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Abstract—As technology nodes continue to advance relentlessly, 

geometric pitch scaling starts to slow down. In order to retain the 

trend of Moore’s law, design technology co-optimization (DTCO) 

and system technology co-optimization (STCO) are introduced 

together to continue scaling beyond 5 nm using pitch scaling, 

patterning, and novel 3-D cell structures [i.e., complementary-FET 

(CFET)]. However, numerous DTCO and STCO iterations are 

needed to continue block-level area scaling with considerations of 

physical layout factors: 1) various standard cell (SDC) library sets 

(i.e., different cell heights and conventional FET); 2) design rules 

(DRs); 3) back end of line (BEOL) settings; and 4) power delivery 

network (PDN) configurations. The growing turnaround time 

(TAT) among SDC design, DR optimization, and block-level area 

evaluation becomes one of the major bottlenecks in DTCO and 

STCO explorations. In this work, we develop a machine learning 

model that combines bootstrap aggregation and gradient boosting 

techniques to predict the sensitivity of minimum valid block-level 

area of various physical layout factors. We first demonstrate that 

the proposed model achieves 16.3% less mean absolute error 

(MAE) than the previous work for testing sets. Then, we show that 

the proposed model successfully captures the block-level area 

sensitivity of new SDC library sets, new BEOL settings, and new 

PDN settings with 0.013, 0.004, and 0.027 MAE, respectively. 

Finally, compared to the previous work, the proposed approach 

improves the robustness of predicting new circuit designs by up to 

6.76%. The proposed framework provides more than 100× 
speedup compared to conventional DTCO and STCO exploration 

flows. 

Index Terms—Cell synthesis, complementary-FET (CFET), 

design technology co-optimization (DTCO), DTCO and STCO 

sensitivity prediction, machine learning (ML), standard cell (SDC), 

system technology co-optimization (STCO). 

I. INTRODUCTION 

S VLSI technology continues to advance relentlessly 

beyond 5 nm, geometric pitch scaling starts to slow down. 

Moreover, design technology co-optimization (DTCO) [1] 
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based on pitch scaling and patterning is unable to continue the 

cost scaling in 2-D IC technology. In order to keep the trend of 

Moore’s law, system technology co-optimization (STCO) has 

been introduced to assist DTCO scaling with 3-D integrated 

logic and novel 3-D cell structure (CS) [i.e., 

complementaryFET (CFET)] [2], [3] beyond 5 nm. However, 

technology development beyond sub-5 nm demands enormous 

engineering effort for identifying the optimal technology 

options (i.e., evaluation of cost and determination of standard 

cell (SDC) heights, 2-D/3-D SDC architectures, design rules 

(DRs), power delivery networks (PDNs), and back end of line 

(BEOL) settings). Furthermore, process architects must be 

aware of the impact of the technology transition on the power, 

performance, area, and cost (PPAC) for further optimization. 

Therefore, finding the optimal technology option necessitates 

numerous DTCO and STCO iterations among SDC 

optimization, DR optimization, and block-level area evaluation. 

This results in exploding turnaround time (TAT) in DTCO and 

STCO explorations. There is a high demand for a holistic, fast, 

and robust prediction methodology that provides information 

on the potentially optimal technology options and the impact on 

PPAC from the technology transition. 

A. DTCO and STCO Frameworks 

Song et al. [4] proposed a unified technology platform using 

integration analysis for DTCO and STCO at sub7-nm node. 

Kahng et al. [5] proposed a routability metric kth to evaluate the 

routing capacity of BEOL stacks, but this work lacks of 

explorations on various CSs and does not provide the change of 

block-level metrics (i.e., area) from the technology transition. 

Recently, in [6], a novel DR evaluation technique using 

automatic cell layout generation for DTCO exploration is 

proposed, but the focus is limited to conventional FET (Conv. 

FET) structures (i.e., FinFET). Cheng et al. [7] also proposed a 

novel automatic CFET cell layout synthesis framework for 

DTCO and STCO explorations. However, these works use 

conventional block-level placementand-route (P&R) to 

evaluate block area and thus result in longer TAT for DTCO 

and STCO technology development. 

B. Machine Learning (ML)-Based DTCO and STCO 

Approaches 

Recently, many ML-based DTCO and STCO approaches 

have been proposed to shorten the DTCO and STCO 

exploration time. In [8], an ML-based modeling framework is 

developed to generate compact models of novel devices, but 

this work does not consider block-level evaluations. Ceyhan et 

al. [9] used ML techniques to search and find 

A 
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Fig. 1. Illustrations of (a) traditional DTCO and STCO exploration flow and (b) proposed DTCO and STCO sensitivity prediction framework. 

optimal combinations of design, technology, and flow recipes 

for high-performance CPU designs in the enormous solution 

space, but its performance on 3-D SDC architectures (i.e., 

CFET) has not been explored, and the methodology requires 4–

6 weeks of TAT. Recently, Cheng et al. [10] extended 

routability metric, kth, to cell level and block level and applied 

ML-assisted prediction on the kth for various technology options. 

However, we focus on exploring technology options with Conv. 

FET SDC structure and does not predict/provide the changes in 

block-level metrics (i.e., area) induced by the technology 

transition from one option to another in this work. In [11], a 

modeling approach for DTCO and STCO sensitivity prediction 

has been proposed, but they performed limited exploration on 

ML models. 

In this article, we propose a novel DTCO and STCO 

sensitivity prediction framework, which provides information 

on the change/gradient of block-level metrics from the 

technology transition. Also, we develop an ML model that 

combines bootstrap aggregation and gradient boosting 

techniques to improve the prediction accuracy. Fig. 1(a) and (b) 

shows the difference between the traditional DTCO and STCO 

exploration flow and the proposed DTCO and STCO sensitivity 

prediction framework. The proposed prediction model and 

automatic cell synthesis [7], [12] significantly reduce the TAT 

of DTCO and STCO explorations on various physical layout 

factors: 1) SDC library sets (i.e., different cell heights (CHs), 

Conv. FET, and CFET SDC architectures); 2) DRs; 3) BEOL 

parameters; and 4) PDN configurations. In this work, we focus 

on the sensitivity of block-level area variations according to 

different technology features and demonstrate the feasibility of 

ML techniques in DTCO and STCO exploration flows.1Our 

main contributions are given as follows. 

 
1 DTCO and STCO sensitivity prediction for incorporating block-level power 

and performance are one of the future works as discussed in Section V. 

1) We propose a novel DTCO and STCO sensitivity 

prediction framework that improves the efficiency of 

explorations by orchestrating the proposed ML model 

and automatic cell synthesis [7], [12]. 

2) We develop an ML model using bootstrap aggregation 

and gradient boosting techniques to predict the 

change/gradient of block-level metrics from the 

technology transition. 

