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We consider the problem of classifying curves when they are observed only partially on their
parameter domains. We propose computational methods for (i) completion of partially
observed curves; (ii) assessment of completion variability through a nonparametric multiple
imputation procedure; (iii) development of nearest neighbor classifiers compatible with the
completion techniques. Our contributions are founded on exploiting the geometric notion of
shape of a curve, defined as those aspects of a curve that remain unchanged under
translations, rotations and reparameterizations. Explicit incorporation of shape information
into the computational methods plays the dual role of limiting the set of all possible
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completions of a curve to those with similar shape while simultaneously enabling more

efficient use of training data in the classifier through shape-informed neighborhoods. Our
methods are then used for taxonomic classification of partially observed curves arising from
images of fossilized Bovidae teeth, obtained from a novel anthropological application
concerning paleoenvironmental reconstruction.

Keywords: shapes of parameterized curves, curve completion, invariance, multiple imputation, classification

1 INTRODUCTION

Modern functional and curve data come in all shapes and sizes (pun intended!). A particular type of
functional data that is starting to receive attention in recent years consists of univariate functions
that are only observed in sub-intervals of their interval domains. Names for such data objects
abound: censored functional data [1]; functional fragments [2,3]; functional snippets [4]; partially
observed functional data [5]. Similar work with multivariate functional data or parametric curves in
RY(d > 2) are conspicuous in their absence. The methodological focus of this paper, consequently, is
twofold: develop easily implementable computational algorithms for completion of partially
observed planar curves and assess completion variability; incorporate the completion procedure into
a procedure to classify partially observed curves. An equally important objective relates to
taxonomic classification of partial curves representing outlines of fossilized teeth of extant, southern
African bovids (antelopes and buffaloes) extracted from a novel anthropological imaging dataset.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1

October 2021 | Volume 7 | Article 759622


https://doi.org/10.3389/fams.2021.759622
https://www.frontiersin.org/articles/10.3389/fams.2021.759622/full
https://www.frontiersin.org/articles/10.3389/fams.2021.759622/full
https://www.frontiersin.org/articles/10.3389/fams.2021.759622/full
https://www.frontiersin.org/articles/10.3389/fams.2021.759622/full
https://www.frontiersin.org/articles/10.3389/fams.2021.759622/full
https://www.frontiersin.org/articles/10.3389/fams.2021.759622/full
https://www.frontiersin.org/articles/10.3389/fams.2021.759622/full
https://www.frontiersin.org/articles/10.3389/fams.2021.759622/full
https://www.frontiersin.org/articles/10.3389/fams.2021.759622/full
https://www.frontiersin.org/articles/10.3389/fams.2021.759622/full
https://www.frontiersin.org/articles/10.3389/fams.2021.759622/full
https://www.frontiersin.org/articles/10.3389/fams.2021.759622/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2021.759622

Matthews et al.

The leitmotif of our
approach lies in the explicit

Classification of Partially Observed Curves

compatible with the shapes of fully observed curves in a training dataset. Relatedly, from an
operational perspective, any formulation of completion of a missing piece of a curve based on an

Image of Partial Tooth

Shape-informed Completion Arbitrary Completion

FIGURE 1 | Anthropological application with bovid teeth Left: Image of a partial tooth with the segmentation overlaid in red.Middle; Right: Shape-informed and
arbitrary completions (blue) of the observed partial tooth (red), respectively.

use of shapes of curves as a
mechanism to not only
counter the ill-posed nature of
the problem of “sensibly”
imputing or completing the
missing piece of a partially
observed curve, but also to
use the metric geometry of
the shape space of curves
profitably when developing a
suitable  classifier. ~ The
rationale behind using shapes
of curves can be explained
quite simply. Fundamental to
the routine task of comparing
and identifying objects by
humans or a computer is an
implicit understanding of a
set of symmetries or
transformations pertaining to
its shape: those properties or
features of the object that are
unaffected by  nuisance
information (e.g., orientation
of the camera under which the
object is imaged). Such an
understanding assumes added
importance when the object is
only partially observed (e.g.,
identifying a chair hidden
behind a table based on the
backrest only) since it
eliminates the need to
consider a substantially large
class of possible completions
of the object. In the context of
partially observed curves,
working with their shapes
leads to completions that are

endpoints-constrained curve, either through deterministic or probabilistic model-based techniques,
suffers from having too many degrees-of-freedom. As a result, the parameter space of missing
pieces to search over needs to be constrained to obtain meaningful curve completions; we propose
to impose such a shape-related constraint.

For example, in the anthropological application, any sensible completion of a bovid tooth should
assume the shape of a tooth. We can constrain the parameter space comprising open curves, with
endpoints constrained to match that of the partially observed curve, while determining a sensible
completion based on the requirement that the completion should be tooth-like. Figure 1 shows an
example of using shape information to complete a bovid tooth using Algorithm 1 (Section 3) and
compares it to an arbitrary completion devoid of explicit shape information.

An important consideration when considering shape of a curve is its scale. Strictly speaking,
scaling a curve does not alter its shape, and it is hence a nuisance transformation. However, in our
motivating application from anthropology, the size of bovid teeth is known to have important
taxonomical information and can hence potentially improve discriminatory power in the
classification problem [6]. We will therefore accord due consideration to scale information when
comparing shapes of curves; in shape analysis vernacular, this is referred to as size-and-shape
analysis. For simplicity, we will continue to chraracterize our approach as shape-informed.

Research in geometry-based statistical analysis of shapes of arbitrarily parameterized planar
curves is quite mature; see, for example, [7,8] for foundational details and the R package fdasrvf
for computational tools. Leveraging this, our main contributions are as follows.

1) We develop a gradient-based algorithm (Algorithm 1) for shape-informed partial matching and
completion with respect to a complete template/donor curve.

