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We consider the problem of classifying curves when they are observed only partially on their 

parameter domains. We propose computational methods for (i) completion of partially 

observed curves; (ii) assessment of completion variability through a nonparametric multiple 

imputation procedure; (iii) development of nearest neighbor classifiers compatible with the 

completion techniques. Our contributions are founded on exploiting the geometric notion of 

shape of a curve, defined as those aspects of a curve that remain unchanged under 

translations, rotations and reparameterizations. Explicit incorporation of shape information 

into the computational methods plays the dual role of limiting the set of all possible 

completions of a curve to those with similar shape while simultaneously enabling more 

efficient use of training data in the classifier through shape-informed neighborhoods. Our 

methods are then used for taxonomic classification of partially observed curves arising from 

images of fossilized Bovidae teeth, obtained from a novel anthropological application 

concerning paleoenvironmental reconstruction. 

Keywords: shapes of parameterized curves, curve completion, invariance, multiple imputation, classification 

1 INTRODUCTION 

Modern functional and curve data come in all shapes and sizes (pun intended!). A particular type of 

functional data that is starting to receive attention in recent years consists of univariate functions 

that are only observed in sub-intervals of their interval domains. Names for such data objects 

abound: censored functional data [1]; functional fragments [2,3]; functional snippets [4]; partially 

observed functional data [5]. Similar work with multivariate functional data or parametric curves in 

Rd(d ≥ 2) are conspicuous in their absence. The methodological focus of this paper, consequently, is 

twofold: develop easily implementable computational algorithms for completion of partially 

observed planar curves and assess completion variability; incorporate the completion procedure into 

a procedure to classify partially observed curves. An equally important objective relates to 

taxonomic classification of partial curves representing outlines of fossilized teeth of extant, southern 

African bovids (antelopes and buffaloes) extracted from a novel anthropological imaging dataset. 
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The leitmotif of our 

approach lies in the explicit 

use of shapes of curves as a 

mechanism to not only 

counter the ill-posed nature of 

the problem of “sensibly” 

imputing or completing the 

missing piece of a partially 

observed curve, but also to 

use the metric geometry of 

the shape space of curves 

profitably when developing a 

suitable classifier. The 

rationale behind using shapes 

of curves can be explained 

quite simply. Fundamental to 

the routine task of comparing 

and identifying objects by 

humans or a computer is an 

implicit understanding of a 

set of symmetries or 

transformations pertaining to 

its shape: those properties or 

features of the object that are 

unaffected by nuisance 

information (e.g., orientation 

of the camera under which the 

object is imaged). Such an 

understanding assumes added 

importance when the object is 

only partially observed (e.g., 

identifying a chair hidden 

behind a table based on the 

backrest only) since it 

eliminates the need to 

consider a substantially large 

class of possible completions 

of the object. In the context of 

partially observed curves, 

working with their shapes 

leads to completions that are 

compatible with the shapes of fully observed curves in a training dataset. Relatedly, from an 

operational perspective, any formulation of completion of a missing piece of a curve based on an 

endpoints-constrained curve, either through deterministic or probabilistic model-based techniques, 

suffers from having too many degrees-of-freedom. As a result, the parameter space of missing 

pieces to search over needs to be constrained to obtain meaningful curve completions; we propose 

to impose such a shape-related constraint. 

For example, in the anthropological application, any sensible completion of a bovid tooth should 

assume the shape of a tooth. We can constrain the parameter space comprising open curves, with 

endpoints constrained to match that of the partially observed curve, while determining a sensible 

completion based on the requirement that the completion should be tooth-like. Figure 1 shows an 

example of using shape information to complete a bovid tooth using Algorithm 1 (Section 3) and 

compares it to an arbitrary completion devoid of explicit shape information. 

An important consideration when considering shape of a curve is its scale. Strictly speaking, 

scaling a curve does not alter its shape, and it is hence a nuisance transformation. However, in our 

motivating application from anthropology, the size of bovid teeth is known to have important 

taxonomical information and can hence potentially improve discriminatory power in the 

classification problem [6]. We will therefore accord due consideration to scale information when 

comparing shapes of curves; in shape analysis vernacular, this is referred to as size-and-shape 

analysis. For simplicity, we will continue to chraracterize our approach as shape-informed. 

Research in geometry-based statistical analysis of shapes of arbitrarily parameterized planar 

curves is quite mature; see, for example, [7,8] for foundational details and the R package fdasrvf 

for computational tools. Leveraging this, our main contributions are as follows. 

1) We develop a gradient-based algorithm (Algorithm 1) for shape-informed partial matching and 

completion with respect to a complete template/donor curve. 

2) In order to assess and visualize variability of completions from Algorithm 1, given a training 

dataset of fully observed curves, we propose an adaptation of the hot-deck imputation method 

used on traditional Euclidean data to generate several imputations or completions (Algorithm 2). 

3) We propose two nearest neighbor classification procedures for partially observed curves based 

on shape distances by utlizing completions obtained from any of the above two algorithms. 

1.1 Related Work 
Partially observed curves arise as data in several applications. In medical imaging, the appearance 

of anatomies in images of various modalities is often summarized through the shapes of their 

outlines. Partial curves arise due to (i) low resolution and contrast of many medical imaging 

modalities (e.g., PET or CT); (ii) a boundary of an organ being obscured by other organs or hard to 

identify due to similar appearance of neighboring tissues [9]. In handwriting analysis, a key task is 

the segmentation of samples of handwriting (curves) into letters or syllables, followed by imputation 

of incomplete curves [10]. Shapes of occluded objects, such as tanks, are also routinely used in 

FIGURE 1 | Anthropological application with bovid teeth . Left: Image of a partial tooth with the segmentation overlaid in red. Middle; Right: Shape-informed and 
arbitrary completions (blue) of the observed partial tooth (red), respectively. 
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military applications, where 

only part of the object’s 

boundary is reliable and the 

rest must be imputed based 

on prior shape knowledge [9]. 