3) We perform extensive studies on various ML algorithms 

for block-level area sensitivity prediction and 

demonstrate that the developed ML model outperforms 

other ML algorithms on DTCO and STCO sensitivity 

prediction. 

4) We identify key features of each SDC and extract cell and 

block-level features for prediction. We validate the 

extracted features via feature importance analysis in Exp. 

III-B. 

5) We perform extensive studies on model accuracy for new 

technologies and model robustness for new designs 

across Conv. FET and CFET SDC architectures, and 

various CHs, DRs, PDNs, and BEOL settings. 

The remaining sections are organized as follows. Section II 

describes our DTCO and STCO sensitivity prediction approach. 

Section III presents our main experiments. Section IV 

concludes this article. Section V discusses the important 

directions of future research. 

II. DESIGN AND SYSTEM TECHNOLOGY 

CO-OPTIMIZATION SENSITIVITY 

PREDICTION FRAMEWORK 

We apply ML techniques to predict the sensitivity of DTCO 

and STCO explorations on block-level areas considering 
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various physical layout factors: 1) SDC architectures (e.g., CH, 

multirow/single-row, CFET, and Conv. FET.); 2) DRs; 3) 

BEOL parameters; and 4) PDN configurations. In this section, 

we describe the specifics of our prediction methodology: 1) 

DTCO and STCO sensitivity; 2) overall modeling flow; 3) 

methodology for feature extraction; 4) input features; and 5) 

ML techniques. 

A. DTCO and STCO Sensitivity 

The DTCO and STCO sensitivity for block-level area of two 

technologies of a block-level circuit is the percentage of the 

block-level area of 3.5T CFET using 40-nm V1 center-to-center spacing rule. 

block-level area difference of these two technologies, Ai,j, as 

shown in the following equation: 

 Ai,j = (Ai − A j)/Ai (1) 

where Ai and A j are the minimum valid block-level areas of the 

ith technology and the jth technology, respectively. Here, a 

technology is the combination of SDC library set, DRs, BEOL 

parameters, and PDN configuration. Fig. 2(a) and (b) shows an 

example of DTCO and STCO block-level area sensitivity of 

#BEOLs and DRs using 4.5T and 3.5T CFET SDC library sets 

of AES and M0 Core block-level circuits, respectively. 

Different SDC library sets, #BEOLs, and DRs can potentially 

impact the block-level area up to 17.9%. The importance of 

knowing the information of change/gradient of block-level area 

from the technology transition is needed for holistic technology 

development. 

In this work, we focus on studying the minimum block-level 

area of various CHs, cell architectures (i.e., CFET and Conv. 

FET), cell pin accessibility, DRs, BEOL parameters, and PDN 

structures and develop a model to predict Ai,j for reducing the 

TAT of DTCO and STCO explorations. 

B. Overall Modeling Flow 

Fig. 3 shows the proposed training flow and prediction model 

for DTCO and STCO exploration flow. In the training phase as 

shown in Fig. 3(a), we generate multiple SDC library sets, 

 
2 As a common industrial practice, once the number of DRVs increases 

beyond 300, the block layout is deemed too troublesome to fix with laborious 

engineering change orders (ECOs). 

BEOL parameters, and power delivery configurations to 

perform multiple block-level P&R runs with the synthesized 

block-level circuits through a commercial P&R suite [13]. The 

minimum valid block-level area of a technology combination 

(i.e., SDC library set, DRs, and BEOL combination) is extracted 

with 300 DR violations (#DRVs)2 with multiple P&R runs, as 

shown in Fig. 1(a). Then, the percentage of the block-level area 

difference of two technologies (i.e., Ai,j) are extracted in the 

feature extraction stage for training. 

We show the prediction model for DTCO and STCO 

exploration flow in Fig. 3(b). Prediction flow utilizes the same 

input types with new technology parameters to explore. The 

proposed DTCO and STCO sensitivity prediction model 

outputs the predicted Ai,j. 

In our envisioned usage scenario, technology developers 

define and generate multiple circuit designs, SDC library sets, 

tech lef files (.tf), and PDN configurations for DTCO and STCO 

explorations. The proposed framework assists and guides the 

technology tuning process to find one of the optimal technology 

candidates by predicting the gradient of the blocklevel area, Ai,j, 

for block-level area cost evaluation. With the predicted Ai,j of 

all the technology pairs, technology developers can find the 

technology, which provides the largest improvement on block-

level area metric compared to the baseline technology. If the 

selected technology combination is a new technology, which 

involves systematic physical layout change (i.e., backside PDN 

technology), to the prediction model, the block-level P&R is 

launched to extract the minimum valid block-level area and the 

data are used to update the prediction model; otherwise, 

technology developers adopt the selected technology for the 

next phase in technology development. 

C. Methodology for Feature Extraction 

We describe the feature extraction component of our 

framework. Table I summarizes four categories of input 

features: 1) synthesized block-level circuit statistics; 2) SDC 

architectures; 3) BEOL parameters; and 4) PDN configurations. 

1) Synthesized Block-Level Circuit Statistics: We extract 

the statistics of the block-level circuit, which is derived after 

logic synthesis and before physical layout. The data include 

Fig. 2. Example of DTCO and STCO block-level area sensitivity of (a) #BEOLs and (b) DRs using 4.5T and 3.5T CFET SDC library sets of AES and M0 Core 

circuits. The number represents the block-level area difference as changing DTCO and STCO parameters from left to right. Many 3.5T CFET SDCs (i.e., NAND2 

× 2 and NAND3 × 1) do not have feasible solutions when V1 center-to-center spacing is 40 nm [7]. As a result, there are no data points of the 
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circuit structures, instance numbers, and SDC area from the 

synthesized block-level circuit. For circuit structures, we 

consider the distribution of fan-out counts (#fanouts), Rent’s 

multiplier k, and exponent p component of Rent’s rule [14]. 

These terms define an empirical power-law relationship 

between the number of gates “N” and the number of terminals 

“T” as shown in the following equation: 

 T = kN p. (2) 

For each circuit, we extract the (T, N) pairs and perform linear 

regression to obtain k and p for each design. In addition, we 

extract the number of fanouts per net (#fanouts), the number of 

sequential cells (#Seq), the number of combinational cells 

(#Comb), the number of buffers (#Buf), and SDC area from the 

report of synthesis tool. 

2) SDC Architectures: We extract key metrics that 

impact routability at the block level and lead to larger minimum 

valid 

be updated with the block-level P&R data of the new technology. 

block-level area, such as average remaining pin access (RPA) 

value [15], [16] of I/O pins, the number of M2 Track usage 

(#M2Track) [7], and M2 metal length (M2ML) [7] in the cell 

level. Then, we calculate the block weighted RPAd, M2Trackd, 

and M2MLd with the corresponding SDC metrics and cell 

percentage of the synthesized block-level circuit d using the 

following equation [7]: 

 Metricd = Metricc ∗ CPd,c (3) 

c 

where Metricd denotes the block weighted metric of design d. 

