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Abstract

We develop a new semi-algebraic proof system called Stabbing Planes which formalizes

modern branch-and-cut algorithms for integer programming and is in the style of DPLL-based

modern SAT solvers. As with DPLL there is only a single rule: the current polytope can be

subdivided by branching on an inequality and its “integer negation.” That is, we can (non-

deterministically choose) a hyperplane ax ≥ b with integer coefficients, which partitions the

polytope into three pieces: the points in the polytope satisfying ax ≥ b, the points satisfying

ax ≤ b, and the middle slab b− 1 < ax < b. Since the middle slab contains no integer points

it can be safely discarded, and the algorithm proceeds recursively on the other two branches.

Each path terminates when the current polytope is empty, which is polynomial-time checkable.

Among our results, we show that Stabbing Planes can efficiently simulate the Cutting Planes

proof system, and is equivalent to a tree-like variant of the R(CP) system of Krajı́ček [54]. As

well, we show that it possesses short proofs of the canonical family of systems of F2-linear

equations known as the Tseitin formulas. Finally, we prove linear lower bounds on the rank of

Stabbing Planes refutations by adapting lower bounds in communication complexity and use

these bounds in order to show that Stabbing Planes proofs cannot be balanced.
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1 Introduction

Proof complexity provides an effective and principled way to analyze classes of practical algorithms for solving

NP-hard problems. The general idea is to formalize a class of algorithms as a proof system — a set of sound rules

for making logical inferences — by extracting out the types of reasoning used in the algorithms. This allows us to

discard the practical implementation details while still maintaining the techniques that the algorithm can employ.

Thus, by proving lower bounds on the size of proofs in these proof systems, we obtain lower bounds on the runtime

of the associated class of algorithms.

An illustrative example is the DPLL algorithm [29, 30], which forms the basis of modern conflict-driven clause

learning algorithms for solving SAT. For a CNF formula F , the DPLL algorithm is the following recursive search

algorithm for a satisfying assignment: choose a variable xi (non-deterministically, or via some heuristic), and then

recurse on the formulas F ↾(xi = 0) and F ↾(xi = 1). If at any point a satisfying assignment is found, the algorithm

halts and outputs the assignment. Otherwise, if the current partial assignment falsifies some clause C of F , the

recursive branch is terminated. If every recursive branch terminated with a falsified clause, then F is unsatisfiable

and we can take the recursion tree as a proof of this fact; in fact, such a DPLL tree is equivalent to a treelike resolution

refutation of F .

Beyond DPLL, the approach of using proof complexity for algorithm analysis has been successfully employed

to study many other classes of algorithms. This includes Conflict-driven clause-learning algorithms for SAT [52,61,

72], which can be formalized using resolution proofs [30]; lift-and-project methods for solving integer programming

problems, which are formalized by the Lovász-Schrijver [60], Sherali-Adams [71], and Sums-of-Squares proofs

[7,45] proof systems; and the classical cutting planes methor for integer programming [18,41], which is formalized

by Cutting Planes proofs [18, 19, 23].

In this work, we continue the study of algorithms for solving integer programming problems through the lens

of proof complexity. Many classic NP-optimization problems are naturally phrased using integer programming and,

due to this, algorithms for integer programming have had a profound effect throughout computer science and beyond.

Recall that in an integer programming problem, we are given a polytope P ⊆ Rn and a vector c ∈ Rn, and our goal

is to find a point x ∈ P ∩ Zn maximizing c · x. A classic approach for solving integer programming problems is

to refine the polytope P by introducing Chvátal-Gomory (CG) cutting planes [41]. A CG cutting plane for P is

any inequality ax ≤ ⌊b⌋, where a is an integral vector, b is a rational vector, and every point in P satisfies ax ≤ b.
Observe that a CG cutting plane removes non-integral points from P while preserving integer points. Thus, with

each additional cutting plane, the polytope becomes a better approximation to the integer hull.

Chvátal observed that the cutting planes method can be naturally formalized as a proof system. The Cutting

Planes proof system proves the integer-infeasibility of a polytope P by deducing the empty polytope by a sequence of

CG-cutting planes. This has led to a number of strong lower bounds on the runtime of these algorithms [13,35,48,67],

as well as bounds on related measures such as the Chvátal rank [14, 17, 43]. However, while Cutting Planes has

become a highly influential proof system in proof complexity, the original cutting planes algorithms suffer from

numerical instabilities and difficulties choosing good heuristics, and are therefore seldom used on their own in

practice.

Modern algorithms for integer programming combine cutting planes with a branch-and-bound procedure [5,57],

resulting in a class of optimization algorithms known as branch-and-cut algorithms [65]. These algorithms search

for an integer solution to a polytope P by the following two procedures

• Branch. Split P into smaller polytopes P1, . . . , Pk such that every integer solution to P lies in at least one of

P1, . . . , Pk.

• Cut. Refine P1, . . . , Pk by introducing additional cutting planes.

Finally, the algorithm recurses on each of the resulting polytopes. While this branching rule is extremely general, in

practice branching is typically done by single variables: selecting a variable xi and branching on all possible integer

outcomes P ∩ {xi = t} for each feasible integer value t. Other schemes that have been used in practice include

branching on the hamming weight of a subset of variables [34] or branching using basis-reduction techniques [1, 2,
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Figure 1: A partial stabbing planes proof (left) and its result on the unit square (right). The yellow and red areas are

removed from the polytope (green), and we recurse on both sides.

46, 51, 56, 59]*

While these branch-and-cut algorithms are much more efficient in practice than the classical cutting planes

methods they are no longer naturally modelled by Cutting Planes proofs. In this work we introduce† the Stabbing

Planes (SP) proof system in order to properly model branch-and-cut solvers. Intuitively, Stabbing Planes has the

same branching structure as DPLL, but generalizes branching on single variables to branching on integer linear

inequalities.

We formalize Stabbing Planes in stages as a generalization of DPLL. Recall that in the setting of integer program-

ming we want to prove the integer-infeasibility of a system of integer linear inequalities Ax ≥ b over real-valued

variables. Further, suppose for simplicity of exposition that the system encodes a CNF formula F . We can rephrase

DPLL geometrically to the setting of integer linear programming. Consider some DPLL refutation of F . Each time

the DPLL tree branches on the {0, 1}-value of a variable xi, instead branch on whether xi ≤ 0 or xi ≥ 1; because

the encoding Ax ≥ b of F includes axioms xi ≥ 0 and xi ≤ 1 this is equivalent. After this replacement, each node v
in the DPLL tree is naturally associated with a polytope Pv of points satisfying Ax ≥ b and each of the inequalities

labelling the root-to-v path. Since we began with a DPLL refutation, it is clear that for any leaf ℓ, the polytope Pℓ

associated with the leaf is empty, as any Zn-valued point would have survived each of the inequalities queried on

some path in the tree and thus would exist in one of the polytopes at the leaves.

The Stabbing Planes system is then the natural generalization of the previous object: at each step in the refutation

an arbitrary integer linear form ax in the input variables is chosen and we recurse assuming that it is at least some

integer b or at most its integer negation b− 1. Observe that because a and b are integral, any x∗ ∈ Zn will satisfy at

least one of the inequalities (ax ≤ b−1, ax ≥ b), and so if the polytope at each leaf (again, obtained by intersecting

the original system with the inequalities on the path to this leaf) is empty then we have certified that the original

system has no integral solutions (cf. Figure 1). The queries in a Stabbing Planes proof correspond to what is known

as branching on general disjunctions or split disjunctions [22] in integer programming, and capture the majority of

branching that is done in practice [20]. One of the major advantages of Stabbing Planes is its simplicity: refutations

are decision trees that query integer linear inequalities.

Recall that branch-and-cut solvers combine Stabbing Planes-style branching with additional cutting planes in

order to refine the search space. We show that a single branching step in a Stabbing Planes proof can actually

simulate adding a CG cut to the polytope, and therefore Stabbing Planes can indeed simulate the execution of a

branch-and-cut solver. A novel corollary is that Stabbing Planes can polynomially-simulate dag-like Cutting Planes

*For an in-depth discussions on branch-and-bound and branch-and-cut we refer the reader to [3, 20, 73].
†Recently (and subsequent to the conference publication of this work [10]), the authors became aware of the invited chapter of Pudlák [68]

for the Logic Colloquium‘97, in which he states that an unpublished work of Chvátal defines the Stabbing Planes system and the simulation

of Cutting Planes. We take this independent discovery as evidence that Stabbing Planes is a highly natural proof system, which deserves

further exploration.

2



SP = treeR(CP) Semantic CP

CP = Facelike SPSP∗

CP∗

treeCP

R(CP)

treeRes(k)

Sum of Squares

Nullstellensatz

AC0-Frege

Figure 2: Known relationships between relevant proof systems. A solid black (red) arrow from proof system P1 to

P2 indicates that P2 can polynomially (quasi-polynomially) simulate P1. A black (red) dashed arrow from P1 to P2

indicates that P2 cannot polynomially (quasi-polynomially) simulate P1.

despite being a tree-like refutation system. This simulation was extended by [8] to show that Stabbing Planes can

simulate disjunctive cuts which capture the vast majority of cutting planes used in practice, including lift and project

cuts [6], split cuts [22], Gomory mixed integer cuts [40] and MIR cuts.

Beyond providing a theoretical model for branch and cut algorithms, we believe that the simplicity of Stabbing

Planes proofs, as well as its closeness to DPLL, makes Stabbing Planes a better starting point for the analysis

and development of search algorithms based on integer programming, such as pseudoboolean SAT solvers, than

established proof systems. From the perspective of SAT solving, even though treeRes is equivalent to DPLL, it is

the search point of view of DPLL that has led to major advances in SAT algorithms. A natural hypothesis is that it is

much easier to invent useful heuristics in the language of query-based algorithms, as opposed to algorithms based on

the deductive rules of resolution. Stabbing Planes offers similar benefits with respect to reasoning about inequalities.

Furthermore, Stabbing Planes is a direct generalization of DPLL, and therefore we hope that the fine-tuned heuristics

that have been developed for modern DPLL-based solvers can be lifted to algorithms based on Stabbing Planes.

Stabbing Planes in Proof Complexity

Despite its simplicity, Stabbing Planes proofs are remarkably powerful. As a motivating example, we give simple,

short (quasi-polynomial size) SP proofs of systems of F2 linear equations known as the Tseitin formulas. These

formulas are one of the canonical hard examples for many algebraic and semi-algebraic proof systems, including

Nullstellensatz [44], Polynomial Calculus [15], and Sum-of-Squares [45, 70].

Theorem 1. There are quasipolynomial size Stabbing Planes proofs of any instance of the Tseitin tautologies.

We also explore the relationships between SP and other proof systems. This is summarized in Figure 2. Most

notably, we show that SP is polynomially-equivalent to treeR(CP), the tree-like variant of Krajı́ček’s R(CP) proof

system [54]. This system can be thought of as a mutual generalization of resolution and Cutting Planes, in which

the lines are disjunctions of integer linear inequalities, and we are allowed to apply Cutting Planes rules on the

inequalities and resolution-style cuts on the disjunctions.

