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Abstract—As technology nodes continue to advance relentlessly,
geometric pitch scaling starts to slow down. In order to retain the
trend of Moore’s law, design technology co-optimization (DTCO)
and system technology co-optimization (STCO) are introduced
together to continue scaling beyond 5 nm using pitch scaling,
patterning, and novel 3-D cell structures [i.e., complementary-FET
(CFET)|. However, numerous DTCO and STCO iterations are
needed to continue block-level area scaling with considerations of
physical layout factors: 1) various standard cell (SDC) library sets
(i.e., different cell heights and conventional FET); 2) design rules
(DRs); 3) back end of line (BEOL) settings; and 4) power delivery
network (PDN) configurations. The growing turnaround time
(TAT) among SDC design, DR optimization, and block-level area
evaluation becomes one of the major bottlenecks in DTCO and
STCO explorations. In this work, we develop a machine learning
model that combines bootstrap aggregation and gradient boosting
techniques to predict the sensitivity of minimum valid block-level
area of various physical layout factors. We first demonstrate that
the proposed model achieves 16.3% less mean absolute error
(MAE) than the previous work for testing sets. Then, we show that
the proposed model successfully captures the block-level area
sensitivity of new SDC library sets, new BEOL settings, and new
PDN settings with 0.013, 0.004, and 0.027 MAE, respectively.
Finally, compared to the previous work, the proposed approach
improves the robustness of predicting new circuit designs by up to
6.76%. The proposed framework provides more than 100x
speedup compared to conventional DTCO and STCO exploration
flows.

Index Terms—Cell synthesis, complementary-FET (CFET),
design technology co-optimization (DTCO), DTCO and STCO
sensitivity prediction, machine learning (ML), standard cell (SDC),
system technology co-optimization (STCO).

1. INTRODUCTION

S VLSI technology continues to advance relentlessly
beyond 5 nm, geometric pitch scaling starts to slow down.
Moreover, design technology co-optimization (DTCO) [1]
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based on pitch scaling and patterning is unable to continue the
cost scaling in 2-D IC technology. In order to keep the trend of

Moore’s law, system technology co-optimization (STCO) has
been introduced to assist DTCO scaling with 3-D integrated
logic and novel 3-D cell structure (CS) [ie.,
complementaryFET (CFET)] [2], [3] beyond 5 nm. However,
technology development beyond sub-5 nm demands enormous
engineering effort for identifying the optimal technology
options (i.e., evaluation of cost and determination of standard
cell (SDC) heights, 2-D/3-D SDC architectures, design rules
(DRs), power delivery networks (PDNs), and back end of line
(BEOL) settings). Furthermore, process architects must be
aware of the impact of the technology transition on the power,
performance, area, and cost (PPAC) for further optimization.
Therefore, finding the optimal technology option necessitates
numerous DTCO and STCO iterations among SDC
optimization, DR optimization, and block-level area evaluation.
This results in exploding turnaround time (TAT) in DTCO and
STCO explorations. There is a high demand for a holistic, fast,
and robust prediction methodology that provides information
on the potentially optimal technology options and the impact on
PPAC from the technology transition.

A. DTCO and STCO Frameworks

Song et al. [4] proposed a unified technology platform using
integration analysis for DTCO and STCO at sub7-nm node.
Kahng et al. [5] proposed a routability metric ks to evaluate the
routing capacity of BEOL stacks, but this work lacks of
explorations on various CSs and does not provide the change of
block-level metrics (i.e., area) from the technology transition.
Recently, in [6], a novel DR evaluation technique using
automatic cell layout generation for DTCO exploration is
proposed, but the focus is limited to conventional FET (Conv.
FET) structures (i.e., FInFET). Cheng et al. [7] also proposed a
novel automatic CFET cell layout synthesis framework for
DTCO and STCO explorations. However, these works use
conventional block-level placementand-route (P&R) to
evaluate block area and thus result in longer TAT for DTCO
and STCO technology development.

B. Machine Learning (ML)-Based DTCO and STCO
Approaches

Recently, many ML-based DTCO and STCO approaches
have been proposed to shorten the DTCO and STCO
exploration time. In [8], an ML-based modeling framework is
developed to generate compact models of novel devices, but
this work does not consider block-level evaluations. Ceyhan et
al. [9] used ML techniques to search and find
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Fig. 1. Tllustrations of (a) traditional DTCO and STCO exploration flow and (b) proposed DTCO and STCO sensitivity prediction framework.

optimal combinations of design, technology, and flow recipes
for high-performance CPU designs in the enormous solution
space, but its performance on 3-D SDC architectures (i.e.,
CFET) has not been explored, and the methodology requires 4—
6 weeks of TAT. Recently, Cheng et al. [10] extended
routability metric, ku, to cell level and block level and applied

ML-assisted prediction on the 4, for various technology options.

However, we focus on exploring technology options with Conv.
FET SDC structure and does not predict/provide the changes in
block-level metrics (i.e., area) induced by the technology
transition from one option to another in this work. In [11], a
modeling approach for DTCO and STCO sensitivity prediction
has been proposed, but they performed limited exploration on
ML models.

In this article, we propose a novel DTCO and STCO
sensitivity prediction framework, which provides information
on the change/gradient of block-level metrics from the
technology transition. Also, we develop an ML model that
combines bootstrap aggregation and gradient boosting
techniques to improve the prediction accuracy. Fig. 1(a) and (b)
shows the difference between the traditional DTCO and STCO
exploration flow and the proposed DTCO and STCO sensitivity
prediction framework. The proposed prediction model and
automatic cell synthesis [7], [12] significantly reduce the TAT
of DTCO and STCO explorations on various physical layout
factors: 1) SDC library sets (i.e., different cell heights (CHs),
Conv. FET, and CFET SDC architectures); 2) DRs; 3) BEOL
parameters; and 4) PDN configurations. In this work, we focus
on the sensitivity of block-level area variations according to
different technology features and demonstrate the feasibility of
ML techniques in DTCO and STCO exploration flows.!'Our
main contributions are given as follows.

' DTCO and STCO sensitivity prediction for incorporating block-level power
and performance are one of the future works as discussed in Section V.

1) We propose a novel DTCO and STCO sensitivity
prediction framework that improves the efficiency of
explorations by orchestrating the proposed ML model
and automatic cell synthesis [7], [12].

2) We develop an ML model using bootstrap aggregation
and gradient boosting techniques to predict the
change/gradient of block-level metrics from the
technology transition.

3) We perform extensive studies on various ML algorithms
for block-level area sensitivity prediction and
demonstrate that the developed ML model outperforms
other ML algorithms on DTCO and STCO sensitivity
prediction.

4) We identify key features of each SDC and extract cell and
block-level features for prediction. We validate the
extracted features via feature importance analysis in Exp.
III-B.

5) We perform extensive studies on model accuracy for new
technologies and model robustness for new designs
across Conv. FET and CFET SDC architectures, and
various CHs, DRs, PDNs, and BEOL settings.