Metricc is the cell level metric of cell c, such as average RPA 

value, #M2Track, and M2ML. CPd,c is the percentage of cell c 

in the synthesized block-level circuit d. In addition, we use CH 

as one of the features since the CH limits the horizontal routing 

tracks/resources, which shows greater impacts on SDC less than 

5T [15], for accessing M1 pin in SDC. 

3) BEOL Parameters: We introduce BEOL parameters 

related to the DR and BEOL settings. We use representative 

DRs such as min spacing rule, end-of-line (EOL) spacing rule, 

via rule (VR), same net VR, and fat metal spacing rule for metal 

and via layers as the input features. For BEOL settings, the 

pitch of each routing metal layer and the total number of routing 

metal layers (#BEOLs) are selected as the input features of our 

model. 

4) Power Delivery Network Configurations: We 

categorized the PDN into front-side PDN and backside PDN 

categories [17]. For front-side PDN, we mainly study the M3 

power strap period, which is critical to the power integrity and 

signal routing. With a denser M3 power strap, the IR drop will 

be improved, but it will result in poor routability and a larger 

core area because it takes more metal resources for signal 

routing. On the other hand, a sparser M3 power strap may lead 

to power integrity issue and causes functional failure. For 

backside PDN, we set the power strap period feature to a large 

 

Fig. 3. Overall flow of DTCO and STCO sensitivity prediction: (a) Training flow and (b) prediction model for DTCO and STCO exploration flow. Technology 

developers can select the optimal technology candidate, which provides the largest improvement of block-level area metric compared to the baseline technology 

from the predicted Ai,j in (b). If the selected technology is new technology, which brings systematic physical layout change at block level, the model can 
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number (i.e., 1e6) since there are no power straps on the front 

side at the block level. 

D. Input Features 

We describe the input features used to predict Ai,j in (1). Fig. 

4 shows an illustration of the input features of the proposed 

DTCO and STCO sensitivity prediction model. The input 

features consist of the extracted features, which are shown in 

Table I, of the ith and jth technologies. 

E. ML Techniques 

We develop our ML model with bootstrap aggregation and 

gradient boosting regression tree (GBRT) techniques to achieve 

state-of-the-art results on DTCO and STCO sensitivity 

prediction. We introduce the overview of the proposed model, 

the feature selection technique, and the modeling approach in 

the following. 

1) Model Overview: Fig. 5 shows the developed ML 

model, which combines bootstrap aggregation and GBRT 

techniques. In the bootstrap aggregation technique, the 

bootstrap sampling is used to estimate statistics on a population 

by sampling a dataset with replacement and can be used to 

create meaningful simulated datasets to control the variance of 

a model. Then, the simulated datasets are used to train a set of 

GBRT models. Finally, the outputs of GBRT models are 

aggregated for predicting DTCO and STCO sensitivity. We use 

TABLE I 

EXTRACTED FEATURES TABLE 

   

 

  

 

 

  

 

 
3 colsample_bytree is the fraction of features (randomly selected) that will be 

used to train each tree in the XGBoost library [18]. 

 

  

 
 

 

 

 

  

 

 

 

 

 

 

 

  

 

   

XGBoost [18] for implementing the GBRT models in the 

proposed model. XGBoost implements ML algorithms using a 

GBRT, which achieves state-of-the-art results on tabular data 

prediction. To avoid the structural similarity of GBRT trees and 

have a high correlation of their predictions, we set 

colsample_bytree3 to 0.7 for each GBRT model. Finally, the 

final predicted Aˆi,j values are calculated by averaging the 

prediction of all GBRT models. 

2) Feature Selection Technique: We describe the feature 

selection technique here. First, we extract the feature 

importance of a trained GBRT model. Then, we use the 

variance inflation factor (VIF) [19] to detect instances of 

multicollinearity, which result in the high sensitivity to small 

changes in correlated features. Finally, we perform feature 

selection as described in Algorithm 1. Here, we use the “gain” 

for feature importance. The gain of a leaf node is the difference 

of metric before and after splitting at the leaf node [18]. The 

“gain” of the feature is the total gain of using the feature to split 

Fig. 4. 
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nodes divided by the number of times the feature used to split a 

node. The feature selection technique reduces the average MAE 

by 0.02 (i.e., 25%) for new design prediction in Exp. III-E. 

In Algorithm 1, first, we split the dataset D into the training 

set, T, and validation set, V (Line 1). We train a GBRT model 

with training and validation sets (Line 2). Then, we sort the 

features based on the gain of the GBRT model in the descending 

order (Line 7). After that, we sequentially add features to Fsub 

and train a GBRT model with selected features Fsub (Line 9–12). 

Then, we calculate VIF of each feature in dataset Tsub and 

extract the VIF, fi,vi f , of fi (Line 13). If the validation error, Eval, 

is larger than the minimum validation error, Eval
min, and the VIF 

of fi is larger than a VIF threshold, we remove fi from Fsub (Line 

14–16). If the validation error is smaller than the minimum 

validation error, we record Fsub as Fˆ and update the minimum 

validation error (Lines 17–20). Finally, we return the feature 

subset, Fˆ, which has minimum validation error (Line 22). 

3) Modeling Approach: We extract the input features 

from all the technologies as shown in Section II-D, compose all 

the technologies into pairs, and perform feature selection to 

compose a dataset 
D 

= (xi,j,Ai,j), where xi,j ∈ Rm corresponds to 

the m input features after feature selection and Ai,j ∈ R is the 

percentage of the block-level area difference of 

ith and jth technologies. We aim to 

predict Ai,j using the developed ML model. D is 

resampled to generate N datasets, Dˆ n. We increase the number 

of samples until each bootstrap sample (i.e., Dˆ n) contains 

approximately 63.2% of the data points in the training set [20]. 

For each GBRT model, XGBoost sequentially builds an 

ensemble of K regressors. Predictions, Aˆn
i,j, are made by taking 

the weighted sum of predictions made by the individual 

members of the ensemble as shown in the following equation: 
K 

gk ∈ G 
(4) 

Aˆni,j =  gk(xin,j), 

k=1 

where G is the space of regression trees and n represents the nth 

GBRT model. The goal is to minimize L(An
i,j,Aˆn

i,j) in the 

following equation: 

LAni,j,Aˆni,j = lAni,j,Aˆin,j + ( fk) 

 i k 

1 

where ( f ) γ T λ||w|| (5) 2 

where each l(An
i,j,Aˆn

i,j) is a differentiable convex function that 

measures the difference of An
i,j and Aˆn

i,j. We use the mean 

absolute error (MAE) as the evaluation metric.  is a function 

that penalizes the complexity of the model. T is the number of 

leaves in the tree and w is the leaf weight. We use tenfold cross 

validation [21] to perform hyperparameter tuning (i.e., 

min_child_weight, and etc) to train our model. Then, to predict 

Ai,j, Aˆi,j is obtained using the average of the prediction results 

of N GBRT model, Aˆn
i,j, as shown in the following equation: 

N ˆn ˆi,j = n=1 Ai,j . (6) 

A N 

III. EXPERIMENTAL RESULTS 

Our framework is implemented in Python and is executed on 

a workstation with 2.4-GHz Intel Xeon E5-2620 CPU and 256-

GB memory. For the proposed model in Fig. 5, we implement 

the bootstrap sampling technique with sklearn library [22] and 

GBRT tree models with XGBoost library [18]. 