Theorem 2. The proof systems SP and treeR(CP) are polynomially equivalent.

We note that even though SP is equivalent to a system already in the literature, the new perspective provided by

it is indeed enlightening as none of the results in this section were known for treeR(CP) (including the simulation

of CP!).
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The remainder of this work tackles the problem of proving superpolynomial lower bounds on the complexity

of SP proofs. Although we are unable to establish size lower bounds, we prove nearly optimal lower bounds on

the depth of SP refutations, as well as explain why several natural approaches for proving size bounds fail. The

depth of an SP proof — the longest root to leaf path — is a natural parameter that captures the parallelizability of

proofs, and is closely related to rank measures of polytopes, which have been heavily studied in integer programming

theory [17].

Theorem 3. There exists a family of unsatisfiable CNF formulas {Fn} for which any SP refutation requires depth

Ω(n/ log2 n)

The proof of this theorem proceeds by showing that shallow SP proofs give rise to short randomized and real

communication protocols for the CNF search problem, and then appealing to known lower bounds for this problem.

In many strong proof systems such as Frege and Extended Frege it is known that depth lower bounds imply size

lower bounds via so-called balancing theorems [55]. However, we can show that SP proofs cannot be balanced.

More precisely, SP proofs of size s do not imply the existence of proofs of size poly(s) and depth polylog(s).
While SP proofs cannot be balanced, the real communication protocols that result from SP proofs preserve

the topology of the SP proof, and therefore size lower bounds on SP would follow by showing instead that the

real communication protocols themselves could be balanced. There is a precedent for this: both deterministic

and randomized communication protocols can be balanced, and lower bounds on treeCP proofs were obtained by

exploiting this fact [49]. However, we can also show that real communication protocols cannot be balanced. Enroute,

we establish the first superlogarithmic lower bound on the real communication complexity of the set disjointness

function, a function which has been central to many of the lower bounds which exploit communication complexity.

1.1 Related and Subsequent Work

Lower Bounds on Variable Branching. Lower bounds for a number of branch-and-cut algorithms using variable-

branching — meaning that they branch on the integer value of single variables, rather than arbitrary inequalities (i.e.,

DPLL which branches on xi ∈ Z) — have previously been established. The first example of this was the lower bound

of Jerslow [50] on the number of queries made by branch-and-bound algorithms with variable branching. Cook and

Hartman proved exponential lower bounds on the number of operations required to solve certain travelling salesman

instances by branch-and-cut algorithms which use variable branching and Chvátal-Gomory cuts [24]. However, their

lower bound is exponential only in the number of variables, and not in the number of inequalities. The first truly

exponential (in the encoding size of the instance) lower bound for branch-and-cut algorithms which use variable

branching was established by Dash [27] by extending the lower bound of Pudlák [67] for Cutting Planes proofs.

Lower Bounds for treeR(CP). Lower bounds on certain restrictions of treeR(CP) were established in earlier

works. Krajı́ček [54] proved superpolynomial lower bounds on the size of R(CP) proofs when both the width of the

clauses and the magnitude of the coefficients of every line are sufficiently bounded. Concretely, letting w and c be

upper bounds on the width and coefficient size respectively, the lower bound that he obtained was 2n
Ω(1)

/cw log2 n.

For treeR(CP), Kojevnikov [53] improved this lower bound to exp(Ω(
√

n/w log n)), removing the dependence on

the coefficient size. In Figure 5.1 we prove a size-preserving simulation of SP by treeR(CP) which translates depth

d SP proofs into width d treeR(CP) proofs. Therefore, Kojevnikov’s result implies a superpolynomial lower bound

on the size of SP proofs of depth o(n/ log n). In Subsection 6.1 we exhibit a formula for which any SP refutation

requires depth Ω(n/ log2 n).

Subsequent Work. Following the conference version of this work [10], Dadush and Tiwari [25] showed that the

Stabbing Planes proofs of the Tseitin formulas could be efficiently translated into CP. This refuted a long-standing

conjecture that CP requires exponential size refutations of these formulas [23]. In the same paper, they established

a polynomial equivalence between the number of nodes and the size of SP proofs (i.e., the number of bits needed to

express the proof).
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Dadush and Tiwari also considered SP in the context of mixed integer programming (MIP) and proved expo-

nential lower bounds on SP in this setting. In this setting, you are given a polytope P = {(x, y) ∈ Rn1 × Rn2 :
Ax+By ≥ b}, and you are searching for an integer solution to the x-variables and a real solution to the y-variables.

In other words, rather than proving that P ∩ Zn = ∅, instead you would like to prove that P ∩ Zn1 ∩ Rn2 = ∅. In

this case, SP queries involving y-variables are disallowed, as this would not be sound. As shown by Dadush and

Tiwari, this restriction turns out to be enough to obtain quite simple proofs of intractability. First, they prove that

any SP refutation of a certain system of 2n many inequalities (encoding the complete unsatisfiable formula) requires

size 2n/n. Next, they show that this system of inequalities admits a poly(n)-size MIP extended formulation. As

SP cannot branch on the extension variables, refuting this extended formulation is identical refuting the complete

unsatisfiable formula in SP. Dey, Dubey, and Molinaro [32] extended this technique to prove lower bounds for a

number of MIP instances for packing, set cover, the Travelling Salesman problem, and the cross polytope, even

when Gaussian noise is added to the coefficients. However, this technique crucially relies on the fact that for MIP

problems, SP queries cannot involve the real-variables, and therefore it does not appear to be possible to extend this

technique to prove lower bounds on pure integer programming problems (i.e. those with only integer-variables) such

as standard encodings of CNF formulas.

Fleming et al. [35] showed that any Stabbing Planes proof with quasipolynomially bounded coefficients (SP∗)

can be translated into a Cutting Planes proof with at most a quasipolynomial increase in size. This allowed them

to lift the exponential lower bounds on Cutting Planes proofs [36, 39, 48, 67] to SP∗, and even to SP proofs with

coefficients of size exp(nδ) for some constant δ < 1. As well, using this connection, they generalized the result

of Dadush and Tiwari to show that there are quasipolynomial-size Cutting Planes refutations of any unsatisfiable

system of linear equations over the finite field Fp for any prime p. To prove this simulation of SP∗ by Cutting

Planes, they characterized Cutting Planes as a subsystem of Stabbing Planes, which they called facelike Stabbing

Planes. Briefly, a facelike Stabbing Planes proof restricts Stabbing Planes queries to have one side of the query be a

face of the current polytope. Then, they show that SP proofs can be made facelike with a blowup that is proportional

to the size of the coefficients and the diameter of the polytope.

Basu et al. [8] showed that SP can simulate disjunctive cuts, a result which we cover in more detail in Subsection 4.3.

Furthermore, they give an IP instance can be solved in size O(1) in SP but requires poly(n) deductions using split

cuts. As well, they explore the effect that sparsity —the number of non-zero coordinates in each query — has on

branch-and-cut. Sparse queries can be thought of as an intermediate between full SP branching and variable branch-

ing. They provide an instance where the any branch-and-bound tree must be of exponential size if the sparsity is

o(n).
Recently, Dantchev et al. [26] introduced several novel techniques for proving lower bounds on SP proofs by

exploiting their geometric structure. In particular, they make use of the fact that for a polytope P , every point x∗ ∈ P
must be contained within some slab of the SP proof. This allowed them to establish linear lower bounds on the size

of SP proofs of the pigeonhole principle as well as the Tseitin formulas; because SP proofs are binary trees, this

leads to a depth Ω(log n) lower bound for both formulas.

1.2 Organization

We begin by formally defining the Stabbing Planes proof system in Section 2. The Stabbing Planes refutations of the

Tseitin formulas are given in Section 3. Section 4 explores how Stabbing Planes relates to Cutting Planes: we show

that Stabbing Planes can polynomially simulate Cutting Planes, and we explore whether a simulation of Cutting

Planes by Stabbing Planes can preserve other parameters of the proof in Subsection 4.2. We end this section (in

Subsection 4.3) by observing that Stabbing Planes can simulate most other types of cutting planes that are used in

integer programming. In Section 5 we explore how Stabbing Planes compares to other popular proof systems in the

literature, and we prove the equivalence with treeR(CP). In the final section (Section 6) we explore whether we can

prove lower bounds on Stabbing Planes with unbounded coefficients. We prove unrestricted depth lower bounds in

Subsection 6.1 and rule out several natural approaches that utilize communication complexity in Subsection 6.2.
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2 Preliminaries

We begin by formally defining the Stabbing Planes proof system. For this, it will convenient to use the following

combination of Farkas’ Lemma with Carathéodory’s Theorem, which we state next.

Farkas’ Lemma. Let A ∈ Qm×n and b ∈ Qm. Then exactly one of the following holds:

(i) There exists x ∈ Rn such that Ax ≤ b.

(ii) There exists y ∈ Zm with y ≥ 0 such that y⊤A = 0 and y⊤b < 0. Moreover, y has at most n + 2 non-zero

coordinates.

The “moreover” part in (ii) follows from Carathéodory’s Theorem. Proofs of both Carathéodory’s Theorem and

Farkas’ Lemma can be found in [20].

With this, we are ready to define the Stabbing Planes proof system. The Stabbing Planes proof system is a proof

system for refuting the existence of integer-solutions to systems of linear inequalities; we will call such systems

unsatisfiable.

Stabbing Planes. Let Ax ≥ b be an unsatisfiable system of linear inequalities. A Stabbing Planes (SP) refutation

of Ax ≥ b is a directed binary tree, T , where each edge is labelled with a linear integral inequality satisfying the

following consistency conditions:

• Internal Nodes. For any internal node u of T , if the right outgoing edge of u is labelled with cx ≥ d, then the

left outgoing edge is labelled with its integer negation cx ≤ d− 1.

• Leaves. Each leaf node v of T is labelled with a conic combination of inequalities in F with inequalities along

the path leading to v that yields 0 ≥ 1 (provided by Farkas’ Lemma).

For an internal node u of T , the pair of inequalities (cx ≤ d− 1, cx ≥ d) is called the query corresponding to the

node. Every node of T has a polytope P associated with it, where P is the polytope defined by the intersection of

the inequalities in F together with the inequalities labelling the path from the root to this node. We will say that

the polytope P corresponds to this node. That is, if P is the polytope corresponding to a node v which queries

(cx ≤ d − 1, cx ≥ d), then the polytopes of the children of v are given by P ∩ {x ∈ Rn : cx ≤ d − 1} and

P ∩ {x ∈ Rn : cx ≥ d}. For readability, we will use the abbreviation P ∩ {cx ≥ d} for P ∩ {x ∈ Rn : cx ≥ d}.