2) In order to assess and visualize variability of completions from Algorithm 1, given a training
dataset of fully observed curves, we propose an adaptation of the hot-deck imputation method
used on traditional Euclidean data to generate several imputations or completions (Algorithm 2).

3) We propose two nearest neighbor classification procedures for partially observed curves based
on shape distances by utlizing completions obtained from any of the above two algorithms.

1.1 Related Work

Partially observed curves arise as data in several applications. In medical imaging, the appearance
of anatomies in images of various modalities is often summarized through the shapes of their
outlines. Partial curves arise due to (i) low resolution and contrast of many medical imaging
modalities (e.g., PET or CT); (ii) a boundary of an organ being obscured by other organs or hard to
identify due to similar appearance of neighboring tissues [9]. In handwriting analysis, a key task is
the segmentation of samples of handwriting (curves) into letters or syllables, followed by imputation
of incomplete curves [10]. Shapes of occluded objects, such as tanks, are also routinely used in
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military applications, where
only part of the object’s
boundary is reliable and the
rest must be imputed based
on prior shape knowledge [9].

There is a substantial
literature on missing data and
shape analysis, however,
most of the work is restricted
to data  obtained  as
multivariate morphological
measurements. For example,
[11] examines missing data in
the morphology of crocodile
skulls based on linear
morphometric measurements
of the skulls, in contrast to
using landmarks or entire
outlines (curves). Missing
data methods for landmark-
based shape data have been
developed in [12, 13, 14, 15].
By defining landmarks on
each shape, the problem can
be framed in a more
traditional statistical setting
where each landmark can be
thought of as a covariate and
more traditional missing data
techniques, such as the EM
algorithm and  multiple
imputation, can be used. [16]
look at four different methods
for dealing with missing
landmark data: Bayesian
Principal Component
Analysis (BPCA), least-
squares regression, thin-plate
splines (TPS), and mean
substitution. Additional work
on missing data can be found
in [17], which focuses on
missing data in Procrustes
analysis, and [18], which
considers occluded landmark
data.

The work most closely
related to this current study
can be found in [19], which
studies the problem of
matching a partially observed
shape to a full shape. [19]
performs partial matching
using  the  Square-Root
Velocity framework, and this

Classification of Partially Observed Curves

is the framework we use as well in the sequel. Our work in a certain sense goes beyond their work
and incorporates missing data techniques into the completion procedure, and additionally is tailored
towards the classification task. [9] incorporates prior shape information in Bayesian active contours
that can be used to estimate object boundaries in images when the class of the object of interest is
known; they demonstrate the usefulness of this approach when the object boundary is partially
obscured. [20] considers the problem of identifying shapes in cluttered point clouds. They formulate
a Bayesian classification model that also heavily relies on prior shape information. Finally, there is
some recent work on missing data techniques for functional data analysis [21, 22, 23].

2 SHAPES OF PARAMETERIZED CURVES

The main objects of interest in this work are parameterized curves and their shapes. Defining a
suitable distance metric to compare their shapes is of fundamental importance in order to suitably
formalize the notion of a “best completion of a partial curve”. From several available in the
literature, we consider two distances that are suitable for our needs. We provide a description of the
mathematical formulation for these two distances in the following, and refer the interested reader
to [24] for more details. As discussed in the Introduction, the size of bovid teeth contains potentially
taxon (class)-distinguishing information, and we hence consider the notion of size-andshape of a
curve. Throughout, for ease of exposition, we simply say shape to mean size-and-shape.

Denote by S' the unit circle on the plane, and let B: S' >R? be an absolutely continuous, simple,
parameterized closed curve representing the full outline of a bovid tooth. We will identify S! with
the unit interval [0, 1] R and enforce the endpoint constraint B(0) B(1) to represent a closed curve.
Denote by B the space of all such B. If B1and B2 are assumed to be parameterized according to arc-
length, then B1 - B2

12
_ is a viable distance between them,
where || is the standard Euclidean norm in R%. In order to account for nuisance information that does
not alter the shape of B1and B2, one must further remove variability due to translation and rotation.
classes

The two  variabilities are

I, i

SO(2) is the group of 2 x 2 rotation matrices, i.e., orthogonal matrices with determinant equal to 1.

accounted for by defining equivalence

Note that the L distance between B1and B2 is unchanged if both curves are translated and rotated by
the same T €R?or O €SO(2). Thus to compare the shapes of two curves 1 and B2in B, we can use

the non-elastic shape distance
v, o

This optimization problem can be solved in a straightforward fashion through Procrustes analysis

T. (1)

[25]. The distance is termed non-elastic as it requires one to fix curve parameterizations to arc-
length. Note that while dne is defined on B, it is in fact a distance on the shape space Sg {[B]: BEB} of
arc-length parameterized closed curves consisting of equivalence classes as points. This ensures that
dne (B1, B2) O if there exists (T, O) € SO(2) x R? such that o OB+ T; in other words, the distance
measured with dnkis zero for two curves having the same shape.

If one desires to allow flexible parameterizations for shape analysis, the L> metric is no longer a

feasible choice as it is not invariant to re-parameterizations: _°c, where c: S!
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->S! belongs to the class T of
orientation-preserving
diffeomorphisms of S' that
represent re-
parameterizations of curves
in[ can be viewed in the
following manner. Consider
the classB. When S! is
identified with [0, 1],
elements of the

group of {c~: R>R: c™(t + 1)
c~(t) + 1, continuous and
increasing}. Each function in
the class is such that c™(t) - t
is periodic with period 1.
Moreover, each function of
the class induces a
reparameterization ¢, S! >S!
with ¢ (€?™) ™ ® where c~
is referred to as the lift of ¢,
which is then orientation-
preserving.  Operationally,
the construction implies that
c~can be expressed as c™(t)
c(t) + c for some c: [0, 1] =>
0, 1],
diffeomorphism of [0, 1],
exceptatt 1, and c €(0, 1].
We  thus
diffeomorphism of S' by

which is a

construct a
“unwrapping” S' at some
point s, and generating such a
¢ by identifying s with 0 (and
1). Henceforth, we will refer
to such a ¢ as an
orientiationpreserving
reparameterization of S', and
carry out computations with
[0, 1] as the parameterization
domain.