 

Fig. 5. Overview of the developed ML model. The model combines bootstrap aggregation and GBRT techniques. 
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A. Experiment Setup 

We use the synthesized block-level circuits, SDC library sets 

generated from [7] and [12], DRs, BEOL settings, and PDN 

configurations to generate the data for our experiments. We run 

multiple block-level P&R runs through a commercial test suite 

[13] and use a 300 #DRV threshold to measure the minimum 

valid block-level area of each synthesized blocklevel circuit for 

each technology combination. 

1) Synthesized Block-Level Circuits: For synthesized 

blocklevel circuits, six open-source RTL designs [23], M0 Core, 

M1 Core, AES, MPEG, JPEG, and DarkRiscV that, 

respectively, have 17k, 20k, 14k, 18k, 45k, and 7k instances 

using 30 representative SDCs [7]. The worst negative slack 

(WNS) of each synthesized block-level circuit is carefully 

adjusted between ±50 ps for a fair comparison to study the 

change of 
TABLE II SYNTHESIZED 

BLOCK-LEVEL CIRCUIT TABLE 

    

    

    

    

    

    

    
minimum block-level area of various CHs, cell architectures 

(i.e., CFET and Conv. FET), cell pin accessibility, DRs, BEOL 

parameters, and PDN structures. 

Rent’s multipliers, k, and Rent’s exponent, p, of each design 

are listed in Table II. For the number of fanouts per net 

(#fanouts), we categorize the number of fanouts per net into 

eight bins, which are 1–3 #fan-out nets, 4–6 #fan-out nets, 7–9 

#fan-out nets, 10–50 #fan-out nets, 50–100 #fan-out nets, 100–

500 #fan-out nets, 500–1000 #fan-out nets, and more than 1000 

#fan-out nets. Fig. 6(a) and (b) shows the #Fanouts distribution 

and cell statistics of these six block-level circuits, respectively. 

2) SDC Library Sets Generation: To evaluate the 

blocklevel PPA during early DTCO exploration, we select 30 

representative SDCs [7]. We generate 19 SDC library sets with 

4.5T, 3.5T, and 2.5T CHs, different EOL and VR DR 

parameters, and two cell architectures (i.e., CFET and Conv. 

FET) using [7] and [12]. The top layer is M2 for SDC 

generation. We generate SDC library sets with variations on 

three dimensions as follows. 

1) CSs: We generate Conv. FET and CFET SDC layouts for 

explorations on 2-D and 3-D CS in the experiments. 

2) CH: The CFET SDC CH is scaling from 4.5T to the 

extreme 2.5T CH [7], [25]. For Conv. FET SDC, we 

generate 4.5T and 3.5T CH because using two horizontal 

 

Fig. 6. (a) #Fanouts distribution. (b) Cell statistics of M0 Core, M1 Core, AES, 

MPEG, JPEF, and Darkriscv. 

routing tracks for Conv. CS cannot be implemented due 

to the limitation of p-n separation [26]. 

3) DRs: We use grid-based DR parameters to generate SDC 

layouts for layers up to M2, and they are applied to block-

level using the corresponding metal pitch values [7]. Here, 

the baseline DR parameters are EOL = 1 and VR = 1. 

Table III shows the average cell area, average RPA [16], 

average M2Track, and average M2ML, which are extracted for 

predicting Ai,j as described in Section II-D, of each SDC library 

set. Note that the M0/M2 pitches are 24 nm, and contacted poly 

pitch (CPP) is 42 nm for all the SDC library sets in Table III. 

Fig. 7 shows an example of generated DFFHQN SDC layouts 

with variations on these three dimensions: 1) CSs; 2) DR; and 

3) CH. Notice that the AvgRPA metric of a cell library might be 

larger than the CH because the limited horizontal M0 routing 

resource and the connection of SDC external pins need to be 

promoted to M2 for connecting FET terminals and satisfy the 

minimum pin opening constraint [7] for medium or large cell 

(i.e., XOR2 × 1 and FAx1). Fig. 8 shows the RPA value of each 

pin of XOR2 × 1 in 3.5T CFET EOL = 1 VR = 0 SDC set. Pins 

A and B are promoted to M2 for connecting internal FET 

terminals and satisfy the minimum pin opening constraints. 

Considering the coverage of CFET and Conv. FET CSs, 4.5T, 

3.5T, and 2.5T CHs, and various DRs, we select 15 SDC library 

sets as listed in the train column of Table III to build our 

prediction model for Exp. III-B, Exp. III-C, and Exp. III-D. 

Then, to test the accuracy of the proposed prediction model on 

new SDC library sets, we use the remaining four SDC library 

sets in Exp. III-C. 

3) BEOL Parameters: We adjust DRs in the block level based 

on the DR parameters used in the SDC library set generation [7] 

for M1, VIA12, and M2 layers. Then, the metals’ pitch and 

width of layers above M2 are set based on LEF/DEF guide [27]. 

For via layers above M2, the via spacing is set to allow diagonal 

via, and the same net via spacing is set to allow adjacent via. 
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For the BEOL settings, we generate various M4–M7 metal 

pitches by varying the baseline metal pitches from 0.5× to 
TABLE III 

SDC FEATURE VALUES OF 19 SDC LIBRARY SETS
. CH 

= CELL HEIGHT. 

CS = CELL STRUCTURE. CONV. = CONV. FET. THE BASELINE DR 

PARAMETERS ARE EOL = 1 AND VR = 1. TRAIN = USED FOR 

TRAINING THE PROPOSED PREDICTION MODEL IN EXP. III-B AND EXP. 

III-C 

        

 

 

      

      

      

      

      

 

      

      

      

      

      

      

 

       

 

      

      

      

      

      

        

      
1.5×. If the metal pitch is smaller/larger than the smallest 

pitch/largest pitch after scaling, its metal pitch is set to the 

smallest pitch/largest pitch. Here, the smallest vertical/ 

horizontal metal pitch is M1/M2 metal pitch; the largest 

horizontal/vertical metal pitch is M8/M9 metal pitch. For the 

BEOL routing layers, we use M2–M5, M2–M6, and M2–M7 

options for block-level routing. 

In total, there are 45 various DRs and BEOL pitches 

technologies. For each BEOL technology, there are three BEOL 

routing options. As a result, there are 135 BEOL settings in the 

experiment. 

