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There has been widespread adoption of IDEs and powerful tools for program analysis. However, programmers still find it difficult
to conveniently analyze their code for custom patterns. Such systems either provide inflexible interfaces or require knowledge of
complex query languages and compiler internals. In this paper, we present SPORQ, a tool that allows developers to mine their codebases
for a range of patterns, including bugs, code smells, and violations of coding standards. SPorQ offers an interactive environment
in which the user highlights program elements, and the system responds by identifying other parts of the codebase with similar
patterns. The programmer can then provide feedback which enables the system to rapidly infer the programmer’s intent. Internally,
our system is driven by high-fidelity relational program representations and algorithms to synthesize database queries from examples.
Our experiments and user studies with a VS Code extension indicate that SPOrQ reduces the effort needed by programmers to write

custom analyses and discover bugs in large codebases.

ACM Reference Format:

Aaditya Naik, Jonothan Mendelson, Nathaniel Sands, Yuepeng Wang, Mayur Naik, and Mukund Raghothaman. 2021. SPorQ: An
Interactive Environment for Exploring Code using Query-by-Example. In The 34th Annual ACM Symposium on User Interface Software
and Technology (UIST °21), October 10-14, 2021, Virtual Event, USA. ACM, New York, NY, USA, 24 pages. https://doi.org/10.1145/3472749.
3474737

1 INTRODUCTION

Programmers often need to explore patterns within their code. These may include patterns that typically raise alarms
with compilers, static analyzers, and bug finders. However, they may include more specific patterns as well which may
be beyond the scope of these tools. For example, to conform with the C++ Core Guidelines [52], the programmer may
want to check that the ‘auto’ keyword has been used to avoid redundant repetition of type names, except in certain
contexts, such as while declaring public class members. Java programmers may want to explore locations in the code
where a thread is spawned. This would correspond to searching for indirect calls to the ‘run()’ method defined in all
subclasses of ‘java.lang.Thread’. Programmers may also wish to refactor their code. For example, consider a scenario

where an API that is heavily used in a codebase received a major update, and as a result, each use of that API must be
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Fig. 1. Annotated screenshot of the user interface of Spora.

changed to comply with the latest version. As a result, the programmers maintaining the codebase would want to find
all outdated uses of that particular APL

When programmers want to answer such questions about their code, they have access to a range of sophisticated
developer tools. Still, they are often forced to compromise between ease of use and flexibility of application. IDEs
provide convenient preset interfaces, but are typically limited to locating the declarations and uses of program elements.
These presets tend to prove insufficient for tasks requiring a deeper understanding of the programs. Linters and program
analyzers allow programmers to access deep facts about their programs. However, these tools are targeted towards
general developers and support only common analyses out of the box. In a survey conducted by Microsoft [15], the
main obstacle to using static analyzers cited by respondents was the mismatch between their needs and the default
settings of the static analyzer. The survey also mentions that 21% of developers who stopped using static analyzers did
so because they could not find one that fit their needs. If developers wish to perform analyses that are more specific to
their needs, they would need to either customize existing tools or build their own. However, in an earlier study [25], 17
out of 20 participants criticize existing tools for not accommodating the customizations that they want. Additionally,
extending such tools for specific use cases requires specialized knowledge, such as of compiler internals. Recent tools
like Semmle [45] provide users with a powerful query model which allows users to potentially write their own analyses,
but such tools require knowledge of complex query languages and expose unusual user interfaces.

In this paper, we introduce SPORQ, an interactive environment that makes it easier for programmers to perform
custom analyses such as the ones described above. The user begins by highlighting a snippet with some property
of interest (Figure 1-1). The desired property can range from specific classes of bugs (such as casting instances of
a supertype to variables of its subtype) to code smells (such as checking floating-point numbers for equality) and
even more general instances of programming patterns (such as pairs of mutually recursive functions). The system
responds by inferring the user intent and identifying other snippets with similar properties (Figure 1-2). By labelling
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the returned examples as being desirable or undesirable, the user provides feedback which enables the system to refine
its hypothesis (Figure 1-3). Over several rounds of feedback, the system converges to an understanding of the user
intent and accurately identifies other instances of the same pattern in the codebase.

Notably, the programmer needs no specialized knowledge beyond a general understanding of types, expressions,
and statements, since the primary mode of interaction involves the user highlighting, triaging, and labelling examples,
as depicted in Figure 1. Still, the user is free to examine the learned query, which is expressed in Datalog [1], a logic
programming language which has found a variety of applications in program analysis [51], knowledge discovery [27],
and database query engines [14]. This can provide expert users with explanations of predictions made by the system
and facilitate trustworthy interaction. This stands in stark contrast to interfaces that employ machine learning models
such as deep neural networks that are impractical for humans to interpret.

The flexible interface exposed by SPORQ encourages programmers to explore: by freely labelling snippets returned by
the system or by withdrawing previous feedback, users can provide speculative labels or even change their minds, and
are therefore under no pressure to provide accurate feedback. They are also free to add explanatory columns, which
can clarify why a particular snippet of code is interesting, thereby helping the system to disambiguate their intent.

Internally, the system represents the program as a relational database. We build on recent work on Semmle’s CodeQL,
which analyzes code in a range of languages including C/C++, Python, Java, and JavaScript, and extracts tables that
collectively describe diverse aspects of the program, including its syntax tree, expression types, call graphs and data-flow
relations [45]. These relational representations enable the use of powerful query formalisms such as Datalog to extract
facts and draw conclusions about the program, and have emerged as a popular approach to creating program analysis
tools [11, 38, 56]. SPORQ analyzes these tables and synthesizes a Datalog query which is consistent with the labels
provided by the user.

The central challenge is to scale the synthesis procedure to the large databases produced by Semmle. On moderate-
to-large sized C programs comprising 10k—129k lines of code, these databases range in size from 80k to 928k tuples
over a relational schema comprising 68 tables. GenSynth [35], a state-of-the-art synthesizer based on evolutionary
search, takes ~ 200 seconds on a database comprising 1k tuples in a single table. We extend GenSynth with three
important optimizations: parallelizing the search algorithm by taking into account available resources on the host
machine, reusing the results of intermediate computations across the evaluation of different candidate queries, and
pruning irrelevant portions of the database using insights from our application domain. Together, these optimizations
enable to scale GenSynth to realistic codebases in SPORQ’s interactive setting with real-time expectations.

An important aspect of SPORQ’s usability concerns its sample efficiency, i.e., the number of labels needed to identify
the desired query. To accelerate this process, in addition to the traditional binary labels provided to examples, we
introduce two new feedback mechanisms which allow the user to efficiently prune large parts of the search space. The
first is a mode which we call generalized negative feedback, by which the user can label an entire set of rows as being
undesirable. Furthermore, we allow the user to identify specific columns as primary keys, thus allowing the system to
reject candidate queries that violate the implied database integrity constraints. Taken together, generalized negative
feedback and uniqueness constraints significantly improve the sample efficiency of the learning algorithm, allowing us
to discover the target query with an average of less than 6 labels on real programs.

We have implemented a prototype of SPorQ as a VS Code extension for C/C++. We evaluate our prototype on a suite
of 17 diverse code patterns applied to 5 programs, including well-known open-source projects such as the GNU core
utilities, MySQL C++ Connector, and the Fish shell. In all these cases, SPorQ identifies the correct pattern in fewer

than 7 rounds of feedback, with each round of synthesis requiring less than 50 seconds on average. In addition, we
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conducted a small user study involving 5 participants and 2 code patterns from our suite. The study indicates that our
system is effective at helping users learn patterns in real codebases and is easier to use than two state-of-the-art tools,

Semmle [45] and Semgrep [17].

