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Abstract

Kinetics can play an important role in the crystallization of molecules and can
give rise to polymorphism, the tendency of molecules to form more than one crystal
structure. Current computational methods of crystal structure prediction, however, fo-
cus almost exclusively on identifying the thermodynamically stable polymorph. Kinetic
factors of nucleation and growth are often neglected because the underlying microscopic
processes can be complex and accurate rate calculations are numerically cumbersome.
In this work, we use molecular dynamics computer simulations to study simple molecu-
lar models that reproduce the crystallization behavior of real chiral molecules, including
the formation of enantiopure and racemic crystals, as well as polymorphism. A sig-
nificant fraction of these molecules forms crystals that do not have the lowest free
energy. We demonstrate that at high supersaturation crystal formation can be accu-
rately predicted by considering the similarities between oligomeric species in solution
and molecular motifs in the crystal structure. For the case of racemic mixtures, we even
find that knowledge of crystal free energies is not necessary and kinetic considerations
are sufficient to determine if the system will undergo spontaneous chiral separation.
Our results suggest conceptually simple ways of improving current crystal structure

prediction methods.



Introduction

Predicting which crystal structure a given molecule will form is a long-standing problem?
with considerable practical significance for the industrial production of many chemical com-
pounds, including medicinal drugs,?* pesticides,?® and explosives.’*? Finding the crystal
structure with the lowest free energy is a daunting task, requiring efficient methods for
sampling the space of periodic molecular packings as well as accurate methods for calcu-
lating crystal (free) energies. 419 Crystal structure prediction (CSP) is further complicated
by the fact that the majority of molecules can form more than one polymorph, depend-
ing on crystallization conditions.?’ Predicting polymorphism requires not only knowledge of
the thermodynamic stability of different polymorphs, but also insight into the mechanistic
details of crystal formation as well as methods to estimate the rates of these processes.?!

Most current computational frameworks of CSP focus entirely on the thermodynamic
aspects of crystallization, and much progress has been made in recent years. The most
accurate CSP methods now frequently identify all experimentally known polymorphs and
their ranking in terms of free energies. '4'%22 Nevertheless, CSP has still not replaced time-
consuming experimental polymorph screening procedures. Many of the computationally
predicted structures never materialize in experiments, in some cases even those with free
energies lower than known polymorphs.?? In order to determine which of the predicted low-
energy polymorphs can likely be realized in experiments and which cannot, kinetic effects
need to be incorporated in CSP.?42

Why are kinetic factors not considered more routinely in CSP? Rates of crystal nucle-
ation and growth depend sensitively on the experimental details (including solvent, molecular
concentrations, and temperature) and are determined by a series of microscopic rare events
including the desolvation, attachment, and perhaps rearrangement of molecular species on
the surface of a growing crystallite. Determination of the timescales of these events requires
numerically expensive molecular dynamics methods and highly accurate force fields.?® Rou-

tine calculation of crystal formation rates of many different polymorphs is therefore currently



not feasible.

Traditional theories of crystal nucleation and growth assume that the building blocks
attaching to a growing crystallite are monomers, or at least a unique species. There is
growing evidence, however, that molecules can associate in solution to produce substantial
concentrations of oligomers. 2" 3¢ These oligomers can act as important building blocks in the
nucleation and growth of specific polymorphs. 374> Concentrations of amino acid oligomers in
solution, for instance, have been studied extensively using different techniques.?” 3% Electro-
spray ionization experiments have shown strong evidence of oligomerization of amino acids at
low concentrations® and suggest the existence of ‘magic number’ oligomers with particularly
large concentrations (e.g., tetramers of arginine).?® A recent sedimentation study has shown
that although monomers are the dominant species in undersaturated aqueous environments,
large oligomers are present even at very low monomer concentrations and relative oligomer
concentrations increase as supersaturation is approached.?® Oligomeric species that serve
as precursors for specific crystal structures are often referred to as pre-nucleation clusters
(PNCs).16 Substantial populations of PNCs in solution prior to crystallization have been
observed in a range of systems.39:40:4243:47:48 The related concept of synthons describes en-
ergetically important binding motifs within a crystal structure.*® In a recent review, Davey
and coworkers reported that synthons present in solution also appear in the final crystal
structure in 11 out of 14 cases.?! Although oligomers, PNCs, or synthons have been fre-
quently shown to correlate with the formation of specific polymorphs in experiments, the
role of these species in molecular crystallization has not been systematically studied and no
computational framework exists that incorporates oligomer concentration in CSP.

In this paper, we demonstrate with computer simulations that oligomers can play a
decisive role in determining crystallization outcomes. Our study is based on a family of simple
models of chiral molecules® capable of replicating the rich crystallization behavior found
in real molecules. We show that the crystallization of these models in molecular dynamics

(MD) simulations can be accurately predicted based on classical nucleation theory if available



oligomer building blocks are accounted for. Our theoretical framework successfully balances
the kinetic and thermodynamic factors leading to polymorph formation. Even though our
study is based on models that lack chemical detail, it suggests computationally tractable

ways of augmenting existing CSP frameworks with kinetic information.

Results and Discussion

Mbolecular model and crystallization simulations

We simulated the crystallization of racemic mixtures of simple chiral molecules in two dimen-
sions. Model molecules are rigid and consist of 5 beads that represent different functional
groups and interact via short-ranged attractive pair potentials, as specified in the Methods
section. We chose the strengths of interactions between functional groups in a way that
mimics the heterogeneity of interactions found in real molecules: While most functional
groups interact only weakly, a small number of pairs of functional groups have interactions
that are several times stronger. By varying the spatial arrangement of functional groups and
the distribution of weak and strong interactions, a large family of different molecules can
be constructed. In recent work, we studied a subset of 159 of these molecules and showed
that their simulated crystallization yields the same types of outcomes found in experiments:
racemic crystals, enantiopure crystals (via spontaneous chiral separation) and several types
of partially ordered and disordered solids.®® In addition, the model shows good agreement
with several other experimental facts: It produces racemic and enantiopure crystals with a
relative frequency that is consistent with molecular crystallization experiments on surfaces,
and produces crystalline (rather than disordered) outcomes at a rate consistent with a recent
experimental study.® In this work, we focus on molecules that robustly form large crystalline
clusters with few defects in our simulations. In addition to the 29 molecules from our previ-
ous work that meet this criterion (called set A in the following), we added 34 new molecules

that we specifically selected because of their tendency to form kinetically rather than ther-



modynamically preferred polymorphs (set B, see Methods). While we expect molecules in set
A to be representative of a typical set of real organic molecules, set B presents a worst-case
scenario for CSP methods that rank polymorphs according to their free energies. (Shapes
and interactions of all molecules studied in this work are specified in Fig. S1, Table S2, and
Table S3.)

