data pre-processing on the resolving
side (2a) finish in less than 1 s. In contrast, Fig. 2 shows that the la latency in
our experiments is significantly reduced over both 5G mmWave and LTE and is
similar to the 2a latency (below 1 s), with the exception of 1 run over LTE that
experienced a 2a latency higher than 5.5 s.

One would expect the la and 2a latencies to be lower over 5G mmWave
compared to over LTE, as 5G mmWave has lower RTTs (Table1). However,
a closer look at these latencies (Fig.3) shows that this is not the case. While
the minimum values of 1a and 2a are indeed lower over 5G mmWave, the 75-th
percentiles and maximum values are higher. Analyzing the root cause of this
result is difficult, as each of these delays consists of multiple components (e.g.,
la involves tapping the screen, an optional DNS transaction, a TCP handshake
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Fig. 3. Closer look at latencies 1a, 1b, 2a, 2b.

with the cloud, and a TLS handshake) and the delay of each component might
affect other delays. For example, we found that when the TCP handshake is
preceded by a DNS transaction, the time to complete the TCP handshake is
half over 5G mmWave compared to over LTE (~20 ms vs. ~40 ms), whereas in
the absence of a DNS transaction it is higher (~220 ms vs. ~170 ms), possibly
due to different promotion delays (e.g., the delay for the radio to switch from
the idle state to the connected state) in 5G and LTE. Since the contribution of
both la and 2a to the E2E latency is minimal over both cellular networks, we
do not further study these latencies.

4.4 Latency 1lc and 2c: Cloud Processing

Figure 2 shows that the latency of the cloud processing of the host data (1c) is
2.2 s in the median case over both 5G mmWave and LTE, although there are a
few outliers as high as 7.5 s, which we attribute to temporary server overloads.
This value is significantly lower than the value reported in [8] (5 s), as the cloud
technology has evolved over the past 2 years, but remains high, contributing
about 30-35% to the E2E latency. In contrast, the cloud processing latency on
the resolving side (2c) is in general negligible (200-400 ms), similar to what was
reported in [8]. However, there are outlier values that can be as high as 5.5 s.
We found that these outliers are due to multiple rounds of communication and
processing when the cloud processing fails and requests the resolver to upload
new visual data, as we explained in Fig. 1. One such example is shown in Fig. 4.
After the first chunk of visual data upload (0-0.07 s), the cloud processing fails,
and the resolver uploads another chunk of visual data (0.89-0.95 s), which the
cloud processes successfully. We also observe that the cloud processing delay is
much longer in the case of a failure (the first cloud processing delay in Fig.4
takes 0.82 s while the second one takes only 0.16 s).
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first attempt.

4.5 Latency 1b and 2b: Uplink Data Communication

In [8], the average 1b latency was found to be 10 s over a public LTE network.
In contrast, our measurements in Fig. 2 show that the 1b latency over LTE is
much lower, with a median value of 1.27 s and a maximum value of 2.04 s,
which explain the large drop in the LTE E2E latency compared to the values
reported in [8]. Hence, unlike the results reported in [8], 1b is no longer the
primary contributor to the E2E latency over LTE, although its contribution still
remains significant. On the other hand, the contribution of the 2b latency on
the resolving side remains negligible.

Figure 2 shows that 5G mmWave reduces both 1b and 2b latency when the
user faces towards the BS, as expected due to its higher bandwidth and lower
RTTs. However, the improvement is very small — 0.14 s and 0.27 s, in the median
case, for 1b and 2b, respectively. Self-blockage increases the 1b latency to 1.44 s
(vs. 1.13 s in the absence of blockage) in the median case and to 2.6 s (vs. 1.77
s) in the worst case, but no impact on the resolving side.