There is a substantial 

literature on missing data and 

shape analysis, however, 

most of the work is restricted 

to data obtained as 

multivariate morphological 

measurements. For example, 

[11] examines missing data in 

the morphology of crocodile 

skulls based on linear 

morphometric measurements 

of the skulls, in contrast to 

using landmarks or entire 

outlines (curves). Missing 

data methods for landmark-

based shape data have been 

developed in [12, 13, 14, 15]. 

By defining landmarks on 

each shape, the problem can 

be framed in a more 

traditional statistical setting 

where each landmark can be 

thought of as a covariate and 

more traditional missing data 

techniques, such as the EM 

algorithm and multiple 

imputation, can be used. [16] 

look at four different methods 

for dealing with missing 

landmark data: Bayesian 

Principal Component 

Analysis (BPCA), least-

squares regression, thin-plate 

splines (TPS), and mean 

substitution. Additional work 

on missing data can be found 

in [17], which focuses on 

missing data in Procrustes 

analysis, and [18], which 

considers occluded landmark 

data. 

The work most closely 

related to this current study 

can be found in [19], which 

studies the problem of 

matching a partially observed 

shape to a full shape. [19] 

performs partial matching 

using the Square-Root 

Velocity framework, and this 

is the framework we use as well in the sequel. Our work in a certain sense goes beyond their work 

and incorporates missing data techniques into the completion procedure, and additionally is tailored 

towards the classification task. [9] incorporates prior shape information in Bayesian active contours 

that can be used to estimate object boundaries in images when the class of the object of interest is 

known; they demonstrate the usefulness of this approach when the object boundary is partially 

obscured. [20] considers the problem of identifying shapes in cluttered point clouds. They formulate 

a Bayesian classification model that also heavily relies on prior shape information. Finally, there is 

some recent work on missing data techniques for functional data analysis [21, 22, 23]. 

2 SHAPES OF PARAMETERIZED CURVES 

The main objects of interest in this work are parameterized curves and their shapes. Defining a 

suitable distance metric to compare their shapes is of fundamental importance in order to suitably 

formalize the notion of a “best completion of a partial curve”. From several available in the 

literature, we consider two distances that are suitable for our needs. We provide a description of the 

mathematical formulation for these two distances in the following, and refer the interested reader 

to [24] for more details. As discussed in the Introduction, the size of bovid teeth contains potentially 

taxon (class)-distinguishing information, and we hence consider the notion of size-andshape of a 

curve. Throughout, for ease of exposition, we simply say shape to mean size-and-shape. 

Denote by S1 the unit circle on the plane, and let β: S1 →R2 be an absolutely continuous, simple, 

parameterized closed curve representing the full outline of a bovid tooth. We will identify S1 with 

the unit interval [0, 1] ⊂ R and enforce the endpoint constraint β(0)  β(1) to represent a closed curve. 

Denote by B the space of all such β. If β1 and β2 are assumed to be parameterized according to arc-

length, then β1 − β2  

1/2 

is a viable distance between them, 

where |·| is the standard Euclidean norm in R2. In order to account for nuisance information that does 

not alter the shape of β1 and β2, one must further remove variability due to translation and rotation. 

The two variabilities are accounted for by defining equivalence classes 

, where 

SO(2) is the group of 2 × 2 rotation matrices, i.e., orthogonal matrices with determinant equal to 1. 

Note that the L2 distance between β1 and β2 is unchanged if both curves are translated and rotated by 

the same T ∈ R2 or O ∈ SO(2). Thus to compare the shapes of two curves β1 and β2 in B, we can use 

the non-elastic shape distance 

 dNEβ1, β2  T  R  T. (1) 

This optimization problem can be solved in a straightforward fashion through Procrustes analysis 

[25]. The distance is termed non-elastic as it requires one to fix curve parameterizations to arc-

length. Note that while dNE is defined on B, it is in fact a distance on the shape space Sβ  {[β]: β∈B} of 

arc-length parameterized closed curves consisting of equivalence classes as points. This ensures that 

dNE (β1, β2)  0 if there exists (T, O) ∈ SO(2) × R2 such that β2  Oβ1 + T; in other words, the distance 

measured with dNE is zero for two curves having the same shape. 

If one desires to allow flexible parameterizations for shape analysis, the L2 metric is no longer a 

feasible choice as it is not invariant to re-parameterizations: ◦c, where c: S1 
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→S1 belongs to the class Γ of 

orientation-preserving 

diffeomorphisms of S1 that 

represent re-

parameterizations of curves 

inΓ can be viewed in the 

following manner. Consider 

the classB. When S1 is 

identified with [0, 1], 

elements of the 

group of {c~: R→R: c~(t + 1)  

c~(t) + 1, continuous and 

increasing}. Each function in 

the class is such that c~(t) − t 

is periodic with period 1. 

Moreover, each function of 

the class induces a 

reparameterization cs: S1 →S1 

with cs(e2πit)  e2πic~(t), where c~ 

is referred to as the lift of cs, 

which is then orientation-

preserving. Operationally, 

the construction implies that 

c~can be expressed as c~(t)  

c(t) + c for some c : [0, 1] → 

[0, 1], which is a 

diffeomorphism of [0, 1], 

except at t  1, and c ∈ (0, 1]. 

We thus construct a 

diffeomorphism of S1 by 

“unwrapping” S1 at some 

point s, and generating such a 

c by identifying s with 0 (and 

1). Henceforth, we will refer 

to such a c as an 

orientiationpreserving 

reparameterization of S1, and 

carry out computations with 

[0, 1] as the parameterization 

domain. 

Since re-parameterization 

completely preserves the 

image of a curve β, a distance 

based on a Riemannian 

metric that captures infinitesimal bending and stretching can be used. Several families of such 

metrics, termed as elastic have been considered [26, 27]; however, almost all of them are difficult 

to compute in practice and require non-trivial approximations. 