Contributions. To summarize, we make the following contributions in this paper:

(1) We present a new method for programmers to find patterns in their code by interactively highlighting examples
and providing feedback on automatically generated suggestions.

(2) We introduce new feedback modes, including generalized negative examples and uniqueness constraints, which
significantly improve the sample efficiency of query-by-example techniques.

(3) Using a prototype VS Code extension, we demonstrate the superior usability of our technique through a small
user study in which participants find bugs in large programs.

(4) Finally, we conduct an experimental evaluation which shows that SPORQ can infer sophisticated checkers on real

programs with small amounts of labelled data and quick turnaround times.

The rest of the paper is organized as follows. Section 2 provides an illustrative overview of SPORQ’s user interface.
Section 3 reviews relational program representations and the Datalog query language that underlie SPORQ. Section 4
describes the design and implementation of the SPORQ system. Section 6 presents findings of a user study and Section 5
empirically evaluates SPORQ. Section 8 discusses threats to validity of our studies and limitations of SPOrQ. Section 7

discusses related work and finally Section 9 concludes.

2 ILLUSTRATIVE OVERVIEW

In this section, we present an overview of SPOrRQ from the perspective of the user who wishes to identify some
meaningful pattern in their codebase. For each scenario covered in the discussion in Section 1, the user interaction
model is the same. As a running example, we consider an unsafe cast checker for C programs, which finds snippets
of code that cast a value of floating-point type (such as float or double) to an integer type (such as int or long).
Such casts are potentially unsafe because they can cause a loss in precision, produce unexpected results, or even have
security implications [16].

Any tool for exploring variations of a code snippet must provide a mechanism for the user to annotate the relevant
program elements. In the case of the unsafe cast checker, these elements include at least the cast expression, and
possibly also the source and destination types as additional cues to clarify why a particular instance of a cast is unsafe.
The mechanisms provided by existing environments to identify such elements are either limited in expressiveness or
cumbersome to use, as we will now explain.

Semgrep [17] allows users to write patterns at the familiar level of their source code. An example of such a pattern is
“(int $A) = (int) (float $B)”. Here, $A and $B are meta-variables which the Semgrep engine can match against any
instance of a program variable. However, this pattern is overly specific, is limited to casts in copy assignment statements
such as “x = (int) y” and, moreover, is restricted to cases where the types of the variables x and y are int and float
respectively. Notably, it does not extend even to slight variations of this pattern, such as “x = (int) (y + 2.0)”.

On the other hand, Semmle [45] requires patterns over the program’s abstract syntax tree (AST) to be expressed in a

domain-specific language CodeQL [6]. The desired pattern of unsafe casts can be expressed in CodeQL as follows:
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from Conversion ¢
where c.getUnspecifiedType() instanceof IntegralType
and c.getUnspecifiedType() instanceof FloatingPointType
select ¢
In order to construct this query, the user needs to understand CodeQL’s extensive and unfamiliar library functions
as well as its particular syntax. The intended use case of CodeQL is for security researchers to write broadly applicable
checkers, which programmers then apply to their code. It is challenging for non-expert users to write CodeQL queries,
and GitHub even awards a bounty for specifying new security vulnerabilities in CodeQL [28].
SPorQ provides the best of both worlds—the familiarity of the textual source code representation and the flexibility
of the relational AST representation. The interaction between the user and SPorQ may be broadly divided into three

phases, which we will now describe.
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Fig. 2. Identifying the seed snippet within Spora.

Part 1: Identifying the seed snippet. The user begins by discovering a snippet with the desired property, for example,
the double to int conversion occurring in the expression “(int) cost” on line 494 of the file squeeze. c (Figure 2-1).
As we show in Figure 2, the user conveys their intent to search for unsafe casts by selecting this snippet in the IDE.
In case of ambiguity, SPORQ presents a list of all program elements anchored to the selected location in the program
(Figure 2-2), allowing the user to pick the element most relevant to the downcast (Figure 2-3). The user then proceeds
to similarly select the source and destination types, by hovering over the cost and int sub-parts of the expression, and
identifying the relevant program elements from a list of suggestions provided by SPorQ. At this point, the user has
effectively defined the space of all possible examples of unsafe casts, which can be depicted in tabular form with three

columns, corresponding to the location in the program, and the source and target types respectively. We show three

2] 3]
o oo s o
» »

such examples in Figure 3.

Annotations: EK

Expr/Stmt P Type Type Lal bel}
1  Expression (Conversion) (int) cost Type double Typeint Yes n
2  Expression stats2-slitlens * Type _type * Type const size_t * *

v
3  Expression (Address) &currentstore * Type double £ ANY * No n
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Part 2: Disambiguating user intent. At this point, the user has identified the first positive example, as indicated by
the label “Yes” (Figure 3-1). By clicking on the button named “Add Annotation” (Figure 3-2), they may proceed to label
more examples as positive or negative. At any point, the user can click on the button named “Analyze Annotations”
(Figure 3-3) to ask SPORQ to extrapolate and find other snippets in the codebase which are similar to the positive
examples and dissimilar from the negative examples.

At this point, SPORQ typically produces a large number of predictions (such as the 498 predictions made in Figure 4-1).
This is because of SPORQ’s inability to understand the user’s intent from a single positive example. The user may now
proceed to additionally label any number of the displayed examples as positive by clicking the check button, or negative
by clicking the cross button (Figure 4-2), and instruct SPORQ to re-analyze the annotations. In each round of analysis,
SporQ learns a logic query that is consistent with all the examples labelled so far. In successive rounds, the learned
query converges to the desired pattern of unsafe casts. We show the final query in Figure 5a.

Observe that SPoRrQ is designed to allow users to describe the desired pattern without ever inspecting the underlying
query—throughout the interaction, it suffices to provide binary feedback on examples. However, a key advantage of
learning a programmatic query lies in its explainability. SPorQ therefore allows the user to inspect the current query by
clicking on the button named “Show Latest Query” (Figure 4-3). While we intend this feature to be primarily used by
expert users, it may even aid non-expert users to gauge whether SPorQ is making progress towards identifying the

desired pattern.

Part 3: Generalizing user feedback. SPoRrQ can only be practically useful if it is able to learn the user’s intent from a
small number of labelled examples. Sample efficiency is therefore one of our central considerations in the design of the
system and in our evaluation in Sections 5 and 6.

Consider the situation of the user providing a negative label for a prediction, (e, double, int). This feedback only states
that the expression e does not constitute an unsafe cast from type double to type int. The synthesizer is free to make
other suggestions with the same expression, such as (e, float, int), as long as the learned pattern is consistent with the
provided labels. The system is even free to make other spurious predictions, such as (&currentstore, double, double),
where the highlighted expression, &currentstore, does not even correspond to a type cast. As a result, if the user
only labels individual examples as positive or negative, the search space might not be sufficiently constrained, and the
system might require a prohibitively large number of examples to learn the target query.

We therefore introduce two new modes of feedback—generalized negative examples and uniqueness constraints—that
dramatically reduce the user’s annotation burden. We now describe each of these.
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While triaging a prediction such as (&currentstore, double, double), the user may conclude that the expression
&currentstore does not correspond to an unsafe cast, regardless of the values of the other two columns. They are there-
fore in a position to not just disallow this prediction, but also any other prediction of the form (&currentstore, ANY, ANY).
By clicking on the asterisk in the corresponding columns (Figure 3-4), the user can conveniently provide negative
feedback on this entire set of potential predictions, thereby pre-emptively eliminating a large number of candidate
queries. We call feedback of this form a generalized negative example.