The remaining sections are organized as follows. Section II
describes our DTCO and STCO sensitivity prediction approach.
Section III presents our main experiments. Section IV
concludes this article. Section V discusses the important
directions of future research.

II. DESIGN AND SYSTEM TECHNOLOGY
CO-OPTIMIZATION SENSITIVITY
PREDICTION FRAMEWORK

We apply ML techniques to predict the sensitivity of DTCO
and STCO explorations on block-level areas considering
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various physical layout factors: 1) SDC architectures (e.g., CH,
multirow/single-row, CFET, and Conv. FET.); 2) DRs; 3)
BEOL parameters; and 4) PDN configurations. In this section,
we describe the specifics of our prediction methodology: 1)
DTCO and STCO sensitivity; 2) overall modeling flow; 3)
methodology for feature extraction; 4) input features; and 5)
ML techniques.

A. DTCO and STCO Sensitivity
The DTCO and STCO sensitivity for block-level area of two
technologies of a block-level circuit is the percentage of the
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BEOL parameters, and power delivery configurations to
perform multiple block-level P&R runs with the synthesized
block-level circuits through a commercial P&R suite [13]. The
minimum valid block-level area of a technology combination
(i.e., SDC library set, DRs, and BEOL combination) is extracted
with 300 DR violations (#DRVs)? with multiple P&R runs, as
shown in Fig. 1(a). Then, the percentage of the block-level area
difference of two technologies (i.e., 4;;) are extracted in the
feature extraction stage for training.

We show the prediction model for DTCO and STCO

Fig. 2. Example of DTCO and STCO block-level area sensitivity of (a) #BEOLs and (b) DRs using 4.5T and 3.5T CFET SDC library sets of AES and M0 Core
circuits. The number represents the block-level area difference as changing DTCO and STCO parameters from left to right. Many 3.5T CFET SDCs (i.e., NAND2
x 2 and NAND3 x 1) do not have feasible solutions when V1 center-to-center spacing is 40 nm [7]. As a result, there are no data points of the
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block-level area of 3.5T CFET using 40-nm V1 center-to-center spacing rule.

block-level area difference of these two technologies, 4;;, as
shown in the following equation:

Aij=(4i- A4 ;)/4; (1)

where 4;and 4 ;are the minimum valid block-level areas of the
ith technology and the jth technology, respectively. Here, a
technology is the combination of SDC library set, DRs, BEOL
parameters, and PDN configuration. Fig. 2(a) and (b) shows an
example of DTCO and STCO block-level area sensitivity of
#BEOLs and DRs using 4.5T and 3.5T CFET SDC library sets
of AES and MO Core block-level circuits, respectively.
Different SDC library sets, #BEOLs, and DRs can potentially
impact the block-level area up to 17.9%. The importance of
knowing the information of change/gradient of block-level area
from the technology transition is needed for holistic technology
development.

In this work, we focus on studying the minimum block-level
area of various CHs, cell architectures (i.e., CFET and Conv.
FET), cell pin accessibility, DRs, BEOL parameters, and PDN
structures and develop a model to predict 4;; for reducing the
TAT of DTCO and STCO explorations.

B. Overall Modeling Flow

Fig. 3 shows the proposed training flow and prediction model
for DTCO and STCO exploration flow. In the training phase as
shown in Fig. 3(a), we generate multiple SDC library sets,

2 As a common industrial practice, once the number of DRVs increases
beyond 300, the block layout is deemed too troublesome to fix with laborious
engineering change orders (ECOs).

exploration flow in Fig. 3(b). Prediction flow utilizes the same
input types with new technology parameters to explore. The
proposed DTCO and STCO sensitivity prediction model
outputs the predicted A4,;.

In our envisioned usage scenario, technology developers
define and generate multiple circuit designs, SDC library sets,
tech lef files (.tf), and PDN configurations for DTCO and STCO
explorations. The proposed framework assists and guides the
technology tuning process to find one of the optimal technology
candidates by predicting the gradient of the blocklevel area, 4,
for block-level area cost evaluation. With the predicted 4;; of
all the technology pairs, technology developers can find the
technology, which provides the largest improvement on block-
level area metric compared to the baseline technology. If the
selected technology combination is a new technology, which
involves systematic physical layout change (i.e., backside PDN
technology), to the prediction model, the block-level P&R is
launched to extract the minimum valid block-level area and the
data are used to update the prediction model; otherwise,
technology developers adopt the selected technology for the
next phase in technology development.

C. Methodology for Feature Extraction

We describe the feature extraction component of our
framework. Table I summarizes four categories of input
features: 1) synthesized block-level circuit statistics; 2) SDC
architectures; 3) BEOL parameters; and 4) PDN configurations.

1) Synthesized Block-Level Circuit Statistics: We extract
the statistics of the block-level circuit, which is derived after
logic synthesis and before physical layout. The data include
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circuit structures, instance numbers, and SDC area from the
synthesized block-level circuit. For circuit structures, we
consider the distribution of fan-out counts (#fanouts), Rent’s
multiplier &, and exponent p component of Rent’s rule [14].
These terms define an empirical power-law relationship
between the number of gates “N” and the number of terminals
“T” as shown in the following equation:

T=kNP. )

For each circuit, we extract the (7, N) pairs and perform linear
regression to obtain £ and p for each design. In addition, we
extract the number of fanouts per net (#fanouts), the number of
sequential cells (#Seq), the number of combinational cells
(#Comb), the number of buffers (#Buf), and SDC area from the
report of synthesis tool.

2)  SDC Architectures: We extract key metrics that
impact routability at the block level and lead to larger minimum

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 30, NO. 8, AUGUST 2022

Metricy = Metrice * CPy. 3)

c

where Metricy denotes the block weighted metric of design d.
Metric. is the cell level metric of cell ¢, such as average RPA
value, #M2Track, and M2ML. CP,. is the percentage of cell ¢
in the synthesized block-level circuit d. In addition, we use CH
as one of the features since the CH limits the horizontal routing
tracks/resources, which shows greater impacts on SDC less than
ST [15], for accessing M1 pin in SDC.

3) BEOL Parameters: We introduce BEOL parameters
related to the DR and BEOL settings. We use representative
DRs such as min spacing rule, end-of-line (EOL) spacing rule,
viarule (VR), same net VR, and fat metal spacing rule for metal
and via layers as the input features. For BEOL settings, the
pitch of each routing metal layer and the total number of routing
metal layers (#BEOLSs) are selected as the input features of our
model.
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Fig. 3. Overall flow of DTCO and STCO sensitivity prediction: (a) Training flow and (b) prediction model for DTCO and STCO exploration flow. Technology
developers can select the optimal technology candidate, which provides the largest improvement of block-level area metric compared to the baseline technology
from the predicted 4;;in (b). If the selected technology is new technology, which brings systematic physical layout change at block level, the model can

be updated with the block-level P&R data of the new technology.

block-level area, such as average remaining pin access (RPA)
value [15], [16] of I/O pins, the number of M2 Track usage
(#M2Track) [7], and M2 metal length (M2ML) [7] in the cell
level. Then, we calculate the block weighted RPA;, M2Trackg,
and M2ML,; with the corresponding SDC metrics and cell
percentage of the synthesized block-level circuit d using the
following equation [7]:

categorized the PDN into front-side PDN and backside PDN
categories [17]. For front-side PDN, we mainly study the M3
power strap period, which is critical to the power integrity and
signal routing. With a denser M3 power strap, the IR drop will
be improved, but it will result in poor routability and a larger
core area because it takes more metal resources for signal
routing. On the other hand, a sparser M3 power strap may lead
to power integrity issue and causes functional failure. For
backside PDN, we set the power strap period feature to a large
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number (i.e., 1€°) since there are no power straps on the front
side at the block level.