A solution to this key issue was proposed in [7]. Specifically, a particular elastic metric is related 

to the usual L2 one when a curve is transformed bijectively to its Square-Root Velocity is the time-

derivative. Under this transformation,Function (SRVF): B∋β1Q(β)  : q  β_|β_|−1/2∈ L−2, whereq2  

(q1β_, q1 

c) − (q2, c), where (qi, c)d(qi◦c) c_ is the reparameterization action on the SRVF. Translations are 

automatically removed by the use of the derivative. Let Qo  {q: [0, 1] →R2 | q ∈ L2([0, 1], R2)} denote 

the linear space of SRVF-transformed open curves; the space of closed curve SRVFs involves an 

additional closure condition: 

Q  {q:  )o|dt  0}.Thus, Q, the space of closed curve SRVFs, 

is a subset of Q , the space of open curve SRVFs. We refer to [7, 24] for more details. 

The corresponding elastic distance dE between two curves β1, β2 ∈B is defined using their SRVFs, 

wherein in addition to rotations, re-parameterizations are also now optimized over: 

 dEβ   O q 2◦cc_, (2) 

where the equivalence class c_ |O ∈ SO(2), c∈Γ} now represents an elastic shape, i.e., 

an equivalence of q under the action of SO(2) and Γ, which can be applied in any order. The 

optimization over SO(2) is solved via Procrustes analysis as before, while the one over Γ is 

addressed using Dynamic Programming or a gradient descent algorithm. This process is referred to 

as registration: it provides an optimal, under the elastic metric, correspondence between the shapes 

of q1 and q2. Details of computing dE can be found in [24]. Correspondingly, define the shape{[ ] 

∈spaceQ}. of SRVF-transformed closed curves as Sq  q : q 

In summary, if closed planar curves representing outlines of bovid teeth are assumed to be arc-

length parameterized, we can use the non-elastic distance dNE on the shape space Sβ to compare their 

shapes. On the other hand, if the curves are allowed to have arbitrary parameterizations, it is more 

appropriate to consider their SRVF transforms and the shape space Sq, equipped with the elastic 

distance dE. Moreover, it is clear that the distances dNE and dE are valid for open curves as well, i.e., 

in the case β (0) ≠β (1). We will use the distances for both open and closed curves without 

qualification; context will disambiguate their usage. 

3 PARTIAL SHAPE MATCHING AND COMPLETION 

We first focus on how a single partially observed curve can be completed. Indeed, this requires a 

template or donor curve that is fully observed, so that the partially observed one can be matched 

and compared to different pieces of the fully observed one. Once a match has been established, a 

completion can be subsequently determined. In principle, the two tasks can be carried out 

sequentially or in parallel; in this paper, we adopt the former approach and leave the latter for future 

work. 

Accordingly, the key tasks are to (i) match the observed partial curve to a piece of the donor 

curve; (ii) impute or complete the observed curve by finding the closest match to the residual piece 
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of the donor curve from a set 

of curves with fixed 

endpoints. These are non-

trivial tasks since the set of 

curves B (and Q) is infinite-

dimensional. The problem is 

made tractable by 

considering equivalence 

classes of curves that share 

the same shape and size, as 

defined earlier. Specifically, 

we propose to leverage the 

shape distances dNE and dE in 

Eqs 1, 2, and develop an 

optimization-based 

framework to carry-out 

completion/ imputation and 

classification sequentially. 

We first define some 

important quantities. 

• A curve β is viewed as 

being composed of two 

pieces βo and βm, where 

the subscripts o and m 

identify the observed 

and missing portions of 

β, such that 

, for some 0 < τ < 1. The 

corresponding SRVF q 

similarly decomposes 

into (qo, qm) for the 

same τ. 

• β  βo +βm denotes the 

concatenation of βo and 

βm, i.e., the complete 

curve. Throughout, βo 

will denote a partially 

observed curve, which 

conceptually is 

understood to be the 

observed portion of a 

curve β; in similar 

fashion, βm will 

throughout represent the 

missing piece of β. 

• The restriction of a 

complete curve β to an 

                                                             
1 finite number. We have found that 

In practice, the basis is truncated to 

some between 40 and 80 total basis 

open curve defined by parameter values [s1, s2] ⊂ [0, 1] is denoted as β(s1,s2), with its SRVF 

counterpart q(s1,s2) defined in a similar manner. 

• Denote the length of βo as L   )|dt, where β_ is the time-derivative. The length of 

the restricted curve is then 

L)|dt. If we fix s1 ∈ [0, 1] and L, then s2 ∈ [0, 1] is fully determined.1 

In line with our intention to use shape information of curves, we note that completion of βo with 

respect to a donor curve βdonor can be broken down into the following two steps. 

(i) Determine the piece of βdonor that best matches the shape of βo. 

(ii) Determine an open βm curve that then best matches the shape of the residual piece of the donor 

in (i); the required completion is then βo + βm. 

Two points are worth considering here. First, the optimal βm is constrained to share the same 

endpoints as the determined piece of βdonor. Second, by virtue of its definition, the completion βo + 

βm exactly matches the partially observed curve βo when restricted to a suitable subset of the 

parameter domain. The latter is motivated by the quality of image data of bovid teeth, under which 

it is reasonable to assume that the partially observed curve is obtained under negligible measurement 

error. 

The key consideration for developing an algorithm for the two steps is the choice of an objective 

function that quantifies the quality of matches, informed by either of the shape distances dNE and dE 

in Eqs 1, 2, respectively. Repeated computation of the elastic distance dE is computationally 

expensive (due to the additional optimization over Γ), and hence time-consuming inside an iterative 

algorithm (the potential donor set has large sample size). Since our main objective in this paper is 

classification of the partially observed curves, we use the more convenient non-elastic distance dNE 

in order to carry out partial matching and completion. However, we will employ the elastic distance 

dE when designing a classifier in order to better access pure shape features of curves that are 

potentially classdistinguishing. 