Conversely, SPorQ also allows the user to generalize feedback for positive examples by specifying uniqueness
constraints. Consider a specific expression e. Left unconstrained, the pattern learned by our system may simultaneously
produce multiple predictions involving e, such as (e, double, int) and (e, float, int). At least one of these predictions
has to be incorrect, since any given cast expression has unique source and target types. We allow the user to describe
such properties—which correspond to key constraints in relational databases—by clicking on the icon of the key in
the left-most column (Figure 3-5). This constrains SPORQ to never produce multiple predictions with the same value
of the first column. In other words, the predicted snippets are uniquely determined by the value of the first column.
Uniqueness constraints dramatically generalize the information obtained from positive examples, such as from the
snippet in the first row, since the unlabeled examples with (source, destination) types other than (double, int) are
implicitly labeled negative.

Finally, SPorq allows the user to withdraw any feedback at any point during the interaction process (Figure 3-6).
This feature relieves users from the pressure of having to provide accurate feedback upfront. It also encourages them to
explore freely and revisit past decisions based on knowledge gained during exploration, such as by discarding the label

they provided to an example, adding explanatory columns, or by removing uniqueness constraints.

3 RELATIONAL PROGRAM REPRESENTATIONS

The choice of program representation is crucial to the design of any compiler, program analyzer, or IDE. SporQ employs
a relational representation which represents a program P as a set of tabular relations I. Two key procedures interest us:
(a) compiling the program to a database that conforms to a schema for the program’s language (e.g. C or Python), and
(b) querying the database using a declarative logic programming language akin to SQL. These procedures correspond to
the tasks of data ingestion and query evaluation respectively. We denote them by the functions compileProgram and

evaluateQuery respectively, and describe each of them in order below.

Codebases as Databases: The compileProgram Function. In designing SPorQ, we build on Semmle’s industrial-
strength CodeQL which defines schemas for common programming languages including C/C++, C#, Go, Java, Javascript,
and Python. SPorQ also leverages Semmle’s custom compilers which parse codebases written in these languages and
generate databases that conform to their corresponding schemas.

As an example, we depict the portions of Semmle’s schema for the C language which are relevant to our unsafe
cast checker in Figure 5b. For instance, the Expr relation contains a row (tuple) for each expression that occurs in the
parse tree of the C program. The row includes the following columns: id, an integer value that uniquely identifies the
expression, which is underlined to indicate that it is a key of the relation; kind, an integer value which indicates the
kind of expression; and location, an integer value which indicates the expression’s location in the codebase.

The relations are populated from a given C program using Semmle’s C compiler. Figure 5c shows relevant parts of
these relations generated from a small code snippet (we defer explaining the meaning of the Alarm relation and the
labeled edges between rows to later in this section). The database generated for a full-fledged program can comprise
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Alarm(location, src_type, dst_type) : - Expr(int id : @expr, int kind : int ref, int location : @location_expr ref);
Expr(expr2, _, location), Conv_Kind(int expr_id : @cast ref, int kind : int ref);
Conv_Kind(expr2, ), Expr_Conv(int converted : @expr ref, int conversion : @expr ref);
Expr_Conv(exprl, expr2), Expr_Type(int id : @expr ref, int typeid : @type ref,
Expr_Type(exprl, src_type, _), int value_category : int ref);
Expr_Type(expr2, dst_type, _), Float_Type(int id : @type ref);
Float_Type(src_type), Integral_Type(int id : @type ref);
Integral_Type(dst_type). ... // 192 more relations
(a) Unsafe cast checker in Datalog. (b) Relational schema of C programs (partial).
Alarm Expr Conv_Kind
void foo() { location | src_type | dst_type expr kind | location expr kind
. f foo:7 double char expr2 foo:7 expr2
7: Echar x = (char) (2/0.5); ‘_ exprl x
Integral _T
* ‘egtyap; = Expr_Type Expr_Conv
char — expr type_id | val_cat from to
Is lh'e cast a'\t Io'catio‘n foo:7
from 'double’ to 'char' a bug? expr2 char exprl | expr2
‘l Yes I’ No Float_Type f exprl | double
type
double

(c) Relational representation of the inputs (program facts) and outputs (example labels) of the unsafe cast checker.

Fig. 5. lllustration of how programs, examples, and queries are represented in SPORrRQ.

hundreds of thousands of tuples. For instance, the GNU coreutils project comprising 90K lines of C source code results

in a database comprising 367,628 tuples.

Querying Code in Datalog: The evaluateQuery Function. Representing codebases as databases enables the use of
logical formalisms to query them, write custom bug checkers, and even specify entire program analyses. SPOrQ employs
the logic programming language Datalog [1] which has emerged as a popular query language in the program analysis
literature due to its concise and declarative nature, rich expressivity, and efficient off-the-shelf solvers [4, 44, 56].

A Datalog query Q comprises a set of rules that specify how to compute a set of output relations from a set of input
relations. As an example, Figure 5a shows a Datalog query specifying the unsafe cast checker. It comprises a single rule,

seven input relations (Expr, Conv_Kind, etc.), and a single output relation Alarm. A rule is a Horn clause of the form:
Ry (%) = Ri(%1), ... Rn(%n).

where the x;’s are vectors of variables of appropriate arity. The rule is read from right-to-left as a universally quantified
implication: for all variable valuations %, if each of tuples Ry (x71), ..., Rn (%) are derivable, then so is Ry (x3,).

The evaluation of a query begins with the tuples in the input relations, and repeatedly applies the rules in arbitrary
order to derive new tuples, until no further tuples can be derived. In the case of our unsafe cast checker, which is
non-recursive, a single application of the single rule suffices. SPOrQ uses the Soufile solver [44] which incorporates
sophisticated optimizations to efficiently evaluate Datalog queries. For instance, evaluating the unsafe cast checker on

the GNU coreutils project takes only 0.029 seconds.
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Fig. 6. System architecture of Sporaq.

4 DESIGN AND IMPLEMENTATION OF THE SPORQ SYSTEM

In this section, we describe the main technical contributions in developing SPoRrQ, whose architecture we describe in
Figure 6. We formally present the interaction loop in Algorithm 1. We start with a statement of the Datalog query
synthesis problem in Section 4.1, describe our optimizations to the GenSynth evolutionary program synthesizer in

Section 4.2, and conclude with a description of our prototype implementation in Section 4.3.

4.1 The Datalog Query Synthesis Problem

The computational core of SPORrQ involves the synthesis of Datalog queries from examples provided by the user. As
the user provides positive and negative labels to individual snippets, we add or remove the corresponding tuples from
the Alarm relation. For example, consider the snippet shown at the far left of Figure 5c. If the user labels the type cast
on line 7 of foo() as positive (i.e., a bug), then the corresponding tuple (foo:7, double, char) is added to the Alarm
relation. Then, clicking the button named “Analyze Annotations” in the user interface (Figure 1) triggers a call to a
Datalog query synthesizer, which we denote by the synthesizeQuery function and explain below.
Programming-by-example (PBE) systems have traditionally expected the user intent to be described using a set of
concrete positive and negative examples. In our setting, a concrete example is a tuple ¢, and may be labelled as either
positive or negative, indicating whether it is desirable or undesirable respectively. Since our examples are provided by
the user in response to a previous synthesis attempt, we synonymously refer to these example tuples as feedback. We

may formalize synthesis from concrete examples as the following computational problem:

Problem 1 (Synthesis from concrete examples). Given the set of input relations I, the set of concrete positive examples OF
and concrete negative examples O , find a query Q which: (a) produces all positive examples, i.e., OF C evaluateQuery(I, Q),

and (b) which does not produce any negative examples, i.e., O; N evaluateQuery(I, Q) = 0.