To understand why 5G mmWave has minimal impact on the uplink trans-
mission latency in spite of the much higher uplink bandwidth compared to LTE,
we show in Fig. 5 scatterplots of the uplink throughput vs. the uploaded bytes
on the hosting and resolving side for each of the 40 runs. We observe that the
data transfer size on both sides is very small — up to 5 MB on the hosting
side and up to 0.11 MB on the resolving side, similar to the numbers reported
in [8]. The small data transfer sizes explain the small improvement in the uplink
data communication latency brought by 5G mmWave compared to LTE. The
data uploads always finish before TCP exits the slow start phase, preventing it
from taking advantage of the much higher available bandwidth offered by 5G
mmWave. This is clearly shown in Fig. 5, where we observe very low throughput
values (at most 22 Mbps on the host side and 12 Mbps on the resolver side),
which are similar over 5G mmWave and LTE, especially for data transfer sizes
up to 2 MB.
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ing slow start. Figure6, which plots the CDF of the modulation and coding
scheme (MCS) values collected by MobileInsight every 5 ms, further corrobo-
rates this claim. The MCS values are much lower when the user faces away
from the BS compared to when the user faces towards the BS, confirming that
self-blockage deteriorates significantly the link quality. However, this large degra-
dation of the link quality is perceived to a much lesser degree by the multi-user
AR app, due to the very low application layer throughput.

4.6 AR Design Optimizations

In this section, we study two optimizations that were proposed in [8] to reduce
the uplink data transmission latency (1b and 2b) over LTE networks.

Packet Size Adaptation. In scenarios when the RAN is congested, large IP
packet sizes can experience heavier segmentation at the Radio Link Control
(RLC) layer, which can increase the per-packet RLC latency and subsequently,
the TCP RTT, and adversely impact the growth of the TCP window during
an AR upload burst. While smaller IP packets can help address this issue, they
increase the network overhead. In [8], it was shown that a TCP Maximum Seg-
ment Size (MSS) of 650 bytes can increase throughput by 62% and reduce the
RAN latency by 37% compared to the default MSS.

We experimented with the same three MSS values used in [8]: 400 bytes, 650
bytes, and default (1356 bytes). We conducted 10 runs with each MSS over 5G
mmWave with the user facing towards the BS. The results are shown in Fig. 7.

We observe that changing the MSS has a minimal impact over of 5G mmWave
networks. On the hosting side, all three MSS values result in roughly the same
median latency. On the resolving side, the default MSS results in a slightly
lower median latency than the other two values but in a slightly higher worst
case latency. We conjecture that the minimal impact of the MSS on the 1b and
2b latency is due to the fact that 5G mmWave deployments are still at their
infancy and they are unlikely to be congested, unlike LTE networks. To test the
impact of this optimization in a congested network, we repeated the experiment
with a third phone sending backlogged UDP traffic to a cloud server. Figure 7
shows that in a congested network, the smallest MSS (400 bytes) results in a
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much higher latency, especially in the case of 1b, similar to what was observed
in [8]. However, the other two MSS values still yield similar latency.

Small Background Traffic. Every time the application starts sending a new
uplink data burst, the UE has to request resources from the BS. The BS is
initially unaware of the uplink sending buffer, and may allocate a small uplink
grant for the UE, causing RLC segmentation and increasing the per-packet RAN
latency. In order to make the BS aware of the UE’s uplink buffer during an AR
session, the authors in [8] proposed to generate small amounts of background
uplink traffic, using ICMP packets during an AR session. To examine the effec-
tiveness of this optimization over 5G mmWave, we conducted 10 runs with and
without ICMP traffic with the user facing towards the BS. Figure 8 shows that
this optimization is effective over 5G mmWave, bringing a significant reduction
to the 1b latency on the hosting side. The median latency reduces from 1.31
s (without ICMP traffic) to 1.05 s (with ICMP traffic). The 2b latency is also
reduced but the reduction is much smaller compared to the 1b latency due to
the much smaller transfer sizes. However, since the contribution of the 1b and
2b latencies to the E2E latency is small (Sect. 4.5), this optimization has a small
impact on the E2E latency.