Since re-parameterization
completely preserves the
image of a curve B, a distance

based on a Riemannian

Classification of Partially Observed Curves

metric that captures infinitesimal bending and stretching can be used. Several families of such
metrics, termed as elastic have been considered [26, 27]; however, almost all of them are difficult
to compute in practice and require non-trivial approximations.

A solution to this key issue was proposed in [7]. Specifically, a particular elastic metric is related

to the usual L? one when a curve is transformed bijectively to its Square-Root Velocity is the time-

derivative. Under this transformation,Function (SRVF): B3B1Q(B) : g B_|B_| "€ L-?, whereq2

(qB_, q!

¢) - (q2, ¢), where (g; c)d(g;°c) c_ is the reparameterization action on the SRVF. Translations are

automatically removed by the use of the derivative. Let Q° {g: [0, 1] >R? | g € *([0, 1], R?)} denote
the linear space of SRVF-transformed open curves; the space of closed curve SRVFs involves an

additional closure condition:
Q {qg: _ Jo|dt 0}.Thus, Q, the space of closed curve SRVFs,

is a subset of Q , the space of open curve SRVFs. We refer to [7, 24] for more details.

The corresponding elastic distance de between two curves Bi, B2 €B is defined using their SRVFs,

wherein in addition to rotations, re-parameterizations are also now optimized over:

.

0qgz2°cc_, (2)

where the equivalence class _c_ | 0 €50(2), c€r} now represents an elastic shape, i.e.,
an equivalence of q under the action of SO(2) and I, which can be applied in any order. The
optimization over SO(2) is solved via Procrustes analysis as before, while the one over T is
addressed using Dynamic Programming or a gradient descent algorithm. This process is referred to
as registration: it provides an optimal, under the elastic metric, correspondence between the shapes
of qi and q. Details of computing dg can be found in [24]. Correspondingly, define the shape([ ]
&spaceQ}. of SRVF-transformed closed curves as Sq g : g

In summary, if closed planar curves representing outlines of bovid teeth are assumed to be arc-
length parameterized, we can use the non-elastic distance dne on the shape space Sgto compare their
shapes. On the other hand, if the curves are allowed to have arbitrary parameterizations, it is more
appropriate to consider their SRVF transforms and the shape space Sq, equipped with the elastic
distance de. Moreover, it is clear that the distances dxe and dg are valid for open curves as well, i.e.,
in the case B (0) #B (1). We will use the distances for both open and closed curves without
qualification; context will disambiguate their usage.

3 PARTIAL SHAPE MATCHING AND COMPLETION

We first focus on how a single partially observed curve can be completed. Indeed, this requires a
template or donor curve that is fully observed, so that the partially observed one can be matched
and compared to different pieces of the fully observed one. Once a match has been established, a
completion can be subsequently determined. In principle, the two tasks can be carried out
sequentially or in parallel; in this paper, we adopt the former approach and leave the latter for future
work.

Accordingly, the key tasks are to (i) match the observed partial curve to a piece of the donor
curve; (i) impute or complete the observed curve by finding the closest match to the residual piece
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of the donor curve from a set
of curves with fixed
endpoints. These are non-
trivial tasks since the set of

curves B (and Q) is infinite-
dimensional. The problem is
made tractable by
considering equivalence
classes of curves that share
the same shape and size, as
defined earlier. Specifically,
we propose to leverage the
shape distances dng and de in
Egs 1, 2, and develop an
optimization-based

framework to  carry-out
completion/ imputation and
classification  sequentially.
We first define some
important quantities.

e A curve B is viewed as
being composed of two
pieces Bo and PBm, where
the subscripts o and m
identify the observed
and missing portions of
B, such that

, for some 0 <t< 1. The
corresponding SRVF q
similarly ~ decomposes
into (qo, qm) for the
same T.

e B Bo +Bm denotes the
concatenation of B, and
Bm, i.e., the complete
curve. Throughout, Bo
will denote a partially
observed curve, which
conceptually is
understood to be the
observed portion of a
curve fB; in similar
fashion, Bm will
throughout represent the
missing piece of B.

e The restriction of a
complete curve B to an

Classification of Partially Observed Curves

open curve defined by parameter values [si, s2] €[0, 1] is denoted as B“*2), with its SRVF
counterpart q**? defined in a similar manner.

¢ Denote the length of Boas L_ )| dt, where B_ is the time-derivative. The length of

the restricted curve is then

_ L)|dt. If we fix s1 €[0, 1] and L, then s2 €[0, 1] is fully determined..

In line with our intention to use shape information of curves, we note that completion of B, with
respect to a donor curve Bdonor can be broken down into the following two steps.

(1) Determine the piece of Baonor that best matches the shape of Bo.
(i) Determine an open Bm curve that then best matches the shape of the residual piece of the donor
in (i); the required completion is then Bo+ Br.

Two points are worth considering here. First, the optimal Bm is constrained to share the same
endpoints as the determined piece of Baonor. Second, by virtue of its definition, the completion Bo +
Bm exactly matches the partially observed curve B, when restricted to a suitable subset of the
parameter domain. The latter is motivated by the quality of image data of bovid teeth, under which
it is reasonable to assume that the partially observed curve is obtained under negligible measurement
error.

The key consideration for developing an algorithm for the two steps is the choice of an objective
function that quantifies the quality of matches, informed by either of the shape distances dxeand de
in Eqs 1, 2, respectively. Repeated computation of the elastic distance de is computationally
expensive (due to the additional optimization over I'), and hence time-consuming inside an iterative
algorithm (the potential donor set has large sample size). Since our main objective in this paper is
classification of the partially observed curves, we use the more convenient non-elastic distance dne
in order to carry out partial matching and completion. However, we will employ the elastic distance
de when designing a classifier in order to better access pure shape features of curves that are
potentially classdistinguishing.