4) Power Delivery Network Configurations: We study 

frontside PDN and backside PDN in the following experiments. 

For front-side PDN structure, the PDN is constructed with top 

power mesh on M8 and M9, and they are designed as spaces 

are allowed. Then, the power is delivered through M3 power 

straps to SDCs. Here, we vary the M3 power strap period with 

24 CPPs, 32 CPPs, 48 CPPs, and 64 CPPs based on the PDN 

studies in [17] and [28] for early DTCO exploration. For 

backside PDN architecture, there is no PDN in the front side at 

block level. 

5) Minimum Valid Block-Level Area Extraction: 

Multiple block-level P&R runs are launched for minimum valid 

blocklevel area extraction, as shown in Fig. 1(a). In each 

blocklevel P&R run, the floorplan (i.e., including PDN 

generation), placement (i.e., including placement optimization), 

clock tree synthesis (CTS), and routing (i.e., including global 

routing and detail routing) stages are performed. Table IV 

shows the breakdown of the runtime in each stage of an 

automated M0 core block-level P&R implementation using 

2.5T CFET EOL = 0 VR = 0 library and M2–M7 routing layers. 

The routing stage takes 94% of the total runtime because fixing 

DRC violations in the detail routing stage is time-consuming 

and usually needs many iterations (i.e., 69 iterations in this 

example). As a result, it takes more than 8 h to extract minimum 

valid block-level area of a technology combination. 

We generate the data using the synthesized block-level circuit, 

SDC library sets, BEOL parameters, and PDN configurations 

for our experiments. The total runtime to extract input features 

and to train the proposed model is around 15 h. However, it 

takes two months to generate all the block-level P&R data from 

19 SDC library sets, five PDN configurations, 
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Fig. 8. Example of RPA counts of XOR2 × 1 in 3.5T CFET EOL = 1 VR = 0 

SDC library. Pins A and B are promoted to M2 for connecting internal FET 

terminals and satisfy the minimum pin opening constraints. 

TABLE IV 

BREAKDOWN OF RUNTIME IN EACH DESIGN STAGE OF AN AUTOMATED M0 

CORE BLOCK-LEVEL P&R IMPLEMENTATION USING 2.5T CFET EOL = 0 VR 

= 0 LIBRARY, AND M2–M7 ROUTING LAYERS. 

  

      

       
135 DRs and BEOL settings, and six block-level circuits for the 

experiments.4 The experiments are organized as follows. 

1) Exp. III-B: We explore various ML algorithms and 

demonstrate our prediction model accuracy on training, 

validation, and testing data. 

2) Exp. III-C: We show the accuracy of our prediction 

model on prediction of new SDC library sets and BEOL 

parameters. 

3) Exp. III-D: We show the accuracy of the proposed model 

on prediction of various PDN configurations. 

4) Exp. III-E: We study the robustness of our prediction 

model on new block-level circuit prediction. 

For Exp. III-C, Exp. III-D, and Exp. III-E, we introduce 

gradient accuracy (gradient ACC) metric to measure the 

accuracy of the direction of Ai,j. If the signs of actual Ai,j and 

predicted Ai,j are the same, we consider that the prediction is 

accurate for gradient ACC metric. 

B. Prediction Model Accuracy 

We study various ML algorithms and demonstrate prediction 

model accuracy with training, validation, and testing datasets. 

We first split the generated data of 15 SDC library sets (i.e., 

Table III), six block-level synthesized designs, 102 DRs and 

BEOL settings, and three PDN settings, using 80% as training 

data and 20% as testing data based on the empirical study in 

[29]. Then, we split the 80% training data after bootstrap 

sampling such that 80% is used for model training and 20% is 

 
4 We use eight CPU cores for each block-level P&R job and run multiple 

block-level P&R jobs simultaneously. 

used for model validation. The validation dataset is used to 

avoid overfitting with the early stopping technique in the 

training phase of each GBRT model. In the following 

experiments, XGBoost_DTCO is a GBRT tree model used in 

[11]. 

1) Hyperparameter Tuning: We explore multilayer 

perceptron (MLP) neural network, radial basis function (RBF) 

neural network, random forest (i.e., implemented with sklearn 

library), XGBoost_DTCO [11], and the proposed ML 

algorithm, which integrates bootstrap aggregation and GBRT 

techniques. We tune the hyperparameters of each ML modeling 

algorithm for our DTCO and STCO sensitivity prediction. For 

optimizing neural network structure for our regression problem, 

we adopt Hyperband [24] to set the number of layers, the 

number of neurons of each layer, dropout rate, batch size, and 

learning rate of MLP and RBF neural networks. Fig. 9 shows 

the selected MLP and RBF neural network structures with 

Hyperband [24] algorithm. For the XGBoost_DTCO [11], 

random forest, and the proposed ML model, we use tenfold 

cross validation [21] to set the hyperparameters of our 

prediction model. Table V shows the range of each 

hyperparameter in the explored ML algorithms. In the proposed 

model, the max_depth, sub_sample, min_child_weight, and 

learning rate of each GBRT model are 9, 1.0, 7, and 0.05, 

respectively. We select 100 #GBRTs for the proposed model 

after hyperparameter tuning. 

2) Prediction Accuracy: Table VI shows the prediction 

accuracy results of MLP, RBF neural network, 

XGBoost_DTCO [11], random forest, and the proposed method. 

The MAE of the proposed model is 4.1 × 10−3 on the testing set. 

Compared to MLP and RBF neural networks, 

 

Fig. 7. Example of generated DFFHQN SDC layouts with variations on three dimensions: (i) 2-D versus 3-D CS (Conv. FET versus CFET), (ii) DR, (iii) CH. 
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Fig. 9. (a) MLP and (b) RBF neural network structures after Hyperband [24] 

search on #layers (i.e., 2–10), #neurons per layer (i.e., 25–500), and dropout 

rate (i.e., 0.0–0.5). 

the proposed model achieves 92.9% and 74.2% less MAE on 

the testing set, respectively. Moreover, the proposed model 

provides 65.8% and 16.3% less MAE on the testing set than 

random forest and XGBoost_DTCO [11], respectively. 

Fig. 10(a) and (b) shows the predicted Ai,j values versus 

golden Ai,j values for training and testing sets of the proposed 

model. The blue solid line in the middle indicates a perfect 

correlation between golden Ai,j and predicted Ai,j. The upper and 

lower black solid lines are 5% away from the blue solid line. 

We can observe that most of the errors of predicted Ai,j are 

within 5% in the training and testing sets. The MAEs are 3.2 × 
10−3 for the training set and 4.1× 10−3 for the testing set. Fig. 

10(c) shows the error distribution of testing set. The mean is 

3.47 × 10−5, with a standard deviation of 0.0075 (hence, 99.7% 

of predicted Ai,j values are within the three-σ range of ±0.023). 