The slab corresponding to the query is {x∗ ∈ Rn | d − 1 < cx∗ < d}, which is the set of points ruled out by

this query. The width of the slab is the minimum distance between cx ≤ d − 1 and cx ≥ d, which is 1/‖c‖2. This

gives an intuitive geometric interpretation of SP refutations: at each step we remove a slab from the polytope and

recurse on the resulting polytopes on both sides of the slab. The aim is to recursively cover the polytope with slabs

until every feasible point has been removed. An example of this can be seen in Figure 1, where the yellow and red

areas are the slabs of the two queries.

The size of an SP refutation is the bit-length needed to encode a description of the entire proof tree, which, for

CNF formulas as well as sufficiently bounded systems of inequalities, is polynomially equivalent to the number of

queries in the refutation. In particular, Dadush and Tiwari [25] prove the following.

Proposition 4 (Corollary 1.2 in [25]). Let Ax ≥ b be any unsatisfiable system of linear equations whose coefficients

require ℓ bits to express, and let s be the number of nodes in an SP refutation of Ax ≥ b. Then there exists an SP

refutation of size sℓn6.

As well, the depth (or rank) of the refutation is the depth of the binary tree. The depth of refuting an unsatisfiable

system of linear inequalities Ax ≥ b, denoted depthSP(Ax ≥ b), is the minimum depth of any SP refutation of

Ax ≥ b. Observe that any unsatisfiable system of inequalities Ax ≥ b whose corresponding polytope is contained

within the unit cube [0, 1]n (this includes the encodings of all CNF formulas) has a trivial size 2n and depth n SP

refutation by branching on (xi ≤ 0, xi ≥ 1) for every i ∈ [n].
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We will be particularly interested in Stabbing Planes refutations of unsatisfiable CNF formulas. Given a CNF

formula F we can translate it into an equisatisfiable system of linear inequalities in the natural way. First, introduce

the inequalities 0 ≤ xi ≤ 1 for every variable xi. Second, for each clause bigveei∈Ixi ∨ bigveej∈J¬xj introduce

the inequality
∑

i∈I

xi +
∑

j∈J

(1− xj) ≥ 1.

It is easy to see that the this system of inequalities will have no integer solutions if and only if the original formula F
was unsatisfiable. With this translation we consider Stabbing Planes refutations of CNF formulas F to be refutations

of the translation of F into a system of linear inequalities.

With the previous translation in hand we show that SP is indeed a propositional proof system as defined by Cook

and Reckhow [21].

Proposition 5. Stabbing Planes is sound, complete, and polynomially verifiable.

Proof. Completeness follows immediately from the fact that SP simulates DPLL, which is itself a complete proof

system. Soundness follows because each slab in an SP proof, corresponding to a query (cx ≤ d − 1, cx ≥ d),
removes only non-integral points. Indeed, by the integrality of c and d, any x ∈ Zn satisfies either cx ≤ d − 1 or

cx ≥ d. Finally, to see that SP proofs are polynomially verifiable, observe that we only need to verify that every

query is of the form (cx ≤ d− 1, cx ≥ d) for integral c and d, and that each conic combination labelling the leaves

evaluates to 0 ≥ 1.

We will also be interested in the Cutting Planes proof system, the first proof system to formalize a class of

integer programming algorithms.

Cutting Planes. A Cutting Planes proof (CP) of an inequality cx ≥ d from a system of integer linear inequalities

Ax ≥ b is a sequence of inequalities {cix ≥ di}i∈[s] such that cs = c, ds = d, and each inequality cix ≥ di either

belongs to Ax ≥ b or is deduced from earlier inequalities in the sequence by one of the following inference rules

• Linear Combination. From inequalities cix ≥ di, cjx ≥ dj , deduce any non-negative linear combination with

integer coefficients.

• Division. From an inequality cix ≥ di, if t ∈ Z divides all entries in ci then deduce (ci/t)x ≥ ⌈di/t⌉.

The size of a Cutting Planes derivation is the number of inequalities s, and is known to be equivalent up to a

polynomial blow-up to the complexity of expressing the proof [23]. It is useful to visualize the derivation as a

directed acyclic graph, where the nodes are the inequalities in the derivation, and for each inference, there are arcs

from the at-most-two inequalities from which it was derived. With this in mind, the depth of a Cutting Planes

derivation is the length of the longest root-to-leaf path in the dag. Finally, a Cutting Planes refutation of a system of

integer linear inequalities Axgeqb is a derivation of the trivially false inequality −1 ≥ 0.

3 Refutations of the Tseitin Formulas

As a motivating example, we show that Stabbing Planes has quasipolynomial size proofs of the Tseitin formulas,

proving Theorem 1. For any graph G = (V,E) and any labelling ℓ : V → {0, 1} of the vertices, the Tseitin formula

of (G, ℓ) is the following system of F2-linear equations: for each edge e we introduce a variable xe, and for each

vertex v we have an equation
⊕

u:uv∈E

xuv = ℓ(v),

asserting that the sum of edge variables incident to v must agree with its label ℓ(v). It is not difficult to see that a

Tseitin formula is unsatisfiable iff
∑

v∈V ℓ(v) is odd. If we denote by deg(G) the maximum degree of any vertex in

G then the Tseitin formula of (G, ℓ) can be encoded as a CNF formula with |V | · 2deg(G)−1 many clauses. The next

theorem shows that there is a quasi-polynomial size Stabbing Planes refutation of any Tseitin formula.
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Figure 3: A single round of the algorithm. Note that κU1 = a+ b and KU2 = a+ (KU − b).

Theorem 6. For any Tseitin instance (G, ℓ) there is a Stabbing Planes refutation of size 2O(log2 n)+deg(G) and depth

deg(G) · log2 n.

First we will introduce some notation. For U ⊆ V let ℓ(U) = ⊕v∈U ℓ(v). As well, if U,W ⊆ V then let

E[U,W ] denote the set of edges with one endpoint in U and the other in W , and let E[U ] denote the set of edges

with one endpoint in U .

Proof. The Stabbing Planes proof will implement the following recursive search algorithm for a violated constraint

of the Tseitin instance. In each round we maintain a subset U ⊆ V and an integer κU ∈ N representing the total

value of the edges E[U ] leaving U . Over the algorithm, we maintain the invariant that ℓ(U) + κU is odd, which

implies that there is a contradiction to the Tseitin instance inside of U .

Initially, set U := V and κV = 0, and note that the invariant holds since ℓ(V ) is odd by definition. Then perform

the following algorithm (see also Figure 3):

1. Choose a balanced partition U = U1 ∪ U2 (so ||U1| − |U2|| ≤ 1)

2. Query the value of a =
∑

e∈[U1,U2]

xe and b =
∑

e∈E[U1]\E[U1,U2]

xe.

3. The value of the edges leaving U1 is κU1 := a+b and the value of the edges leaving U2 is κU2 := a+(κU −b);
so we recurse on the subset that maintains the invariant.

First we note that exactly one of the two subsets must maintain the invariant. This follows from the next short

calculation:

ℓ(U) + κU = ℓ(U1) + ℓ(U2) + κU + 2a (mod2)

= (ℓ(U1) + a+ b) + (ℓ(U2) + a+ (κU − b)) (mod2)

= (ℓ(U1) + κU1) + (ℓ(U2) + κU2) (mod2)

thus, since ℓ(U)+κU is odd, it follows that exactly one of the ℓ(U1)+κU1 or ℓ(U2)+κU2 must also be odd. Second,

we note that the recursion ends when |U | = 1, at which point we obtain an immediate contradiction between κU and

the equation corresponding to the single node inside U .

To implement this algorithm in Stabbing Planes, it suffices to show how to perform the queries in step 2, and how

to deduce a contradiction when |U | = 1; we begin with step 2. The first query can be performed by a binary tree with

|E[U1, U2| ≤ n leaves, one corresponding to each possible query outcome. Internally, the tree queries all possible

integer values for the sum (e.g. (a ≤ 0, a ≥ 1), (a ≤ 1, a ≥ 2), . . .). The second query can similarly be performed

by a tree with |E[U1]| ≤ n leaves. Since we choose a balanced partition in each step, the recursion terminates in at

most O(log n) rounds — thus, we have a tree with branching factor O(n) and depth O(log n), yielding a size bound

8



of nO(logn). Furthermore, each query can be implemented in a tree of depth O(log n), and so the depth of the proof

is O(log2 n).
For the leaf-case, when |U | = 1, let u be the unique vertex in U . Stabbing Planes has deduced that

∑

v:uv∈E

xuv = κU 6= ℓ(u) (mod2).

This is a contradiction to the Tseitin axiom ⊕v:uv∈Exuv = ℓ(v). However, the Tseitin formula is presented to

SP as a system of linear inequalities (encoding a CNF formula) which is equivalent to the Tseitin formulas (a

system of F2 linear equations) over integer solutions. Therefore, while there are no integer solutions satisfying

κU =
∑

v:uv∈E xuv = ℓ(u), there could still be non-integer solutions. To handle this, we simply force each of the

deg(G) variables involved in this constraint to take integer values by sequentially querying the value of each variable

one-by-one. That is, for each {xuv : uv ∈ E} we query (xuv ≤ 0, xuv ≥ 1), noting that we have axioms saying

that xe ≥ 0 and xe ≤ 1 for every e ∈ E. This can be done in a binary tree of height deg(G) with at most 2deg(G)

leaves, where at each leaf we derive 0 ≥ 1.

Together with the lower bounds of Buresh-Oppenheim et. al. [14] and Fleming et. al. [35] on the depth of Cutting

Planes and semantic Cutting Planes proofs of the Tseitin formulas, Theorem 1 provides an exponential separation in

terms of depth for these proof systems and Stabbing Planes.

4 The Relationship Between Stabbing Planes and Cutting Planes

It is an interesting question how Stabbing Planes compares to Cutting Planes, the main proof system based on ideas

from integer programming. By contrasting the two systems we see three major differences:

• Top-down vs. Bottom-up. Stabbing Planes is a top-down proof system formed by performing queries on

the polytope and recursing; while Cutting Planes is a bottom-up proof system, formed by deducing new

inequalities from previously deduced ones.

• Polytopes vs. Halfspaces. Individual “lines” in a Stabbing Planes proof are polytopes, while individual “lines”

in a Cutting Planes proof are halfspaces.

• Tree-like vs. dag-like. The graphs underlying Stabbing Planes proofs are trees, while the graphs underlying

Cutting Planes proofs are general dags: intuitively, this means that Cutting Planes proofs can “re-use” their

intermediate steps, while Stabbing Planes proofs cannot.

When taken together, these facts suggest that Stabbing Planes and Cutting Planes could be incomparable in power,

as polytopes are more expressive than halfspaces, while dag-like proofs offer the power of line-reuse. Going against

this intuition, we show next that Stabbing Planes and Cutting Planes are in fact very closely related.

4.1 Stabbing Planes Simulates Cutting Planes

A Cutting Planes proof is of a linear inequality cx ≥ d from polytope P , presented as a list of integer linear

inequalities {aix ≥ bi}, is a sequence of inequalities {cix ≥ di}i∈[s] such that the final inequality is cx ≥ d, and

each cix ≥ di is either one of the inequalities of P , or is deduced from previously derived inequalities by one of the

following two deduction rules:

• Conic Combination. From inequalities ax ≥ b, cx ≥ d deduce any nonnegative linear combination of these

two inequalities with integer coefficients.