For each of these molecules, we performed crystallization simulations by placing racemic
mixtures of 5184 molecules in square simulation boxes at a packing fraction of 0.04 =2 and
solving the Langevin equations of motion for several hundred millions of time steps. Solvent
molecules were not represented explicitly. To facilitate crystallization, we used the following
temperature protocol: Starting from an initial temperature well above crystallization condi-
tions, we lowered the temperature until the first cluster of 50 molecules was observed. We
then automatically adjusted the temperature to grow the largest molecular cluster at a fixed
rate. In the final step of the procedure, temperature was linearly increased to facilitate defect
annealing. For the vast majority of molecules, this protocol yields the same polymorphs as
constant-temperature simulations but with fewer defects and without the need for manual
optimization of simulation conditions. Independent simulation runs of the same molecules
consistently yield the same polymorphs. A detailed description of simulation methods can
be found in the Methods section and Ref. 50. Images of some of the molecules we studied
and the crystals they form are shown in Figure 1. (All other molecules and their crystals

are depicted in Figs. S2 and S3.)

Thermodynamic Polymorph Landscapes

We use a recently developed algorithm (POLYNUM) to identify millions of polymorphs for
each of the 65 molecules and evaluate their thermodynamic stability in terms of their lattice
energy. Because molecules are rigid and the range of intermolecular interactions is short,
polymorph free energies typically deviate from lattice energies by less than 1%.%° We will

therefore use the two terms interchangeably. To quantify the thermodynamic role of the



polymorphs that form in our simulations, we calculate the relative energy difference

Eform - Ecomp

AFEsym = -
f | min (Efornh ECOmP)|

9

where Efo, is the energy of the observed polymorph and Eeonp, is the energy of the most
stable competing polymorph, i.e., the lowest energy of all polymorphs that did not form.
Negative values of AFi,,, therefore indicate that the observed polymorph is the thermo-
dynamic equilibrium structure, while cases of kinetically driven polymorph formation are
indicated by positive values of AFEjoy,.

Polymorph energy landscapes of our model molecules show that a substantial fraction of
the crystals that form in our simulations are kinetic products (A Fgm > 0), as illustrated in
Fig. 2. Of the 29 molecules in set A (which includes all good crystallizers from our previous
work), 11 (41%) feature energy landscapes with polymorphs that have energies equal to
or lower than the polymorph that is observed. This fraction of "kinetic” crystallizers is
consistent with a recent estimate based on real organic molecules.®? The fraction of molecules
with AFEfm > 0 is even larger in set B since most of these molecules were selected because
they form enantiopure crystals even though a racemic crystal is thermodynamically stable.
To further characterize the polymorph landscape for each molecule, we calculate the number
No.g5 of polymorphs that have an energy smaller than 0.95F,, where Ej is the minimum
polymorph energy of a given molecule. Ny g5 varies substantially between molecules, but in
all but a few cases we find at least several (and up to ~ 100) competing polymorphs at low
energies. Numerical values of Ef,.,, and Ny g5 for all molecules are given in Figure 1, Figure

S2, and Figure S3.

Polymorphs are heralded by oligomer species

Visual inspection of crystallization trajectories suggests that oligomer species can be a de-

cisive factor in the crystallization of our model molecules. As an example, let us consider



molecule s9-A1, which forms an enantiopure polymorph (called X in the following) that does
not have the lowest energy (AFEgm = 0.03, Nyos = 168). The polymorph landscape of
s9-A1l is illustrated in Figure 4a and features 55 polymorphs with lower energies than X.
The unit cells of X and four racemic and enantiopure polymorphs with substantially lower
energy (called V, W, Y, and Z)! are shown in Figure 3b.

Why does polymorph X prevail? Figure 3a shows a snapshot from a simulation of the
crystallization of s9-A1. As evident from this image, the solution surrounding the growing
nucleus of polymorph X contains various oligomeric species at substantial concentrations.
Conspicuously, many of these oligomers closely resemble motifs found in polymorph X; only
rarely do we observe oligomers that ”belong” to any of the four other polymorphs. The
relative concentrations of these oligomers are consistent with their zero-temperature ener-
gies. Figure 5 shows images of the lowest energy oligomers comprising between two and
six molecules for each of the five polymorphs; Figure 4c¢ shows a plot of these energies as a
function of oligomer size. Even though polymorph X has a higher lattice energy than any
of the other four polymorphs, its oligomeric motifs have the lowest energies for all oligomer
sizes considered here. Energy differences between oligomers amount to several kg1 at the
temperature of crystal formation (T & 1.0 €/kg), consistent with the high concentrations of
oligomers of polymorph X in our simulations. This observation suggests that polymorph X
has a kinetic advantage over competing polymorphs: Oligomers resembling motifs of a given
polymorph are likely to attach productively to the surface of a nucleus of that polymorph,
while they will either only transiently attach to a different crystal surface or will need to
undergo energetically activated rearrangements before they can be incorporated. Can such
differences in attachment rates of oligomeric species be sufficient to overcome a substantial
thermodynamic disadvantage? And can relative formation rates of different polymorphs be
predicted from knowledge of oligomeric species in solution?