Furthermore, compared to XGBoost_DTCO [11], the proposed 

model reduces the standard deviation of error distribution by 

0.0011 (i.e., 12.8%) for the testing set. This shows that the 

proposed model is more robust than XGBoost_DTCO [11] on 

the model accuracy. 

3) Key Features Study: To further study the key features, 

we combined the gain of the same features of the first and 

second technologies of each technology pair in 

XGBoost_DTCO [11] model and the proposed model. Fig. 11(a) 

and (b) shows the average combined important features of 100 

GBRTs in the proposed model and top 15 combined important 

features in XGBoost_DTCO [11] after feature selection (see 

Section II-E), respectively. 

The most important feature in the proposed model and 

XGBoost_DTCO [11] is CH. CH is highly related to the block-

level area because it determines the size of each cell row in the 

block level. For the pin accessibility and routing congestion 

metrics in SDCs, the proposed weighted RPAd, 
TABLE V 

HYPERPARAMETER EXPLORATION OF ML ALGORITHMS TABLE 

 

TABLE VI 

PREDICTION ACCURACY TABLE. IMPR. MAE = (MAEMLALG − 

M AEPROPOSED )/MAEMLALG × 100. HERE, MAEMLALG 

REPRESENTS THE MAE ERROR OF MLP/RBF NEURAL 

NETWORK/XGBOOST_DTCO [11]/ RANDOM 

FOREST [22] 

   

    

     

     

     

     

   

 

 

weighted M2Trackd, and weighted M2MLd are also very 

important for Ai,j prediction in both XGBoost_DTCO [11] 

model and the proposed model in the block level. For the 

synthesized design feature, the 1–3 fanouts and the number of 

sequential cells (#Seq) features are recognized as top 15 

average important features in the proposed model. 

For DR feature, we can observe that the V1 spacing, M2 

minimum spacing, V3 spacing, and V3 same net spacing all 

have large gains in both XGBoost_DTCO [11] model and the 

proposed model because these layers are mainly used for 

accessing the SDC pins on M1/M2. For the DR features of 

layers above M4, their gains are smaller since these layers are 

mainly used to connect above and below metal layers instead of 

accessing SDC pins. Note that the M2 and M4 fat metal spacing 

rules (FatMSpace), which are usually related to the wider metal 

used for power straps, are recognized as important features in 

the proposed model and XGBoost_DTCO [11] model. In 

addition to the DRs related to power strap, the power strap 

period feature is also in the top 15 important features in both 

models because its impact on the block level is nontrivial, as 

shown in Fig. 13. Here, although via spacing and same net via 

spacing has high correlation, they could be remaining in the 

input features after feature selection stage since we remove the 
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feature only if the validation error, Eval, is larger and the VIF of 

the feature is larger than a VIF threshold in Algorithm 1. The 

“V3 via same net space” and “V3 via space” are both used as 

input features in Fig. 11(a). 

With more simulated datasets generated by bootstrap 

aggregation, we observe various important features of each 

GBRT 

model in the proposed model, as shown in Fig. 11(c). Fig. 11(c) 

shows the #Counts of the important features, which are 

extracted from the top 3 gain of each GBRT model, in the 

proposed model. The top 9 important feature with larger 

average gain in Fig. 11(b) is also in the top 3 important features 

of 100 GBRTs frequently in the proposed model. Here, the 7–9 

fanouts net feature also frequently appears in the top 3 

important features of 100 GBRTs in the proposed model though 

its average gain across 100 GBRT models is not in Fig. 11(b). 

 
5  We mainly study the tree-based ML models (i.e., the proposed model, 

random forest, and XGBoost_DTCO [11]) since the MAEs of tree-based ML 

models on testing set are better than neural network models in Exp. III-B. 

C. Prediction of New Technologies 

We apply the trained model from Exp. III-B to predict Ai,j of 

new SDC library sets and new BEOL parameters. Here, we 

implement a benchmark utilization prediction model (Util. 

model) with XGBoost algorithm, which takes the features of a 

technology (i.e., Table I) and predicts the utilization after block-

level P&R. Then, we calculate the block-level area after P&R 

from the output of Util. model and obtain Ai,j of every 

technology pairs for comparison. In this experiment, we 

compare the accuracy of the proposed model, random forest, 

XGBoost_DTCO [11], and Util. model on DTCO and STCO 

sensitivity prediction of new SDC library sets and new BEOL 

parameters.5 

For new SDC library sets, we study the accuracy of the 

proposed prediction model to predict Ai,j of 20% of 19 SDC 

library sets in Table III. The four new SDC library sets are 

 

Fig. 10. Predicted Ai,j versus golden Ai,j of (a) training set and (b) testing set, and (c) error distribution of testing set of the proposed model. The mean of MAE is 

3.47 × 10−5, with standard deviation of 0.0075 for testing set. Hence, 99.7% of predicted Ai,j are within the three-σ range of ±0.023. 

 

Fig. 11. Feature importance (gain) of the proposed model and XGBoost_DTCO [11] for key feature study. (a) Average combined feature importance (gain) of 

GBRTs in the proposed model. (b) Top 15 combined feature importance (gain) in the trained XGBoost_DTCO model [11]. (c) #Counts of important features, 

which are extracted from top 3 gain of 100 GBRT models, in the proposed model. 
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carefully selected to include different CHs (i.e., 4.5T, 3.5T, and 

2.5T), different CSs (i.e., Conv. and CFET), and DRs including 

strict and loose DR parameters 

(i.e., EOL = 2 VR = 1 and EOL = 0 VR = 0) to demonstrate the 

prediction of new SDC library sets. The BEOL routing layer 

options for these four testing SDC library sets are M2–M5, M2–

M6, and M2–M7. Table VII shows the prediction results of Ai,j 

using Util. model, and the proposed DTCO and STCO 

sensitivity prediction approach with random forest, 

XGBoost_DTCO [11], and the proposed model. 

The proposed model provides 0.013 MAE and 97.3% gradient 

ACC on new SDC library set prediction. Compared to the Util. 

model, our proposed model achieves 91.3% less MAE error and 

20.0% better gradient ACC. Compared to random forest and 

XGBoost_DTCO [11], the proposed model still maintains 

51.9% and 7.1% less MAE error, respectively. Fig. 12(a)–(c) 

shows the predicted Ai,j versus golden Ai,j for SDC library set 

prediction (i.e., orange point) with random forest, 

XGBoost_DTCO [11], and the proposed model, respectively. 

There are clearly more data points of random forest prediction 

outside of the black solid line, which represents 5% away from 

the perfect correlation line in the middle. This matches the 

larger standard deviation and MAE in Table VII. 