• Division. From an inequality ax ≥ b, if d ∈ Z with d ≥ 0 divides all entries of a then deduce (a/d)x ≥ ⌈b/d⌉.
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P1

P2

Ps−1

∅∅

∅

∅

a1x ≥ b1a1x ≤ b1 − 1

a2x ≤ b2 − 1 a2x ≥ b2

asx ≥ bsasx ≤ bs − 1

Figure 4: The Stabbing Planes refutation which results from translating a Cutting Planes refutation P =
P1, . . . , Ps = ∅.

A Cutting Planes refutation is a proof of the trivially false inequality 0 ≥ 1.

Equivalently, we can view a Cutting Planes refutation as a sequence of polytopes P = P1, . . . , Ps = ∅ such that

Pi is obtained from Pi−1 by including an inequality which can be deduced from the inequalities of Pi−1 by one of

the two rules of Cutting Planes. In integer programming, we obtain Pi from Pi−1 by a Chvátal-Gomory cut.

Theorem 7. Stabbing Planes polynomially simulates Cutting Planes.

Proof. We will say that a polytope P ′ can be deduced from P by Stabbing Planes if there is a query (ax ≤ b −
1, ax ≥ b) such that P ∩ {x : ax ≤ b− 1} = ∅ and P ∩ {x : ax ≥ b} ⊆ P ′.

Let P be an unsatisfiable polytope and P = P1, . . . , Ps = ∅ be a Cutting Planes refutation. To prove the

theorem, we show that for each i ∈ [s − 1], Pi+1 = Pi ∩ {x : ax ≥ b} can be deduced from from Pi in Stabbing

Planes by the query (ax ≤ b− 1, ax ≥ b). It remains to show that Pi ∩ {x : ax ≤ b− 1} = ∅. There are two cases,

depending on the rule used to derive ax ≥ b from Pi.

• If ax ≥ b was derived by a conic combination of inequalities belonging to Pi, then Pi∩{ax ≤ b−1} = ∅ can

be witnessed by adding the conic combination equalling ax ≥ b together with ax ≤ b− 1 to deduce 0 ≥ 1.

• Otherwise, ax ≥ b is derived by division, i.e., it is (c/t)x ≥ ⌈c/t⌉ for some integer t ≥ 0. Then ⌈d/t⌉ ≥ d/t
and so 1 ≥ 0 is a conic combination of (c/t)x ≤ ⌈d/t⌉ − 1 and cx ≥ d, witnessing that P ∩ {x : (c/t)x ≤
⌈d/t⌉ − 1} = ∅.

To see that Stabbing Planes can simulate Cutting Planes, we view each inequality

4.2 Towards a Topology Preserving Simulation of Cutting Planes

An artifact of both the simulations of CP by variants of SP and of SP∗ by CP is that they are far from being depth-

preserving; they convert shallow proofs into ones that are extremely deep. In this section, we explore whether this

explosion in depth is inherent to the simulation of CP by SP. While we are unable to conclusively resolve this

question — indeed, at this time the only technique for proving superlogarithmic depth lower bounds on SP works

equally well for CP — we provide a number of depth-preserving simulations of subsystems of CP.

To motivate our results, we will take a detour and discuss the relationship between SP, CP and real communi-

cation protocols. Presently, almost all known lower bounds for CP (including the ones from ??) are obtained by

studying the communication complexity of the CNF search problem (defined in ??). For instance, it is known that:

• A depth d CP refutation yields a d-round real communication protocol for the associated CNF search problem.
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• A size s treeCP refutation yields a real communication protocol O(log s)-round real communication protocol

for the associated CNF search problem.

• A size s and space ℓ CP refutation yields a O(ℓ log s)-round real communication protocol for the CNF asso-

ciated search problem.

• A size s CP proof yields a dag-like real communication protocol for the associated CNF search problem.

All of these results have been used to derive strong lower bounds on Cutting Planes by proving the corresponding

lower bound against the CNF search problem [12,31,36,48,54,67]. Furthermore, this technique applies even to the

stronger semantic CP system, as all one needs to exploit is that the lines are linear inequalities, rather than expoiting

some weakness of the deduction rules. However, this strength also illustrates a weakness of current techniques, as

once the lines of a proof system become expressive enough, proof techniques which work equally well for semantic

proof systems break down since every tautology has a short semantic proof. Therefore, it is of key importance to

develop techniques which truly exploit the “syntax” of proof systems, and not just the expressive power of the lines.

Hence, it is somewhat remarkable that we are able to show that each of the simulation results above still hold if

we replace real communication protocols with SP refutations, which are syntactic objects. That is, we show

(i) A depth d CP refutation yields a depth 2d SP refutation.

(ii) A size s treeCP refutation yields a size O(s) and depth O(log s) SP refutation.

(iii) A size s and space ℓ CP refutation yields a size O(2ℓs) and depth O(ℓ log s) SP refutation.

(iv) A size s CP refutation yields a size O(s) SP refutation

4.2.1 Simulating CP Depth

First, we exhibit a depth-preserving simulation of CP by SP, which establishes (i). Furthermore, if the proof is

tree-like then this simulation simultaneously preserves the size.

Theorem 8. depthCP(F ) ≥ 2 · depthSP(F ). Moreover, for any treeCP refutation of depth d and size s there is an

SP refutation of depth 2d and size O(s).

Proof. It is sufficient to prove the “moreover” part of the statement, since, by recursive doubling, any CP refutation

can be converted into a treeCP refutation where the depth remains the same.

Fix a treeCP refutation of size s and depth d, and let G be the its underlying tree. We will construct an SP

refutation of the same system of linear inequalities by proceeding from the root of G to the leaves. In the process,

we will keep track of a subtree T of G, which we have left to simulate, and an associated “current” node v of the

SP refutation that we are constructing. Along the way, the following invariant will be maintained: at every recursive

step (T, v) with T 6= G, if the root of T is labelled with the inequality ax ≥ b, then the edge leading to v in the SP

refutation is labelled with ax ≤ b− 1.

Initially, T = G and the SP refutation contains only a single root node v. Consider a recursive step (T, v). We

break into cases based on which rule was used to derive the root of T .

• Conic Combination. Suppose that the root of T is labelled with an inequality λ(a + c)x ≥ λ(b + d) which

was derived as a conic combination of ax ≥ b and cx ≥ d. At the current node v in the SP refutation, query

(ax ≤ b − 1, ax ≥ b). On the branch labelled with ax ≥ b, query (cx ≤ d − 1, cx ≥ d). This sequence of

queries results in three leaf nodes; see Figure 5. Let the leaf of the branch labelled with ax ≤ b− 1 be ℓ1 and

let T1 be the subtree rooted at the child of the root of T labelled with ax ≥ b; recurse on (T1, ℓ1). Similarly,

for the leaf ℓ2 of the branch labelled with cx ≤ d − 1, let T2 be the sub-tree rooted at the child of the root of

T labelled with cx ≥ d, and recurse on (T2, ℓ2).

For the final leaf, obtained by traversing the edges labelled with ax ≥ b and cx ≥ d, we can derive 0 ≥ 1.

To see this, first observe that if T = G (i.e. the base case) then the root node of T is labelled with 0 ≥ 1 and
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λ(a + c)x ≥ λ(c+ d)

ax ≥ b cx ≥ d

λ(a+c)x ≤ λ(b+d)−1

ax ≤ b− 1 ax ≥ b

cx ≥ dcx ≤ d− 1

ℓ3

∅ℓ1

∅ℓ2

Figure 5: A treeR(CP) refutation invoking the conic combination rule (left) and the corresponding partial SP refu-

tation (right).

ax ≥ b and cx ≥ d are the premises used to derive it by a conic combination. In this case, we can derive

0 ≥ 1 by the same conic combination in SP. Otherwise, by the invariant, the edge leading to v is labelled with

the inequality λ(a+ c)x ≤ λ(b + d) − 1. Therefore, a conic combination of this inequality with ax ≥ b and

cx ≥ d yields 0 ≥ 1.

• Division. If the root of T is labelled with an inequality ax ≥ ⌈b/δ⌉ obtained by division from δax ≥ b, then

query (δax ≤ b−1, δax ≥ b). At the leaf ℓ1 corresponding to the edge δax ≤ b−1, let T1 be the subtree of T
rooted at the child of the root of T and recurse on (T1, ℓ1). At the leaf corresponding to the edge δax ≥ b we

derive 0 ≥ 1 by a conic combination with ax ≤ ⌈b/δ⌉ − 1, which we have already deduced by the invariant.

To see this, observe that b− δ(⌈b/δ⌉ − 1) > 0

• Axiom. If T is a single node — a leaf of the treeR(CP) refutation labelled with some initial inequality ax ≥ b
of the system that it is refuting — then, by the invariant, we have already deduced ax ≤ b− 1 and this can be

added to ax ≥ b to derive 0 ≥ 1.

To see that the SP refutation that we have constructed has depth at most twice that of the treeCP refutation,

observe that conic combinations are the only inference rule of CP for which this construction requires depth 2 to

simulate, while all other rules require depth 1.

To measure the size, note that every CP rule with a single premise is simulated in SP by a single query, where

one of the outgoing edges of that query is immediately labelled with 0 ≥ 1. Each rule with two premises is simulated

by two queries in the SP refutation, where one of the three outgoing edges is labelled with 0 ≥ 1. Therefore, the

size of the SP refutation is O(s).

4.2.2 Balancing treeCP Proofs into SP

A proof system can be balanced if any proof of size s implies one of simultaneous size poly(s) depth polylog(s).
While it is known that treeCP refutations cannot be balanced, we show next that if we permit the resulting refutation

to be in SP, then we can balance. This establishes (ii).

Theorem 9. Any size s treeCP refutation of an unsatisfiable system of linear inequalities Ax ≥ b implies a size

O(s) and depth O(log s) SP refutation of Ax ≥ b.

Proof. Consider a treeCP refutation of Ax ≥ b and let T be its corresponding tree. As well, let |T | denote the

number of nodes in T . We will construct the SP refutation recursively; at each step we will keep track of a current

node u in the SP proof we are constructing. The base case is when |T | = O(1), in which case we can use one of the

previous simulation theorems (?? or Theorem 8) to create an SP refutation of Ax ≥ b satisfying these properties,

and append it to u.

For the recursive step, observe that because the tree has fanin at most 2, there exists a node v in T such that the

subtree Tv rooted at v satisfies |T |/3 ≤ |Tv| ≤ 2|T |/3. Let cx ≥ d be the line corresponding to v. At node u in the

SP proof, query (cx ≤ d − 1, cx ≥ d). Let u1 (resp. u2) be the child of u obtained by following the edge labelled

with cx ≤ d− 1 (resp. cx ≥ d); see Figure 6. We recurse as follows:
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Tv

T \ Tv
v cx ≤ d− 1 cx ≥ d

T \ TvTv

u2u1

u

Figure 6: A decomposition of treeR(CP) tree T into Tv and T \Tv (left) and the corresponding partial SP refutation

(right).