The problem of synthesizing logic queries from relational input-output data forms the subject of a sub-field of AI
called Inductive Logic Programming (ILP). We refer the reader to Cropper et al. [18] for a comprehensive survey.

As described in Section 2, one of the central challenges in building a system such as SPORQ is to infer the user’s intent
from small amounts of labelled data. To achieve this, we would like to enable the user to provide as much information
about the target concept as is conveniently possible. We therefore introduce the concept of a generalized negative

«, »

example, which is a tuple t* where some of the columns have been replaced with a special don’t-care term, “+”. We say
9
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that a concrete tuple ¢ matches a generalized tuple t* if the two tuples agree on all columns i where ¢} # *. We denote
this by the notation t ~ t*, formally defined as V column indices i, t;'k EFx = ;= t;‘

Consider the tuple ¢t = (foo:7, double, char), and the generalized tuple obtained by replacing its second and third
columns with *: t* = (foo:7, %, ). Since the two tuples agree on the first column, we write ¢ ~ t*. Consider another
tuple ¢’ = (foo:10, double, char). Since ¢’ and t* do not agree on the first column, ¢’ + ¢*. If the user indicates that
they are uninterested in line 7 of the file foo. c, then by enforcing the generalized negative example t*, they eliminate
not just £, but other matching tuples, such as t”/ = (foo:7, char, double).

The positive and negative examples (concrete or generalized) respectively provide lower and upper bounds on the
output of the synthesized query Q. Users can sometimes provide additional information about the structure of their
intended query. For example, they know that the first component—indicating the location of the cast—is the central
component of the output, and that the remaining two columns simply indicate the source and destination types, both of
which are uniquely determined by the first column. By building on the closely related concept of integrity constraints
in relational databases, we introduce the idea of uniqueness constraints for query-by-example systems.

Formally, let K C S be a set of user-specified columns, where S is the schema of the output relation. We say that a
query Q satisfies the uniqueness constraints imposed by K with respect to the input relations I if each pair of output
tuples, t,¢’ € evaluateQuery(I, Q) disagree on some element of K: 3 some column i € K such that t; # t.

By adding generalized negative examples and uniqueness constraints to the previous problem statement, we obtain
the generalized QBE problem that we solve in SPOrRQ. We refer to any procedure which solves this problem with the
function synthesizeQuery(I, O}, 0;,,K).

Problem 2 (Synthesis from generalized examples). Given the set of input relations I, the set of concrete positive examples
O, generalized negative examples O, and key constraints K, find a query Q which: (a) produces all positive examples,
ie, O C evaluateQuery(I,Q), (b) none of whose output tuples match any generalized negative example, ie., ¥t €

evaluateQuery(I, Q), Vt* € O;,, t + t*, and (c) which satisfies the uniqueness constraints imposed by K with respect to I.

4.2 Synthesizing Queries Using Evolutionary Search

Algorithm 1 SporQ(P, t). Given a program P and seed example t, runs the main interaction loop.

(1) Let I = compileProgram(P). Compile the program using CodeQL and initialize the input relations.
(2) Initialize the synthesis constraints, with positive feedback, O;r = {t}, negative feedback, O,, := 0, and key
constraints, K = S, where the schema S is the set of all columns in the output.
(3) Repeat until the user stops responding:
(a) Let Q = synthesizeQuery(I, O}, O;,,K). Find a query which is consistent with the user’s feedback.
(b) Let O = evaluateQuery(I, Q). Evaluate the synthesized query to obtain the list of predictions.
(c) Assert that O is consistent with the synthesis constraints (O}, Oy, K).
(d) Highlight the predictions in O for triaging by the user.
(e) Collect the new feedback provided by the user, (A*, A™, Ak), and update: Og’ = 0" UAT, 0, =07 UA",
and K := K’.

SPORQ relies on GenSynth to solve Problem 2 [35]. At its core, GenSynth uses a genetic algorithm that maintains
a population of Datalog programs, and operates by repeatedly mutating the programs of this population with small
changes. After each batch of mutations, the programs which best fit the synthesis constraints are preserved for further

mutation. We visualize this process in Figure 7. We represent the best performing programs of each generation with
10
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Population
A

Generation 0 Qi > Q; Query Q; obtained by applying

a single mutation to Query @;.

Generation 1
Query subject to further mutation within current
@) Ty subj
generation before its fitness is evaluated.

Time

e) Query with fitness above threshold is selected for

Generation 2 proliferation in next generation.

) Query with fitness below threshold is removed from
consideration in next generation.

Q@ Query Q@+ fits the data. GenSynth terminates all
populations and reduces @ to final query Q.

Generation 3

Fig. 7. lllustration of a single population of queries evolving over time in GenSynth.

white circles, which survive to the next generation, while the remaining programs, shaded in gray, are discarded. As a
result, the fitness of the best program in the population monotonically increases over time, until it perfectly matches
the user’s constraints. By running multiple populations in parallel, GenSynth significantly reduces the time needed for

a population to discover a solution. The synthesis algorithm used by GenSynth may be summarized as follows:

(1) Run b = 64 populations in parallel. Within each population:
(a) Initialize the population P by sampling n = 8 seed queries from a distribution D.
ile maxpep score <1
(b) Whil 0 Q)

(i) Construct the subsequent generation P’ by mutating each query s ~ Unif(1,7) times:
P’ = {muTtaTE(Q) | Q € P,i € {1,2,...,s}}.
(ii) Update P to be the n queries in P’ with highest scores:
P = top-n (score(Q")). (1
oep
(c) Kill the remaining populations and return the query Q = arg maxg p(score(Q)).

GenSynth defines the scoring function score(Q) as the F score of the query output evaluateQuery(I, Q) with respect
to the positive and negative examples (O}, O; ). To add support for generalized examples and key constraints, we modify
the computation of the scoring function to compute the F; score with respect to the generalized examples, (Of, O;,, K).
We have also made extensive improvements to the tool to enable it to scale to the massive datasets produced by Semmle.

We will now describe these modifications.

Scheduling multiple populations over physical worker threads. One important challenge with using GenSynth
as the query synthesizer involves adapting it to run on commodity hardware used by programmers. Therefore, instead of
running all b = 64 populations in parallel, which would involve a large number of processor threads, we instead schedule
these logical populations across a set of k = 4 physical threads. We spawn these k worker threads, each of which is
responsible for b/k populations. The threads in turn cycle through their assigned populations, running one generation
of each before switching to the next. This allows us to achieve the benefits of a large number of populations—which
greatly reduces the time to reach a solution—while still running on most developer machines, which typically only

have 2 or 4 physical cores.
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Population-wide batching of query evaluation. Computing the score of the queries in Equation 1 requires evalu-
ating the queries Q’ € P’ with calls to evaluateQuery (I, Q’). GenSynth uses Souflle, a state-of-the-art Datalog solver
for query evaluation. In large datasets such as those extracted by Semmle, a significant fraction of the time is spent by
the Datalog solver in loading the relations I from disk. Our second optimization therefore involves batching all of the
queries of a generation into a single call to Souffle, thereby amortizing the time needed to load the relations.

The idea is to uniquely rename the output relation produced by each candidate query Q” € P’ so the output produced

by each query can be recognized. For example, say that P’ = {Q1, Q2} consists of two queries as follows:
Q1: Alarm(xo, x1,x2) :— Expr(xo, x2, x1), [Float_Type(xz), and
Q2 Alarm(xg, x1,x2) = Expr(xo, x2, x1), Expr_Conv(xs, xo), Integral_Type(x2).