Our simulations suggest that polymorphs cannot be predicted based on speciation of

'We selected these four polymorphs because they illustrate the broad range of structural motifs that
appear in low-energy polymorphs of this molecule.



oligomers alone. Polymorphs with substantial thermodynamic advantage can form despite a
lack of suitable oligomers in solution. An example of such a system is molecule s7-A1, whose
polymorph landscape is shown in Figure 4b. There is a large energy gap between the lowest
energy polymorph (labeled Q) and its competitors. This decisive thermodynamic advantage
of polymorph Q is, however, not reflected in the energies of small oligomeric motifs, as
illustrated in Figure 7 and Figure 4d. Several other polymorphs (e.g., polymorphs R and S)
have oligomeric motifs at substantially lower energies and larger concentrations in solution,
as evident from the simulation snapshot in Figure 6. Nevertheless, polymorph Q forms,
either through monomer addition or through a more complicated growth process. Clearly,
kinetic factors associated with growth of crystalline clusters through oligomer addition must
be balanced appropriately with polymorph energies in order to predict which polymorph will

form in our simulations.

Estimating nucleation rates from crystal structures

Crystallization rates are typically analyzed assuming either nucleation or crystal growth
as the rate limiting step. In the former, the polymorph with the largest nucleation rate,
usually estimated using classical nucleation theory (CNT), is thought to prevail. In a growth-
dominated scenario, one assumes that any kinetic advantages in the nucleation stage are
irrelevant in comparison to differences in polymorph growth rates, which determine the final
crystallization outcome. Convincing experimental and theoretical evidence exists for both
scenarios and it is reasonable to assume that molecular crystallization can be determined
by either, depending on conditions. In the majority of our simulations, clusters containing
several unit cells of the eventually successful polymorph form already in the early stages
of our simulations, albeit with high concentrations of defects. Concomitant polymorphism,
i.€., simultaneous formation of large clusters of different polymorphs, is observed in only a
few cases (molecules s10-B2, s2-B5, and s5-A3). We therefore concluded that crystallization

outcomes are determined primarily at the nucleation stage in our simulations and accordingly



chose to estimate crystallization rates based on classical nucleation theory. However, the
kinetic factors associated with attachment of oligomeric species, which are the focus of
this work, are relevant also for crystal growth rates. For one case (molecule s9-Al), we
demonstrate further below that our nucleation rate estimates correctly identify the fastest
growing polymorph, too.

According to classical nucleation theory, the rate at which super-critical nuclei are pro-

duced per unit area in two dimensions is given by?3

A
J = Aexp <—]€B—§> : (1)

where A is the kinetic prefactor and AG is the free energy barrier associated with forming
a nucleus of critical size. The simplicity of Eqn. 1 belies tremendous complexity in practical
applications. The kinetic prefactor A encompasses various factors relating to the attachment
of growth units to the nucleus. These factors include the concentration and diffusion rate
of growth units in solution, free energies of de-solvating growth units and nucleus surface,
as well as factors that determine the probability of growth units to attach correctly, in-
cluding the symmetry of growth units and the structural complexity of the crystal surface.
Differences in the kinetic prefactor are often neglected in the analysis of nucleation rates of
different polymorphs under the assumption that the nucleation barrier is the most important
term. 9°* Other studies have shown that, on the contrary, A can be a decisive factor.?>*® We
show below that both prefactor and nucleation barrier need to be accounted for to predict
molecular crystallization in our simulations.

Assuming that the polymorph with the largest nucleation rate will form, we wish to
calculate nucleation rates J, of all polymorphs p with sufficiently low lattice energy. But
accurate estimates of J, cannot be easily obtained, even for a simple coarse-grained model like
the one analyzed here, because of the large number of energetically competitive polymorphs

and the substantial numerical effort associated with determining the various thermodynamic



and kinetic factors entering into Eq. 1. Motivated by the crystallization dynamics observed
in our simulations and with an eye towards applicability to real molecules, we therefore
focus on those elements of Eq. 1 that describe attachment of various oligomer species to a
growing nucleus and that can be straightforwardly estimated from a set of predicted crystal
structures. Other factors are assumed to vary insignificantly between different polymorphs
and are not considered here in any detail.

We rank polymorphs p of a given molecule according to a "nucleation score” x,, which is

proportional to the CNT nucleation rate (under assumptions described below) and given by

Xp = Vp €XD (=) (2)

Here, v, is a dimensionless quantity proportional to the rate of attachment of oligomeric
species to the nucleus, and 7, is a simple estimate of the nucleation barrier AG,/kgT; at
the temperature T, of crystallization. The most important steps in the calculation of the

nucleation score include the following:

1. We enumerate all oligomeric motifs containing up to six molecules that occur in the

crystal structures of the 100 lowest-energy polymorphs of a given molecule.

2. We estimate the concentrations of these oligomers in solution based on their potential

energies.

3. By appropriately summing up the concentrations of those oligomers that occur in a
given polymorph p, we estimate the total rate of attachment of molecules to a nucleus

of p to arrive at v,,.

4. To calculate the nucleation barrier 7, of polymorph p, we estimate the chemical poten-
tial difference of molecules in p and in solution based on the lattice energy of p and a
single global fitting parameter that is the same for all polymorphs and all molecules.

We discuss the functional forms of v, and 7,, as well as major approximations we make, in

10



detail in the Methods and Discussion sections. In the following, we describe the success of

the nucleation score in predicting crystallization outcomes in our simulations.