We consider a two-step algorithm based on optimizing an objective function over two parameter

spaces: Qp for the partial match in step (i), and Qc for the completion step (ii), defined as:

Qe d[0, 1] x R2x SO(2) x R«

adodi I @

The parameter set Qp consists of shape-preserving transformations for arc-length parameterized
curves B and the length of Bo, whereas Qcrepresents the subset of endpoint constrained curves within

N .
B. In the partial matching step, a piece on the donor Bdonor of optimal length L starting at s -

>

rotation O* and translation T* is determined resulting in Blaono’*?. The domains [si, sz] of an

arbitrary restriction Bdonor(sl'SZ) and [0, t] of Boare always rescaled to [0, 1] to ensure that they have

the same domain. For a fixed si, the optimal translation T* and rotation O* are given explicitly via
Procrustes analysis (see, for example, [28]). The search for the optimal s*1 and L* can then be
performed exhaustively on [0, 1].

! finite number. We have found that
In practice, the basis is truncated to
some between 40 and 80 total basis

elements per coordinate function are sufficient, although this depends on the geometric complexity of the observed curves. In
the application considered in Section 6, we used 80 basis elements.
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s.Note that*? is removed
owing to the circular ordering
on the parameterf(donors=,s«)

refers to the residual piece on
Bdonor once B onor

domain S' of Baonor. The main
challenge lies in carrying out
step 3 of the algorithm in
which the missing data Pm is
determined by searching over
Qc B for the optimal curve
that best matches the residual

piece - of B from the
partial matching step. The
challenge relates to the fact
that Qc is a nonlinear subset
of B.

We propose to optimize
over Qc with a gradient-
algorithm.  First,
rescale -to [0, 1]. Then,
consider an orthonormal
basis {b:: [0,1]°>R? i 1,2,...}
with b; (0) 0 and bi (1) O,
which enforce the endpoints
constraint on the curve. In
particular, we use a
modification of the Fourier
basis for each of the two
coordinate functions, given
by.

descent

donor set of size K and number of completed datasets M.

Classification of Partially Observed Curves

at a current estimate ", can be approximated using directional derivatives along basis directions

where (-, -} is the usual L? inner-product on B. A single gradient update in the completion algorithm

bias

is then given by
Brewr L,

where €> 0 is a small step size. This is repeated until convergence. In practice, we reduce the
dimension of the problem by truncating the basis at a finite number N; this additionally ensures that
the optimal completion B, is relatively smooth. Two preliminary results from this two-step
algorithm for bovid teeth are shown in Figure 2. The black curve is the donor Bdonor, the red curve
is Bo, and the optimal completion B*, after a set number of iterations, is in blue.

4 ASSESSING VARIABILITY IN COMPLETION THROUGH MULTIPLE
IMPUTATION

Algorithm 1 describes how a partially observed curve B, can be completed given a donor curve
Baonor. The completion is deterministic and uncertainty estimates are unavailable. Further, the
application of this procedure is only possible when a training dataset consisting of several curves is
available. An attractive way to examine completion variability is to consider a multiple imputation
framework for missing data. There are numerous multiple imputation methods to handle missing
data in traditional multivariate settings; see [29, 30] for a broad overview and details on missing
data techniques. Our choice is a nonparametric hot-deck multiple imputation procedure. We
describe this technique in a regression setting with response y€ R”and n x p design matrix X, where
each casej 1, ..., nis defined as the response-predictor pair (yj, Xj).

(1) Replace a missing value ymiss of y with randomly selected observed values in y, chosen from a
donor pool of fixed size K < n comprising fully observed cases that are“similar” to the
s ARSQPIGHE case. :
(ii) 2 Riepeatstép () Mrfirnies to create M completed datasets.
@Gii) Analyze the M completed datasets independently (e.g., mean estimation) and combine results
using Rubin’s combining rules [29].

classification results can also be computed as a function of a

Algorithm 2 outlines our adapted hot-deck

imputation procedure for generating M completions of a partially observed curve o given a training dataset D {B, ..., B} consisting
of n fully observed curves from B. The main

Let E

_m.

Then, the gradient of E (Bm)
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As a first step towards
carrying out this program for
partially observed curves, we
propose an adaptation of the
hot-deck imputation
procedure for a classification
task. However, the
development of methods to

Classification of Partially Observed Curves

observed curve and each curve in the training dataset D. Then, the rest of (i) is carried out in step 9.

Finally, (ii) is carried out in steps 10—-13.

Example 1

Example 2

Interation: 0

Interation: 100

Interation: 0

Interation: 100

Interation: 3

Interation: 500

Interation: 3

Interation: 500

partial curve (red) and the donor (black).

combine classification results
across M datasets, similar to
Rubin’s  rules, is an
interesting research problem
in its own right, and we leave
that for future work (Section
7). Once steps (i) and (ii) are
completed, it is possible to
visualize variability
associated with completion
using Algorithm 1 by plotting
the completions. Moreover,
variability in change to the
classic hot-deck imputation
procedure described above
lies in how “similarity”
between cases (here curves)
is assessed in (i). In
particular, steps 3-8 in
Algorithm 2 are used to
compute the (shape)
similarity between a partially

FIGURE 2 | Two examples of shape imputation viaAlgorithm 1. The panels show the evolution of the completion (blue) at a few iterations of step 3, the observed

Note that once s*1and s™ are rescaled to 0 and 1, respectively, in line 5, the optimal partial match
of Bito Bothen corresponds to the piece B{*" of length L* from Bi, which is now represented as an

open curve B/%Y: [0, 1] >R?; the parameter domain [0, 1] of B‘,- %1 is not to be confused with the

parameter [0, 1], representing S', of the fully observed curve Bi. Similar comments apply to their
corresponding SRVF versions. Note and contrast step 7 of Algorithm 2 to the completion step 3 in
Algorithm 1: here, the distance 6iis computed between B, and the matched piece of the donor, and

not the residual piece.
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(=]
S
(=4
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= =4
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=3 [=J.
= v
o
§ 1 N
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o 4 [=J.
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FIGURE 3 | Examples of partial matches followed by imputation on partially observed teeth Left: Approximately 50% of the tooth is observed.Right:
Approximately 80% of the tooth is observed. The black curve denotes the fully observed portion of the tooth with each red curve being a single completion of the tooth. In
both examples shown hereM 10 and K 10.