• At u1; Observe that the sub-proof Tv is a treeCP derivation of the inequality cx ≥ d. Because we have

deduced cx ≤ d − 1 on the path to u1, if we also deduce cx ≥ d then this is sufficient to derive 0 ≥ 1.

Therefore, at u1 we recurse on the treeCP derivation Tv.

• At u2: Observe that the sub-proof T \Tv is a treeCP refutation of Ax ≥ b where we have assumed cx ≥ d as an

axiom. Therefore, at u1 we recursively construct an SP refutation of the set of inequalities {Ax ≥ b, cx ≥ d}
using tree T \ Tv.

The size of the treeCP refutation is clearly preserved. Observe that the depth of the resulting SP refutation becomes

logarithmic in s, since we are reducing the size of the proof to be simulated by a constant factor on each branch of a

query.

4.2.3 Balancing Low-Space CP Proofs into SP

Next,we show how to balance CP proofs into SP, provided the space at each step of the proof is bounded.

The space for a proof system models the amount of information that must be remembered at each state in

the nondeterministic Turing machine that underlies a proof system. To capture this, we redefine a Cutting Planes

refutation of a system of linear inequalities Ax ≥ b as a sequence of configurations C1, . . . , Cs where a configuration

Ci is a set of integer linear inequalities satisfying the following conditions: (i) C1 = ∅, (ii) Cs contains the inequality

0 ≥ 1, (iii) each configuration Ct follows from Ct−1 by removing any number of inequalities and including an

inequality which was derived from inequalities in Ct−1 by one of the rules of CP or an initial inequality belonging

to Ax ≥ b. The line space of a refutation is maxi∈[s] |Ci|, the maximum number of inequalities in any configuration.

Theorem 10. For any CP refutation of size s and line space ℓ of a system of linear inequalities Ax ≥ b there is an

SP refutation of depth O(ℓ log s) and size O(s · 2ℓ).

This implies that strong depth lower bounds on SP proofs can lead to size-depth tradeoffs for CP.

Proof. Fix a Cutting Planes refutation C1, . . . , Cℓ where |Ci| ≤ ℓ for all i ∈ [s]. The theorem will follow by taking

i = s in the following claim.

Claim. For any i ∈ [s] there exists an SP tree of depth 2ℓ log i such that every root-to-leaf path ends in a leaf labelled

with 0 ≥ 1, except for one, along which we have deduced all of the inequalities in Ci.

Proof of Claim. It remains to prove the claim. If Ci contains only a single inequality aix ≥ bi and it belongs to

Ax ≥ b, then take the tree to be the one corresponding to the SP query (aix ≤ bi − 1, aix ≥ bi). Otherwise, the SP

tree begins with a complete binary tree in which every inequality in C⌊i/2⌋ is queried. Exactly one path in this tree

is labelled with the inequalities in C⌊i/2⌋, and the remaining paths contain the integer negation (i.e., cx ≤ d− 1) of

at least one inequality cx ≥ d in C⌊i/2⌋. We consider these two cases separately.

In the case that a path contains a negation of a line from C⌊i/2⌋, we attach to its leaf the SP tree we obtain

recursively by running our construction on C1, . . . , C⌊i/2⌋. The leaves of the resulting tree are all labelled with
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C�i/2�+1, . . . , Ci C1, . . . , C�i/2�

cx ≤ d− 1 cx ≥ d

Figure 7: The SP tree corresponding to a configuration Ci = {cx ≥ d}.

0 ≥ 1, except for one. By construction, at the leaf not labelled with 0 ≥ 1 we have deduced all inequalities in C	i/2
.

Since we attached this tree to a path along which we had deduced the negation of a line in C	i/2
, we can label this

leaf with a conic combination of these inequalities equalling 0 ≥ 1. The overall depth in this case is � for the initial

tree and 2� log(�i/2�) for the tree obtained recursively. Altogether, �+2� log(�i/2�) ≤ �(1+2 log(i)−2) ≤ 2� log i.
For the path labelled with the inequalities in C	i/2
, note that C	i/2
+1, . . . , Ci can viewed as configurations of

a refutation of the original inequalities Ax ≥ b together with the inequalities in C	i/2
. At the leaf of this path we

have deduced all inequalities in C	i/2
. Thus, we can apply the recursive construction to C	i/2
+1, . . . , Ci to refute

this leaf. The overall depth is �+ 2� log(�i/2�) ≤ �(1 + 2 log(i+ 2)− 2) ≤ 2� log i.

4.3 Simulating non-CG Cuts

So far, we have focused on the relationship between Stabbing Planes and Chvátal-Gomory cutting planes. In this

section we discuss the relationship between SP and other popular types of cutting planes. First, we cover the result

of Basu et al. [8] which shows that SP can simulate split cuts. Split cuts, which were introduced by Cook et al. [22],

and form one of the most popular classes of cutting planes in practical integer linear programming. Recall that an

inequality ax ≥ b is valid for a polytope P if for every x∗ ∈ P , ax∗ ≥ b.

Split Cut. A split cut for a polytope P is any integer-linear inequality ax ≥ b for which there exists a witnessing

pair c ∈ Zn and d ∈ Z such that ax ≥ b is valid for both P ∩ {x ∈ Rn : cx ≤ d− 1} and P ∩ {x ∈ Rn : cx ≥ d}.

cx ≤ d− 1
cx ≥ d

ax ≥ b

Figure 8: A split cut ax ≥ b witnessed by (cx ≤ d− 1, cx ≥ d) on the polytope in green.

Split cuts are known to be equivalent to mixed-integer rounding (MIR) cuts [63] and Gomory mixed integer

cuts [40], and generalize lift-and-project cuts [6]. As well, Dash [28] gave an example on which split cuts are

exponentially separated from Chvátal-Gomory cuts and lift-and-project cuts. Basu et al. [8] showed that split cuts

can be simulated in Stabbing Planes. For completeness, we include a proof of this.
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Lemma 11 ( [8]). Let P be a polytope and let P ′ = P ∩ {ax ≥ b} be obtained by a split cut from P . Then, there is

an SP tree of size O(1) beginning from P such that every leaf is empty, except for one whose corresponding polytope

is P ′.

Proof. We simulate the deduction of P ′ from P in Stabbing Planes as follows:

(i) Query (ax ≤ b− 1, ax ≥ b)

(ii) On the branch labelled with ax ≤ b − 1, query (cx ≤ d − 1, cx ≥ b). Observe that because ax ≥ b was

valid for both P ∩ {cx ≥ d} and P ∩ {cx ≤ d− 1}, it follows that both P ∩ {cx ≥ d} ∩ {ax ≤ b− 1} and

P ∩ {cx ≥ d} ∩ {ax ≤ b− 1} are empty.

Therefore, the only non-empty leaf is the one corresponding to P ′.

Dash [28] studied split cuts as a proof system, and showed that the lower bound of Pudlak [67] could be extended

to prove exponential lower bounds on the length of split cut proofs. A split cut refutation of a system of integer linear

inequalities Ax ≥ b (representing a polytope P ) is a sequence of inequalities c1x ≥ d1, . . . , csx ≥ ds = 0 ≥ 1 such

that cix ≥ di is a split cut for the polytope P ∩{cjx ≥ dj}j<i. The following is immediate corollary of Lemma 4.3.

Corollary 12. Stabbing Planes polynomially simulates split cut proofs.

Proof. To simulate any split cut refutation c1x ≥ b1, . . . , csx ≥ bs, we simply simulate each cut inductively using

Lemma 4.3.

Finally, we note that there exist cutting planes that cannot be efficiently simulated by SP. This is witnessed by

the fact that SP cannot polynomially simulate semantic CP [33]. A concrete example of a type of cutting plane that

SP likely cannot simulate are the matrix cuts of Lovász and Schrijver [60]. As we describe in Section 5 CP, and

therefore, SP∗ cannot quasi-polynomially simulate the Lovasz-Schrijver proof system. However, whether this holds

for SP with unbounded coefficients remains an interesting question.

5 Relationship Between Stabbing Planes and Other Proof Systems

Having explored in depth the relationship between Cutting Planes and Stabbing Planes, we now describe how Stab-

bing Planes relates to other proof systems. A summary of these relationships can be seen in Figure 2.

Let us first note some of the separations that have already been established.

• Lower bounds for unsatisfiable systems of linear equations over finite fields, which are known for Nullstel-

lensatz [44], the Polynomial Calculus [15], Sum-of-Squares [45, 70], AC0-Frege [11, 38, 47, 66], rule out the

possibility of these systems simulating CP.

• Göös et al. [42] gave an exponential separation between Nullstellensatz and Cutting Planes by observing that,

for any unsatisfiable system of linear equations F , composing with the m-bit index gadget can only increase

the degree of refuting F in Nullstellensatz by O(logm). On the other hand, Garg et al. [39] showed that

composing any function which requires resolution refutations of width w when composed with the index

gadget requires Cutting Planes proofs of size nΩ(w). Thus, any function which requires large resolution width

but small Nullstellensatz degree provides such a separation.

• Semantic CP is not polynomially verifiable, and therefore, assuming P 6= NP, no propositional proof system

can simulate it. Indeed, Filmus, Hrubeš, and Lauria observed that it has O(1) size refutations of unsatisfiable

instances of the NP-complete subset sum problem.

We establish the remaining simulations and separations in Figure 2 next.
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SP = treeR(CP)CP

treeCP

R(CP)

Figure 9: Relationships between R(CP), CP, and their tree-like variants. An arrow from proof system P1 to P2

indicates that P2 can polynomially simulate P1.

5.1 Equivalence Between Stabbing Planes and treelike R(CP)

The Resolution over Cutting Planes (R(CP)) proof system was introduced by Krajı́ček [54] as a mutual generaliza-

tion of both Cutting Planes and resolution — the lines of an R(CP) proof are clauses of integer-linear inequalities,

and in a single step one can take two previously derived disjunctions and either apply a Cutting Planes rule to a

single inequality in the disjunctions, or apply a resolution-style “cut”.

Resolution over Cutting Planes. An R(CP) proof of a disjunction Γs from a system of integer-linear inequalities

Ax ≥ b is a sequence of disjunctions P = {Γi}i∈[s] such that each Γi is a disjunction which is either an inequality

from Ax ≥ b or was derived from earlier disjunctions by one of the following deduction rules:

• Conic Combination. From (ax ≥ b) ∨ Γ and (cx ≥ d) ∨ Γ deduce (λ(a + c)x ≥ λ(b + d)) ∨ Γ for any

non-negative integer λ.

• Division. From (ax ≥ b) ∨ Γ and integer δ dividing each entry of a, deduce ((a/δ)x ≥ ⌈b/δ⌉) ∨ Γ.

• Cut. From (ax ≥ b) ∨ Γ and (ax ≤ b− 1) ∨ Γ derive Γ.