Instead of separately invoking evaluateQuery(I, Q1) and evaluateQuery(I, Q2), we rename the output relations of the

two queries as follows:

Q7 : Alarml(xo, x1,x2) == Expr(xo, x2, x1), IFloat_Type(xz), and

Qé : Alarm2(xp, x1, x2) — Expr(xg, x2, x1), Expr_Conv(xs, xg), Integral_Type(xz),

and evaluate both of them with a single call to Souffle, as evaluateQuery(I, {Q{, Qé}) Sharing computation across

multiple queries in this manner greatly reduces the amount of time spent within Souffle.

Pruning the input database for scalable synthesis. Despite the previous optimizations, scaling the synthesis
procedure remains an challenge. Our solution in SPORQ is to perform aggressive pruning of the input relations I. We
perform this pruning at three levels: First, at the level of the source code, we restrict our attention to files, functions, and
code units which are of interest to the programmer, and exclude libraries and other source units which are unlikely to
contain bugs. Second, at the level of the schema, we only consider those relations which are likely to be relevant to the
problem. Finally, we assume that the target concept can be explained with a short query, and that all input tuples which
are necessary to explain the positive examples are within = 2 edges from the positive tuples in Figure 5c. Together,
these three pruning methods—source-level pruning, schema-level pruning, and f-pruning—are necessary to enable
our system to return results in a real-time manner. On the other hand, the architecture of SPorg is agnostic of the

underlying synthesizer, and we can therefore naturally leverage research advances in efficiently solving Problem 2.

4.3 Implementing the IDE Extension

We chose to implement SPorQ in TypeScript as an extension to the Visual Studio Code IDE. The interface sits side-by-side
with the code editor, allowing users to easily compare their code with the results returned by SporQ without switching
windows. Clicking on any of the links in the predictions or annotations pane immediately brings up the relevant section
of code in the editor.

Internally, SPORQ represents programs as relational databases, so the interface was designed to be similar to that of a
visual database management system. The results are presented in tabular format in which columns can be added or
removed. The user adds a uniqueness constraint by clicking on a key icon, which is identical to the icon denoting a
primary key value within MySQL Workbench. The all-caps ‘ANY’ label which marks generalized negative examples is
taken directly from standard SQL syntax, and the asterisk button is analogous to the wildcard character used in SQL
‘SELECT’ statements. One advantage of embedding SPorQ within VS Code is that the IDE’s own code suggestions can
be used as prompts to craft new queries. For example, suppose a light bulb icon appears next to a line of code with

12
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Pattern Description #Preds #Cols #Vars #Negs
bool-compare Boolean expression compared with integer expression. 5 9 5 1
cast-to-signed Cast of int-types from unsigned to signed. 6 12 7 0
complex-conds Overly complicated boolean conditions. 2 5 4 0
const-conds Use of a boolean or integer literal as a condition. 3 6 4 0
const-void-funcs  Const member functions with void return type. 3 3 1 0
dangerous-funcs  Use of unsafe localtime function (CWE-676). 3 6 4 0
eq-bool-consts Unnecessary comparison of boolean variable with boolean literal. 2 5 3 0
float-conversion  Cast from double-type to float-type. 6 12 7 0
long-inline-funcs  Inline-qualified functions with more than 10 SLOC. 2 3 2 0
mutual-recursion  Mutually recursive functions. 5 10 4 1
pointer-arith Use of pointer arithmetic. 3 9 7 0
sign-compare Comparison of signed types with unsigned types. 8 16 9 1
string-compare Improper comparison of C-strings. 7 14 8 2
unsafe-casts Unsafe cast from float-type to int-type. 6 21 15 0
unsigned-ge-zero  Greater-than or equal comparison of unsigned variable with zero. 3 6 4 0
unused-locals Local variables that are never used after declaration. 3 4 2 1
use-goto Use of goto statement. 2 4 3 0

Table 1. Description and statistics of code patterns in our evaluation.

a suggested refactoring action. The programmer may wish to explore whether similar lines of code exist elsewhere.
SPORQ can use this particular example to construct a matching query. In contrast to an IDE’s own suggestions, which
may be limited to the file that is currently open, SPORQ can return results across the entire codebase.

Upon activation in a new project, we compile the codebase using CodeQL to construct the relational representation,
and use a set of extractor queries to obtain comma-separated files that describe the input relations. We also use these
extractor queries to obtain mappings from numeric identifiers used within CodeQL (such as to reference expressions,
functions, and other program elements) to explicit locations in the source code for highlighting and to present to
the user. Because the schema used by CodeQL is language-specific, adding support for a new language inside SPorRQ
involves writing a new set of extractor queries. Our current prototype supports C and C++, but providing support for
other languages is conceptually straightforward.

After providing the initial example and after each subsequent batch of feedback, the user clicks on the button titled
“Analyze Annotations”. At this point, SPORQ maps concrete source locations to the underlying numeric identifiers,
and invokes GenSynth on the current set of examples. Once synthesis is complete, the learned query is applied to
the program to obtain the new set of predictions, which are in turn translated back to concrete source locations and

presented to the user for triaging.

5 EXPERIMENTAL EVALUATION

To evaluate SPORQ, we conduct experiments that aim to answer the following research questions:

RQ1 Is Sporg able to learn diverse code patterns on large real-world codebases?
RQ2 How quickly does SPorQ synthesize the query between successive rounds of interaction?

RQ3 How much user feedback does SPorQ need to learn the desired code pattern?

13
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Codebase Description Language SLOC # Tuples
coreutils File, shell, and text manipulation utilities of GNU operating systems C 90k 367,628
fish-shell Smart and user-friendly command line shell for macOS and Linux C++ 51k 558,094

mysql-conn  C/C++ database connector for MySQL servers C++ 129k 927,871
snap Stanford network analysis platform C++ 84k 191,500
zopfli Google library to perform good but slow deflate or zlib compression C 10k 79,713

Table 2. Description and statistics of codebases in our evaluation.

5.1 Benchmarks

Patterns. To obtain realistic code exploration tasks for our evaluation, we collect existing code patterns from two
sources: (1) static analysis frameworks like Semmle and Semgrep, and (2) warning rules from compilers like GCC.
Overall, we collect 13 patterns from static analysis frameworks and 4 patterns from compiler warnings. These code
patterns can match a diverse set of code snippets, ranging from potential bugs (e.g., comparing two strings using the
equality operator), security vulnerabilities (e.g., use of dangerous functions like localtime), to coding styles (e.g.,
comparing boolean expressions against literals true and false). The characteristics of all 17 patterns are summarized
in Table 1. In order to characterize the complexity of the patterns, we manually write a ground-truth Datalog query for
each pattern and collect statistics about the ground-truth query. Specifically, the “# Preds” column in Table 1 shows the
number of predicates in the body of the Datalog query. “# Cols” shows the total number of columns in the body, which
is equal to the sum of the arities of all predicates in the body. The next column “# Vars” presents the number of variable

occurrences in the body, and the last column “# Negs” shows the number of negated predicates.

Codebases. To find codebases that contain snippets matching the collected patterns, we write CodeQL queries for all
of the 17 patterns and use the Semmle framework to search over Github repositories. We choose a set of 5 representative
codebases as described in Table 2. The size of collected codebases ranges from 10k to 129k lines of source code, and the

number of tuples in their corresponding databases ranges from 80k to 928k.