The key feature of
Algorithm 2 is the use of the
elastic distance, albeit not
exactly in the form defined in
(2) since an optimal rotation
O* €S0(2) has already been
determined in line 5-we
hence refer to this distance as
partial elastic distance. The
rationale for this is as follows.
Once a piece of the donor Bi
of length L* corresponding to
parameter values s'1 and s™
has been extracted, the
lengths of B;**¥**2 and B, can
be quite different. Thus,
computing the non-elastic
distance between the two
open curves under the
assumption of arc-length
parameterization in order to
compare their shapes might
not be appropriate. In
contrast, in Algorithm 1, the
distances themselves were
not of chief interest. Our
approach hence is to assume
at this stage that B and B
are arbitrarily parameterized
and hence use the partial
elastic distance de to compare
their shapes wusing their
corresponding SRVFs; this
also explains why we ignore
using the optimal translation
T* resulting from Algorithm

1. To see that &iin line 8 of Algorithm 2 is indeed the partial shape distance, note that when a
particular rotation O* is fixed, from line 6

- o
_ O+qiioy°cc_ infeero—qo * Oix0,1G(i0,1y* €*C_

q O q )°c C_.

Figure 3 provides an illustration of the hot-deck imputation procedure with M 10 and K 10 for
two partially observed bovid teeth using Algorithm 2; see Section 6 for details on the bovid dataset.

5 NEAREST NEIGHBOR CLASSIFICATION

observed curvesConsider a training datasetf; €B and corresponding class labelsDwaind{(y;, B)}"1

consisting of fullyyi € {1, ...,

G}. The goal is to classify a partially observed curve Boto one of the G classes using training data

Drtrain.

A distance-based classification procedure is a natural choice, compatible with how completion
and imputation is achieved. Accordingly, we consider the kn-nearest neighbor classification
technique. A neighborhood of a curve in B can be defined with respect to both non-elastic and elastic
shape distances dneand de. Effectively, although fully observed curves in Duain assume values in B,
the classification procedure will be defined on their shapes assuming values in the shape space Sp
(or Squnder the SRVF transform).

The advantage of using the shape space lies in the fact that Spis made up of equivalence classes
of B under the equivalence relation characterized by shape-preserving transformations. For a fixed
radius 1, neighborhoods as balls of radius r around a fixed point B* constructed on B using shape
distances dne are necessarily larger than corresponding ones on B using the usual L2 distance, since,

by virtue of its definition, for every r > 0,
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dneB, B=<r.

In a kn-nearest neighbor
setting, the radius r is
distance, say riw, of the k™,
closest curve to P*, and
changes with the training
data. However, ri, computed
using the distance dne will be
smaller than one computed
using the L2 distance; thus one
is able to find kn neighbors at
a smaller distance from p*.
This leads to  better
performance of the classifier
for large sample size n and
improves rates of
convergence of the predicted
class probabilities (see, for
example, [31]). Similar
comments apply to the elastic
distance dg, albeit under
subtler conditions since it is
induced by the elastic
Riemannian metric on B,
which is not directly related
to the L?> metric on B.

We will use the elastic
distance de  again  to
accommodate for the
possibility that curves in Diain
and Bo +PBm can have arbitrary
parameterizations following
completion of Bo with any Bm.
Let N (Bo+Bm)d{Bis, .- , Bir}

CDtrain be kn nearest curves to

a particular completion Bo +
Bm of Boin the training data.
We consider two nearest
neighbor classifiers.

¢ knn classifier: Assign Bo
to the class with largest
predicted  probability.
The predicted
probability that label y
for Boassumes value g €
{1, ..., G} is given by

Classification of Partially Observed Curves

1
var. TN .. _ .

and Bo +PBm is one completion obtained from Algorithm 1 with Bm €Qc.

¢ knn-imp classifier: Here, we incorporate uncertainty in completion of B, into the classification
procedure by combining the knn classifier with hot-deck imputation. Specifically, with M
completions B,+B.', I 1, ..., M obtained from Algorithm 2, the corresponding class

probability is
.
nyg | BD/ Dtrain _ . kaM,

The class probability is thus obtained by averaging over all completions obtained by sampling
M donor curves with replacement from the donor set Bdonor in Algorithm 2.

The knn-imp classifier is a novel extension of the knn classifier to accommodate variability in
completions through the hot-deck multiple imputation procedure. However, at the outset, it is not
clear if it will generally outperform the knn classifier, since performance will heavily depend on
quality of the completion step in Algorithm 1 and shape variability in the training dataset.

6 TRIBE AND SPECIES CLASSIFICATION OF BOVID TEETH

We examine performance of Algorithm 1 and Algorithm 2 with respect to classification of images
of fully and partially observed bovid teeth using the two nearest neighbor methods under two
settings.

(1) A simulated setting, where curves pertaining to partiallyobserved teeth are created from fully
observed ones with known class labels.
(i1) A real data setting comprising “true” partially observed teeth with unknown class labels.