We consider a two-step algorithm based on optimizing an objective function over two parameter 

spaces: ΩP for the partial match in step (i), and ΩC for the completion step (ii), defined as: 

ΩP d[0, 1] × R2 × SO(2) × R+ 

 and ΩC d  . (3) 

The parameter set ΩP consists of shape-preserving transformations for arc-length parameterized 

curves β and the length of βo, whereas ΩC represents the subset of endpoint constrained curves within 

B. In the partial matching step, a piece on the donor βdonor of optimal length L
* starting at

* 
s

*1
*, 

rotation O* and translation T* is determined resulting in β(
donor

s1,s2). The domains [s1, s2] of an 

arbitrary restriction 
β

donor
(s1,s2) and [0, τ] of βo are always rescaled to [0, 1] to ensure that they have 

the same domain. For a fixed s1, the optimal translation T* and rotation O* are given explicitly via 

Procrustes analysis (see, for example, [28]). The search for the optimal s*
1 and L* can then be 

performed exhaustively on [0, 1]. 

elements per coordinate function are sufficient, although this depends on the geometric complexity of the observed curves. In 

the application considered in Section 6, we used 80 basis elements. 
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  sin ( 2 π jt )  
2 

√ 
π j , 

cos ( 2 π jt )− 1  
2 

√ 
π j ,j  1 , 2 , ...  

1 

2 

 

s
*
1Note that,s

*
2) is removed 

owing to the circular ordering 

on the parameterβ(donors*2,s*1) 

refers to the residual piece on 

βdonor once 
β

donor
( 

domain S1 of βdonor. The main 

challenge lies in carrying out 

step 3 of the algorithm in 

which the missing data βm is 

determined by searching over 

ΩC ⊂B for the optimal curve 

that best matches the residual 

piece  of β from the 

partial matching step. The 

challenge relates to the fact 

that ΩC is a nonlinear subset 

of B. 

We propose to optimize 

over ΩC with a gradient-

descent algorithm. First, 

rescale to [0, 1]. Then, 

consider an orthonormal 

basis {bi: [0,1]→R2, i  1,2,...} 

with bi (0)  0 and bi (1)  0, 

which enforce the endpoints 

constraint on the curve. In 

particular, we use a 

modification of the Fourier 

basis for each of the two 

coordinate functions, given 

by. 

Let E

m . 

Then, the gradient of E (βm) 

at a current estimate βcurr
m can be approximated using directional derivatives along basis directions 

bi as 

   T*, bi〉bi, 

where 〈 ·, ·〉  is the usual L2 inner-product on B. A single gradient update in the completion algorithm 

is then given by 

 βnewm  E, 

where ϵ> 0 is a small step size. This is repeated until convergence. In practice, we reduce the 

dimension of the problem by truncating the basis at a finite number N; this additionally ensures that 

the optimal completion β*
m is relatively smooth. Two preliminary results from this two-step 

algorithm for bovid teeth are shown in Figure 2. The black curve is the donor βdonor, the red curve 

is βo, and the optimal completion β*
m, after a set number of iterations, is in blue. 

4 ASSESSING VARIABILITY IN COMPLETION THROUGH MULTIPLE 

IMPUTATION 

Algorithm 1 describes how a partially observed curve βo can be completed given a donor curve 

βdonor. The completion is deterministic and uncertainty estimates are unavailable. Further, the 

application of this procedure is only possible when a training dataset consisting of several curves is 

available. An attractive way to examine completion variability is to consider a multiple imputation 

framework for missing data. There are numerous multiple imputation methods to handle missing 

data in traditional multivariate settings; see [29, 30] for a broad overview and details on missing 

data techniques. Our choice is a nonparametric hot-deck multiple imputation procedure. We 

describe this technique in a regression setting with response y∈ Rn and n × p design matrix X, where 

each case j  1, ... , n is defined as the response-predictor pair (yj, xj). 

(i) Replace a missing value ymiss of y with randomly selected observed values in y, chosen from a 

donor pool of fixed size K < n comprising fully observed cases that are“similar” to the 

incomplete case. 

(ii) Repeat step (i) M times to create M completed datasets. 

(iii) Analyze the M completed datasets independently (e.g., mean estimation) and combine results 

using Rubin’s combining rules [29]. 

classification results can also be computed as a function of a 

donor set of size K and number of completed datasets M.  Algorithm 2 outlines our adapted hot-deck 

imputation procedure for generating M completions of a partially observed curve βo given a training dataset D  {β1, ... , βn} consisting 

of n fully observed curves from B. The main 
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As a first step towards 

carrying out this program for 

partially observed curves, we 

propose an adaptation of the 

hot-deck imputation 

procedure for a classification 

task. However, the 

development of methods to 

combine classification results 

across M datasets, similar to 

Rubin’s rules, is an 

interesting research problem 

in its own right, and we leave 

that for future work (Section 

7). Once steps (i) and (ii) are 

completed, it is possible to 

visualize variability 

associated with completion 

using Algorithm 1 by plotting 

the completions. Moreover, 

variability in change to the 

classic hot-deck imputation 

procedure described above 

lies in how “similarity” 

between cases (here curves) 

is assessed in (i). In 

particular, steps 3–8 in 

Algorithm 2 are used to 

compute the (shape) 

similarity between a partially 

observed curve and each curve in the training dataset D. Then, the rest of (i) is carried out in step 9. 

Finally, (ii) is carried out in steps 10–13. 

 

Note that once s*
1 and s*

2 are rescaled to 0 and 1, respectively, in line 5, the optimal partial match 

of βi to βo then corresponds to the piece βi
(0,1) of length L* from βi, which is now represented as an 

open curve βi
(0,1): [0, 1] →R2; the parameter domain [0, 1] of 

β(
i 

0,1) is not to be confused with the 

parameter [0, 1], representing S1, of the fully observed curve βi. Similar comments apply to their 

corresponding SRVF versions. Note and contrast step 7 of Algorithm 2 to the completion step 3 in 

Algorithm 1: here, the distance δi is computed between βo and the matched piece of the donor, and 

not the residual piece. 

FIGURE 2 | Two examples of shape imputation via Algorithm 1 . The panels show the evolution of the completion (blue) at a few iterations of step 3, the observed 
partial curve (red) and the donor (black). 
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The key feature of 

Algorithm 2 is the use of the 

elastic distance, albeit not 

exactly in the form defined in 

(2) since an optimal rotation 

O* ∈ SO(2) has already been 

determined in line 5–we 

hence refer to this distance as 

partial elastic distance. The 

rationale for this is as follows. 