• Weakening. From Γ deduce Γ ∨ (ax ≥ b)

• Axiom Introduction. Deduce (ax ≥ b) ∨ (ax ≤ b− 1) for any integer-linear inequality ax ≥ b.

• Elimination. From (0 ≥ 1) ∨ Γ deduce Γ.

The size of a proof is the number of disjunctions s in the proof and the width of the proof is the maximal number of

inequalities in any disjunction in the proof. An R(CP) refutation of Ax ≥ b is a proof of the empty clause Λ from

Ax ≥ b. The proof system treeR(CP) is the tree-like restriction of R(CP) in which the underlying implication graph

is required to be a tree.

The main result of this sub-section is that SP is polynomially equivalent to treeR(CP).

Theorem 2. The proof systems SP and treeR(CP) are polynomially equivalent.

Even though SP turns out to be equivalent to a system already in the literature, this new perspective has already

shown to be useful: none of aforementioned results were known for treeR(CP).
We will prove Theorem 2 in two parts.

Claim 13. Let Ax ≥ b be an unsatisfiable system of m integer-linear inequalities. Any size s and depth d SP

refutation implies a treeR(CP) refutation of size O(s(d2 + dm)) and width d+ 1.

Proof. Consider an SP refutation of Ax ≥ b of size s and depth d. Fix any root-to-leaf path p in the refutation and

let c1x ≥ d1, . . . , ctx ≥ dt be the sequence of linear inequalities labelling p. We will first show how to derive the

clause

(c1x ≤ d1 − 1) ∨ . . . ∨ (ctx ≤ dt − 1) (1)
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in treeR(CP). For every i ∈ [t], using axiom introduction, introduce (cix ≤ di − 1) ∨ (cix ≥ di) and weaken it to

obtain

(cix ≥ di) ∨ (c1x ≤ d1 − 1) ∨ . . . ∨ (ctx ≤ dt − 1). (2)

As well, weaken each initial inequality aix ≥ bi in Ax ≥ b to

(aix ≥ bi) ∨ (c1x ≤ d1 − 1) ∨ . . . ∨ (ctx ≤ dt − 1) (3)

Because p is a root-to-leaf path in the SP proof, it is labelled with a conic combination of Ax ≥ b and cix ≥ di for

every i ∈ [t] equalling 0 ≥ 1. By taking this conic combination of the first inequalities of the lines in (2) and (3) we

can deduce

(0 ≥ 1) ∨ (c1x ≤ d1 − 1) ∨ . . . ∨ (ctx ≤ dt − 1),

from which we can obtain (1) by elimination.

Repeat this process to deduce (1) for every root-to-leaf path in the SP proof. Applying the cut rule appropriately

to these inequalities yields the empty clause. To see this, let p and p′ be two root-to-leaf paths which differ only on

their leaf nodes. Then, their corresponding inequalities (1) are of the form

(cix ≥ di) ∨ (c1x ≤ d1 − 1) ∨ . . . ∨ (ct−1x ≤ dt−1 − 1) ∨ (ctx ≤ dt − 1),

(cix ≥ di) ∨ (c1x ≤ d1 − 1) ∨ . . . ∨ (ct−1x ≤ dt−1 − 1) ∨ (ctx ≥ dt).

That is, they differ in their final inequality. Applying the cut rule, we can deduce

(cix ≥ di) ∨ (c1x ≤ d1 − 1) ∨ . . . ∨ (ct−1x ≤ dt−1 − 1).

Therefore, by repeating this process we can derive the empty clause.

Each deduction of a clause (1) can be done in size O(t2 + tm+ t+m) = O(d2 + dm) and has width at most

d+ 1. Thus, the size of the proof is at most O(s(d2 + dm)).

We now prove the converse.

Claim 14. Let Ax ≥ b be an unsatisfiable system of m integer-linear inequalities. If there is a treeR(CP) proof of

the line (a1x ≤ b1 − 1) ∨ . . . ∨ (amx ≤ bm − 1), where aix ≥ bi is the ith row of Ax ≥ b, of size s and depth d
then there is an SP refutation of Ax ≥ b of size O(s) and depth 2d.

Proof. Fix such a treeR(CP) proof of the disjunction. For any clause Γ = (c1x ≥ d1) ∨ . . . (cmx ≥ dm), we will

denote by ¬Γ the set of inequalities {c1x ≤ d1 − 1, . . . , cmx ≤ dm − 1}. We will construct the SP refutation by

structural induction, beginning at the leaves of the refutation and proceeding towards the root. At each line Γ in the

proof, deduced from children Γ1 and Γ2, we will assume that we have constructed SP refutations ¬Γ1 and ¬Γ2 and

use them to construct an SP refutation of ¬Γ.

First, consider a leaf of the proof which, by definition, is an axiom introduction of (cx ≤ d− 1) ∨ (cx ≥ d) for

some arbitrary integer-linear inequality cx ≥ d. We can construct an SP refutation of (cx ≥ d) ∧ (cx ≤ d − 1) by

querying (cx ≤ d − 1, cx ≥ d), and then labelling each leaves with the appropriate conic combination equalling

0 ≥ 1.

Now, let Γ be some line in the proof which was derived from earlier lines {Γi}, and suppose that we have

constructed SP refutations of {¬Γi}. To construct a refutation of ¬Γ, we break into cases based on the rule used to

derive Γ.

• Conic combination. Let Γ := (λ(c1 + c2)x ≥ λ(d1 + d2)) ∨ ∆, let Γ1 := (c1x ≥ d1) ∨ ∆, and let

Γ2 := (c2x ≥ d2) ∨ ∆. We construct an SP refutation of ¬Γ by first querying (c1x ≤ d1 − 1, c1x ≥ d1).
On the branch labelled with c1x ≥ d1, apply the SP refutation of ¬Γ1. On the branch labelled with c1x ≥ d1,

query (c2x ≤ d2 − 1, c2x ≥ d2), and use the refutation of ¬Γ2 to refute the branch labelled with c2x ≥ d2.

On the remaining branch, where we have deduced c1x ≤ d1 − 1 and c2x ≤ d2 − 1, we have that 0 ≥ 1 is a

conic combination with λ(c1 + c2)x ≥ λ(d1 + d2).
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• Division. Let Γ := ((c/δ)x ≥ ⌈d/δ⌉) ∨∆ and let Γ1 = (δcx ≥ d) ∨∆. Query (δcx ≤ d− 1, δcx ≥ d). On

the branch labelled with cx ≤ d− 1 we can use the refutation of ¬Γ1. On the branch labelled with cx ≥ d, it

is enough to observe that the intersection of cx ≥ d and ((c/δ)x ≤ ⌈d/δ⌉ − 1), provided by ¬Γ, is empty.

• Cut. Suppose Γ := ∆ was derived by cutting on Γ1 := (cx ≥ d) ∨∆ and Γ2 := (cx ≤ d − 1) ∨∆. Query

(cx ≤ d− 1, cx ≥ d). On the branch labelled with cx ≤ d− 1 apply the refutation of ¬Γ1, and on the branch

labelled with cx ≥ d use the refutation of ¬Γ2.

• Weakening. If Γ := (cx ≥ d) ∨∆) was derived by weakening Γ1 := ∆, then query (cx ≤ d − 1, cx ≥ d).
On the branch labelled with cx ≤ d− 1 use the refutation of ¬Γ1, and the branch labelled with cx ≥ d we can

deduce 0 ≥ 1 by adding this inequality to cx ≤ d− 1 with is an inequality of ¬Γ.

Simulating each rule requires at most two queries, of which at most two of the children are not immediately the

empty polytope. Therefore, the size of the resulting tree is at most 2s and the depth is at most 2d.

5.2 Stabbing Planes Simulates Tree-like DNF Resolution

Next, we show how to simulate the k-DNF resolution proof systems by variants of Stabbing Planes.

k-DNF Resolution. A Res(k) refutation of a CNF formula F is a sequence of k-DNF formulas P = {Γi}i∈[s] such

that Γs is the empty clause Λ, and each Γi is either a clause of F or was derived from earlier DNFs by one of the

following deduction rules, where a literal ℓi is either xi or ¬xi:
• Cut. From k-DNFs A ∨ (∧i∈Sℓi) and B ∨ (∨i∈S¬ℓ) deduce A ∨B.

• Weakening. From a k-DNF A deduce A ∨ ℓ for any literal ℓ.

• ∧-Introduction. From {A ∨ ℓi}i∈S deduce A ∨ (∧i∈Sℓi).

• ∧-Elimination. From A ∨ (∧i∈Sℓi) deduce A ∨ ℓi for any i ∈ S.

A refutation is tree-like if every deduced inequality is used at most once in the refutation (i.e., the underlying

implication graph is a tree). The proof system which produces only treelike Res(k) refutations is denoted treeRes(k).

Theorem 15. For any integer k ≥ 1, any Res(k) refutation of size s implies an R(CP) refutation of size O(ks).
Similarly, any treeRes(k) refutation of size s implies an SP refutation of size O(ks).

The proof will follow by a straightforward application of the following claim.

Claim 16. From any disjunction
∨

i∈S(xi ≥ 1) ∨∨

j∈T (−xi ≥ 0), together with inequalities xi ≥ 0 and xi ≤ 1 for

every i ∈ [n], there is a size O(|S|+ |T |) treeR(CP) derivation of
∑

i∈S xi +
∑

j∈T (1− xj) ≥ 1.

Proof. For every v ∈ T ∪S, derive
∑

i∈T\{v} xi+
∑

j∈S\{v}(1−xj) ≥ 0 by adding together the inequalities xi ≥ 0
and xi ≤ 1. For v ∈ T ∪ S add the corresponding inequality to the disjunction in

∨

i∈S(xi ≥ 1) ∨∨

j∈T (−xj ≥ 0)
containing the variable v. The result is the disjunction

∨

S∪T

(

∑

i∈S

xi +
∑

j∈T

(1− xj) ≥ 1
)

,

which is the inequality
∑

i∈S xi +
∑

j∈T (1− xj) ≥ 1.

Proof of Theorem 15. We will show that R(CP) can simulate Res(k). That SP simulates treeRes(k) will follow by

observing that the same proof also shows a simulation of treeRes(k) by treeR(CP), and then applying Theorem 2.

Let {Γi}i∈[s] be a Res(k) refutation of a CNF formula F , and note that the encoding of F as a system of

inequalities (recalled in Section 2) includes xi ≥ 0 and xi ≤ 1 for every i ∈ [n]. We will encode each disjunction

Γ := ∆1 ∨ . . . ∨∆t as follows: each ∆ := (∧i∈Sxi)∧ (∧j∈T¬xj) is represented by the inequality
∑

i∈S(xi − 1) +
∑

j∈T −xj ≥ 0; observe that both representations are satisfied by the same set of {0, 1}-assignments. Let LΓ be the

encoding of Γ obtained by replacing each ∆i by its encoding as an inequality.