There are numerous measures of classification performance. We use the log-loss measure to asses
performance: let np denote the number of partially observed curves B!, ..., " to be classified in G

classes {1, ..., G} with unknown class labels yj, ..., yn,and let Duain denote the training dataset of

fully observed curves. Then

np G

n

-d-"1 o il gl |{y;g} IOgT[yi gl BiO/ Drtrain, LOg loss

where the class probability is defined as earlier depending on whether the knn or knn-imp classifier
is used. Evidently, a low Log-loss is indicative of good classification. Note that the Log-loss is
positive with no upper bound. The Log-loss can be used only when the class labels are known. In
the real data setting with unknown labels, the Log-loss is not used; instead, classification accuracy
is assessed relative to classification done by an expert (co-author JKB).

All computations are performed using routines available in the R [32] package fdasrvf[33] on a
16-node Intel Xeon-based computational cluster in the Computer Science Department at Loyola
University Chicago. Full code for the analyses can be found on Github [34].

Our motivating application stems from anthropology, where fossil bovid teeth associated with
our human ancestors are used to reconstruct past environments. Bovids are useful because they are
ecologically sensitive to their environment and typically dominate the South African faunal
assemblages [35, 36, 37, 38].

The tooth images for our study were obtained from four institutions in South Africa: National
Museum, Bloemfontein; Ditsong Museum, Pretoria; and Amathole Museum, King William’s Town.
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Images were also taken at the
Field Museum, Chicago,
United States. The complete
methodology as to how the
teeth images were collected is
outlined in [6]. Briefly, the
occlusal surface of each of the
three molars from the upper
and lower dentitions for each
extant bovid specimen were
photographed separately. The
specimen and the camera
were levelled using a bubble
level. A scale was placed next
to the occlusal surface for
every image.

Specifically, we consider
images of teeth from 7 bovid
tribes (Alcelaphini,
Antilopini, Bovini,
Hippotragini, Neotragini,
Reduncini, and Tragelaphini)
and 20 species  (R.
arundinum, A. buselaphus, S.
caffer, R. campestris, P.
capreolus, D. dorcas, K.
ellipsiprymnus, H. equinus,
R. fulvorufula, O. gazella, C.
gnou,

K. leche, A. marsupialis, H.
niger, O. oreotragus, T. oryx,
O. ourebi, T. scriptus, T.
strepsiceros, C. taurinus).
The dataset contains six tooth
types: lower (i.e.,
mandibular) molars 1, 2 and 3
(LM1, LM2, LM3), and
upper (i.e., maxillary) molars
I, 2 and 3 (UMI, UM2,
UM3). Specific counts of the
sample sizes of each tooth
type and tribe are in Table 1.
This dataset contains fully
observed teeth of known taxa

and will constitute the
training data Dtrain.
Each tribe has unique

dental characteristics that are
shared by its members.
Further, the complexity of the
occlusal surface outline
varies across the tribes. As
such, considering shape for
tribe classification is a natural

Classification of Partially Observed Curves

endeavor in this application. Generally, classification at the species level is more difficult since the
variability of shapes of occlusal surface outlines across species within the same tribe is not as large.

6.1 Simulated Setting

In this setting, a partially observed tooth was created from a fully observed one with known class
label in Dwain, and a class probability is calculated using both nearest neighbor methods; the
procedure is repeated for each tooth in Dwain and the Log-loss is computed for the knn and knn-imp

classifiers for choices:

(i) K 5,10, 20 of size of donor set Bdonor;
(i) M 5,10, 20 of number of imputations based on sampling with replacement from Bdonor;

(i) ka 1,2, ..., 20 of number of neighbors;

(iv) Tooth types LM1, LM2, LM3, UM1, UM2 and UM3;
(v) Side of tooth extracted, where Left is denoted as 1 andRight as 2.

A partially observed tooth was created in the following manner. The raw representation of each
tooth in Dirain comprised of 60 points around the occlusal surface of the tooth that were obtained
from the program MLmetrics [6, 39]. For each tooth, the 60 points were split into two sets roughly
divided by a line connecting the mesostyle to the entostyle in maxillary teeth and metastylid to the
ectostylid in mandibular teeth. This type of cut was chosen as this break point is commonly observed
in fossilized bovid teeth. Figure 4 provides an illustrative example of the procedure.

6.1.1 Tribe classification

Figure 5 shows Log-loss curves associated with the knn-imp classifier as a function of ki (number
of neighbors) for the above-mentioned choices of M and K, and also the corresponding curve for
the knn classifier. In all cases, for smaller values of the number of nearest neighbors chosen, the
knn-imp classifier outperforms the knn classifier. As the number of nearest neighbors increases, not
performing imputation performs as well or better than imputation in most cases. In fact, for some
teeth there are certain combinations of M and K that are better in terms of Log-loss for imputation
regardless of the choice kn of nearest neighbors.

6.1.2 Species classification
Figure 6 shows Log-loss curves for species classification and paints a fairly similar picture to Figure
5: when the number of
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IAAACDE TNAEANON TM2A983 TMG4990, IMG5139, IMG9973 and IMGS5514. Training data Dirain
in the simulated setting. Recall that in the simulation setting, partially
= half of the number of sampled points as the fully observed ones. In the
ot| the case: in four partially observed teeth (IMG4825, IMG4980,
- » than half of the tooth is observed; in one (IMG4990) less than half of
n the remaining two (IMG5139, IMG5514), approximately half of the
- cts the number of points chosen to represent (and parametrize) the open,
ince we cannot know the length of the missing piece for real partially
- f points to sample along the curves were determined based on expert

. 1 classifiers, we set the number of neighbors k. 10; for the knn-imp

1 M 10. These choices were based on performances in the simulated

400 450 500 550 600 650

T \ T T 1
300 400 500 600 700 e Level

" ;s probabilities associated with the knn classifier. Each row has an entry

in bold indicating the “true” |(according to an expert) class of these teeth. We observe that the
FIGURE 4 | An example of how a partialfl8sifications witheutdmputation are highly accurate for the 7 teeth. One can see that 6 out of 7 of
from a fully observed one in the simulatedlrestineddthfiavesclassifiddwter the correct tribe. In addition, the probability of belonging to the correct
molar 1 (LM1) from the tribe Alcelaphini wifh, red, pints ge %f‘%?(?ﬁr: Rassified teeth was 1. However, in the one case where the classification is

extracted piece from the Left (1) side and blue points do the same K
Right (2) side. wrong, the predicted probability was 0.