D. Input Features

We describe the input features used to predict 4;;in (1). Fig.
4 shows an illustration of the input features of the proposed
DTCO and STCO sensitivity prediction model. The input
features consist of the extracted features, which are shown in
Table I, of the ith and jth technologies.

E. ML Techniques

We develop our ML model with bootstrap aggregation and
gradient boosting regression tree (GBRT) techniques to achieve
state-of-the-art results on DTCO and STCO sensitivity
prediction. We introduce the overview of the proposed model,
the feature selection technique, and the modeling approach in
the following.

1) Model Overview: Fig. 5 shows the developed ML
model, which combines bootstrap aggregation and GBRT
techniques. In the bootstrap aggregation technique, the
bootstrap sampling is used to estimate statistics on a population
by sampling a dataset with replacement and can be used to
create meaningful simulated datasets to control the variance of
a model. Then, the simulated datasets are used to train a set of
GBRT models. Finally, the outputs of GBRT models are
aggregated for predicting DTCO and STCO sensitivity. We use

Features of i™"
technology

DTCO/STCO Sensitivity -
Prediction Model i

Features of jif
technology

Fig. 4.  Nustration of input features of the proposed DTCO and STCO
sensitivity  prediction model. Features of the ith and jth technologies are
described in Table 1
Fig. 4.

TABLE I

EXTRACTED FEATURES TABLE

Feature Scope Feature Types Feature Name

Net complexity #Fanouts

Rent’s multiplier

Synthesized block-level circuit

design statistics Rent’s exponent

Instance #Seq

#Comb

3 colsample_bytree is the fraction of features (randomly selected) that will be
used to train each tree in the XGBoost library [18].
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#Buf
Synthesized Design Area |SDC area
RPA d
M2Track d
SDC features
Block weighted SDC metric | M2ML d

Horizontal Routing Resource | Cell Height

Min spacing

EOL

Design Rules for
Metal and Via layers VR

Design Rule & BEOL settings Same net VR

Fat metal spacing

BEOL settings BEOL Pitches

#BEOL
Power Delivery Network (PDN) ) M3 power strap
features PDN settings period

XGBoost [18] for implementing the GBRT models in the
proposed model. XGBoost implements ML algorithms using a
GBRT, which achieves state-of-the-art results on tabular data
prediction. To avoid the structural similarity of GBRT trees and
have a high correlation of their predictions, we set
colsample_bytree® to 0.7 for each GBRT model. Finally, the
final predicted A";; values are calculated by averaging the

Algorithm 1 Feature Selection

Pnpars Dara et DY, amd Feanere ser F': Ovapai: Featare subser FL%

1: Splin data st [ im0 BO% wralning sel. T, and 20¢% validatbon ser, Vo
2: Train a model with T° amd V' with F using GBRT with early stopping;

1: Cet the validation errar, B, ,);

4 Ser B

% Get Fa '

0 Set Foun =1}

T: Set F = Sont F based on the galn of features i descending order:

B Set mo= |F|:

@ hri=1.2...,midno

1L Set Faur ™ Foup + Fis

11: Extract F, 5 from T and Voo T, and 1,0, respectively;

12: Traln a model with Toup and Vop with Foyp using GBET with casly stopping:
13: et validation error, &, .0

14: Calculate the VIF of each feature im data set T, 5 and et _F....._r value;

15: M Ea = ETa™ &8& [ iy = VIF, then

162 Remove fy From o

17: el il

18: NE.. = E;n5
19: et £
20 Set B
21: end if

22: end for B

23 Retum F

prediction of all GBRT models.

2)  Feature Selection Technique: We describe the feature
selection technique here. First, we extract the feature
importance of a trained GBRT model. Then, we use the
variance inflation factor (VIF) [19] to detect instances of
multicollinearity, which result in the high sensitivity to small
changes in correlated features. Finally, we perform feature
selection as described in Algorithm 1. Here, we use the “gain”
for feature importance. The gain of a leaf node is the difference
of metric before and after splitting at the leaf node [18]. The
“gain” of the feature is the total gain of using the feature to split
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Fig. 5. Overview of the developed ML model. The model combines bootstrap aggregation and GBRT techniques.

nodes divided by the number of times the feature used to split a
node. The feature selection technique reduces the average MAE
by 0.02 (i.e., 25%) for new design prediction in Exp. III-E.

In Algorithm 1, first, we split the dataset D into the training
set, T, and validation set, /' (Line 1). We train a GBRT model
with training and validation sets (Line 2). Then, we sort the
features based on the gain of the GBRT model in the descending
order (Line 7). After that, we sequentially add features to Fiup
and train a GBRT model with selected features Fyup (Line 9—-12).
Then, we calculate VIF of each feature in dataset Ty, and
extract the VIF, fivir, of fi (Line 13). If the validation error, Eyal,
is larger than the minimum validation error, Ev,™", and the VIF
of fiis larger than a VIF threshold, we remove f; from Fu (Line
14-16). If the validation error is smaller than the minimum
validation error, we record Fyp as F~ and update the minimum
validation error (Lines 17-20). Finally, we return the feature
subset, £, which has minimum validation error (Line 22).

3) Modeling Approach: We extract the input features
from all the technologies as shown in Section II-D, compose all
the technologies into pairs, and perform feature selection to

compose a dataset D (xi;,Aij), where x;; € R” corresponds to
the m input features after feature selection and 4;; € R is the
percentage of the block-level area difference of
ith and  jth = F technologies. We aim to
predict 4;;using the developed ML model. D is
resampled to generate N datasets, D" ". We increase the number
of samples until each bootstrap sample (i.e., D" ") contains
approximately 63.2% of the data points in the training set [20].
For each GBRT model, XGBoost sequentially builds an
ensemble of K regressors. Predictions, 4™;;, are made by taking
the weighted sum of predictions made by the individual
members of the ensemble as shown in the following equation:

K
4
0eG )

A nij= gk(xinyj),

k=1

where G is the space of regression trees and » represents the nth
GBRT model. The goal is to minimize L(A4";;,A™;;) in the
following equation:

LAnij,A™nij = [Anij,A"inj + ( fir)
i k
1
where (f) vT  Alwl[(5)2
where each /(4",;,4™";;) is a differentiable convex function that
measures the difference of 4”;; and 4™;;. We use the mean
absolute error (MAE) as the evaluation metric. is a function
that penalizes the complexity of the model. 7 is the number of
leaves in the tree and w is the leaf weight. We use tenfold cross
validation [21] to perform hyperparameter tuning (i.e.,
min_child_weight, and etc) to train our model. Then, to predict
A;j, A"ijis obtained using the average of the prediction results
of N GBRT model, 4™;;, as shown in the following equation:

A A

N n"ij=  n=14ij. (6)

AN

III. EXPERIMENTAL RESULTS

Our framework is implemented in Python and is executed on
a workstation with 2.4-GHz Intel Xeon E5-2620 CPU and 256-
GB memory. For the proposed model in Fig. 5, we implement
the bootstrap sampling technique with sklearn library [22] and
GBRT tree models with XGBoost library [18].
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A. Experiment Setup

We use the synthesized block-level circuits, SDC library sets
generated from [7] and [12], DRs, BEOL settings, and PDN
configurations to generate the data for our experiments. We run
multiple block-level P&R runs through a commercial test suite
[13] and use a 300 #DRV threshold to measure the minimum
valid block-level area of each synthesized blocklevel circuit for
each technology combination.

1) Synthesized Block-Level Circuits: For synthesized

blocklevel circuits, six open-source RTL designs [23], MO Core,

M1 Core, AES, MPEG, JPEG, and DarkRiscV that,
respectively, have 17k, 20k, 14k, 18k, 45k, and 7k instances
using 30 representative SDCs [7]. The worst negative slack
(WNS) of each synthesized block-level circuit is carefully
adjusted between *50 ps for a fair comparison to study the
change of
TABLE 1II
BLOCK-LEVEL CIRCUIT TABLE

SYNTHESIZED

. Rent’s multipliers | Rent’s exponent
Design Name | #[nstance (k) P

MO Core 17k 2.69 0.73
M1 Core 20k 2.72 0.71
AES 14k 2.62 0.70
MPEG 18k 3.58 0.61
JPEG 45k 2.71 0.78
Darkriscv 7k 5.78 0.25

minimum block-level area of various CHs, cell architectures
(i.e., CFET and Conv. FET), cell pin accessibility, DRs, BEOL
parameters, and PDN structures.

Rent’s multipliers, k&, and Rent’s exponent, p, of each design
are listed in Table II. For the number of fanouts per net
(#fanouts), we categorize the number of fanouts per net into
eight bins, which are 1-3 #fan-out nets, 4—6 #fan-out nets, 7-9
#fan-out nets, 10-50 #fan-out nets, 50-100 #fan-out nets, 100—
500 #fan-out nets, 500—1000 #fan-out nets, and more than 1000
#fan-out nets. Fig. 6(a) and (b) shows the #Fanouts distribution
and cell statistics of these six block-level circuits, respectively.

2) SDC Library Sets Generation: To evaluate the
blocklevel PPA during early DTCO exploration, we select 30
representative SDCs [7]. We generate 19 SDC library sets with
45T, 3.5T, and 2.5T CHs, different EOL and VR DR
parameters, and two cell architectures (i.e., CFET and Conv.
FET) using [7] and [12]. The top layer is M2 for SDC
generation. We generate SDC library sets with variations on
three dimensions as follows.

1) CSs: We generate Conv. FET and CFET SDC layouts for
explorations on 2-D and 3-D CS in the experiments.

2) CH: The CFET SDC CH is scaling from 4.5T to the

extreme 2.5T CH [7], [25]. For Conv. FET SDC, we
generate 4.5T and 3.5T CH because using two horizontal
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Fig. 6. (a) #Fanouts distribution. (b) Cell statistics of MO Core, M1 Core, AES,
MPEG, JPEF, and Darkriscv.

routing tracks for Conv. CS cannot be implemented due
to the limitation of p-n separation [26].

3) DRs: We use grid-based DR parameters to generate SDC
layouts for layers up to M2, and they are applied to block-
level using the corresponding metal pitch values [7]. Here,
the baseline DR parameters are EOL =1 and VR = 1.

Table III shows the average cell area, average RPA [16],
average M2Track, and average M2ML, which are extracted for
predicting 4;, as described in Section II-D, of each SDC library
set. Note that the M0O/M2 pitches are 24 nm, and contacted poly
pitch (CPP) is 42 nm for all the SDC library sets in Table III.
Fig. 7 shows an example of generated DFFHQN SDC layouts
with variations on these three dimensions: 1) CSs; 2) DR; and
3) CH. Notice that the AvgRPA metric of a cell library might be
larger than the CH because the limited horizontal MO routing
resource and the connection of SDC external pins need to be
promoted to M2 for connecting FET terminals and satisfy the
minimum pin opening constraint [7] for medium or large cell
(i.e., XOR2 x 1 and FAx1). Fig. 8 shows the RPA value of each
pin of XOR2 x 1 in 3.5T CFET EOL =1 VR =0 SDC set. Pins
A and B are promoted to M2 for connecting internal FET
terminals and satisfy the minimum pin opening constraints.

Considering the coverage of CFET and Conv. FET CSs, 4.5T,
3.5T, and 2.5T CHs, and various DRs, we select 15 SDC library
sets as listed in the train column of Table III to build our
prediction model for Exp. III-B, Exp. III-C, and Exp. III-D.
Then, to test the accuracy of the proposed prediction model on
new SDC library sets, we use the remaining four SDC library
sets in Exp. III-C.

3) BEOL Parameters: We adjust DRs in the block level based
on the DR parameters used in the SDC library set generation [7]
for M1, VIA12, and M2 layers. Then, the metals’ pitch and
width of layers above M2 are set based on LEF/DEF guide [27].
For via layers above M2, the via spacing is set to allow diagonal
via, and the same net via spacing is set to allow adjacent via.
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For the BEOL settings, we generate various M4-M7 metal
pitches by varying the baseline metal pitches from 0.5x to
TABLE III

SDC FEATURE VALUES OF 19 SDC LIBRARY SETS’ CH = CELL HEIGHT.