Nucleation score predicts outcomes of crystallization simulations

To assess the predictive power of the nucleation score introduced in the previous section,
we computed Y, for each of the 100 lowest-energy enantiopure and racemic polymorphs of
each of the 63 molecular models. If the polymorph with the largest value of x, matched
the polymorph identified in MD simulations, the prediction was considered successful. In
the few cases of molecules that formed two polymorphs simultaneously, the prediction was
considered a success if either of the two polymorphs received the highest nucleation score.
(For a handful of molecules, the predicted and observed polymorphs were super-cell variants
of each other; consistent with other studies, we considered these to be identical.®")

Despite the approximations underlying our model, the nucleation score correctly predicts
almost all simulated crystallization outcomes. For molecules in set A, we predict the correct
polymorph in 28 out of 29 cases (97%). This success rate constitutes a significant increase
over a purely thermodynamic ranking based on lattice energies, which selects the correct
polymorph in 24 out of 29 cases (83%) or 18 out of 29 cases (62%), depending on whether
the correct polymorph is selected in cases where more than one polymorph is found at the
lowest energy or not. For molecules in set B, which contains a much larger fraction of
"kinetic” crystallizers with AFg,, > 0, the nucleation score correctly predicted 32 out of
34 cases (94%). For this set of molecules, lattice energies correctly predict only 7 out of 34
cases (21%). (Due to the way interactions between molecules in set B were selected—see
Methods—all of these 7 models had non-degenerate ground states.) Remarkably, in both
sets A and B the nucleation score predicts spontaneous chiral separation (i.e., whether a
racemic or enantiopure polymorph will form) with 100% accuracy. Overall, the nucleation
score failed to predict the correct polymorph in only 3 out of 63 cases; for these molecules, the

polymorph with the highest nucleation score shared many similarities with the polymorph
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that formed in MD simulations (see Figures S2 and S3).

Dimers are not enough

Many studies have demonstrated correlations between polymorphs observed in experiments
and a specific pre-nucleation cluster with low energy. These investigations usually concen-
trate on dimers.?* 43 We find that in most cases studied here it is not sufficient to consider a
single oligomer species; larger oligomers need to be included to achieve the best results. As
illustrated in Figure 8, prediction based on dimer species alone is successful only in 58% of
all cases, a modest improvement over a ranking based on lattice energies (45%). (Note that
because differences in surface energies and packing fractions of polymorphs are neglected in
our model, rankings based on lattice energy are identical to rankings based on nucleation
barriers 7,.) When oligomers of larger sizes are included in the analysis, the success rate
increases approximately linearly and reaches 95% when all oligomer sizes up to hexamers
are considered.

As an illustration of the importance of larger oligomers, consider the crystallization of
molecule s9-A1/5. If only dimers and trimers of this molecule are included in the calculation
of v, polymorph Y receives the largest nucleation score, rather than the observed polymorph
X. A look at Figs. 4c and 5 reveals why: The dimer with the lowest energy occurs in both
X and Y, and the most important trimers present in the two polymorphs have the same
energy. Since polymorph Y has the lower lattice energy, it receives the higher prediction
score. The substantial kinetic advantage of polymorph X over Y only becomes apparent at

oligomer sizes larger than three.

Thermodynamics vs. Kinetics

Figure 8 demonstrates that our model achieves the highest prediction accuracy when both
kinetic and thermodynamic factors are included, as encoded in the attachment rate v, and

the nucleation barrier n,, respectively. To illustrate the competition between thermody-
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namic and kinetic factors in the nucleation score and in our MD simulations, we revisit the
crystallization of molecules s7-A1 and s9-A1. Table 1 lists the values of the nucleation score
Xp, oligomer attachment rate v,, and nucleation barrier 7, for the competing polymorphs
discussed earlier (see Figs. 3-7). Molecule s7-A1 forms the thermodynamically preferred
polymorph Q. As evident from the simulation snapshot in Figure 6, few of the oligomers
present in solution can directly contribute to the growth of Q, as reflected in a small attach-
ment rate (v << vg < vg). However, Q has a large energetic advantage over polymorphs R
and S, resulting in a nucleation barrier that is much smaller than those of competing poly-
morphs (nq << nr < 1g). As a result of its low lattice energy and despite its low oligomer
attachment rate, QQ receives the largest nucleation score and indeed forms in simulations;
nuclei of R or S are not observed.

Table 1: Kinetic and thermodynamic factors in the nucleation of molecules s9-A1 and s7-
Al. Normalized nucleation score x,, barrier 7,, and oligomer attachment rate v,, lattice
energy per molecule £, number of molecules in the asymmetric unit cell Z, and composition
(racemic/enantiopure) of several competing polymorphs of molecules s9-A1 and s7-Al. (Xmax
and vy, are the largest nucleation score and attachment rate, respectively, found for any
polymorph of a given molecule, and 7y, is the smallest nucleation barrier.) Polymorphs X
and Q form spontaneously in MD simulations, as illustrated in Figs. 3 and 6, respectively.

Xp exp (—np) Vp Ep(e)

mol. | pol. | - | oy | oo Z, | comp.
Q 1.0 1.0 6.8E-3 | -19.0 1 rac
s7-Al R 0.18 1.3E-3 1.0 -16.5 | 2 rac
S 3.8E-3 1.1E-4 0.23 -16.1 | 6 pure
X 1.0 0.46 1.0 -18.5 1 pure
Y 0.50 1.0 023 | -19.0 | 1 rac
s9-A1 V | 1.8E-3 1.0 8.3E-4 | -19.0 1 rac
W | 3.6E-4 1.0 1.6E-4 | -19.0 | 1 pure
Z | 24E-4 1.0 1.1E4 | -19.0 1 rac

By contrast, molecule s9-A1 crystallizes through a kinetically preferred route. The poly-
morph that forms in MD simulations, X, has a clear energetic disadvantage and therefore
a larger nucleation barrier than the four other polymorphs (Y, V, W, Z) considered here

(nx > nv,nv,nw, nz). However, V., W, and Z have structural motifs that are not reflected in
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the prevalent oligomer species in solution, resulting in small oligomer attachment rates v, for
these polymorphs. Polymorph Y shares some of the same dimer motifs with X, but larger
oligomers of Y have lower concentrations than those contributing to the growth of X, leaving
X with a modestly larger nucleation score than Y despite its higher lattice energy. These
two examples illustrate that the proposed nucleation score is able to successfully balance
lattice energies and kinetic factors of oligomer attachment to produce reliable polymorph
predictions.

Depending on the relative values of attachment rate vg,,, and nucleation barrier n¢, of
the polymorph that forms in our simulation, we identify four physically distinct crystalliza-

tion scenarios:

I: The crystal that forms has both a lower energy and a larger oligomer attachment rate

than any competing polymorph.