Table 3 shows similar results for the knn-imp classifier. The same 6 teeth that were correctly

TABLE 1 | Sample sizes for each tooth type and tribe.

Alcelaphini Antilopini Bovini Hippotragini Neotragini Reduncini Tragelaphini Total
LM1 106 27 22 26 45 76 53 355
LM2 117 30 25 37 55 90 53 407
LM3 117 30 19 34 53 96 62 411
umMi 117 30 23 37 43 80 75 405
um2 118 30 23 41 53 97 94 456
um3 71 30 17 58 52 110 78 416

nearest neighbors is chosen to classified before are again correctly classified, however, with probabilities that are all lower than 1.
be small (i.e., fewer than 5),  Again, the tooth that was incorrectly classified previously is again incorrectly classified and the
there is always at least one  probability predicted of belonging to the correct class is again 0. Notably, the partially observed
imputation setting that has  tooth from IMG9973 was difficult to classify when using either classifier; interestingly, in both cases
lower Log-loss than no it was classified with high probability to the Neotragini class.

imputation. However, in all

cases as the number of g3 Classification at the Species Level Table 4 shows predicted class probabilities associated
nearest neighbors c.hosen gets with the knn classifier. We saw in Tables 2, 3 that each of the 5 teeth from the Alcelaphini tribe was
close to 20, no Imputation correctly classified, with probability at least 0.5. However, at the species level, only 2 of these 5
performs better in terms. of teeth (IMG4983, IMG4990) have high probability associated with the correct species; the three
Log-loss than doing other teeth (IMG4825, IMG4980 and IMG5139) have a probability of belonging to the correct

Imputation. species of 0.4. In addition, for the two remaining teeth that belong to the Tragelaphini and Antilopini
tribes, the predicted probability for the correct species was 0.1 and 0, respectively.

6.2 Real Data Setting When classifying using the knn-imp classifier with imputation, the results are similar with a few

A small set np 7 of real, notable differences. Table 5 shows these results. First, of the 5 Alcelaphini teeth, 3 are correctly

partially  observed fossil  classified using imputation (IMG4825, IMG4990 and IMG5139). Second, two of these are in fact
bovid teeth from the site of  correctly classified with higher probability when carrying out imputation with the knn-imp classifier
Gladysvale, South Africa,  \hen compared to the knn classifier (IMG4825: 0.44 vs. 0.4 and IMG5129: 0.52 vs. 0.4).

extracted from images, wWith  pinaly, the other four teeth corresponding to IMG4980, IMG4983, IMG9973 and IMG5514 had

unknown class labels were predicted probabilities for the correct species of 0.04, 0.22, 0 and 0.09, respectively.
used. We use the image

numbers to label them:
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7 DISCUSSION

We have presented a
computational approach for
classifying partially observed
curves. In particular, we
presented two algorithms to
complete  and  classify
partially observed planar
curves and simultaneously
assess variability involved
with the completion through
a multiple imputation
procedure. To our

Classification of Partially Observed Curves

the parameter space of suitable open curves, from which the partially observed curves are
completed, through the notion of shape equivalence results in sensible completions. Moreover,
shape-based distances used to define classifiers deliver satisfactory classification performance. The
results from application of the algorithms to the dataset of images of bovid teeth are quite promising
and are deserving of further, extensive, investigation involving several different classifiers.
Through the application of the proposed framework on real data, we have found that hot-deck
imputation can sometimes deteriorate classification performance; there is an intuitive explanation
for these findings. Classification performance is greatly affected by the “amount of information”
contained in the observed partial curve. By “amount of information”, we specifically mean the
ability to discriminate between different classes. In particular, if the observed partial curve contains
a lot of information about its class membership compared to the missing portion, then imputation
injects additional variability into the problem, which has a negative effect on classification
performance. On the other hand, if the observed partial curve is not easily distinguishable across the
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FIGURE 5 | Tribe classification in simulated setting. Log-loss for the knn-imp classfier as a function of numberkn neighbors for different values of donor set sizeK

and number of imputations M; purple “No-imp” curve represents the same for the knn classfier.

knowledge, this is the first
work in literature to explicitly
use the notion of shapes of
parameterized curves in
addressing  the  problem
considered from the missing
data perspective; coarsening

different classes in the training data, then the variability coming from the imputation procedure
provides valuable information, thus improving classification performance. Knowledge about

information
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and number of imputations M; purple “No-imp” curve represents the same for the knn classfier.

TABLE 2 | Real data. Tribe level predicted class probabilities from the knn classifier with k, 10. Emboldened values indicate the “true” class as obtained from an expert.

Alcelaphini
IMG4825 1.00
IMG4980 1.00
IMG4983 1.00
IMG4990 1.00
IMG5139 1.00
IMG9973 0.00
IMG5514 0.00

content in an observed partial
curve for classification can be
obtained either from a
training dataset consisting of
fully observed curves with
class labels or from a subject
matter expert. In such cases, a

Antilopini Bovini Hippotragini Neotragini Reduncini Tragelaphini
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 1.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 1.00

Bayesian classification model with a judicious choice of prior on class-specific templates can be
developed; such an approach will extend the one recently proposed for univariate functional data
[23] to the curve setting, and constitutes ongoing work.