CS = CELL STRUCTURE. CONV. = CONV. FET. THE BASELINE DR

PARAMETERS ARE EOL =1 AND VR = 1. TRAIN = USED FOR

TRAINING THE PROPOSED PREDICTION MODEL IN EXp. III-B AND EXP.
11-C

Avg Cell Area| Avg RPA |Avg M 2T rack|Avg M2M L
CH| Cs DR parameters (umz) (access point) (track) (segment)  |Train
Bascline 0.04415 3.290 0433 4900 v
EOL 2VR 1 0.04551 2.830 0.600 9333
EOL 0 VR 1 0.04309 2.805 0.267 2.807| V
EOL 1 VR 15 0.05232 4119 1.067 13900
Conv.| _EOL 1VR 0 0.04355 2.831 0.500 5.007| V
Baseline 0.04249 3.204 0.200 2200y
EOL 2 VR 1 0.04324 3100 0.500 5807 v
EOL O VR 1 0.04234 3.206 0.133 1800, V.
EOL 1 VR 15 0.04581 3813 0933 12533 y
EOL 1 VR 0 0.04234 3.198 0.267 2007 v
4.5T|CFET|  EOL 0VR 0 0.04229 3.058 0.167 1333 v
Conv. Baseline 0.04151 2.839 1233 19233 v
Baseline 0.03657 2784 1.033 14400 Vv
EOL 2VR 1 0.04057 3.692 1.367 23.500
35T
CFET|  BoL 0 VR 1 0.03422 3734 1.033 12300, V
EOL 1VR 0 0.03410 3316 0.933 11333 y
EOL 0 VR 0 0.03375 3.49 0.833 R
asticper|  POROVRO 0.02915 3.010 2,000 19.167| .
EOL 0VR 0FC/MOAR|  0.02764 2.874 1.700 18.100| v

1.5x. If the metal pitch is smaller/larger than the smallest
pitch/largest pitch after scaling, its metal pitch is set to the
smallest pitch/largest pitch. Here, the smallest vertical/
horizontal metal pitch is M1/M2 metal pitch; the largest
horizontal/vertical metal pitch is M8/M9 metal pitch. For the
BEOL routing layers, we use M2-MS5, M2-M6, and M2-M7
options for block-level routing.

In total, there are 45 various DRs and BEOL pitches
technologies. For each BEOL technology, there are three BEOL
routing options. As a result, there are 135 BEOL settings in the
experiment.

4) Power Delivery Network Configurations: We study
frontside PDN and backside PDN in the following experiments.
For front-side PDN structure, the PDN is constructed with top
power mesh on M8 and M9, and they are designed as spaces
are allowed. Then, the power is delivered through M3 power
straps to SDCs. Here, we vary the M3 power strap period with
24 CPPs, 32 CPPs, 48 CPPs, and 64 CPPs based on the PDN
studies in [17] and [28] for early DTCO exploration. For
backside PDN architecture, there is no PDN in the front side at
block level.

5) Minimum Valid Block-Level Area Extraction:
Multiple block-level P&R runs are launched for minimum valid

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 30, NO. 8, AUGUST 2022

blocklevel area extraction, as shown in Fig. 1(a). In each
blocklevel P&R run, the floorplan (i.e., including PDN
generation), placement (i.e., including placement optimization),
clock tree synthesis (CTS), and routing (i.e., including global
routing and detail routing) stages are performed. Table IV
shows the breakdown of the runtime in each stage of an
automated MO core block-level P&R implementation using
2.5T CFET EOL =0 VR =0 library and M2—-M7 routing layers.
The routing stage takes 94% of the total runtime because fixing
DRC violations in the detail routing stage is time-consuming
and usually needs many iterations (i.e., 69 iterations in this
example). As a result, it takes more than 8 h to extract minimum
valid block-level area of a technology combination.

We generate the data using the synthesized block-level circuit,
SDC library sets, BEOL parameters, and PDN configurations
for our experiments. The total runtime to extract input features
and to train the proposed model is around 15 h. However, it
takes two months to generate all the block-level P&R data from
19 SDC library sets, five PDN configurations,
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Fig. 8. Example of RPA counts of XOR2 x 1 in 3.5T CFET EOL =1 VR =0

SDC library. Pins A and B are promoted to M2 for connecting internal FET

terminals and satisfy the minimum pin opening constraints.

TABLE IV

BREAKDOWN OF RUNTIME IN EACH DESIGN STAGE OF AN AUTOMATED MO
CORE BLOCK-LEVEL P&R IMPLEMENTATION USING 2.5T CFET EOL =0 VR
=0 LIBRARY, AND M2-M7 ROUTING LAYERS.

Runtime Design Stages
Floorplan | Placement | CTS | Routing | others | Total
wall time (s) 3 294 | 92| 8412 1188919

135 DRs and BEOL settings, and six block-level circuits for the
experiments.* The experiments are organized as follows.

1) Exp. III-B: We explore various ML algorithms and
demonstrate our prediction model accuracy on training,
validation, and testing data.

2) Exp. IlI-C: We show the accuracy of our prediction
model on prediction of new SDC library sets and BEOL
parameters.

3) Exp. III-D: We show the accuracy of the proposed model
on prediction of various PDN configurations.

4) Exp. IlI-E: We study the robustness of our prediction
model on new block-level circuit prediction.

For Exp. III-C, Exp. IlI-D, and Exp. III-E, we introduce
gradient accuracy (gradient ACC) metric to measure the
accuracy of the direction of 4;;. If the signs of actual 4;; and
predicted A4;; are the same, we consider that the prediction is
accurate for gradient ACC metric.

B. Prediction Model Accuracy

We study various ML algorithms and demonstrate prediction
model accuracy with training, validation, and testing datasets.
We first split the generated data of 15 SDC library sets (i.e.,
Table III), six block-level synthesized designs, 102 DRs and
BEOL settings, and three PDN settings, using 80% as training
data and 20% as testing data based on the empirical study in
[29]. Then, we split the 80% training data after bootstrap
sampling such that 80% is used for model training and 20% is

4 We use eight CPU cores for each block-level P&R job and run multiple
block-level P&R jobs simultaneously.

Example of generated DFFHQN SDC layouts with variations on three dimensions: (i) 2-D versus 3-D CS (Conv. FET versus CFET), (ii) DR, (iii) CH.

used for model validation. The validation dataset is used to
avoid overfitting with the early stopping technique in the
training phase of each GBRT model. In the following
experiments, XGBoost DTCO is a GBRT tree model used in
[11].

1) Hyperparameter Tuning: We explore multilayer
perceptron (MLP) neural network, radial basis function (RBF)
neural network, random forest (i.e., implemented with sklearn
library), XGBoost DTCO [11], and the proposed ML
algorithm, which integrates bootstrap aggregation and GBRT
techniques. We tune the hyperparameters of each ML modeling
algorithm for our DTCO and STCO sensitivity prediction. For
optimizing neural network structure for our regression problem,
we adopt Hyperband [24] to set the number of layers, the
number of neurons of each layer, dropout rate, batch size, and
learning rate of MLP and RBF neural networks. Fig. 9 shows
the selected MLP and RBF neural network structures with
Hyperband [24] algorithm. For the XGBoost DTCO [11],
random forest, and the proposed ML model, we use tenfold
cross validation [21] to set the hyperparameters of our
prediction model. Table V shows the range of each
hyperparameter in the explored ML algorithms. In the proposed
model, the max_depth, sub_sample, min child weight, and
learning rate of each GBRT model are 9, 1.0, 7, and 0.05,
respectively. We select 100 #GBRTs for the proposed model
after hyperparameter tuning.

2) Prediction Accuracy: Table VI shows the prediction
accuracy results of MLP, RBF neural network,
XGBoost DTCO [11], random forest, and the proposed method.
The MAE of the proposed model is 4.1 x 107 on the testing set.
Compared to MLP and RBF neural networks,
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rate (i.e., 0.0-0.5).

the proposed model achieves 92.9% and 74.2% less MAE on
the testing set, respectively. Moreover, the proposed model
provides 65.8% and 16.3% less MAE on the testing set than
random forest and XGBoost DTCO [11], respectively.