For new BEOL pitch scaling settings, we study the accuracy 

of the proposed model on prediction of 11 BEOL pitch scaling 

technologies. Combining these 11 BEOL pitch scaling 

technologies with 15 SDC library sets, three #BEOL layer 

options (i.e., M2–M5, M2–M6, and M2–M7), and three PDN 

settings, there are 1485 technology combinations for prediction 

in this experiment. In addition, the BEOL pitch scaling also 

affects DRs, such as minimum spacing, EOL spacing, via 

spacing, and same net via spacing. In Table VII, the MAE and 

gradient ACC of the proposed model are 0.004 and 97.1%, 

respectively. Compared to the Util. model, the proposed model 

achieves 97.2% less MAE error and 8.3% better gradient ACC. 

Moreover, the MAEs of the proposed model are 63.6% and 

20.0% smaller than random forest and XGBoost_DTCO [11], 

respectively. Fig. 12(a)–(c) shows the predicted Ai,j versus 

golden Ai,j for BEOL pitch scaling prediction (i.e., green points) 

with random forest, XGBoost_DTCO [11], and the proposed 

model, respectively. Here, we can observe that there are 

obviously more data points of random forest prediction outside 

of the black solid line. 

To summarize, the proposed DTCO and STCO sensitivity 

prediction modeling approach achieves better accuracy than the 

Util. model because it directly minimizes the MAE of Ai,j and 

Aˆi,j during the training phase. On the other hand, there are 

utilization prediction errors from the Util. model and inherent 

differences between synthesized block-level circuit area and 

block-level area after P&R in Util. model 

= (Aˆi − Aˆ j) − (Ai − A j) = Ei A j 
−

+E j Ai 

 Esen. (7) 

 Aˆi Ai Ai(Ai Ei) 

Equation (7) shows the DTCO and STCO sensitivity error 

when we use the predicted minimum block-level area from 
TABLE VII 

Ai,j PREDICTION RESULTS OF NEW TECHNOLOGIES USING 
UTILIZATION MODEL (UTIL.), RANDOM FOREST, XGBOOST_ 

DTCO [11], AND THE PROPOSED MODEL. MAE: MEAN ABSOLUTE 

ERROR. GRADIENT ACC: GRADIENT ACCURACY OF Ai,j . ERROR 

DIST.: ERROR DISTRIBUTION. STD. DEV.: STANDARD 

DEVIATION 

  

 

  

  

 

     

     

     

     

      

     

     

     
Util. model. Here, Esen and Ei are the error of DTCO/STCO 

sensitivity and predicted minimum block-level area, 

respectively. Aˆi = Ai + Ei. When Ei is very small and E j>Ai, the 

predicted block-level error (i.e., E j) leads to large Esen on DTCO 

and STCO sensitivity prediction. For example, from one of the 

data points in new SDC library set technologies prediction, Ai, 

A j, Aˆi, and Aˆ j are 276.652, 1138.511, 280.911, and 814.554, 

respectively. Esen is 1.19, which is larger than 99.7% (i.e., three-

σ range 0.093 ± 0.001) of the error of the proposed model. As a 

 

Fig. 12. Predicted Ai,j versus golden Ai,j of new SDC library set technology prediction (i.e., orange points) and new BEOL pitch scaling technology prediction (i.e., 

green points) with (a) random forest (i.e., implemented with sklearn), (b) XGBoost_DTCO [11], and (c) proposed model. 
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result, we observe that the Util. model has larger standard 

deviation of error than the proposed model in Table VII. 

Moreover, compared to random forest and XGBoost_DTCO 

[11], the proposed model provides smaller MAE and better 

gradient ACC for DTCO and STCO sensitivity prediction with 

bootstrap aggregation and GBRT techniques. 

D. Prediction of New Power Delivery Network Setting 

We study the model accuracy on predicting Ai,j of new PDN 

grid scales and architectures (i.e., backside PDN). Here, we 

select front-side PDN with 24 CPPs, 48 CPPs, and 64 CPPs 

power strap period to train our model and use the trained model 

to predict Ai,j of new PDN setting with 32 CPPs power strap 

period and backside PDN architecture. 

Fig. 13(a) shows the snapshots of M0 Core design with 

various M3 power strap periods. For backside PDN architecture, 

there is no power strap in the front side at block level, as shown 

in Fig. 13(b). We can observe that the 

power strap period and PDN architecture (i.e., backside power 

delivery) can potentially impact the block-level area from 6% 

to 25% in Fig. 13. Since the Util. model performs poorly in Exp. 

III-C, we mainly study the accuracy of random forest, 

XGBoost_DTCO [11], and the proposed model in this 

experiment. 

1) Prediction of New PDN Setting: Table VIII shows the 

prediction results of new front-side PDN setting prediction (i.e., 

32 CPPs). For new front-side PDN setting prediction, the 

proposed model achieves 0.027 MAE and 94.4% gradient ACC, 

which are 27.0% less MAE and 1.9% better gradient ACC than 

random forest. Compared to XGBoost_DTCO [11], the 

proposed model achieves 3.6% less MAE and 0.3% better 

gradient ACC. Fig. 14 shows the predicted Ai,j versus golden Ai,j 

of new PDN setting prediction (i.e., green points). Although 

there are few green points located far away from the perfect 

center line in the proposed model, the gradient ACC is 94.4%. 

Therefore, the accuracy of the proposed model can be 

calibrated along the gradient of Ai,j from one technology to 

another technology, as shown in Fig. 3(b). 

2) Prediction of Backside PDN: Here, to further study the 

robustness of the proposed model on new PDN architecture, we 

first use the trained model, which is trained using frontside 

PDN with various power strap periods, to predict Ai,j of 

backside PDN architecture. Then, we further study the 

improvement of prediction accuracy of XGBoost_DTCO [11] 

and the proposed model using various ratios (i.e., 10%–80%) 

of backside PDN data points to update the models. 
TABLE VIII 

Ai,j PREDICTION RESULTS OF NEW FRONT-SIDE PDN SETTING 
AND BACKSIDE PDN ARCHITECTURE USING RANDOM FOREST, 

XGBOOST_DTCO [11], AND THE PROPOSED MODEL. 

     

  

     

 

Fig. 13. Minimum block-level area of M0 Core with various (a) front-side PDN grid scales (i.e., 32 CPPs, 48 CPPs, and 64 CPPs) and (b) backside PDN 
architecture using M2–M6 for signal routing. Compared to 32 CPPs front-side PDN setting, the core area of backside PDN is 40% smaller. The SDC library is 
3.5T CFET with baseline DR parameters in Table III. 