Experimental setup. To evaluate SPORQ on a diverse set of patterns and real-world codebases, we make a list of 17

benchmarks, where each benchmark is a codebase-pattern pair (C;, P;) for i € {1,...,17} such that

(1) each pattern P; is unique

(2) codebase C; contains code snippets that match pattern P;

For each pair of codebase C; and pattern P;, one of the authors ran SPorg on codebase C; with uniqueness constraints
and generalized negative examples as necessary, aiming to find all code snippets that match pattern P;.

All of our experiments are performed on a Macbook Pro laptop with a 8-core 2.3GHz CPU and 16 GB of physical
memory. We set the maximum rounds of interaction between the user and SPORQ as 20 and stopped exploring the
codebase when this bound was exceeded. We also set a timeout as 5 minutes for the underlying synthesizer. If the

synthesis time goes beyond the limit in a particular run, we immediately concluded failure.

5.2 Main Results

Table 3 summarizes the evaluation results of all 17 benchmarks. Recall from Section 4.2 that we perform three levels
of pruning on the input database. The column “# Tuples” in Table 3 describes the number of tuples in the pruned

database. The next four columns present the results of interacting with SporQ. Specifically, “# Pos” and “# Neg” show
14
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Codebase Pattern # Tuples #Pos #Neg #Rounds Avg Time (s)
bool-compare 6,837 1.7 4.0 4.0 5.3

coreutils mutual-recursion 4,503 1.0 0.0 1.0 6.4
use-of-goto 14 1.7 1.0 2.0 2.1
dangerous-funcs 14,711 1.0 1.0 2.0 2.1
cast-to-signed 1,253 1.0 43 53 17.1

fish-shell ~ const-void-funcs 534 1.0 2.0 3.0 2.1
const-conds 66 1.0 3.3 43 2.2

mysql-conn sign-compare 4,229 1.3 4.7 5.7 46.8
string-equality 2,361 1.3 4.3 5.3 5.5
long-inline-funcs 23 1.3 0.7 1.7 1.2
unsigned-ge-zero 644 1.3 23 3.3 2.7

snap eq-bool-consts 58 1.3 1.7 2.7 1.9
unused-locals 384 1.0 1.0 2.0 23
complex-conds 95 2.0 2.0 3.0 1.7
float-conversion 435 1.3 4.3 6.3 5.1

zopfli unsafe-casts 1,278 2.0 4.0 5.0 10.1
pointer-arith 432 1.0 0.0 1.1 3.5

Table 3. Main evaluation results of Sporaq.

the number of positive and negative examples. “# Rounds” describes the rounds of interaction between the user and
SPorQ. “Avg Time” is the average synthesis time between two successive rounds of interaction. Since the synthesizer of
SporQ performs evolutionary search that exhibits randomness in the process of generating mutations, we execute each
benchmark for three times. The numbers reported in Table 3 are the average over three runs.

As shown in Table 3, SPORQ is able to solve all of the 17 benchmarks with users providing feedback as needed. Given
that all five codebases are collected from Github repositories with 10k — 129k lines of source code, and the 17 code
patterns cover a variety of applications from compilers and static analysis frameworks, we believe that SPORQ is able to
learn diverse code patterns on realistic codebases (RQ1).

Furthermore, we observe that the average synthesis time is less than 10 seconds for 14 out of the 17 benchmarks, 10 -
20 seconds for 2 benchmarks, and more than 20 seconds for only 1 benchmark (46.8 seconds). All of the queries in the
experiments are synthesized in less than one minute. These results demonstrate that SPorQ can quickly synthesize the
query between successive rounds of interaction (RQ2).

In addition, the evaluation results show that SPOrQ only a needs small amount of user feedback to learn the desired
code pattern (RQ3). Specifically, SPorQ learns the pattern in less than 5 rounds of interaction for 12 out of 17 benchmarks
and 5 — 7 rounds of interaction for the remaining 5 benchmarks. Besides, the number of examples needed from the user
is reasonably small. We provide less than 5 (positive plus negative) examples for 11 benchmarks and 5 - 7 examples for

the remaining 6 benchmarks.

5.3 Impact of Uniqueness Constraints and Generalized Examples

To evaluate the impact of uniqueness constraints and generalized examples on the amount of needed feedback, we
perform another set of experiments on the same benchmarks. However, in the new experiments, we do not use
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No Impact | Both < 20 Rounds | Concrete > 20 Rounds | Concrete Timeout
# Benchmarks 6 7 2 2

Table 4. Comparison between concrete and generalized examples.
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Fig. 8. Impact of uniqueness constraints and generalized examples.

uniqueness constraints or generalized examples. Instead, we only provide concrete positive and negative examples as
the feedback to Sporg.

The comparison results are summarized in Table 4. As shown in the table, there are 6 benchmarks where uniqueness
constraints and generalized examples do not affect the user interaction. The reason is because those benchmarks only
return one column as output, so uniqueness constraints and generalized examples are not applicable. For the remaining
11 benchmarks, uniqueness constraints and generalized examples have significant impact on learning desired code
patterns using SPORrQ. In particular, for 7 out of 11 benchmarks, SPORQ is able to learn the code pattern purely from
concrete examples within 20 rounds of interaction. It requires more than 20 concrete examples to learn the desired
pattern on 2 benchmarks. The underlying synthesizer in SPORQ times out on a laptop after 5 minutes on the remaining
2 benchmarks after obtaining more than 10 concrete examples.

For the benchmarks where SPORQ can learn the pattern with or without uniqueness constraints and generalized
examples, Figure 8 shows the impact in more detail. The x-axis denotes different benchmarks by abbreviated names, e.g.
UGZ for unsigned-ge-zero, EBC for eq-bool-consts, etc. The y-axis represents rounds of interaction in Figure 8(a) and
total number of examples in Figure 8(b). SPorQ-Concrete denotes the new experiment where we only provide concrete
positive and negative examples as feedback.

As shown in Figure 8, SPORQ only needs an average of 2.8 rounds of interaction with 3.0 examples to learn the
desired pattern using uniqueness constraints and generalized examples, while it needs 4.1 rounds of interaction with
5.0 examples if the feedback only consists of concrete examples. Combined with the results from Table 4, we conclude
that uniqueness constraints and generalized examples help to reduce the amount of user feedback for learning many

desired code patterns.
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6 USER STUDY
We perform a small-scale user study to evaluate SPORQ on the following research questions:

RQ4 How effective is SPorQ in helping users find code snippets of interest in realistic settings?

RQ5 How does SPORQ compare to baseline tools Semgrep and Semmle in terms of ease of use?

6.1 Tasks

To design realistic code exploration tasks for the user study, we refer to the patterns and codebases described in
Section 5.1. Due to limited resources, we select one representative pattern to create the user study task from each of the

two sources, respectively.

Task 1: Unsafe cast checker. This task is adapted from Semmle *. It corresponds to our running example that finds

casts from floating point types to integral types. There are three unsafe casts in the provided codebase.

Task 2: Bool integer comparison. This task is adapted from the GCC warning option -Wbool-compare. It identifies
comparison operations between boolean expressions and integral expressions because such comparisons are more
likely to be bugs despite being technically allowed by the language standard. There are nine such comparisons in the
provided codebase.

We choose these tasks for two reasons. First, the code patterns in these tasks cover a set of concepts (e.g., expressions,
types) that are commonly supported by all three tools. Second, these two problems are accessible to participants because

they are familiar with the underlying concepts.