Fig. 10(a) and (b) shows the predicted 4;; values versus
golden A4;; values for training and testing sets of the proposed
model. The blue solid line in the middle indicates a perfect
correlation between golden 4,;and predicted 4,;. The upper and
lower black solid lines are 5% away from the blue solid line.
We can observe that most of the errors of predicted 4;; are
within 5% in the training and testing sets. The MAEs are 3.2 x
1073 for the training set and 4.1x 107 for the testing set. Fig.
10(c) shows the error distribution of testing set. The mean is
3.47 x 1073, with a standard deviation of 0.0075 (hence, 99.7%
of predicted A4;; values are within the three-o range of £0.023).
Furthermore, compared to XGBoost DTCO [11], the proposed
model reduces the standard deviation of error distribution by
0.0011 (i.e., 12.8%) for the testing set. This shows that the
proposed model is more robust than XGBoost DTCO [11] on
the model accuracy.

3)  Key Features Study: To further study the key features,
we combined the gain of the same features of the first and
second technologies of each technology pair in
XGBoost DTCO [11] model and the proposed model. Fig. 11(a)
and (b) shows the average combined important features of 100
GBRTs in the proposed model and top 15 combined important
features in XGBoost DTCO [11] after feature selection (see
Section II-E), respectively.

The most important feature in the proposed model and
XGBoost DTCO [11] is CH. CH is highly related to the block-
level area because it determines the size of each cell row in the
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block level. For the pin accessibility and routing congestion
metrics in SDCs, the proposed weighted RPAg,
TABLE V

HYPERPARAMETER EXPLORATION OF ML ALGORITHMS TABLE

Machine Leaming Alg | Hyperparameter Walue Range
#layers 2- 10
. imeurons per Layer 25 - 500
MLF/ B:EF ;:"“r"l drop oul rate o0-035
Mt learning rate {Te-3, Je-3, Te-3, Se-d, Te-d]
batch size {128, 256, 512}
#estimators 50 - 500
Random Forest max_depih {100 - TiM), None}
(sklearn) [22 mun_samples_leaf 1 -4
min_samples_split X-T10
max_depih h- 15
) mn_child_weight 5.1
XGBaogt_DTCO [11] sub_sample 0T - 140
learning rate f3e-2, Te-d, Je-3, Te-3, Se-d, Te-d}
WORRTS | 0 -5
Proposed Method GBERT porameters | same as AGBoos_ 3100 [11]

TABLE VI

PREDICTION ACCURACY TABLE. IMPR. MAE = (MAEmiaL —

M AEprorosep /MAEMLALG x 100. HERE, MAEMLAL G

REPRESENTS THE MAE ERROR OF MLP/RBF NEURAL
NETWORK/XGBooST DTCO [11]/ RANDOM

FOREST [22]
Machine Learning Alg. MAE Impr. MAE (%)
Training set|Testing set | Training set | Testing set
MLP 0.0570 0.0578 94.3 92.9
RBF Neural
Network 0.0155 0.0159 79.4 74.2
Random Forest
(sklearn) [22] 0.0066 0.0120 51.5 65.8
XGBoost DTCO [11] 0.0034 0.0049 5.9 16.3
Proposed 0.0032|  0.0041

weighted M2Tracks, and weighted M2ML, are also very
important for A4;; prediction in both XGBoost DTCO [11]
model and the proposed model in the block level. For the
synthesized design feature, the 1-3 fanouts and the number of
sequential cells (#Seq) features are recognized as top 15
average important features in the proposed model.

For DR feature, we can observe that the V1 spacing, M2
minimum spacing, V3 spacing, and V3 same net spacing all
have large gains in both XGBoost DTCO [11] model and the
proposed model because these layers are mainly used for
accessing the SDC pins on M1/M2. For the DR features of
layers above M4, their gains are smaller since these layers are
mainly used to connect above and below metal layers instead of
accessing SDC pins. Note that the M2 and M4 fat metal spacing
rules (FatMSpace), which are usually related to the wider metal
used for power straps, are recognized as important features in
the proposed model and XGBoost DTCO [11] model. In
addition to the DRs related to power strap, the power strap
period feature is also in the top 15 important features in both
models because its impact on the block level is nontrivial, as
shown in Fig. 13. Here, although via spacing and same net via
spacing has high correlation, they could be remaining in the
input features after feature selection stage since we remove the
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feature only if the validation error, Eyai, is larger and the VIF of
the feature is larger than a VIF threshold in Algorithm 1. The
“V3 via same net space” and “V3 via space” are both used as
input features in Fig. 11(a).

With more simulated datasets generated by bootstrap
aggregation, we observe various important features of each

GBRT
{a)

tralning data veling data
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C. Prediction of New Technologies

We apply the trained model from Exp. III-B to predict 4;; of
new SDC library sets and new BEOL parameters. Here, we
implement a benchmark utilization prediction model (Util.
model) with XGBoost algorithm, which takes the features of a
technology (i.e., Table I) and predicts the utilization after block-
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Fig. 11. Feature importance (gain) of the proposed model and XGBoost DTCO [11] for key feature study. (a) Average combined feature importance (gain) of
GBRTs in the proposed model. (b) Top 15 combined feature importance (gain) in the trained XGBoost DTCO model [11]. (c) #Counts of important features,
which are extracted from top 3 gain of 100 GBRT models, in the proposed model.

model in the proposed model, as shown in Fig. 11(c). Fig. 11(c)
shows the #Counts of the important features, which are
extracted from the top 3 gain of each GBRT model, in the
proposed model. The top 9 important feature with larger
average gain in Fig. 11(b) is also in the top 3 important features
of 100 GBRTs frequently in the proposed model. Here, the 7-9
fanouts net feature also frequently appears in the top 3
important features of 100 GBRTs in the proposed model though
its average gain across 100 GBRT models is not in Fig. 11(b).

5 We mainly study the tree-based ML models (i.e., the proposed model,

random forest, and XGBoost DTCO [11]) since the MAEs of tree-based ML

models on testing set are better than neural network models in Exp. I1I-B.

level P&R. Then, we calculate the block-level area after P&R
from the output of Util. model and obtain A4;; of every
technology pairs for comparison. In this experiment, we
compare the accuracy of the proposed model, random forest,
XGBoost DTCO [11], and Util. model on DTCO and STCO
sensitivity prediction of new SDC library sets and new BEOL
parameters.’