It remains to show that R(CP) can simulate the deduction rules of Res(k).
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• Cut. Suppose that Γ := A ∨ B be deduced by cutting on Γ1 := A ∨ (∧i∈Sxi) ∧ (∧j∈T¬xj) and Γ2 := B ∨
(∨i∈S¬xi)∨ (∨j∈Txj). As well, suppose that we have already deduced the corresponding lines LΓ1 := LA ∨
(
∑

i∈S(xi − 1) +
∑

j∈T −xj ≥ 0) and LΓ2 := LB ∨∨

i∈S(−xi ≥ 0)∨∨

j∈T (xj ≥ 1). By Claim 16, R(CP)
can reencode LΓ2 as LB∨(

∑

i∈S(1−xi)+
∑

j∈T xj ≥ 1), which when added to LΓ1 gives LA∨LB∨(0 ≥ 1),
which is LΓ.

• Weakening. This is already a rule of R(CP).

• ∧-Introduction. If Γ := A ∨ (∧i∈Sxi) ∧ (∧j∈T¬xj) was deduced from {A ∨ xi}i∈S and {A ∨ ¬xj}j∈T and

we have already deduced LΓi := LA ∨ (xi ≥ 1) and LΓj := LA ∨ (−xj ≥ 0) for all i ∈ S and j ∈ T . Then

LΓ can be deduced by adding together all of the LΓi and LΓj .

• ∧-Elimination. If Γ = A ∨ xi was deduced from Γ1 := A ∨ (∧j∈Sxj) ∧ (∧t∈Txt), then LΓ can be deduced

from LΓ1 := A ∨ (
∑

j∈S(xj − 1) +
∑

t∈T −xt ≥ 0) by adding the inequalities xj ≤ 1 for every j ∈ S \ {i}
and xt ≥ 0 for every t ∈ T . A similar argument holds if xi is negated.

Atserias, Bonet, and Estaban [4] gave polynomial-size proofs of the clique-coclique formulas, for cliques of

size Ω(
√
n) and cocliques of size o(log2 n). For this range of parameters, quasi-polynomial size lower bounds are

known [67]. This rules out the possibility of a polynomial simulation of R(CP) or treeRes(k) by Cutting Planes.

6 Lower Bounds on Stabbing Planes

Next, we tackle the problem of proving lower bounds on Stabbing Planes proofs. First, we show that near-maximal

depth lower bounds on unrestricted Stabbing Planes proofs can be obtained by a straightforward reduction to com-

munication complexity. Next, while we are unable to prove unrestricted size lower bounds, we explain why current

techniques that would attempt to leverage the depth lower bounds fail. In doing so, we show that real communica-

tion protocols cannot be balanced by establishing the first superlogarithmic lower bound on the real communication

complexity of the set disjointness function.

First, we recall some standard models of communication and previous lower bounds on depth via communication

complexity. In proving lower bounds on proof complexity it has been fruitful to study the following associated search

problem, introduced by Lovász et al. [58].

CNF Search Problem. Let F = C1 ∧ . . . ∧ Cm be a CNF formula and let (X,Y ) be any partition of its variables.

The associated CNF search problem Search
(X,Y )
F ⊆ {0, 1}|X|×{0, 1}|Y |× [m] is defined as (x, y, i) ∈ Search

(X,Y )
F

if and only if Ci(x, y) = 0.

Our depth lower bounds are inspired by the approach of Impgliazzo et al. [49] who observed that small treelike

Cutting Planes proofs implied short protocols in certain models of communication for solving the following CNF

search problem.

Deterministic Communication. A deterministic communication protocol for a search problem S ⊆ X × Y × O
consists of two players, Alice and Bob. They receive private inputs x ∈ X and y ∈ Y respectively, and their

aim is to agree on some o ∈ O for which (x, y, o) ∈ S . To do so, they are allowed to communicate by sending

messages to each other (in the form of a single bit) according to some predetermined protocol. This can be modelled

combinatorially: every step in the communication protocol is associated with rectangle of inputs X ′ ×Y ′ ⊆ X ×Y
consistent with the communication thus far; X ′ models what Bob knows about Alice’s input, and Y ′ models what

Alice knows about Bob’s. If Alice communicates a bit, then this partitions X ′ into X ′
0 and X ′

1 corresponding to

whether the bit Alice sent was 0 or 1. The communication ends when X ′×Y ′ is monochromatic, meaning that there

is some o ∈ O such that (x, y, o) ∈ S for every (x, y) ∈ X ′ × Y ′.

The deterministic communication complexity of computing S is the minimum number of bits communicated, or

rounds of communication, needed to solve S on any input (x, y) ∈ X × Y .
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Observe that for x, y ∈ {0, 1}n, any integer linear inequality ax+ by ≥ d can be evaluated in w = log ‖a‖1 +
log ‖b‖1 bits by Alice communicating ax to Bob, and Bob responding with by. Therefore, for example, a Cutting

Planes refutation of a CNF formula F of depth d in which the size of the coefficients are at most 2w implies

a O(dw)-round communication implies a O(dw)-round communication protocol for solving Search
(X,Y )
F for any

partition (X,Y ) of the variables. By strengthening the model of communication, we can simulate arbitrary linear

inequalities. Next, we define two models of communication which allow us to do this; the first is the standard model

of randomized communication complexity.

Randomized Communication. A (bounded error) randomized communication protocol solving a search problem

S ⊆ X×Y×O is a distribution over deterministic communication protocols such that for every (x, y) ∈ X×Y , with

probability at least 2/3, the protocol outputs o for which (x, y, o) ∈ S . The randomized communication complexity

of S is the minimum number of rounds of any randomized protocol computing S , where the number of rounds of a

randomized protocol is the maximum number of rounds of any protocol with non-zero support in the distribution.

An alternative model, which more directly simulates arbitrarily linear inequalities, is the real communication

model introduced by Krajı́ček [54].

Real Communication. In a real communication protocol for a search problem S ⊆ X × Y × O, the players

Alice and Bob communicate via a “referee”. In each round, Alice and Bob send real numbers rA, rB to the referee

who responds with a single bit b which is 1 if rA > rB , and 0 otherwise. The real communication complexity of

computing S is the number minimum number of rounds needed to communication needed to solve S on any input

(x, y) ∈ X × Y .

6.1 Depth Lower Bounds

In this section we prove Theorem 3, which we restate next for convenience.

Theorem 3. There exists a family of unsatisfiable CNF formulas {Fn} for which any SP refutation requires depth

Ω(n/ log2 n)

Note that every unsatisfiable CNF formula has a refutation in depth n by simply querying (xi ≤ 0, xi ≥ 1) for

all i ∈ [n]. Therefore, this lower bound is tight up to a log2 n factor.

The proof proceeds by showing that from any shallow SP refutation we can extract a short randomized or real

communication protocol for the associated CNF Search Problem. The lower bound follows by appealing to known

lower bounds on the communication complexity of this problem.

Lemma 17. Let Az ≥ b be an unsatisfiable system of linear equations encoding a CNF formula F and let (X,Y )
be any partition of the variables z. Every depth d SP refutation of Az ≥ b implies a O(d log n+ log2 n)-round ran-

domized communication protocol and a O(d+log n)-round real communication protocol for solving SearchX,Y (F ).

Proof. We will first present a general procedure for solving the CNF search problem and then show how to instantiate

it in both models of communication.

Fix an SP refutation of Az ≥ b. Let Alice be given a boolean assignment to X and Bob be given a boolean

assignment to Y . To solve the search problem, they will follow the root-to-leaf path through the refutation, main-

taining the invariant that their joint assignment (X,Y ) satisfies all of the inequalities labelling the root to leaf path.

Suppose that they have arrived at a node in the refutation corresponding to a query (cz ≤ d − 1, cz ≥ d). Observe

that their joint assignment (X,Y ) to z satisfies exactly one of these two inequalities. They will proceed down the

path corresponding to the satisfied inequality, thus preserving their invariant.

Once they arrive at a leaf, they will use the conic combination of inequalities which evaluates to 0 ≥ 1 that

labels it in order to search for an inequality of Az ≥ b (corresponding to a clause of F ) which is falsified by (X,Y ).
Indeed, by the invariant, the only inequalities in this conic combination which could be falsified by (X,Y ) are those

belonging to Az ≥ b, and a falsified inequality must exist because (X,Y ) falsifies 0 ≥ 1. Let the conic combination

be
∑

i∈[ℓ] αiciz ≤ ∑

i∈[ℓ] αid, where αi ≥ 0. By Carathéodory’s Theorem (point (ii) in Farkas’ Lemma), we can
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assume that ℓ ≤ n + 2. To find a falsified inequality, we binary search over the conic combination: test whether
∑ℓ/2

i=1 αiciz ≤ ∑ℓ/2
i=1 αidi is falsified by (X,Y ). If it is, recurse on it; otherwise, recurse on

∑ℓ
i=ℓ/2+1 αiciz ≤

∑ℓ
i=ℓ/2+1 αidi. Because ℓ ≤ n+2, this process terminates in O(log n) rounds having found an inequality belonging

to Az ≥ b which is falsified by (X,Y ).
To implement this procedure in communication, it remains to show that linear inequalities can be evaluated

efficiently in each of the models.

• Real communication: this can be done in a single round of communication. if Alice and Bob want to evaluate

c1x+ c2y ≥ d, then Alice can send d− c1x to the referee and Bob can send c2y. The referee returns whether

c1x ≥ d− c2y.

• Randomized communication: this can be done in O(log n) rounds of communication by combining the fol-

lowing two results. The first is the O(log b + log 3) protocol of Nisan [64] for deciding a linear inequality

representable in b bits. The second is a result due to Muroga [62] which states that for any linear inequality

on n variables, there exists a linear inequality whose coefficients are represented in O(n log n) bits and which

has the same output on points in {0, 1}n.

To establish Theorem 3, it remains to lower bound the communication complexity of Search(F ). Strong lower

bounds on the randomized communication complexity of the CNF search lower bound were proven by Göös and

Pitassi [43]. In particular, Theorem 8.1 in [43] gives an unsatisfiable CNF formula F on poly(n) many clauses

and partition (x, y) of the variables for which the randomized commutation complexity of Searchx,y(F ) requires

Ω(n/ log n) rounds. Together with Lemma 17, this establishes Theorem 3.

We remark that the formula provided by Göös and Pitassi is somewhat artificial. It is obtained by lifting the

Tseitin formulas with a versatile gadget. By Theorem 6 we know that the Tseitin formulas have O(log2 n)-depth

SP refutations, and therefore the hardness of these formulas of Göös and Pitassi is derived from the composition

with this gadget. It remains an open problem to obtain strong lower bounds on the depth of SP refutations for more

natural families of formulas. Towards this, Dantchev et al. [26] were able to establish Ω(log n) lower bounds on

the depth of SP refutations of the Tseitin formulas and the Pigeonhole principle via new techniques which take into

account the geometric structure of SP proofs.