IT: The crystal that forms has the lowest energy but there is at least one competing
polymorph that has a larger oligomer attachment rate. Molecule s7-A1 is an example

of this crystallization scenario.

III: The crystal that forms is thermodynamically metastable but has the largest oligomer

attachment rate. Molecule s9-A1 is an example of this crystallization scenario.

IV: The crystal that forms has neither the lowest energy nor the largest oligomer attach-

ment rate, but nevertheless has the largest nucleation rate.

Crystallization scenarios I and II result in thermodynamically stable crystals and can in
principle be predicted with CPS methods, given that accurate free energies can be calculated.
(Note, however, that these scenarios include molecules that have ground state energies shared
by several polymorphs.) Crystallization scenarios III and IV result in metastable, ”kinetic”
polymorphs that cannot be easily predicted with current CSP methods. Table 2 shows that
all four types are represented in molecule sets A and B, with a majority of cases of type I in

set A, and a majority of type III in set B.
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Table 2: Number of molecules in sets A and B that crystallize according to scenarios I-1V
defined in the text.

Scenario | I | IT| IIT| IV
Set A 171 7 3 2
Set B 3 4 22 5

Accounting for kinetic effects of oligomer attachment is particularly effective if one only
wishes to know if a given molecule is likely to undergo spontaneous chiral separation, i.e., if
it will form an enantiopure or racemic crystal. In contrast to predictions of specific crystal
lattices (Fig. 8), our ability to predict chiral separation does not improve when lattice energies
(via the nucleation barrier 7,) are included; predictions based on oligomer attachment rates
alone (1,) are just as successful, as illustrated in Figure S9. Note that also in this case all
oligomer sizes up to hexamers need to be included in the calculation of v, to achieve the best
results. We hypothesize that accounting for these larger oligomer sizes successfully captures
the fact that racemic polymorphs typically do not contain enantiopure motifs consisting of
more than a few monomers. While low-energy enantiopure dimer or trimer motifs frequently
appear in both enantiopure and racemic crystals, the presence of larger enantiopure oligomers

in solution clearly favors formation of enantiopure crystals.

Discussion

The nucleation score presented in this paper is designed to systematically capture contri-
butions of oligomeric species (or pre-nucleation clusters) in solution to the nucleation rate
of different polymorphs within a numerical framework that emphasizes computational sim-
plicity. The nucleation score contains only a single fitting parameter and can be evaluated
from a list of low-energy crystal structures, as furnished routinely by CSP methods—no
dynamic information is needed. We have demonstrated that the nucleation score accurately
predicts crystallization and chiral separation in simulations of a family of model molecules

that display a range of crystallization outcomes similar to real molecules.
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We discuss several limitations and caveats of our model. The hexagonal geometry and
simple interactions of our molecules facilitate the formation of close-packed crystal structures.
However, these features of our model are not the primary driver of the observed crystallization
behavior. In our previous work,?® we studied a related model that in addition to short-
ranged attractions includes repulsive interactions between functional groups, providing a
more realistic description of electrostatic interactions. Crystals formed by that model are
typically more open and in many of these crystals the positions of functional groups within
unit cells did not align with the sites of a hexagonal lattice. Nevertheless, we observed
the same qualitative crystallization behavior for these ”charged” models: Molecules form
substantial numbers of oligomers in solution and these oligomeric motifs tend to appear in
the crystal structure that forms in simulations. We are therefore confident that the kinetics
of oligomer attachment observed in our work are not caused by the simple geometry of our
model molecules.

Starting from classical nucleation theory, we made several approximations to render the
nucleation score useful for practical application. The most severe of these approximations
arguably include the neglect of variations in surface tension of different polymorphs and the
assumption that oligomers of size 2—6 are present in solution at similar concentrations. As
shown in Fig. S7, surface tensions of different polymorphs of a given molecule can in fact
vary by up to & le/o; such variations, if included in our model, would result in substantially
different nucleation barriers. At the same time, the total concentrations of oligomers of
different size at the temperature of crystallization can vary substantially between different
molecules, as evident from simulation snapshots in Figs. 3 and 6. These variations are not
captured in the nucleation score. In particular, our model likely overestimates the concen-
trations (and therefore also the attachment rates) of larger oligomers. Why are successful
polymorph predictions possible despite these simplifications? We hypothesize that variations
of polymorph surface tension are partly encoded in the energies of oligomers, particularly

larger ones. Polymorphs containing low-energy oligomeric motifs can be dissected into sub-
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units that have strong bonds within a given motif but much weaker interactions between
different motifs, as illustrated in Figure S8. Such a pronounced separation of strong and
weak interactions within a given crystal typically allows for cleavage of the polymorph along
planes of weaker interactions, resulting in a small surface tension. In contrast, a polymorph
in which all monomers are bound to their neighbors with similar strength will, on average,
have a larger surface tension and few oligomers with low energy, resulting in a lower esti-
mated attachment rate v,. Effects of varying surface tension are thus included effectively by
overemphasizing larger oligomers in our nucleation score.

Another potential caveat of our approach is related to the short time and length scales
accessible to our MD simulations. On much longer, experimental time scales, differences in
crystal growth rates rather than nucleation rates might determine the fate of the crystalliza-
tion process. However, oligomer attachment, as estimated in our model, can be an equally
important factor in crystal growth. We have convinced ourselves for one case (molecule s9-
A1) that the nucleation score also predicts the fastest-growing polymorph at temperatures
at which spontaneous nucleation cannot be observed in our simulations. Figure 9 shows
the time evolution of the number of molecules, averaged over three independent simulation
runs, of large seed crystallites of different polymorphs in supersaturated solutions (see Meth-
ods). We find that the polymorph with the largest nucleation score (X) also grows fastest.
Furthermore, we find that the ranking of polymorphs according to increasing growth rates
(Z-W-V-Y-X) is identical to the ranking according to increasing oligomer attachment rates
(see Table 1). This observation is consistent with reports showing that nucleation rates
and growth rates can be highly correlated.®%® We are therefore optimistic that our model
robustly captures several important factors in molecular crystallization.