For new SDC library sets, we study the accuracy of the
proposed prediction model to predict 4;; of 20% of 19 SDC
library sets in Table III. The four new SDC library sets are
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carefully selected to include different CHs (i.e., 4.5T, 3.5T, and
2.5T), different CSs (i.e., Conv. and CFET), and DRs including
strict and loose DR parameters

(i.e., EOL =2 VR =1 and EOL =0 VR = 0) to demonstrate the
prediction of new SDC library sets. The BEOL routing layer
options for these four testing SDC library sets are M2—-M5, M2—
M6, and M2-M7. Table VII shows the prediction results of 4;;
using Util. model, and the proposed DTCO and STCO
sensitivity  prediction approach with random forest,
XGBoost DTCO [11], and the proposed model. (5)

(a) b
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To summarize, the proposed DTCO and STCO sensitivity
prediction modeling approach achieves better accuracy than the
Util. model because it directly minimizes the MAE of 4;;and
A";; during the training phase. On the other hand, there are
utilization prediction errors from the Util. model and inherent
differences between synthesized block-level circuit area and
block-level area after P&R in Util. model
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Fig. 12. Predicted 4;, versus golden 4;;0f new SDC library set technology prediction (i.e., orange points) and new BEOL pitch scaling technology prediction (i.e.,
green points) with (a) random forest (i.e., implemented with sklearn), (b) XGBoost DTCO [11], and (c) proposed model.

The proposed model provides 0.013 MAE and 97.3% gradient
ACC on new SDC library set prediction. Compared to the Util.
model, our proposed model achieves 91.3% less MAE error and
20.0% better gradient ACC. Compared to random forest and
XGBoost DTCO [11], the proposed model still maintains
51.9% and 7.1% less MAE error, respectively. Fig. 12(a)—(c)
shows the predicted A4;; versus golden 4;; for SDC library set
prediction (i.e., orange point) with random forest,
XGBoost DTCO [11], and the proposed model, respectively.
There are clearly more data points of random forest prediction
outside of the black solid line, which represents 5% away from
the perfect correlation line in the middle. This matches the
larger standard deviation and MAE in Table VII.

For new BEOL pitch scaling settings, we study the accuracy
of the proposed model on prediction of 11 BEOL pitch scaling
technologies. Combining these 11 BEOL pitch scaling
technologies with 15 SDC library sets, three #BEOL layer
options (i.e., M2-M5, M2-M6, and M2-M7), and three PDN
settings, there are 1485 technology combinations for prediction
in this experiment. In addition, the BEOL pitch scaling also
affects DRs, such as minimum spacing, EOL spacing, via
spacing, and same net via spacing. In Table VII, the MAE and
gradient ACC of the proposed model are 0.004 and 97.1%,
respectively. Compared to the Util. model, the proposed model
achieves 97.2% less MAE error and 8.3% better gradient ACC.
Moreover, the MAEs of the proposed model are 63.6% and
20.0% smaller than random forest and XGBoost DTCO [11],
respectively. Fig. 12(a)—(c) shows the predicted 4;; versus
golden 4;;for BEOL pitch scaling prediction (i.e., green points)
with random forest, XGBoost DTCO [11], and the proposed
model, respectively. Here, we can observe that there are
obviously more data points of random forest prediction outside
of the black solid line.

Esen-
A Ai Ai(4i  Ei)
Equation (7) shows the DTCO and STCO sensitivity error
when we use the predicted minimum block-level area from
TABLE VII

A;j PREDICTION RESULTS OF NEW TECHNOLOGIES USING
UTILIZATION MODEL (UTIL.), RANDOM FOREST, XGBOOST _
DTCO [11], AND THE PROPOSED MODEL. MAE: MEAN ABSOLUTE

ERROR. GRADIENT ACC: GRADIENT ACCURACY OF 4, . ERROR

(7

DIST.: ERROR DISTRIBUTION. STD. DEV.. STANDARD
DEVIATION
Gradient ACC
Prediction Type Model (%) Error Dist.
MAE Mean | Std. Dev.
Util. 0.150 77.3% | -0.012 0.233
Random Forest
[22] 0.027 94.8% | 0.002 0.069
New SDC lib. set
XGBoost DTCO [11] | 0.014 97.2% | 0.001 0.031
Proposed 0.013 97.3% | 0.001 0.031
New BEOL pitch
scaling tech. Util. 0.147 88.8% | -0.025 0.210
Random Forest
[22] 0.011 96.9% | 0.001 0.049
XGBoost DTCO [11] | 0.005 96.9% | 0.000 0.013
Proposed 0.004 97.1% | 0.000 0.012

Util. model. Here, Esn and E; are the error of DTCO/STCO
sensitivity and predicted minimum block-level area,
respectively. A% = A;+ E;. When E;is very small and E ;>4;, the
predicted block-level error (i.e., E ;) leads to large Es., on DTCO
and STCO sensitivity prediction. For example, from one of the
data points in new SDC library set technologies prediction, 4;,
A, A", and A" jare 276.652, 1138.511, 280.911, and 814.554,
respectively. Esnis 1.19, which is larger than 99.7% (i.e., three-
orange 0.093 + 0.001) of the error of the proposed model. As a
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result, we observe that the Util. model has larger standard
deviation of error than the proposed model in Table VIIL
Moreover, compared to random forest and XGBoost DTCO
[11], the proposed model provides smaller MAE and better
gradient ACC for DTCO and STCO sensitivity prediction with
bootstrap aggregation and GBRT techniques.

D. Prediction of New Power Delivery Network Setting

We study the model accuracy on predicting A;; of new PDN
grid scales and architectures (i.e., backside PDN). Here, we
select front-side PDN with 24 CPPs, 48 CPPs, and 64 CPPs
power strap period to train our model and use the trained model
to predict 4,; of new PDN setting with 32 CPPs power strap
period and backside PDN architecture.

Fig. 13(a) shows the snapshots of MO Core design with
various M3 power strap periods. For backside PDN architecture,
there is no power strap in the front side at block level, as shown
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proposed model achieves 0.027 MAE and 94.4% gradient ACC,
which are 27.0% less MAE and 1.9% better gradient ACC than
random forest. Compared to XGBoost DTCO [11], the
proposed model achieves 3.6% less MAE and 0.3% better
gradient ACC. Fig. 14 shows the predicted 4,;versus golden A4;;
of new PDN setting prediction (i.e., green points). Although
there are few green points located far away from the perfect
center line in the proposed model, the gradient ACC is 94.4%.
Therefore, the accuracy of the proposed model can be
calibrated along the gradient of A4;; from one technology to
another technology, as shown in Fig. 3(b).