6.2 Participants

We choose 5 graduate students majoring in computer science as participants in the user study. We excluded one
additional participant because of failure to follow our experimental instructions. The pre-study survey shows that
the average familiarity of C/C++ among all participants is 4.2 on a 0-5 scale, with 0 being not familiar at all and 5
being an expert. Using the same scale, the familiarity score for Visual Code IDE is 3.4, and familiarity with program
analysis techniques is 4.0. Note that all of the participants had some experience with program analysis. Since program
analysis is hard, and since all three tools are targeted to programmers who wish to perform some form of analysis,
it was necessary to choose participants who had some experience in the field. Of the 5 participants, 3 report having
some experience with the CodeQL query language and the average familiarity score is 3.0, while the rest report not
having any experience. Similarly, 2 participants have experience with Semgrep (average score: 1.5) but the rest have
no experience. This choice of participants allowed us to gain some insight into the ease of use of SPOrQ compared to

people with and without experience with Semmle and Semgrep.

6.3 Methodology

To answer RQ4 and RQ5, we ask each participant to conduct Task 1 and Task 2 using three different tools: SPorg,
Semmle, and Semgrep. To ensure that experiments are conducted in the same setting for all participants, we provide a
virtual machine with all of the tools installed and ask participants to perform experiments on the virtual machine.

To instruct participants how to use the three tools, we provide each participant with a tutorial and a demo video

of SporQ, where the underlying codebase is different from those used in Task 1 and Task 2. We also provide the

!https://github.com/github/codeql/blob/main/cpp/ql/examples/snippets/castexpr.ql
17


https://github.com/github/codeql/blob/main/cpp/ql/examples/snippets/castexpr.ql

UIST ’21, October 10-14, 2021, Virtual Event, USA A. Naik, J. Mendelson, N. Sands, Y. Wang, M. Naik, M. Raghothaman

Task SPORQ Semmle Semgrep
# Users # Interactions Avg Time (m) | # Users Avg Time (m) | # Users Avg Time (m)
Task 1 5 8.2 22.75 3 18.25 1 35.00
Task 2 3 6 13.81 2 13.47 1 19.21

Table 5. Results of user study involving 5 participants. # Users indicates the number of users who completed the task, while #
Interactions indicates the average number of interactions needed by each user who completed the task. Avg Time is the average
time in minutes taken by these users to complete the task.

documentation of the CodeQL query language used by Semmle and the instructions of Semgrep provided online.
Participants are required to read the documents before they use each tool. They can also refer to online resources (e.g.,
Google or StackOverflow) if needed during the user study. We do not put a hard time limit for each task in the user
study and do not specify the order in which participants use different tools. Each participant decides which tool to use
first at their own discretion.

At the end of the user study, participants are asked to finish a post-study survey that investigates the interaction
experience of each tool, as well as usefulness of different features supported by SPorQ. They also provided comments

and feedback for improving SPORrQ.

6.4 Results

Table 5 summarizes the main results of our user study. The “# Users” column in Table 5 refers to the number of users
who successfully completed the task using the corresponding tool. The “# Interactions” column mentions the average
number of interactions between the user and SporQ, while the “Avg Time” column reports the average time taken by
the users in minutes to complete the task using the corresponding tool. As shown in Table 5, all 5 participants manage
to solve Task 1, and 3 participants solve Task 2 using SPorQ. Overall, participants spend an average of 22.75 minutes on
Task 1 with 8.2 rounds of interaction with SPorQ. For Task 2, it takes participants 13.81 minutes on average with 6
rounds of interactions. Therefore, we conclude that SPORQ can help users to explore programs and find code snippets of
interest in real codebases.

The reason why 2 of the users could not get the correct results for Task 2 using SPORQ can be attributed to some form
of user error. In both cases, the users labeled a correct prediction as false, and one of them had labeled an incorrect
prediction as true, possibly due to not understanding the code snippet corresponding to the prediction they labeled.

By contrast, only 3 participants succeed in solving Task 1, and 2 in solving Task 2 using Semmle. We manually
inspected all the CodeQL queries submitted by the users and found two reasons for the failure. First of all, finding
relevant relations and libraries in a query is difficult for people unfamiliar with CodeQL. For example, one participant

who does not have any experience with CodeQL wrote the following query:

from AssignExpr a
where a.getRValue().getType() instanceof FloatingPointType
and a.getlLValue().getType() instanceof IntegralType
select a
where AssignExpr is not related to the desired cast expressions. Second, even people experienced with CodeQL may
not know the subtle difference between different API functions. As an example, one participant who is familiar with

CodeQL (scored 4 out of 5) wrote the query:
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Question Metric Answer
How easy is it to use SPORQ? 0: hard - 5: easy 3.6
How easy is it to use Semgrep? 0: hard - 5: easy 1.2
How easy is it to use CodeQL/Semmle? 0: hard - 5: easy 3.4
How helpful are uniqueness constraints in SPORQ? 0: not at all - 5: very helpful 2.6
How helpful are generalized negative examples in SPORQ?  0: not at all - 5: very helpful 4.6
How helpful is it to show synthesized queries in SPORQ? 0: not at all - 5: very helpful 1.6
How helpful is it to remove examples in SPORQ? 0: not at all - 5: very helpful 4.2

Table 6. Post user study survey.

from Conversion ¢
where c.getType() instanceof IntegralType
and c.getUnconverted().getType() instanceof FloatingPointType

select ¢

where the correct query should use getUnspecifiedType() instead of getType() because the latter does not resolve
typedef and causes false negatives in the query result.

Similarly, only 1 participant managed to solve both Tasks 1 and 2 using Semgrep in 45.03 minutes for Task 1 and
31.97 minutes for Task 2. We also inspected the reason why participants fail to solve the given tasks by checking the
Semgrep patterns. Instead of expressing the high-level concept, we found participants frequently wrote a union of
ad-hoc rules. For example, one participant wrote a set of rules like “(int) $X” and “(long) $X” to match all variables
cast to integer and long types. This might happen if a codebase has a small number of examples which are all covered by
specific patterns such as above. However, such patterns may miss specific corner cases, for example, casts to short types.
In general, writing patterns to match interesting code snippets in this way is not ideal. In SPORQ’s case, the user starts
with more general queries and iteratively specializes them by labeling some of the results during each interaction. This
allows SPORQ to avoid over-fitting the examples labeled by the user which helps to prevent mistakes like the participant
committed above.

Overall, our user study shows that more participants are able to solve Task 1 and Task 2 using SPorQ than using
Semmle or Semgrep. In addition, Table 6 summarizes the results of our post-study survey. Participants in our user study
rate SPORQ as 3.6 on a 0 — 5 scale in terms of whether the tool is easy to use or not. In contrast to SPOrRQ, Semmle gets
3.4 and Semgrep only gets 1.2 on ease to use. These results provide us with some preliminary evidence that SPorQ is
easier to use than Semmle and Semgrep (RQ5).

The survey results also suggest that users believe many features supported by SPorg are helpful for code exploration,
including primary keys, generalized negative examples, and removing annotated examples. However, there was mixed
feedback regarding whether inspecting the synthesized queries is useful. Participants with more experience in program
analysis found it helpful, while participants with less or no experience disagree. This observation is reasonable because
interpreting the synthesized query requires the users to have a good understanding of Datalog, and a background in
program analysis. The result also indicates that SPORQ can help users with different levels of experience in program

analysis to explore codebases.
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7 RELATED WORK

We survey related work classified into three categories: program analysis frameworks, synthesis of logic queries, and

learning in program analysis.

Program Analysis Frameworks. SPORQ can be viewed as a framework that allows users to craft custom program
analyses. Examples of such frameworks widely used in industry include Findbugs [7], Coverity [9], Tricorder [43], Infer
[12], and Clang Static Analyzer [33]. While these frameworks offer a variety of checkers, however, they are intended to
be extended only by experts with specialized knowledge.