We expect our model to be most predictive under conditions of large supersaturation. In
this regime, oligomers will be present at substantial concentrations and nucleation barriers
will be small. Closer to the saturation curve (i.e., at higher temperatures or smaller concen-

trations), the importance of oligomer attachment in nucleation and growth is diminished and
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differences in nucleation barrier heights, which our model only crudely estimates, can become
decisive. On the other hand, recent work has shown that oligomers can be the dominant
growth unit even when their concentration in solution is low compared to monomers.® We
cannot straightforwardly simulate crystal nucleation at low supersaturation due to exces-
sively long time scales required to cross nucleation barriers that exceed a few kgT'. We have,
however, simulated growth of crystalline seeds of molecule s9-A1 at different temperatures
above T, as illustrated in Figure S5. Polymorph X grows fastest within ~ 10% of T, in
good agreement with our model. At higher temperatures polymorph Y prevails, which has
a substantially lower lattice energy than X and an estimated oligomer attachment rate that
is smaller but comparable to that of X (Table 1). This result is consistent with the dimin-
ished role of larger oligomers in the growth of polymorphs at higher temperatures. Figure
5 shows that the larger oligomer attachment rate of X estimated by our model is primarily
due to larger oligomers; this advantage vanishes if only dimer and trimers are considered. To
more accurately predict nucleation (and growth) at smaller supersaturation, more accurate
estimates of nucleation barriers and oligomer concentrations need to be employed in our

model.

Conclusion

How applicable is our model to the crystallization of real molecules from solution? In its cur-
rent form, our model neglects explicit solvent effects, which can markedly influence oligomer
concentrations and polymorph surface energies. Solvent can also play an important kinetic
role in the attachment of molecules and oligomers to the crystal surface, as these growth
units need to be partially desolvated before they can be incorporated into the lattice.?>%! In
addition, while organic molecules can have substantial flexibility, our model molecules are

rigid. As a result, configurations of oligomeric motifs appearing in crystal structures and in

solution are essentially identical in our model. Oligomer motifs in real crystal structures,
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however, might rearrange substantially in a solvent environment. This makes identification
of low-energy oligomers from real crystal structure less straightforward than in our model, as
oligomer transformations and associated energy changes need to be accounted for. Still, we
believe that the nucleation score presented in this paper constitutes a significant step towards
effective and numerically tractable incorporation of kinetic effects into existing methods of
crystal structure prediction. While correlations between oligomer motifs and crystallization
are well documented, our work is the first successful attempt to systematically connect en-
ergetically favorable oligomeric motifs and lattice energies with crystallization outcomes in
a molecular model with realistic polymorph landscapes. We expect that appropriate exten-
sions of our model will be useful for the prediction of chiral separation, crystallization, and
co-crystallization of organic and inorganic molecules, as well as the self-assembly of larger

particles including proteins and nanoparticles.

Methods

Molecular dynamics simulations.

All molecular dynamics simulations were performed with HOOMD. %63 All functional groups
of molecules have the same mass m and diameter o, which we use as our units of mass and

length; the unit of energy is €. Langevin equations of motion for rigid bodies are integrated

with a time step of 0.004 y/mo?/e and a damping coefficient of 5.0 y/me/o?. All simulation

snapshots were produced with OVITO. %

Molecular Interactions

Functional groups (beads) of molecules interact via the short-ranged pair potential

U(r) = Upep(7) + Uatt (7).
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The repulsive part of the potential is of the WCA form,%

o ()7 =2(9)"] T ifr <o,

Urep (1) =
0 else.
The attractive part is given by
.
—€att, if r <o,
Uns (1) = — (cos [(r_;)”} + 1) ifo<r<o+w,
0 ifr>o+w.

We set €p = 5.0€ and w = 0.20. For molecules in set A, we use €, = € for all weakly
interacting functional groups and €,y = 5 € for strongly interacting functional groups. The
process we used to select attractive interactions between molecules in set B is described
below. A comprehensive list of attractive interactions in sets A and B is given in the SI,

tables S1 and S2, respectively.

Mbolecular interactions in set B

Set B contains many molecules that undergo spontaneous chiral separation even though the
lowest-energy crystal is racemic. To select molecules that would produce the desired behav-
ior, we only considered molecular shapes s2, s4, s5, s7, and s10, because these shapes tend
to crystallize best in our MD simulations.®® We then generated a set of random interaction
vectors using the Bayesian Bootstrap method.® Here, the interaction vector € is defined as
an ordered list of attractive interactions between all pairs of functional groups (numbered

1-5) of a given molecule,

€= (Eatt,lzlv €att,1:2, - - - 7€att,5:5>
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For each interaction vector, we determined the ”heterogeneity” ¢z of interactions according

oo (7))
€ ][]

where €; is the uniform interaction vector

to

€ = (€€ ...,€).

We discarded interaction vectors with ¢z < 38° since we have previously shown that molecules
with such interactions have a small likelihood of producing good crystals in MD simula-
tions.®® For interaction vectors with ¢z > 38°, we determined the lowest-energy racemic
(ESR)) and enantiopure (E(gp)) polymorphs using the molecular shapes mentioned above.
Approximately 1000 molecules with 0 < Eép) — EéR) < 0.4 ¢/molecule were selected as po-
tential candidates for MD simulations. (These molecules have a racemic polymorph at the
lowest energy but its energetic advantage over enantiopure polymorphs is small enough to
be overcome by kinetic factors.)

For all candidate molecules, we performed MD simulations using the crystallization pro-
tocol described in our previous study.’® All molecules that either formed an enantiopure

crystal or produced a racemic polymorph that had not been observed in set A were selected

for set B, resulting in a set of 34 molecules.