2) Prediction of Backside PDN: Here, to further study the
robustness of the proposed model on new PDN architecture, we
first use the trained model, which is trained using frontside
PDN with various power strap periods, to predict 4;; of
backside PDN architecture. Then, we further study the
improvement of prediction accuracy of XGBoost DTCO [11]
and the proposed model using various ratios (i.e., 10%—80%)

in Fig. 13(b). We can observe that the

= —

32 CPPs: 923um”2

48 CPPs: 872um”2

64 CPPs: 733um”"2 Backside PDN: 550um”2

(a)

(b)

Fig. 13. Minimum block-level area of MO Core with various (a) front-side PDN grid scales (i.e., 32 CPPs, 48 CPPs, and 64 CPPs) and (b) backside PDN
architecture using M2-M6 for signal routing. Compared to 32 CPPs front-side PDN setting, the core area of backside PDN is 40% smaller. The SDC library is

3.5T CFET with baseline DR parameters in Table III.
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Fig. 14. Predicted 4,; versus golden 4;; of new PDN setting (32 CPPs) prediction (green points) and backside PDN prediction (orange points) with (a) random
forest (implemented with sklearn), (b) XGBoost DTCO [11], and (c¢) proposed model.

power strap period and PDN architecture (i.e., backside power
delivery) can potentially impact the block-level area from 6%
to 25% in Fig. 13. Since the Util. model performs poorly in Exp.
II-C, we mainly study the accuracy of random forest,
XGBoost DTCO [11], and the proposed model in this
experiment.

1) Prediction of New PDN Setting: Table VIII shows the
prediction results of new front-side PDN setting prediction (i.e.,
32 CPPs). For new front-side PDN setting prediction, the

of backside PDN data points to update the models.
TABLE VIII

A;,j PREDICTION RESULTS OF NEW FRONT-SIDE PDN SETTING
AND BACKSIDE PDN ARCHITECTURE USING RANDOM FOREST,
XGBoosT_DTCO [11], AND THE PROPOSED MODEL.

Gradient ACC
Prediction Type Model MAE (%) Error Dist.
Mean | Std. Dev.
Random Forest [22] | 0.037 92.5% | 0.004 0.102
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New front side

PDN setting XGBoost DTCO [11] | 0.028 94.1% | 0.000 0.107
(32 CPPs)

Proposed 0.027 94.4% | 0.000 0.106

Backside PDN
Architecture Random Forest [22] | 0.142 77.8% | -0.014 0.198
XGBoost DTCO [11] | 0.107 84.8% | -0.017 0.147
Proposed 0.105 86.9% | -0.015 0.155

First, for predicting backside PDN without any backside
PDN data for training, the MAE and gradient ACC of the
proposed model are 0.105% and 86.9%, respectively. The
proposed model achieves 35.2% and 1.8% less MAE than
random forest and XGBoost DTCO [11], respectively. In
addition, compared to random forest and XGBoost DTCO [11],
the proposed model provides 9.1% and 2.1% better gradient
ACC, respectively. Fig. 14 shows the predicted A4,; versus
golden 4;;of backside PDN prediction (i.e., orange points). The
block-level area difference of backside PDN technology, which
brings the systematic physical layout change at the block level,
cannot be fully captured (i.e., MAE is larger than 0.1) with only
front-side PDN training data wusing random forest,
XGBoost DTCO [11], and the proposed model. As a result, we
further study the accuracy improvement of prediction models
using various ratios (i.e., 10% 80%) of backside PDN data
points to update the models, which is the outer loop in Fig. 3(b).

Fig. 15(a) shows the MAE of backside PDN prediction of
XGBoost DTCO [11] and the proposed model with various
ratios (i.e., 10%—80%) of backside PDN data points for
updating the models. The proposed model provides larger
accuracy improvement than XGBoost DTCO [11] when giving
a ratio of backside PDN data for model update. Moreover, the
proposed model achieves up to 60.8% MAE reduction when
updating the model with 20% backside PDN data. Fig. 15(b)
shows that predicted 4,; versus golden 4;;0f 0%, 10%, and 20%
backside PDN data for model update. From Fig. 15(b), the
proposed model can efficiently capture the block-level area
difference (4,,) of backside PDN with 10%—20% backside PDN
data for model update. This shows that the proposed model can
be updated efficiently and robustly with small amount of data
of new technologies, which leads to the systematic physical
layout change at the block level.

To summarize, the bootstrap aggregation technique creates
meaningful simulated datasets from the given training dataset,
which can reduce model variance while avoiding overfitting.
For each GBRT model in the proposed model in Fig. 5, the
gradient boosting tree technique improves the accuracy by
sequentially building an ensemble of K regressors to minimize
the prediction error. Therefore, the proposed model can provide
better accuracy and robustness than random forest and
XGBoost DTCO [11] model on predicting new PDN setting
and backside PDN architecture.

E. Robustness of New Circuit Prediction

We study the robustness of the proposed modeling approach
for predictions on new block-level circuits in this experiment.
Here, we iteratively select one synthesized block-level circuit
out of the six synthesized block-level circuits (i.e., Table II) for
testing the robustness of model prediction on new designs. Then,
train the model with the rest of the five synthesized block-level
circuits with all SDC library sets, DRs, and BEOL settings and
apply the trained prediction model to predict 4;; of the selected
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synthesized block-level circuit with all the SDC library sets,
DRs, and BEOL settings.

Table IX shows the robustness of random forest,
XGBoost DTCO [11], and the proposed model to make
predictions on designs unseen in the training set. The average
MAE and average gradient ACC are 0.0555 and 87.91% for
DTCO and STCO sensitivity prediction on new designs using
the proposed model, respectively. Moreover, the proposed
modeling approach achieves 24.22% and 3.40% smaller
average MAEs than random forest and XGBoost DTCO [11],
respectively. Also, the proposed model provides 9.84% and
0.73% better gradient ACC on average than random forest and
XGBoost DTCO [11], respectively. This shows that the
proposed model is able to robustly guide DTCO optimization
on designs unseen during training.

Regarding runtime performance, it takes less than 1 min to
predict 10k block-level area sensitivities of one technology to
another technology. On the other hand, it takes more than 8 h to
extract the minimum valid block-level area of a new technology
combination for block-level metric comparison (i.e., 4;;) as
described in Section III-A. The proposed prediction model
achieves more than 100x speedup on finding the optimal
technology candidate in the potential technology list compared
to running the block-level P&R runs for multiple potential

technology candidates, extracting the minimum valid
(a)
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Fig. 15. Accuracy improvement with various ratios of backside PDN data for
model update. (a) MAE versus ratio of backside PDN data for model update.
Orange/blue number is the reduced MAE percentage of XGBoost DTCO
[11]/proposed model compared to 0% backside PDN data for model update. (b)
Predicted 4;; versus golden 4,; of 0%, 10%, and 20% backside PDN data for
model update. The 10%-20% backside PDN data for model update greatly
reduce up to 60.8% MAE for the proposed model.
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block-level area, and finding the optimal technology candidate.
In summary, we show that our modeling approach not only
captures the block-level area difference on new SDC library
sets, BEOL parameters, and various PDN configurations but
also capable of robustly predicting 4;; of various technology
options for new circuit designs.

IV. CONCLUSION

We propose an overall framework along with the proposed
DTCO and STCO sensitivity prediction model, and automatic
SDC synthesis [7], [12] to significantly reduce the TAT of
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Future research directions include: 1) conducting an
extensive study on multiple 3-D SDC architectures, such as
many-tier VFET SDC [30]; 2) incorporating more circuit
designs in the study (i.e., deep learning accelerators [31]); and
3) extending the DTCO and STCO area sensitivity prediction
model for power and performance metrics.
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