Once a piece of the donor βi 

of length L* corresponding to 

parameter values s*
1 and s*

2 

has been extracted, the 

lengths of β(
i 

s*1,s*2) and βo can 

be quite different. Thus, 

computing the non-elastic 

distance between the two 

open curves under the 

assumption of arc-length 

parameterization in order to 

compare their shapes might 

not be appropriate. In 

contrast, in Algorithm 1, the 

distances themselves were 

not of chief interest. Our 

approach hence is to assume 

at this stage that βi
(s*1,s*2) and βo 

are arbitrarily parameterized 

and hence use the partial 

elastic distance dE to compare 

their shapes using their 

corresponding SRVFs; this 

also explains why we ignore 

using the optimal translation 

T* resulting from Algorithm 

1. To see that δi in line 8 of Algorithm 2 is indeed the partial shape distance, note that when a 

particular rotation O* is fixed, from line 6 

 O*q(i 0,1)◦cc_
 
 infc∈Γo −q0 

−
* Oi*0,1q(i 0,1)*

◦
c*c_ 

 q O q( )◦c  c_ . 

Figure 3 provides an illustration of the hot-deck imputation procedure with M  10 and K  10 for 

two partially observed bovid teeth using Algorithm 2; see Section 6 for details on the bovid dataset. 

5 NEAREST NEIGHBOR CLASSIFICATION 

observed curvesConsider a training datasetβi ∈B and corresponding class labelsDtraind{(yi, βi)}i
n
1 

consisting of fullyyi ∈ {1, ... , 

G}. The goal is to classify a partially observed curve βo to one of the G classes using training data 

Dtrain. 

A distance-based classification procedure is a natural choice, compatible with how completion 

and imputation is achieved. Accordingly, we consider the kn-nearest neighbor classification 

technique. A neighborhood of a curve in B can be defined with respect to both non-elastic and elastic 

shape distances dNE and dE. Effectively, although fully observed curves in Dtrain assume values in B, 

the classification procedure will be defined on their shapes assuming values in the shape space Sβ 

(or Sq under the SRVF transform). 

The advantage of using the shape space lies in the fact that Sβ is made up of equivalence classes 

of B under the equivalence relation characterized by shape-preserving transformations. For a fixed 

radius r, neighborhoods as balls of radius r around a fixed point β* constructed on B using shape 

distances dNE are necessarily larger than corresponding ones on B using the usual L2 distance, since, 

by virtue of its definition, for every r > 0, 

FIGURE 3 | Examples of partial matches followed by imputation on partially observed teeth . Left: Approximately 50% of the tooth is observed. Right: 
Approximately 80% of the tooth is observed. The black curve denotes the fully observed portion of the tooth with each red curve being a single completion of the tooth. In 
both examples shown here M  10 and K  10. 
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   : 

dNEβ, β*≤ r. 

In a kn-nearest neighbor 

setting, the radius r is 

distance, say rkn, of the kth
n 

closest curve to β*, and 

changes with the training 

data. However, rkn computed 

using the distance dNE will be 

smaller than one computed 

using the L2 distance; thus one 

is able to find kn neighbors at 

a smaller distance from β*. 

This leads to better 

performance of the classifier 

for large sample size n and 

improves rates of 

convergence of the predicted 

class probabilities (see, for 

example, [31]). Similar 

comments apply to the elastic 

distance dE, albeit under 

subtler conditions since it is 

induced by the elastic 

Riemannian metric on B, 

which is not directly related 

to the L2 metric on B. 

We will use the elastic 

distance dE again to 

accommodate for the 

possibility that curves in Dtrain 

and βo +βm can have arbitrary 

parameterizations following 

completion of βo with any βm. 

Let N kn(βo+βm)d{βi1, ... , βikn} 

⊂
Dtrain be kn nearest curves to 

a particular completion βo + 

βm of βo in the training data. 

We consider two nearest 

neighbor classifiers. 

• knn classifier: Assign βo 

to the class with largest 

predicted probability. 

The predicted 

probability that label y 

for βo assumes value g ∈ 

{1, ... , G} is given by 

1 

Dtrain   , kn π y  g|βo, 

and βo +βm is one completion obtained from Algorithm 1 with βm ∈ΩC. 

• knn-imp classifier: Here, we incorporate uncertainty in completion of βo into the classification 

procedure by combining the knn classifier with hot-deck imputation. Specifically, with M 

completions βo +βm
l , l  1, ... , M obtained from Algorithm 2, the corresponding class 

probability is 

 1 M 

  . knM l π y  g|βo, Dtrain  

The class probability is thus obtained by averaging over all completions obtained by sampling 

M donor curves with replacement from the donor set Bdonor in Algorithm 2. 

The knn-imp classifier is a novel extension of the knn classifier to accommodate variability in 

completions through the hot-deck multiple imputation procedure. However, at the outset, it is not 

clear if it will generally outperform the knn classifier, since performance will heavily depend on 

quality of the completion step in Algorithm 1 and shape variability in the training dataset. 

6 TRIBE AND SPECIES CLASSIFICATION OF BOVID TEETH 

We examine performance of Algorithm 1 and Algorithm 2 with respect to classification of images 

of fully and partially observed bovid teeth using the two nearest neighbor methods under two 

settings. 

(i) A simulated setting, where curves pertaining to partiallyobserved teeth are created from fully 

observed ones with known class labels. 

(ii) A real data setting comprising “true” partially observed teeth with unknown class labels. 

There are numerous measures of classification performance. We use the log-loss measure to asses 

performance: let np denote the number of partially observed curves β1
o, ... , βn

o
p to be classified in G 

classes {1, ... , G} with unknown class labels y1, ... , ynp and let Dtrain denote the training dataset of 

fully observed curves. Then 

 np G 

− d − 
n

1 i1 g1 I{yig} logπyi  g|βio, Dtrain, Log loss 

p 

where the class probability is defined as earlier depending on whether the knn or knn-imp classifier 

is used. Evidently, a low Log-loss is indicative of good classification. Note that the Log-loss is 

positive with no upper bound. The Log-loss can be used only when the class labels are known. In 

the real data setting with unknown labels, the Log-loss is not used; instead, classification accuracy 

is assessed relative to classification done by an expert (co-author JKB). 