Polymorph enumeration (POLYNUM)

POLYNUM uses a numerically efficient exact-cover algorithm to tile periodic unit cells with
molecular shapes, exploiting the simple hexagonal symmetry of our molecules. This method
naturally generates polymorphs with all symmetries, with different numbers of molecules in
the asymmetric unit, and different enantiomer ratios ranging from enantiopure to racemic.
While POLYNUM is limited to unit cells containing less than ~ 15 molecules, it has identified

all but one polymorph found in MD simulations in this work (a polymorph with exceptionally
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large unit cell), as well as the vast majority of polymorphs for hundreds of other molecules
we have studied so far. We are therefore confident that POLYNUM identifies essentially all

low-energy polymorphs of a given molecule. Details of POLYNUM are described in Ref. 50.

Nucleation Score

Before deriving the nucleation score x, = v, exp (—1,), we briefly review common expressions

53

for the nucleation rate J, = A,exp (—%) of a given polymorph p in two dimensions.

According to CNT, A, « w,D,, where w, is related to the curvature of the free energy
barrier at its top and D, is the effective diffusion coefficient associated with the number of
molecules in the nucleus. w, can be expressed in terms of the surface tension v, (i.e., the
line tension in 2D) and Ap, = |i, — psol|, the chemical potential difference of molecules
in the crystal and solution phase, respectively: w, oc %. The diffusion coefficient D,
is related to the rates of attachment 7.y, and detachment rge, of molecules to and from
the critical nucleus, respectively. At the barrier top, one can show that 7., ~ 7qet, and

therefore D, = ra,. The rate of attachment can be written as ru, o CR;, where C' is

Tp

A is the radius of the critical nucleus.
P

the concentration of molecules in solution and R} o
The CNT expression for the kinetic prefactor is therefore A, oc C' (A,up)%.

In our nucleation score, we neglect the weak dependence of the kinetic prefactor on Ay,
and focus on the concentration C' of molecular building blocks in solution. We assume
that the kinetic prefactor for a nucleus of polymorph p is proportional to the total rate of
attachment of all oligomeric species in solution that match at least one oligomeric motif
found in p. We denote the set of these special oligomers as O,. We restrict our analysis to
hexamers and smaller oligomers. The numerical procedure used to identify these oligomers is
described in section . We ignore attachment of monomers (assuming they contribute equally
to the growth of all polymorphs) and attachment of oligomeric species that are structurally
incompatible with p. The rate of attachment of a specific oligomer i is assumed to be

proportional to its concentration C; in solution and to its likelihood to attach to the nucleus
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in the "right” place. This "sticking probability”, A;,, depends in complicated ways on the
details of the surface of the nucleus and on the structure of the oligomer. For simplicity, we
assume that \;;, < s;/Z,, where Z/ is the number of molecules in the asymmetric unit cell of
p and s; is the rotational symmetry of the oligomer. Crystals with larger Z have structurally
more complex surfaces on average and display a smaller density of attachment points for a
given oligomer, resulting in a smaller attachment rate, as illustrated schematically in Figure
S4. Oligomers with higher rotational symmetry s; have a larger probability to attach to the
surface in the correct orientation. The contribution of a specific oligomer ¢ comprised of n;
molecules to the total growth rate of the nucleus of polymorph p is therefore proportional
to n;C;s;/ Z;). (Differences in the diffusion constants of oligomers are neglected.) The part of
the nucleation score describing oligomer attachment, v, is thus obtained by summing over

all oligomers of size 26,

1
Vp = ? anslc’l (3)

P 4e0,
While oligomers consisting of more than six molecules can sometimes be observed in our
simulations, we show below that satisfactory polymorph predictions can be achieved based
on hexamers and smaller species.

We estimate oligomer concentrations C; straightforwardly based on their energies and ge-
ometry. Accurate estimates of oligomer concentrations would require the numerically stren-
uous calculation of partition functions for all oligomeric species, including loosely bound
oligomers and oligomers not found in any low-energy polymorph. To obtain a computa-
tionally more tractable estimate of oligomer concentrations, we first assume that the total
concentrations of species of size n do not vary much, i.e., that there are, on average, the
same total numbers of dimers, trimers, 4-mers, 5-mers, and 6-mers in solution (see Discussion
section). Furthermore, we assume that the relative concentrations of oligomers of the same
size are well represented by Boltzmann factors and rotational partition functions of energy-

optimized configurations. Based on these considerations, we estimate the concentration of

23



Oligomer Z Of Size ni as
-1 / —FE; /kgT
Si Zie z/ Blc

1 /T —E;/kpTe"
ZjeOni S \/[_J6 il

Here, I; and F; are the moment of inertia and potential energy of the oligomer i in its

CiOC

(4)

optimized configuration, respectively, the sum extends over the set O, of all n-mers that
appear in at least one low-energy polymorph (see Methods), and T is the temperature at
which crystallization is observed. While 7. could be obtained directly from our simulations,
it is more convenient to estimate it based on crystal energies. In fact, we find that T, is
approximately proportional to the lowest polymorph energy, kg1, ~ aFEy, where o = —0.055,
as shown in Fig. S6. (This relation is reminiscent of the well-known relation between crystal
melting points and sublimation enthalpies.®")

We now turn to estimating the polymer-specific nucleation barrier, n, = AG,/ksT..
According to CNT,

2
T
AG, = —Xp ,
PpRfhp

where p, is the number of molecules per unit area in the crystal. We use a single value
pp=p = 2v3/15072 (i.e., the density of a close-packed crystal) for all polymorphs because
polymorph packing fractions vary only little across our models. Since the surface tension 7,
cannot, be straightforwardly determined from knowledge of the crystal structure alone, we
similarly use the same value of 7, = 4 = 1.78 ¢/o for all polymorphs, which we determined
as an average over several large crystalline clusters observed in our simulations (see SI).

To obtain an estimate of the polymorph supersaturation Ay, we assume that upon cool-
ing a solution of a given molecule, crystallization is observed at a temperature (7;) at which
the nucleation barrier of the lowest-energy polymorph is small enough to be surmounted
spontaneously on the simulation time scale. Specifically, we assume that AGy/kgT. = g,
where AGy is the nucleation barrier of the polymorph with the lowest energy and g is a
constant that we treat as a fitting parameter. We find that our model is most predictive

for ¢ = 7.62. (This value implies AGy = 7.62kgT., consistent with the assumption of

24



spontaneous barrier crossing on the microsecond timescale of simulations.)
With AGy/kgT, thus fixed, the nucleation barrier of a given polymorph p can be obtained

by expressing Ay, in terms of Apy,

Apy, = Apy — AE,.