6.2 Barriers to Size Lower Bounds

Next, we explore whether it is possible to leverage this depth lower bound in order to obtain size bounds. Throughout

this section, we will heavily make use of results of de Rezende, Nordström, and Vinyals [31]. They established a

lifting theorem that translates decision tree lower bounds for a function f : {0, 1}n → {0, 1} to lower bounds on the

real communication complexity of the composed function f ◦INDn
t , which we define next. Let INDt : [t]×{0, 1}t →

{0, 1} be the t-bit index function mapping (x, y) to yx. The function f ◦ INDn
t is obtained by replacing each variable

of f with a copy of INDn
t on new variables. For any function f , composing with INDt induces a standard partition,

where Alice is given x ∈ [t]n and Bob is given y ∈ {0, 1}tn.

The decision tree complexity of a function f is closely related to the DPLL complexity of refuting an unsatisfiable

formula. A decision tree is a binary tree in which: (i) every internal node is labelled by a variable xi and has two

outgoing edges labelled with 0 and 1, (ii) the leaves are labelled with either 0 or 1. A decision tree computes f if for

every x ∈ {0, 1}n, the leaf obtained by following the root-to-leaf path which agrees with x is labelled with f(x).
The decision tree complexity of f , denoted DT(f), is the minimal depth of any decision tree computing f .

Theorem 18 (de Rezende et al. [31]). The following statements hold:

• For any function f : {0, 1}n → {0, 1}, the real communication complexity of f ◦ INDn
n4 is at least DT(f).

• There is CNF formula F with poly(n) many clauses which has poly(n) size resolution refutation but for which

any real communication protocol for Searchx,y(F ) requires Ω(
√

n1/4 log n) rounds, for some partition of the

variables.
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6.2.1 SP Proofs Cannot be Balanced

As an immediate corollary of Lemma 17 and Theorem 18, we show that SP proofs cannot be balanced. That is, an

SP refutation of size s does not imply one of size poly(s) and depth poly(log s). Thus, superpolynomial SP size

lower bounds do not immediately follow from depth lower bounds.

Corollary 19. There exists a CNF formula F which has poly(n) size SP refutations but any SP refutation requires

depth Ω(n1/8/ log n).

Proof. This follows immediately by combining Theorem 18 with Lemma 17 together with the fact that SP can

simulate resolution proofs.

6.2.2 Real Communication Cannot be Balanced

Unlike the randomized protocols, the real communication protocols that result from Lemma 17 preserve the topology

of the SP proof. That is, the size — the number of nodes in the protocol tree — of the resulting real communication

protocol is equivalent, up to a poly(n) factor, to the size of the SP refutation. Therefore, while SP proofs cannot be

balanced, one might hope that the resulting real communication protocols could be, and thus size lower bounds could

still be obtained from depth bounds. This is not without precedent; both deterministic and randomized communi-

cation complexity can be balanced. Furthermore, although it known that treeCP cannot be balanced, Impagliazzo

et al. [49] show that treeCP refutations of size s can be balanced into O(log s)-round randomized communication

protocols for the CNF search problem.

Surprisingly, we show that real communication protocols cannot be balanced. To do so, we establish the first

lower bound on the real communication of the set disjointness function, perhaps the most well-studied function

in communication complexity, which we define next. Let ORn : {0, 1}n → {0, 1} be the n-bit ∨-function and

AND2 : {0, 1}n → {0, 1}. Then the set disjointness function, DISJn := ORn ◦ANDn
2 , is obtained by replacing each

of the n input variables of ORn by a copy of AND2 on new variables. As before, this function induces a standard

partition where Alice is given one of the two input bits of each AND2 function, and Bob is given the other.

Theorem 20. There is a partition of the variables such that DISJn has a real communication protocol of size O(n),
but any real communication protocol requires Ω((n log n)1/5) rounds of communication.

This lower bound was subsequently improved to Ω(n/ log2 n) by Chattopadhyay, Lovett, and Vinyals [16].

The main technique for obtaining lower bounds on the real communication complexity of a function is by a lifting

theorem, reducing the task of proving lower bounds on certain composed functions to the decision tree complexity

of the un-composed function. Although DISJn is a composed function, there is currently no lifting theorem for

composition with the AND2 function. We circumvent this by exploiting the fact that DISJn is complete for the class

NPcc of functions with polylogarithmic nondeterministic communication protocols.

Nondeterministic Communication Complexity. The nondeterministic communication complexity of a function

f : {0, 1}n → {0, 1} and a partition (X,Y ), is the length of the shortest string z ∈ {0, 1}ℓ that can convince Alice

and Bob to accept an input (x, y) ∈ f−1(1) (without communicating). That is, it is the smallest ℓ such that for every

(x, y) ∈ f−1(1) there is a string z ∈ {0, 1}ℓ such that both Alice and Bob accept, and for every (x, y) ∈ f−1(0) and

every strong z ∈ {0, 1}ℓ , either Alice or Bob rejects.

To prove the lower bound on DISJn we find a function in NPcc to which known lifting theorems for real com-

munication can be applied. Then, we use NPcc-completeness to transfer this lower bound to DISJn. The function

that we will use is ORn ◦ INDt. First, we show that this function belongs to NPcc.

Lemma 21. There is a O(log t+ logn) NPcc protocol computing ORn ◦ INDn
t for the standard partition associated

with INDt.

Proof. Fix some input (x, y) ∈ [t]n×{0, 1}nt and observe that the ith input bit to ORn can be computed in log t+1
rounds of communication by brute-forcing the index gadget: Alice sends xi := xi,1, . . . , xi,log t to Bob who can then

compute INDt(xi, yi), where yi := yi,1, . . . , yi,t, and return the answer to Bob in a single bit.
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Figure 10: A covering of the communication matrix with monochromatic rectangles (left) and the corresponding

DISJn instance (right).

Consider the following protocol NPcc for ORn ◦ INDn
t : Alice and Bob are given a log n-bit string encoding the

index i ∈ [n] where INDt(xi, yi) = 1; that is, i witnesses that (x, y) is accepting input of ORn◦ INDn
t ; see Figure 10.

Alice and Bob verify that indeed INDt(xi, yi) = 1 by performing the above brute force protocol in log t rounds of

communication.

Lemma 22. Let m = n4, then any real communication protocol computing ORn ◦ INDn
t over the standard partition

requires Ω(n log n) rounds.

Proof. Observe that the decision tree complexity of computing ORn is n (since the sensitivity of ORn is n). The

proof follows by combining this with Theorem 18.

Finally, we are ready to prove the main theorem of this section.

Proof of Theorem 20. First, we prove the lower bound. We will reduce ORn ◦ INDn
t for t = n4 to DISJn. By

Lemma 21 there is an cover of the 1-entries of the communication matrix of ORn ◦ INDn
t by at most 2nt monochro-

matic rectangles. Enumerating this rectangle covering gives us an instance of set disjointness: on input (x, y) to

ORn ◦ INDn
t , Alice and Bob construct indicator vectors IA(x) and IB(y) of the rectangles in this rectangle covering

in their respective inputs lie. Then ORn ◦ INDn
t = 1 iff DISJ(IA(x), IB(y)) = 1.

This instance of DISJn is on tn/2 variables, and therefore Lemma 22 implies a lower bound of Ω(n log n).
Letting ℓ = tn be the total number of variables, this is a bound of the form ℓ1/5 log ℓ.

For the upper bound, we give a real communication protocol for DISJn = ORn ◦ ANDn
2 that has O(n) nodes.

Let x, y be the inputs given to Alice and Bob respectively. Sequentially from i = 1, . . . , n, they will solve xi ∧ yi by

Alice sending xi to the referee and Bob sending 2− yi. If they discover that xi ∧ yi = 0 then they halt and output 0,

otherwise they continue.

7 Conclusion

We end with a several questions left open by this work. First, let us note that several of the questions posed in the

original version of this paper were subsequently resolved by [25] who exhibited an upper bound (Proposition 4) on

the size of the coefficients which occur in Stabbing Planes proofs, and showed that the Tseitin formulas could not

provide an exponential separation between Cutting Planes and Stabbing Planes.

1. In this work we showed that there are quasipolynomail-size Stabbing Planes proofs of the Tseitin formulas.

Can this be improved to polynomial?

2. A recent work [37] exhibited supercritical size/depth tradeoffs for Cutting Planes — exhibiting a formula

for which any small proof must have depth which goes far beyond worst-case. This built upon an earlier
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supercritical size/width tradeoff for tree-like Resolution by Razborov [9,69]. This is in contrast to sufficiently

expressive proof systems, such as AC0-Frege, which can be balanced. Depth captures the degree to proofs

— and therefore algorithms which they formalize — can be parallelized. Furthermore, the depth in integer-

programming based proof systems such as Stabbing Planes is closely related to rank measures of polytopes,

which are studied in integer programming theory. In this work, we showed that Stabbing Planes cannot be

balanced. We ask whether this can be improved to a supercritical size/depth tradeoff.

3. We have shown transformations of Cutting Planes proofs into Stabbing Planes which preserve either the size

or the depth of the original proof. Does there exist a transformation which preserves both parameters simulta-

neously?

4. Establish super-polynomial lower bounds on the size of Stabbing Planes proofs. As mentioned in the related

work section, [35] proved superpolynomial lower bounds on SP proofs with coefficients of magnitude bounded

above by 2n
δ

for some constant δ > 0 by reducing to Cutting Planes lower bounds, however it is unclear

whether this reduction can be made to work for arbitrarily large coefficients. Dadush and Tiwari [25] exhibited

an upper bound of exp(poly(n)) on the magnitude of the coefficients in any Stabbing Planes proof. Thus, one

potential (although seemingly unlikely) way to resolve this question is to improve their upper bound to 2n
δ
.

Another approach for obtaining lower bounds on general Stabbing Planes proofs, suggested by Garg et al. [39],

would be to obtain lifting theorem for intersection of triangles trees.

5. Fleming et al. [35] showed that any bounded-weight Stabbing Planes (SP∗) proof can be quasi-polynomially

translated into Cutting Planes. Can this simulation be improved to handle SP proofs of arbitrarily large

coefficients? Alternatively, can we separate SP from CP?

6. As mentioned in the introduction, we feel that SP has potential, in combination with state-of-the-art algorithms

for SAT, for improved performance on certain hard instances, or possibly to solve harder problems such as

maxSAT or counting satisfying assignments. The upper bound on the Tseitin example illustrates the kind

of reasoning that SP is capable of: arbitrarily splitting the solution space into sub-problems based on some

measure of progress. This opens up the space of algorithmic ideas for solvers and should allow one to take

fuller advantage of the expressibility of integer linear inequalities. For example, since geometric properties

of the rational hull formed by the set of constraints can be determined efficiently, an SP-based solver could

branch on linear inequalities representing some geometric properties of the rational hull. Therefore, it is an

open problem to realize a SP based solvers or to implement SP-like branching in conjunction with current

solvers.
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[42] Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov. Adventures in monotone complexity and

TFNP. In Avrim Blum, editor, 10th Innovations in Theoretical Computer Science Conference, ITCS 2019,

January 10-12, 2019, San Diego, California, USA, volume 124 of LIPIcs, pages 38:1–38:19. Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, 2019.
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