All computations are performed using routines available in the R [32] package fdasrvf [33] on a 

16-node Intel Xeon-based computational cluster in the Computer Science Department at Loyola 

University Chicago. Full code for the analyses can be found on Github [34]. 

Our motivating application stems from anthropology, where fossil bovid teeth associated with 

our human ancestors are used to reconstruct past environments. Bovids are useful because they are 

ecologically sensitive to their environment and typically dominate the South African faunal 

assemblages [35, 36, 37, 38]. 

The tooth images for our study were obtained from four institutions in South Africa: National 

Museum, Bloemfontein; Ditsong Museum, Pretoria; and Amathole Museum, King William’s Town. 
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Images were also taken at the 

Field Museum, Chicago, 

United States. The complete 

methodology as to how the 

teeth images were collected is 

outlined in [6]. Briefly, the 

occlusal surface of each of the 

three molars from the upper 

and lower dentitions for each 

extant bovid specimen were 

photographed separately. The 

specimen and the camera 

were levelled using a bubble 

level. A scale was placed next 

to the occlusal surface for 

every image. 

Specifically, we consider 

images of teeth from 7 bovid 

tribes (Alcelaphini, 

Antilopini, Bovini, 

Hippotragini, Neotragini, 

Reduncini, and Tragelaphini) 

and 20 species (R. 

arundinum, A. buselaphus, S. 

caffer, R. campestris, P. 

capreolus, D. dorcas, K. 

ellipsiprymnus, H. equinus, 

R. fulvorufula, O. gazella, C. 

gnou, 

K. leche, A. marsupialis, H. 

niger, O. oreotragus, T. oryx, 

O. ourebi, T. scriptus, T. 

strepsiceros, C. taurinus). 

The dataset contains six tooth 

types: lower (i.e., 

mandibular) molars 1, 2 and 3 

(LM1, LM2, LM3), and 

upper (i.e., maxillary) molars 

1, 2 and 3 (UM1, UM2, 

UM3). Specific counts of the 

sample sizes of each tooth 

type and tribe are in Table 1. 

This dataset contains fully 

observed teeth of known taxa 

and will constitute the 

training data Dtrain. 

Each tribe has unique 

dental characteristics that are 

shared by its members. 

Further, the complexity of the 

occlusal surface outline 

varies across the tribes. As 

such, considering shape for 

tribe classification is a natural 

endeavor in this application. Generally, classification at the species level is more difficult since the 

variability of shapes of occlusal surface outlines across species within the same tribe is not as large. 

6.1 Simulated Setting 
In this setting, a partially observed tooth was created from a fully observed one with known class 

label in Dtrain, and a class probability is calculated using both nearest neighbor methods; the 

procedure is repeated for each tooth in Dtrain and the Log-loss is computed for the knn and knn-imp 

classifiers for choices: 

(i) K  5, 10, 20 of size of donor set Bdonor; 

(ii) M  5, 10, 20 of number of imputations based on sampling with replacement from Bdonor; 

(iii) kn  1, 2, ... , 20 of number of neighbors; 

(iv) Tooth types LM1, LM2, LM3, UM1, UM2 and UM3; 

(v) Side of tooth extracted, where Left is denoted as 1 andRight as 2. 

A partially observed tooth was created in the following manner. The raw representation of each 

tooth in Dtrain comprised of 60 points around the occlusal surface of the tooth that were obtained 

from the program MLmetrics [6, 39]. For each tooth, the 60 points were split into two sets roughly 

divided by a line connecting the mesostyle to the entostyle in maxillary teeth and metastylid to the 

ectostylid in mandibular teeth. This type of cut was chosen as this break point is commonly observed 

in fossilized bovid teeth. Figure 4 provides an illustrative example of the procedure. 

6.1.1 Tribe classification 

Figure 5 shows Log-loss curves associated with the knn-imp classifier as a function of kn (number 

of neighbors) for the above-mentioned choices of M and K, and also the corresponding curve for 

the knn classifier. In all cases, for smaller values of the number of nearest neighbors chosen, the 

knn-imp classifier outperforms the knn classifier. As the number of nearest neighbors increases, not 

performing imputation performs as well or better than imputation in most cases. In fact, for some 

teeth there are certain combinations of M and K that are better in terms of Log-loss for imputation 

regardless of the choice kn of nearest neighbors. 

6.1.2 Species classification 

Figure 6 shows Log-loss curves for species classification and paints a fairly similar picture to Figure 

5: when the number of 
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nearest neighbors is chosen to 

be small (i.e., fewer than 5), 

there is always at least one 

imputation setting that has 

lower Log-loss than no 

imputation. However, in all 

cases as the number of 

nearest neighbors chosen gets 

close to 20, no imputation 

performs better in terms of 

Log-loss than doing 

imputation. 

6.2 Real Data Setting 
A small set np  7 of real, 

partially observed fossil 

bovid teeth from the site of 

Gladysvale, South Africa, 

extracted from images, with 

unknown class labels were 

used. We use the image 

numbers to label them: 

IMG4825, IMG4980, IMG4983, IMG4990, IMG5139, IMG9973 and IMG5514. Training data Dtrain 

is the same as the one used in the simulated setting. Recall that in the simulation setting, partially 

observed teeth had roughly half of the number of sampled points as the fully observed ones. In the 

real data setting, this is not the case: in four partially observed teeth (IMG4825, IMG4980, 

IMG4983, IMG9973), more than half of the tooth is observed; in one (IMG4990) less than half of 

the tooth is observed; and, in the remaining two (IMG5139, IMG5514), approximately half of the 

tooth is observed. This impacts the number of points chosen to represent (and parametrize) the open, 

partially observed curves. Since we cannot know the length of the missing piece for real partially 

observed curves, numbers of points to sample along the curves were determined based on expert 

advice from co-author JKB. 

For both knn-imp and knn classifiers, we set the number of neighbors kn  10; for the knn-imp 

classifier we used K  10 and M  10. These choices were based on performances in the simulated 

setting. 