Recognizing the rich diversity of modern programming environments and application domains, a modern generation
of frameworks seeks to enable non-experts to write custom queries, bug checkers, and even entire static analyzers.
Examples of such frameworks include Chord [38], Doop [11], Semmle [45], SonarQube [13], and Semgrep [17]. The query
languages in these frameworks are predominantly based on extensions of Datalog, such as LogiQL [22], CodeQL [6],
Flix [34], Datafun [5], and Formulog [8]. While these frameworks are a step in the right direction, however, they expect
users to master complex language schemas, logic programming constructs, and program analysis libraries. SPorQ builds
atop the program representations and query languages employed by these frameworks to provide an improved user

experience while retaining their expressivity, flexibility, and performance.

Synthesis of Logic Queries. A large body of work on Inductive Logic Programming (ILP) has proposed techniques
for synthesizing logic queries from relational input-output data. Conventional ILP techniques (e.g. Metagol [36, 37])
require templates (i.e. meta rules) to restrict the space of candidate queries. Modern ILP techniques (e.g. ILASP [30] and
FastLAS [29]) use Answer Set Programming (ASP) which scales better by leveraging SAT solvers for the search, but still
requires the user to provide syntactic bias in the form of mode declarations (e.g., signatures of invented predicates) to
constrain the search space. In general, annotations such as templates or modes require extensive tuning in practice,
since too small a search space limits the kinds of queries that can be synthesized, whereas too large a search space
makes the synthesis procedure intractable.

Program synthesis techniques such as ALPS [48], Difflog [50], and Prosynth [40] follow the same high-level CEGIS
(Counterexample-Guided Inductive Synthesis) architecture as GenSynth: they differ in the search technique used by
the generator of candidate queries but are similar in the use of a Datalog solver to evaluate the generated queries.
However, with the exception of GenSynth, these approaches also require candidate rules to constrain the search space.
A notable exception, EGS [53], does not require candidate rules but is limited to a fragment of Datalog without recursion
and negation, and does not scale to large input databases. In fact, even off-the-shelf GenSynth does not scale to our
application domain, which motivated our optimizations and the relation pruning discussed in Section 4.2.

Neural learning approaches such as Neural Theorem Proving (NTP) [41], NeuralLP [57], Neural Logic Machine
(NLM) [19], and JILP [20] scale well and handle tasks that involve noise or require subsymbolic reasoning. However,
they struggle with generalizability and data efficiency. On the other hand, GenSynth is able to generalize effectively

from a few labels.

Learning in Program Analysis. Several works have applied machine learning to program analysis, either to synthesize
them or to prioritize their results. Bielik et al. apply decision tree learning algorithms to synthesize static analyzers for
JavaScript [10]. One approach to finding suspicious entities in the codebase is to phrase it as an anomaly detection
problem [2, 58]. Neural networks have been used for program analysis tasks, notably for type inference [3, 23, 55] and

invariant generation [42, 47, 49]. Concurrently, there have been efforts to use classification or ranking algorithms to
20
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predict which conclusions reached by a static analysis represent true bugs, including that of Koc et al. [26], URSA [59],
Bingo [39], and Arbitrar [32]. Learning algorithms have also been proposed to intelligently devote resources to specific
parts of the analyzed program [24]. These approaches are orthogonal and complementary to SPOrQ, for instance, to

rank SPORQ’s alarms by their ground truth or expected payoff in labeling them.

8 THREATS TO VALIDITY, LIMITATIONS AND DESIGN IMPROVEMENTS

In this section, we discuss threats to the validity of our user study and evaluation, and describe the limitations of SPOrRQ

that we plan to address in future work.

Threats to Validity. There are several threats, both internal and external, to the validity of our empirical findings. The
main threat to internal validity arises because of the small sample size of participants in our user study. Furthermore,
the participants are graduate students with previous experience in logic programming. Regular programmers are likely
to face an even steeper learning curve while using Semmle and Semgrep. For example, in one of the author’s software
engineering MOOC on Udacity, only 47 out of 171 graduate students were able to correctly write Datalog queries of
difficulty comparable to those in our user study. Lastly, while it is conceivable that users will become more proficient in
using tools like Semmle and Semgrep over time, we hypothesize that SPorQ will be more usable even for such users,
especially for crafting queries that are complex or involve predicates computed by program analyses.

The threats to external validity stem from the fact that our conclusions may not generalize to queries and codebases
beyond those in our evaluation. We have mitigated this concern by employing a suite of diverse queries on widely-used
programs like the GNU core utilities. Likewise, our evaluation only targets two languages C and C++, but surprises for

other languages are mitigated by the substantial overlap of Semmle’s schemas across different languages.

Limitations of SPOrRQ. We outline four limitations of SPorQ and suggest ways to alleviate them.

(1) Expressiveness. GenSynth, and by extension the queries synthesized by SPorQ, do not support useful features
such as aggregation, pattern matching, and foreign functions. Extending GenSynth with these features does not
pose special challenges, but their absence prevents SPORQ from synthesizing more complex queries written in

Semmle and Semgrep.

2

~

Transferability. The queries learnt by SPorQ on one codebase may not perfectly capture the pattern intended by
the user—and therefore may produce unexpected results when applied to other codebases. This is because the
user may prematurely stop interacting with SPOrQ even when it only yields an incomplete pattern. Moreover,
even exhaustive interaction could yield a query that overfits the pattern in the original codebase. While avoiding
such overfitting is an outstanding challenge in the program synthesis community, GenSynth mitigates this
problem by learning concise queries that are likely to generalize better.

(3) Active Learning. SPORQ does not prioritize the examples it predicts, leaving it up to the user to decide which
examples to inspect. As a result, the user could end up labeling more examples than the minimal needed. An
active learning algorithm such as Query-by-Committee [46] could be employed to determine examples that
prune the synthesizer’s search space the most and thereby minimize user annotation burden.

(4) Imperfect Recall. While SPorQ can achieve perfect precision through user interaction and feedback, it cannot

ensure perfect recall. However, this is an open challenge across much of programming-by-example and machine

learning. Some recent techniques have been proposed to address this challenge, such as through the use of active

21
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learning [21], or by leveraging background knowledge [54]. Combining SPorQ with these techniques suggests

exciting directions for future research.

Design Improvements. There are many ways SPORQ’s user interface could be improved to make interactions more
intuitive and efficient. Here we suggest only a few areas worthy of exploration in future iterations.

Currently, SPORQ requires a seed example in order to generate an initial query. However, a user might have a target
pattern in mind without knowing if there are examples in the current codebase. To generate a matching query, SPOrRQ
could give the programmer access to a “sandbox” window where they could type in a toy program containing an
instance of the pattern. SPOrQ’s synthesis engine would then generate a query based on this example, which could then
be applied to the codebase.

The quality of SPORQ’s output depends on the quality of user feedback. The multi-modal approach [31] implies
that there can be different forms of feedback in each mode which can let the user better express “why” an example is
undesired, as opposed to just the fact that it is undesired. In particular, natural language processing techniques could be
explored as a means to clarify the user’s intent as well as translate the resulting Datalog programs into a format that is

more easily interpretable.

9 CONCLUSION

We presented SPORQ, an interactive environment for exploring code using a query-by-example approach. SPORQ
provides a familiar and flexible interface that allows developers to conveniently specify examples of patterns that they
wish to mine in their codebases. It uses the examples to automatically learn those patterns by synthesizing database
queries over relational program representations. SPOrQ thereby provides a significantly improved user experience over
state-of-the-art tools which require programmers to manually write queries in unfamiliar or inflexible interfaces. Our
experiments and user studies demonstrate that SPORQ is effective in enabling programmers to discover bugs in large

codebases with minimal effort.
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