Summary. Overall, in spite of the much higher bandwidth and lower RTT
over LTE, 5G mmWave brings no benefits to multi-user AR apps. Although
5G mmWave brings a small reduction to the visual data transmission latency
and certain optimizations that were proposed over LTE networks are equally
effective over 5G networks and can further reduce this latency, there are other
major contributors to the E2E AR latency (resolver notification, cloud process-
ing), which are independent of the underlying cellular network technology. As a
result, the E2E latency over 5G mmWave remains too high to enable practical
user interaction in multi-user AR apps.
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5 Energy Consumption

In this section, we compare the power draw and energy drain of both the host
and the resolver in running the AR app over LTE and 5G mmWave.

5.1 Methodology

The AR app uses five power-hungry phone components: CPU, GPU, Camera,
Display, and the cellular NIC. We use the utilization-based power models [13]
for mobile devices, which have been widely used [14,16,18,19,27,36,37,41-43]
to model the instantaneous power draw of the CPU and the GPU. In a nutshell,
such a model derives the correlation between the utilization of a phone compo-
nent in each of its power states, and the resulting power draw using carefully
designed micro-benchmarks. To use such a model, the CPU and GPU usage
are logged during app execution using Linux event trace [21] and afterwards
fed into the power model as input to estimate the per-component power draw
during the app execution. For the OLED display, we used the piece-wise OLED
model recently proposed in [15], which decomposes the RGB color space into
16 x 16 x 16 subgrids and derives accurate pixel power model for each subgrid
using liner regression to achieve low OLED power prediction error of no more
than 4.6% on four recent generations of phones. We developed a program by
modifying the Android “screenrecord” program to record the screen during the
app execution and applied the OLED display power model from [15] for the
Pixel 5 phone used in our study to estimate the OLED display power. Finally,
we model the camera power draw as a constant [13]. Since the LTE/5G NIC
power drain is known to be sensitive to external conditions such as the signal
strength [17], practical power models based on regression on observed through-
put [19,26] are coarse-grained, and the app does not use other power-hungry
phone components such as the hardware decoder, we instead directly measure
the instantaneous device power using the built-in power sensor via the Linux
power supply class [7] and subtract from it the power drawn by CPU, GPU,
Camera, and OLED display to derive the power draw by the cellular NIC.

We adopted the above power modeling methodology for three reasons. (1) We
needed to measure component-wise power draw to compute the network power
draw by the AR app from the total power. SnapDragon Profiler, Monsoon Power
Monitor [23], or BattOR [35] can only provide the total power consumption, as
they do not provide power counters for the individual components. (2) Using
power modeling eases experimentation, as attaching a Monsoon power monitor to
a phone would require dismantling and instrumenting the device, which would be
difficult for field experiments. (3) The power models themselves are benchmarked
against the Monsoon power monitor, making them reasonably accurate. For
example, we used the OLED display model from [15], which has error less than
5% for Pixel 5 on average, and the CPU and GPU models use the Linux event
trace to estimate the power consumption with very high resolution.
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5.2 Results

Figure 9 shows the average (over 5 runs) energy drain by the host and the resolver
during the AR app execution and the breakdown into 7 app phases, over 5G
mmWave (facing towards the BS) and LTE. We make the following observations.

5G: towards BS Network
30| W LTE

Screen
Camera
GPU
CPU

Energy (J))

1c Host 2b Resolver

2a
Latency Types

Fig. 9. Energy breakdown

Host vs. Resolver. Overall the app drains much more total energy on the host
than on the resolver, by 70% (31 J vs. 9 J) and 80% (24 J vs. 5 J), over 5G and
LTE, respectively. This happens as the 3 phases 1a, 1b, and 1c on the host drain
significantly higher energy than the later 4 phases (2a — 2d) on the resolver.

Total Energy Comparison. On the host, the app drains 23% more total energy
when running over 5G compared to running over LTE. The energy breakdown
by phone components shows that the major contributor to the difference is the
network energy, which over 5G is 60% higher than over LTE. Similarly, on the
resolver, the app drains 43% more total energy when running over 5G compared
to running over LTE, although the absolute difference is much smaller compared
to on the host side. The major difference again comes from the network energy
drain, which over 5G is significantly higher than over LTE, by 83%.