6.2.1 Classification at Tribe Level 

Table 2 shows predicted class probabilities associated with the knn classifier. Each row has an entry 

in bold indicating the “true” (according to an expert) class of these teeth. We observe that the 

classifications without imputation are highly accurate for the 7 teeth. One can see that 6 out of 7 of 

these teeth are classified to the correct tribe. In addition, the probability of belonging to the correct 

tribe in the 6 correctly classified teeth was 1. However, in the one case where the classification is 

wrong, the predicted probability was 0. 

Table 3 shows similar results for the knn-imp classifier. The same 6 teeth that were correctly 

classified before are again correctly classified, however, with probabilities that are all lower than 1. 

Again, the tooth that was incorrectly classified previously is again incorrectly classified and the 

probability predicted of belonging to the correct class is again 0. Notably, the partially observed 

tooth from IMG9973 was difficult to classify when using either classifier; interestingly, in both cases 

it was classified with high probability to the Neotragini class. 

6.2.2 Classification at the Species Level Table 4 shows predicted class probabilities associated 

with the knn classifier. We saw in Tables 2, 3 that each of the 5 teeth from the Alcelaphini tribe was 

correctly classified, with probability at least 0.5. However, at the species level, only 2 of these 5 

teeth (IMG4983, IMG4990) have high probability associated with the correct species; the three 

other teeth (IMG4825, IMG4980 and IMG5139) have a probability of belonging to the correct 

species of 0.4. In addition, for the two remaining teeth that belong to the Tragelaphini and Antilopini 

tribes, the predicted probability for the correct species was 0.1 and 0, respectively. 

When classifying using the knn-imp classifier with imputation, the results are similar with a few 

notable differences. Table 5 shows these results. First, of the 5 Alcelaphini teeth, 3 are correctly 

classified using imputation (IMG4825, IMG4990 and IMG5139). Second, two of these are in fact 

correctly classified with higher probability when carrying out imputation with the knn-imp classifier 

when compared to the knn classifier (IMG4825: 0.44 vs. 0.4 and IMG5129: 0.52 vs. 0.4). 

Finally, the other four teeth corresponding to IMG4980, IMG4983, IMG9973 and IMG5514 had 

predicted probabilities for the correct species of 0.04, 0.22, 0 and 0.09, respectively. 

TABLE 1 | Sample sizes for each tooth type and tribe. 

 Alcelaphini Antilopini Bovini Hippotragini Neotragini Reduncini Tragelaphini Total 

LM1 106 27 22 26 45 76 53 355 

LM2 117 30 25 37 55 90 53 407 

LM3 117 30 19 34 53 96 62 411 

UM1 117 30 23 37 43 80 75 405 

UM2 118 30 23 41 53 97 94 456 

UM3 71 30 17 58 52 110 78 416 
 

FIGURE 4 | An example of how a partially observed tooth is obtained 
from a fully observed one in the simulated setting . The fi gure shows a lower 
molar 1 (LM1) from the tribe Alcelaphini with red points representing the 
extracted piece from the Left (1) side and blue points do the same for the 
Right (2) side. 
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7 DISCUSSION 

We have presented a 

computational approach for 

classifying partially observed 

curves. In particular, we 

presented two algorithms to 

complete and classify 

partially observed planar 

curves and simultaneously 

assess variability involved 

with the completion through 

a multiple imputation 

procedure. To our 

knowledge, this is the first 

work in literature to explicitly 

use the notion of shapes of 

parameterized curves in 

addressing the problem 

considered from the missing 

data perspective; coarsening 

the parameter space of suitable open curves, from which the partially observed curves are 

completed, through the notion of shape equivalence results in sensible completions. Moreover, 

shape-based distances used to define classifiers deliver satisfactory classification performance. The 

results from application of the algorithms to the dataset of images of bovid teeth are quite promising 

and are deserving of further, extensive, investigation involving several different classifiers. 

Through the application of the proposed framework on real data, we have found that hot-deck 

imputation can sometimes deteriorate classification performance; there is an intuitive explanation 

for these findings. Classification performance is greatly affected by the “amount of information” 

contained in the observed partial curve. By “amount of information”, we specifically mean the 

ability to discriminate between different classes. In particular, if the observed partial curve contains 

a lot of information about its class membership compared to the missing portion, then imputation 

injects additional variability into the problem, which has a negative effect on classification 

performance. On the other hand, if the observed partial curve is not easily distinguishable across the 

different classes in the training data, then the variability coming from the imputation procedure 

provides valuable information, thus improving classification performance. Knowledge about 

information 

FIGURE 5 | Tribe classi fi cation in simulated setting . Log-loss for the knn-imp classi fi er as a function of number k n neighbors for different values of donor set size K 
and number of imputations M ; purple “ No-imp ” curve represents the same for the knn classi fi er. 
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content in an observed partial 

curve for classification can be 

obtained either from a 

training dataset consisting of 

fully observed curves with 

class labels or from a subject 

matter expert. In such cases, a 

Bayesian classification model with a judicious choice of prior on class-specific templates can be 

developed; such an approach will extend the one recently proposed for univariate functional data 

[23] to the curve setting, and constitutes ongoing work. 

As with any methodological development that represents a first foray into tackling a challenging 

problem, our approach suffers from a few shortcomings, which inevitably present many possible 

avenues for future research. Algorithm1 can be improved. Ideally, the partial match and completion 

steps are carried out jointly. Moreover, assuming curves to be arc-length parameterized, while 

 

 

 Alcelaphini Antilopini Bovini Hippotragini Neotragini Reduncini Tragelaphini 

IMG4825 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

IMG4980 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

IMG4983 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

IMG4990 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

IMG5139 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

IMG9973 0.00 0.00 0.00 0.00 1.00 0.00 0.00 

IMG5514 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

TABLE 2 | Real data. Tribe level predicted class probabilities from the knn classifier with kn 10. Emboldened values indicate the “true” class as obtained from an expert. 

FIGURE 6 | Species classi fi cation in simulated setting . Log-loss for the knn-imp classi fi er as a function of number k n neighbors for different values of donor set size K 
and number of imputations M ; purple “ No-imp ” curve represents the same for the knn classi fi er. 
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convenient, can sometimes be 

unrealistic in practice, 

especially when data curves 

are extracted as part of an 

elaborate pre- 
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TABLE 3 | Real data. Tribe level predicted class probabilities from the knn-imp classifier with kn K  M  10. Emboldened values indicate the “true” class as obtained from an expert. 