As with any methodological development that represents a first foray into tackling a challenging
problem, our approach suffers from a few shortcomings, which inevitably present many possible
avenues for future research. Algorithm1 can be improved. Ideally, the partial match and completion
steps are carried out jointly. Moreover, assuming curves to be arc-length parameterized, while
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convenient, can sometimes be

unrealistic ~ in  practice,

especially when data curves

are extracted as part of an

elaborate pre-
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TABLE 3 | Real data. Tribe level predicted class probabilities from the knn-imp classifier with k, K M 10. Emboldened values indicate the “true” class as obtained from an expert.

Alcelaphini Antilopini Bovini Hippotragini Neotragini Reduncini Tragelaphini
IMG4825 0.96 0.00 0.00 0.00 0.00 0.00 0.04
IMG4980 0.57 0.36 0.00 0.00 0.07 0.00 0.00
IMG4983 0.98 0.00 0.00 0.00 0.02 0.00 0.00
IMG4990 0.56 0.15 0.00 0.06 0.00 0.20 0.03
IMG5139 1.00 0.00 0.00 0.00 0.00 0.00 0.00
IMG9973 0.00 0.00 0.00 0.00 0.97 0.00 0.03
IMG5514 0.02 0.00 0.00 0.00 0.00 0.00 0.98

TABLE 4 | Real data. Species level predicted class probabilities with knn classifier with k, 10. Emboldened values indicate the “true” class as obtained from an expert.

IMG4825 IMG4980 IMG4983 IMG4990 IMG5139 IMG9973 IMG5514
R. arundinum 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A. buselaphus 0.10 0.00 0.10 0.00 0.20 0.00 0.00
S. caffer 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R. campestris 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P. capreolus 0.00 0.00 0.00 0.00 0.00 0.10 0.00
D. dorcas 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K. ellipsiprymnus 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H. equinus 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R. fulvorufula 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0. gazella 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C. gnou 0.40 0.40 0.80 0.70 0.40 0.00 0.00
K. leche 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A. marsupialis 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H. niger 0.00 0.00 0.00 0.00 0.00 0.00 0.00
O. oreotragus 0.00 0.00 0.00 0.00 0.00 0.70 0.00
T. oryx 0.00 0.00 0.00 0.00 0.00 0.00 0.10
O. ourebi 0.00 0.00 0.00 0.00 0.00 0.20 0.00
T. scriptus 0.00 0.00 0.00 0.00 0.00 0.00 0.00
T. strepsiceros 0.00 0.00 0.00 0.00 0.00 0.00 0.90
C. taurinus 0.50 0.60 0.10 0.30 0.40 0.00 0.00

TABLE 5 | Real data. Species-level predicted class probabilities with knn-imp classifier with k, K M 10. Emboldened values indicate the “true” class as obtained from an expert.

IMG4825 IMG4980 IMG4983 IMG4990 IMG5139 IMG9973 IMG5514
R. arundinum 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A. buselaphus 0.20 0.25 0.23 0.03 0.15 0.00 0.00
S. caffer 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R. campestris 0.00 0.00 0.00 0.00 0.00 0.58 0.00
P. capreolus 0.00 0.07 0.02 0.00 0.00 0.00 0.00
D. dorcas 0.01 0.23 0.44 0.03 0.12 0.00 0.00
K. ellipsiprymnus 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H. equinus 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R. fulvorufula 0.00 0.00 0.00 0.20 0.00 0.00 0.00
0. gazella 0.00 0.00 0.00 0.06 0.00 0.00 0.00
C.gnou 0.44 0.04 0.22 0.35 0.52 0.00 0.00
K. leche 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A. marsupialis 0.00 0.36 0.00 0.15 0.00 0.00 0.00
H. niger 0.00 0.00 0.00 0.00 0.00 0.00 0.00
O. oreotragus 0.00 0.00 0.00 0.00 0.00 0.27 0.00

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 15 October 2021 | Volume 7 | Article 759622



Matthews et al.

Classification of Partially Observed Curves

T. oryx 0.00 0.00 0.00
O. ourebi 0.00 0.00 0.00
T. scriptus 0.00 0.00 0.00
T. strepsiceros 0.04 0.00 0.00
C. taurinus 0.31 0.05 0.09

processing procedure. This points towards developing a version
of Algorithm1 based on the corresponding SRVFs qo and qm; the
main challenge here is how to handle the interplay between

points {s",s™} and their images {C(s*l), C(s*z)} under arbitrary
reparameterizations. In the current work, an explicit statistical
model to handle the several sources of variation (e.g.,
measurement error in extracting curves from images) that can
profoundly affect both completion and classification is
conspicuous in its absence; without such a model, it is difficult
to quantify uncertainty about the completions, which quite
naturally percolates down to the classification task. An attractive
model-based approach is to not just estimate the missing piece
of the partially observed curve, but instead estimate an entire
template that has a portion that is very similar in shape to the
partially observed curve. Such an approach has recently been
used for traditional univariate functional data under a Bayesian
formulation [23] and appears promising.

Our primary task in this paper is classification. However, it is
unclear how one can use the proposed algorithms if interest was
in computing statistical summaries in the presence of partially
observed curves, such as the mean shape or PCA on the space of
shapes. For example, output of Algorithm 2 is a set of M closed
curves Bo+Bn', | 1, ... ,M with the property that each B,+B'»
exactly matches Boon a subset of the parameter domain; it is not
clear how the M completions can be combined (e.g., a Karcher
mean of closed curves) to construct a representative summary
completion. This is related to how estimates from imputations
can be combined with a handle on within and across sample
variabilities using formal rules (e.g., Rubin’s rules).
Development of such general rules in the present setting is far
from straightforward.

More generally, while the hot-deck imputation procedure
worked reasonably well when combined with the completion
task, there is a pressing need to systematically develop missing
data concepts and imputation methods to better address the
special structure of missingness in the context of shapes of
curves. The following challenges naturally arise: (i) Is the notion
of Missing Completely at Random (MCAR), so profitably used
in traditional settings, ever a reasonable assumption for shapes
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