Per-app Phase Comparison. To understand where the energy difference hap-
pens in the different phases of the app, we look at the energy breakdown by app
phases. Figure 9 shows that on the host side higher energy drain over 5G com-
pared to over LTE happens in all app phases, by 18%, 14% and 29% in phases 1a,
1b, and 1c, respectively. Hence, the energy difference within each phase mainly
comes from network energy, which is 41%, 56% and 68% higher under phases
la, 1b, and 1lc, respectively, over 5G than over LTE. Similarly, on the resolver
side, the major contribution to the higher energy drain over 5G compared to
over LTE also comes from all app phases, by 42%, 18% and 43% in phases 2a,
2b, and 2c, respectively. Again, the energy difference within each phase mainly
comes from network energy, which is 88%, 77%, and 77% higher under phases
2a, 2b, and 2c, respectively, over 5G than over LTE.

Power Comparison. Figure 10 shows a timeline of the instantaneous device
and network power consumption for one representative run over 5G mmWave
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and LTE. In each timeline, we use different colors to denote the different app
phases.
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Fig. 10. Power timeline.

We make the following observations: (1) The total instantaneous device power
consumption is higher during phase 1b on the host side over both 5G mmWave
and LTE and during phase 2b on the resolver side over 5G mmWave — the two
phases where we primarily have network activity (the device power over LTE
on the resolver side is largely constant over all four phases, due to low network
activity and the low power draw of the LTE NIC). (2) The network power draw is
non-zero in phases la, lc, 2a, 2c, 2d, in spite of minimal network activity during
those phases due to the well-known tail power state in cellular networks. (3) The
network power draw fluctuates largely over time, especially over 5G mmWave.
In contrast, the power for all other device components remains largely constant
over time. For example, for CPU, even though the average utilization in phase
la (578%) is higher than in phase lc (535%), the average power difference is
just 108 mW. This is because the app utilizes almost exclusively the LITTLE
cores, and the difference in utilization does not get translated to significant power
difference. Hence, the fluctuations of the network power contribute to the large
fluctuations of the device power consumption observed in Fig. 10.

In summary, our detailed energy drain analysis shows that, as expected [26],
the app drains significantly higher network energy under 5G compared to under
LTE. Since the network energy accounts for about 32% of the total energy, such
significant network energy difference translates into smaller difference in the total
app energy drain, by 23% on the host and 43% on the resolver.

6 Conclusion

In this paper, we studied whether 5G mmWave can support multi-user AR by
conducting an in-depth measurement study of a popular multi-user AR app
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over both LTE and 5G mmWave. Our measurements showed that, in spite of
the much higher bandwidth and lower RTT, 5G mmWave results in only a small
reduction to the visual data transmission latency due to the small data burst
sizes, which do not allow TCP to exit slow start and take full advantage of the
higher bandwidth. A potential approach to addressing this issue is to leverage
TCP splitting [28], and maintain a persistent TCP connection with a very large
window between an edge server and the cloud, while the UE establishes a TCP
connection to the edge server. We also found that an optimization that was
proposed over LTE networks can also be effective over 5G networks and can
further reduce the data transmission latency. However, other major contributors
to the E2E AR latency keep it in the order of several seconds, rendering user
interaction practically infeasible. Since some of these factors (e.g., cloud pro-
cessing) are independent of the underlying cellular network, one may have to
consider more drastic changes to the design of multi-user AR apps, e.g., mov-
ing the cloud services to the edge [34] — a rapidly increasing trend among both
content providers and cellular operators [11,39] — or shifting from a client-server
to a P2P paradigm [33]. Additionally, there is a need for cellular operators to
revisit the middlebox policies in their packet core networks, which can also have
an adverse impact on multi-user AR performance. Finally, our energy analysis
showed that the app drains 66% more network energy over 5G mmWave com-
pared to over LTE, which translates into 23% and 43% higher total energy on
the host and the resolver, respectively, showing that 5G mmWave networks are
not currently optimized to efficiently support this type of apps.
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