 Alcelaphini Antilopini Bovini Hippotragini Neotragini Reduncini Tragelaphini 

IMG4825 0.96 0.00 0.00 0.00 0.00 0.00 0.04 

IMG4980 0.57 0.36 0.00 0.00 0.07 0.00 0.00 

IMG4983 0.98 0.00 0.00 0.00 0.02 0.00 0.00 

IMG4990 0.56 0.15 0.00 0.06 0.00 0.20 0.03 

IMG5139 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

IMG9973 0.00 0.00 0.00 0.00 0.97 0.00 0.03 

IMG5514 0.02 0.00 0.00 0.00 0.00 0.00 0.98 

 

TABLE 4 | Real data. Species level predicted class probabilities with knn classifier with kn  10. Emboldened values indicate the “true” class as obtained from an expert. 

 IMG4825 IMG4980 IMG4983 IMG4990 IMG5139 IMG9973 IMG5514 

R. arundinum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

A. buselaphus 0.10 0.00 0.10 0.00 0.20 0.00 0.00 

S. caffer 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

R. campestris 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

P. capreolus 0.00 0.00 0.00 0.00 0.00 0.10 0.00 

D. dorcas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

K. ellipsiprymnus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

H. equinus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

R. fulvorufula 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

O. gazella 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

C. gnou 0.40 0.40 0.80 0.70 0.40 0.00 0.00 

K. leche 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

A. marsupialis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

H. niger 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

O. oreotragus 0.00 0.00 0.00 0.00 0.00 0.70 0.00 

T. oryx 0.00 0.00 0.00 0.00 0.00 0.00 0.10 

O. ourebi 0.00 0.00 0.00 0.00 0.00 0.20 0.00 

T. scriptus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T. strepsiceros 0.00 0.00 0.00 0.00 0.00 0.00 0.90 

C. taurinus 0.50 0.60 0.10 0.30 0.40 0.00 0.00 

 

TABLE 5 | Real data. Species-level predicted class probabilities with knn-imp classifier with kn K  M  10. Emboldened values indicate the “true” class as obtained from an expert. 

 

 IMG4825 IMG4980 IMG4983 IMG4990 IMG5139 IMG9973 IMG5514 

 

R. arundinum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
A. buselaphus 0.20 0.25 0.23 0.03 0.15 0.00 0.00 
S. caffer 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
R. campestris 0.00 0.00 0.00 0.00 0.00 0.58 0.00 
P. capreolus 0.00 0.07 0.02 0.00 0.00 0.00 0.00 
D. dorcas 0.01 0.23 0.44 0.03 0.12 0.00 0.00 
K. ellipsiprymnus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
H. equinus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
R. fulvorufula 0.00 0.00 0.00 0.20 0.00 0.00 0.00 
O. gazella 0.00 0.00 0.00 0.06 0.00 0.00 0.00 
C. gnou 0.44 0.04 0.22 0.35 0.52 0.00 0.00 
K. leche 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
A. marsupialis 0.00 0.36 0.00 0.15 0.00 0.00 0.00 
H. niger 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
O. oreotragus 0.00 0.00 0.00 0.00 0.00 0.27 0.00 
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T. oryx 0.00 0.00 0.00 0.00 0.00 0.00 0.09 
O. ourebi 0.00 0.00 0.00 0.00 0.00 0.12 0.00 
T. scriptus 0.00 0.00 0.00 0.01 0.00 0.03 0.00 
T. strepsiceros 0.04 0.00 0.00 0.02 0.00 0.00 0.89 
C. taurinus 0.31 0.05 0.09 0.15 0.21 0.00 0.02 

processing procedure. This points towards developing a version 

of Algorithm1 based on the corresponding SRVFs qo and qm; the 

main challenge here is how to handle the interplay between 

points {s*
1,s*

2} and their images {
c
(s*

1), 
c
(s*

2)} under arbitrary 

reparameterizations. In the current work, an explicit statistical 

model to handle the several sources of variation (e.g., 

measurement error in extracting curves from images) that can 

profoundly affect both completion and classification is 

conspicuous in its absence; without such a model, it is difficult 

to quantify uncertainty about the completions, which quite 

naturally percolates down to the classification task. An attractive 

model-based approach is to not just estimate the missing piece 

of the partially observed curve, but instead estimate an entire 

template that has a portion that is very similar in shape to the 

partially observed curve. Such an approach has recently been 

used for traditional univariate functional data under a Bayesian 

formulation [23] and appears promising. 

Our primary task in this paper is classification. However, it is 

unclear how one can use the proposed algorithms if interest was 

in computing statistical summaries in the presence of partially 

observed curves, such as the mean shape or PCA on the space of 

shapes. For example, output of Algorithm 2 is a set of M closed 

curves βo+βm
l , l  1, ... ,M with the property that each βo+βl

m 

exactly matches βo on a subset of the parameter domain; it is not 

clear how the M completions can be combined (e.g., a Karcher 

mean of closed curves) to construct a representative summary 

completion. This is related to how estimates from imputations 

can be combined with a handle on within and across sample 

variabilities using formal rules (e.g., Rubin’s rules). 

Development of such general rules in the present setting is far 

from straightforward. 

More generally, while the hot-deck imputation procedure 

worked reasonably well when combined with the completion 

task, there is a pressing need to systematically develop missing 

data concepts and imputation methods to better address the 

special structure of missingness in the context of shapes of 

curves. The following challenges naturally arise: (i) Is the notion 

of Missing Completely at Random (MCAR), so profitably used 

in traditional settings, ever a reasonable assumption for shapes 

of curves? It is almost impossible to disentangle measurement 

error from reasons for why a piece of a curve is missing. (ii) 

Conditional probability measures associated with random 

functions when conditioned on its values in a sub-domain are 

notoriously difficult, and rarely exist. Given this, how does one 

adapt, or perhaps circumvent, the traditional notion of sampling 

from the conditional distribution of the missing values 

conditioned on the observed values to the present setting? Much 

remains to be done in this direction. 
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