Here, AE, = E, — Ey > 0 is the difference in lattice energy between polymorph p and the
lowest energy polymorph. (Entropic differences between polymorphs are neglected.) We

therefore have

AG, 5’ B ( o kBTCpAEp)‘l
keT.  kpTepApy, — ksTep(Apo — AE,) T2 .

Substituting our estimate for T, the barrier part of the nucleation score is therefore given

— -1
1 O!EOpAEp
- -2 5
T]P <g 71_,72 ( )

by

Equations 2, 3, 4, and 5 completely describe the nucleation score x, used to rank poly-

morphs in this work.

Oligomer Enumeration

In order to enumerate all oligomeric motifs of a given polymorph that contain n = 2-6
molecules, we first replicate the unit cell of the polymorph in two dimensions until both edge
lengths of the resulting supercell are longer than 16 o, ensuring that oligomers do not make
contact with their periodic images. We then construct a neighbor list of functional groups
belonging to different molecules with a cutoff distance of 1.65¢. (This cutoff selects only
directly contacting molecules.) From the neighbor list, we generate a graph that represents
molecules as nodes and contacts between molecules as edges. An efficient connected induced

subgraph algorithm is used to enumerate all subgraphs with n nodes.® These subgraphs

25



represent oligomers of size n within the given polymorph. Resulting oligomers are then

checked for uniqueness using oligomer fingerprints, which are described in the SI.

Simulations of seeded crystal growth

We create initial configurations for the simulated growth of a given polymorph from a seed
as follows. First, we create a single compact crystallite of the polymorph containing at least
500 molecules by replicating its unit cell. To equilibrate the shape of the crystallite, it is
then surrounded by a racemic mixture of 4684 molecules in a simulation box of dimension
361.250 x 361.250. A molecular dynamics simulation is performed at a temperature of
1.5€/kg, resulting in slow dissolution of the crystallite. When the crystallite has reached a
size of 250 molecules, the simulation is terminated and the configuration is saved. This con-

figuration is then used as the initial condition in growth simulations at different temperatures

(Fig. 9 and S5).

Supporting Information

Additional methods, simulation results, and data analysis.
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Figure 1: Examples of the 65 chiral molecules studied in this paper sorted by AFg,,. For
each molecule, we show from left to right: space-filling representation of the two enantiomers
(light colors indicate functional groups with strong interactions); snapshot of the largest
crystalline cluster observed in MD simulations and the bulk energy of the polymorph; number
Ny.g5 of energetically competing polymorphs; unit cells of examples of competing polymorphs
and their energies. Crystal energies are given in units of € per molecule. AFEj,.,, values are
given in percent. Interactions between functional groups are specified in the SI.
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Figure 2: Histograms of A FEg,y, for molecules in sets A (blue) and B (green).
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Figure 3: Crystallization of molecule s9-Al. (a) Snapshot from an MD simulation of a
racemic mixture of $9-A1, showing formation of a cluster of polymorph X. Various oligomers
of size n are highlighted and labeled according to the polymorph(s)they occur in. (b) Unit
cells of select low energy polymorphs (Ex = —18.5¢, By = Ew = Ey = Ez = —19.0¢).
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Figure 4: Thermodynamic landscapes of polymorphs and oligomers of molecules s9-A1 and
s7-Al. (a-b) Histogram of polymorph energies of (a) s9-Al and (b) s7-Al. (c-d) Energies
per molecule of most stable oligomers of size n found in select polymorphs of molecules (c)
s9-Al and (d) s7-Al. n = oo indicates lattice energy per molecule.

39



Polymorph; _ _ _ _ _
Energy n=2 n=3 n=4 n=5 n=6
5 - P ) pap a2
g: e >
‘ g e ~
"w 0‘- I
-4.5 -7.67 -9.25 9.4 -10.5
., Q —\) -,
o\ ¢ ‘% o o
-4.5 6.33 -8.75 9.4 10.5
® | N &
-8.5 -9.0 11.25 -12.6 13.5
- Aa
<k odf o o
- o P =
-8.5 -9.0 11.0 -11.0 -12.0
[ ) [) b
[\ 04 )] % D % I/ e
) d q N & o
Sl "R SNy Seallly >+
R /3
‘.))
Z;-19.0 -4.0 -6.33 8.75 9.2 -10.33

Figure 5: MD snapshots and energies (per molecule) of the most stable oligomers of size n
found in select polymorphs of molecule s9-A1. Polymorph unit cells and lattice energies are

shown in the left-most column.
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Figure 6: Crystallization of molecule s7-Al.
racemic mixture of s7-A1l, showing formation of a cluster of polymorph Q. Various oligomers
of size n are highlighted and labeled according to the polymorph(s) they occur in. (b) Unit
cells of select low energy polymorphs (Eq = —19.0¢, Eg — 16.5¢, and Eg — 16.1¢).
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Figure 7: MD snapshots and energies (per molecule) of the most stable oligomers of size n
found in select polymorphs of molecule s7-A1. Polymorph unit cells and lattice energies are
shown in the left-most column.
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Figure 8: Fraction of correctly predicted polymorphs as a function of the largest oligomer
size included in y, (green). The red line represents the success rate (44%) based on lattice
energies alone (assuming that the correct polymorph is selected in half of all cases with

multiple polymorphs at the lowest energy). The success rate using only estimated oligomer
attachment rates v, (disregarding lattice energies) is shown in blue color.
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Figure 9: Average number of molecules in growing nuclei of polymorphs X, Y, Z, W, and
V of molecule 89-A1 at a temperature of T' = 1.125¢/kg, slightly above the temperature
at which spontaneous nucleation is observed. The inset shows a snapshot of a crystallite of
polymorph X containing 254 molecules, at the beginning of the simulation.
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