 

Fig. 14. Predicted Ai,j versus golden Ai,j of new PDN setting (32 CPPs) prediction (green points) and backside PDN prediction (orange points) with (a) random 

forest (implemented with sklearn), (b) XGBoost_DTCO [11], and (c) proposed model. 
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First, for predicting backside PDN without any backside 

PDN data for training, the MAE and gradient ACC of the 

proposed model are 0.105% and 86.9%, respectively. The 

proposed model achieves 35.2% and 1.8% less MAE than 

random forest and XGBoost_DTCO [11], respectively. In 

addition, compared to random forest and XGBoost_DTCO [11], 

the proposed model provides 9.1% and 2.1% better gradient 

ACC, respectively. Fig. 14 shows the predicted Ai,j versus 

golden Ai,j of backside PDN prediction (i.e., orange points). The 

block-level area difference of backside PDN technology, which 

brings the systematic physical layout change at the block level, 

cannot be fully captured (i.e., MAE is larger than 0.1) with only 

front-side PDN training data using random forest, 

XGBoost_DTCO [11], and the proposed model. As a result, we 

further study the accuracy improvement of prediction models 

using various ratios (i.e., 10% 80%) of backside PDN data 

points to update the models, which is the outer loop in Fig. 3(b). 

Fig. 15(a) shows the MAE of backside PDN prediction of 

XGBoost_DTCO [11] and the proposed model with various 

ratios (i.e., 10%–80%) of backside PDN data points for 

updating the models. The proposed model provides larger 

accuracy improvement than XGBoost_DTCO [11] when giving 

a ratio of backside PDN data for model update. Moreover, the 

proposed model achieves up to 60.8% MAE reduction when 

updating the model with 20% backside PDN data. Fig. 15(b) 

shows that predicted Ai,j versus golden Ai,j of 0%, 10%, and 20% 

backside PDN data for model update. From Fig. 15(b), the 

proposed model can efficiently capture the block-level area 

difference (Ai,j) of backside PDN with 10%–20% backside PDN 

data for model update. This shows that the proposed model can 

be updated efficiently and robustly with small amount of data 

of new technologies, which leads to the systematic physical 

layout change at the block level. 

To summarize, the bootstrap aggregation technique creates 

meaningful simulated datasets from the given training dataset, 

which can reduce model variance while avoiding overfitting. 

For each GBRT model in the proposed model in Fig. 5, the 

gradient boosting tree technique improves the accuracy by 

sequentially building an ensemble of K regressors to minimize 

the prediction error. Therefore, the proposed model can provide 

better accuracy and robustness than random forest and 

XGBoost_DTCO [11] model on predicting new PDN setting 

and backside PDN architecture. 

E. Robustness of New Circuit Prediction 

We study the robustness of the proposed modeling approach 

for predictions on new block-level circuits in this experiment. 

Here, we iteratively select one synthesized block-level circuit 

out of the six synthesized block-level circuits (i.e., Table II) for 

testing the robustness of model prediction on new designs. Then, 

train the model with the rest of the five synthesized block-level 

circuits with all SDC library sets, DRs, and BEOL settings and 

apply the trained prediction model to predict Ai,j of the selected 

synthesized block-level circuit with all the SDC library sets, 

DRs, and BEOL settings. 

Table IX shows the robustness of random forest, 

XGBoost_DTCO [11], and the proposed model to make 

predictions on designs unseen in the training set. The average 

MAE and average gradient ACC are 0.0555 and 87.91% for 

DTCO and STCO sensitivity prediction on new designs using 

the proposed model, respectively. Moreover, the proposed 

modeling approach achieves 24.22% and 3.40% smaller 

average MAEs than random forest and XGBoost_DTCO [11], 

respectively. Also, the proposed model provides 9.84% and 

0.73% better gradient ACC on average than random forest and 

XGBoost_DTCO [11], respectively. This shows that the 

proposed model is able to robustly guide DTCO optimization 

on designs unseen during training. 

Regarding runtime performance, it takes less than 1 min to 

predict 10k block-level area sensitivities of one technology to 

another technology. On the other hand, it takes more than 8 h to 

extract the minimum valid block-level area of a new technology 

combination for block-level metric comparison (i.e., Ai,j) as 

described in Section III-A. The proposed prediction model 

achieves more than 100× speedup on finding the optimal 

technology candidate in the potential technology list compared 

to running the block-level P&R runs for multiple potential 

technology candidates, extracting the minimum valid 

 

Fig. 15. Accuracy improvement with various ratios of backside PDN data for 

model update. (a) MAE versus ratio of backside PDN data for model update. 

Orange/blue number is the reduced MAE percentage of XGBoost_DTCO 

[11]/proposed model compared to 0% backside PDN data for model update. (b) 

Predicted Ai,j versus golden Ai,j of 0%, 10%, and 20% backside PDN data for 

model update. The 10%–20% backside PDN data for model update greatly 

reduce up to 60.8% MAE for the proposed model. 
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block-level area, and finding the optimal technology candidate. 

In summary, we show that our modeling approach not only 

captures the block-level area difference on new SDC library 

sets, BEOL parameters, and various PDN configurations but 

also capable of robustly predicting Ai,j of various technology 

options for new circuit designs. 

IV. CONCLUSION 

We propose an overall framework along with the proposed 

DTCO and STCO sensitivity prediction model, and automatic 

SDC synthesis [7], [12] to significantly reduce the TAT of 

DTCO and STCO explorations. In addition, we develop an ML 

model using bootstrap aggregation and gradient boosting 

techniques to predict the difference of block-level area between 

two different technology options for reducing the runtime of 

block-level P&R in DTCO and STCO explorations. 

We first demonstrate that the MAEs of the proposed DTCO 

and STCO sensitivity prediction model are 3.2× 10−3 for the 

training set and 4.1 × 10−3 for the testing set. In addition, 99.7% 

of prediction errors are within ±0.023. Then, we validate the 

importance of the proposed block-level SDC metrics (i.e., 

weighted RPA, M2Track, and M2ML) through the feature 

importance in the proposed model. For prediction on new 

technologies, we showed that our ML model not only achieves 

7.1% less MAE on predicting new SDC library sets across 

different designs but also provides 20.0% less MAE on 

predicting new BEOL settings than XGBoost_DTCO [11]. 

For the studies on predicting Ai,j of new PDN setting and 

backside PDN structure, we not only show that the proposed 

model achieves 0.027 MAE for new front-side PDN 

configuration but also demonstrate that the MAE of the 

proposed model is reduced up to 60.8% with only 10%–20% 

backside PDN data for model update. Finally, we demonstrate 

that the proposed modeling approach achieves 5.55 × 10−2 MAE 

and 87.91% gradient ACC on average in the robustness 

experiment of new design prediction. For the performance, it 

takes less than 1 min to predict 10k block-level area sensitivities 

of one technology to another technology and provide more than 

100× speedups compared to running block-level P&R for 

technologies and extracting minimum valid block-level area. 

V. FUTURE WORKS 

Future research directions include: 1) conducting an 

extensive study on multiple 3-D SDC architectures, such as 

many-tier VFET SDC [30]; 2) incorporating more circuit 

designs in the study (i.e., deep learning accelerators [31]); and 

3) extending the DTCO and STCO area sensitivity prediction 

model for power and performance metrics. 
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