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Abstract

Kinetics can play an important role in the crystallization of molecules and can

give rise to polymorphism, the tendency of molecules to form more than one crystal

structure. Current computational methods of crystal structure prediction, however, fo-

cus almost exclusively on identifying the thermodynamically stable polymorph. Kinetic

factors of nucleation and growth are often neglected because the underlying microscopic

processes can be complex and accurate rate calculations are numerically cumbersome.

In this work, we use molecular dynamics computer simulations to study simple molecu-

lar models that reproduce the crystallization behavior of real chiral molecules, including

the formation of enantiopure and racemic crystals, as well as polymorphism. A sig-

nificant fraction of these molecules forms crystals that do not have the lowest free

energy. We demonstrate that at high supersaturation crystal formation can be accu-

rately predicted by considering the similarities between oligomeric species in solution

and molecular motifs in the crystal structure. For the case of racemic mixtures, we even

find that knowledge of crystal free energies is not necessary and kinetic considerations

are su�cient to determine if the system will undergo spontaneous chiral separation.

Our results suggest conceptually simple ways of improving current crystal structure

prediction methods.
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Introduction

Predicting which crystal structure a given molecule will form is a long-standing problem1

with considerable practical significance for the industrial production of many chemical com-

pounds, including medicinal drugs,2–4 pesticides,5–8 and explosives.9–13 Finding the crystal

structure with the lowest free energy is a daunting task, requiring e�cient methods for

sampling the space of periodic molecular packings as well as accurate methods for calcu-

lating crystal (free) energies.14–19 Crystal structure prediction (CSP) is further complicated

by the fact that the majority of molecules can form more than one polymorph, depend-

ing on crystallization conditions.20 Predicting polymorphism requires not only knowledge of

the thermodynamic stability of di↵erent polymorphs, but also insight into the mechanistic

details of crystal formation as well as methods to estimate the rates of these processes.21

Most current computational frameworks of CSP focus entirely on the thermodynamic

aspects of crystallization, and much progress has been made in recent years. The most

accurate CSP methods now frequently identify all experimentally known polymorphs and

their ranking in terms of free energies.14,18,22 Nevertheless, CSP has still not replaced time-

consuming experimental polymorph screening procedures. Many of the computationally

predicted structures never materialize in experiments, in some cases even those with free

energies lower than known polymorphs.23 In order to determine which of the predicted low-

energy polymorphs can likely be realized in experiments and which cannot, kinetic e↵ects

need to be incorporated in CSP.24,25

Why are kinetic factors not considered more routinely in CSP? Rates of crystal nucle-

ation and growth depend sensitively on the experimental details (including solvent, molecular

concentrations, and temperature) and are determined by a series of microscopic rare events

including the desolvation, attachment, and perhaps rearrangement of molecular species on

the surface of a growing crystallite. Determination of the timescales of these events requires

numerically expensive molecular dynamics methods and highly accurate force fields.26 Rou-

tine calculation of crystal formation rates of many di↵erent polymorphs is therefore currently
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not feasible.

Traditional theories of crystal nucleation and growth assume that the building blocks

attaching to a growing crystallite are monomers, or at least a unique species. There is

growing evidence, however, that molecules can associate in solution to produce substantial

concentrations of oligomers.27–36 These oligomers can act as important building blocks in the

nucleation and growth of specific polymorphs.37–45 Concentrations of amino acid oligomers in

solution, for instance, have been studied extensively using di↵erent techniques.27–36 Electro-

spray ionization experiments have shown strong evidence of oligomerization of amino acids at

low concentrations35 and suggest the existence of ‘magic number’ oligomers with particularly

large concentrations (e.g., tetramers of arginine).36 A recent sedimentation study has shown

that although monomers are the dominant species in undersaturated aqueous environments,

large oligomers are present even at very low monomer concentrations and relative oligomer

concentrations increase as supersaturation is approached.28 Oligomeric species that serve

as precursors for specific crystal structures are often referred to as pre-nucleation clusters

(PNCs).46 Substantial populations of PNCs in solution prior to crystallization have been

observed in a range of systems.39,40,42,43,47,48 The related concept of synthons describes en-

ergetically important binding motifs within a crystal structure.49 In a recent review, Davey

and coworkers reported that synthons present in solution also appear in the final crystal

structure in 11 out of 14 cases.21 Although oligomers, PNCs, or synthons have been fre-

quently shown to correlate with the formation of specific polymorphs in experiments, the

role of these species in molecular crystallization has not been systematically studied and no

computational framework exists that incorporates oligomer concentration in CSP.

In this paper, we demonstrate with computer simulations that oligomers can play a

decisive role in determining crystallization outcomes. Our study is based on a family of simple

models of chiral molecules50 capable of replicating the rich crystallization behavior found

in real molecules. We show that the crystallization of these models in molecular dynamics

(MD) simulations can be accurately predicted based on classical nucleation theory if available
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oligomer building blocks are accounted for. Our theoretical framework successfully balances

the kinetic and thermodynamic factors leading to polymorph formation. Even though our

study is based on models that lack chemical detail, it suggests computationally tractable

ways of augmenting existing CSP frameworks with kinetic information.

Results and Discussion

Molecular model and crystallization simulations

We simulated the crystallization of racemic mixtures of simple chiral molecules in two dimen-

sions. Model molecules are rigid and consist of 5 beads that represent di↵erent functional

groups and interact via short-ranged attractive pair potentials, as specified in the Methods

section. We chose the strengths of interactions between functional groups in a way that

mimics the heterogeneity of interactions found in real molecules: While most functional

groups interact only weakly, a small number of pairs of functional groups have interactions

that are several times stronger. By varying the spatial arrangement of functional groups and

the distribution of weak and strong interactions, a large family of di↵erent molecules can

be constructed. In recent work, we studied a subset of 159 of these molecules and showed

that their simulated crystallization yields the same types of outcomes found in experiments:

racemic crystals, enantiopure crystals (via spontaneous chiral separation) and several types

of partially ordered and disordered solids.50 In addition, the model shows good agreement

with several other experimental facts: It produces racemic and enantiopure crystals with a

relative frequency that is consistent with molecular crystallization experiments on surfaces,

and produces crystalline (rather than disordered) outcomes at a rate consistent with a recent

experimental study.51 In this work, we focus on molecules that robustly form large crystalline

clusters with few defects in our simulations. In addition to the 29 molecules from our previ-

ous work that meet this criterion (called set A in the following), we added 34 new molecules

that we specifically selected because of their tendency to form kinetically rather than ther-

4



modynamically preferred polymorphs (set B, see Methods). While we expect molecules in set

A to be representative of a typical set of real organic molecules, set B presents a worst-case

scenario for CSP methods that rank polymorphs according to their free energies. (Shapes

and interactions of all molecules studied in this work are specified in Fig. S1, Table S2, and

Table S3.)

For each of these molecules, we performed crystallization simulations by placing racemic

mixtures of 5184 molecules in square simulation boxes at a packing fraction of 0.04 ��2 and

solving the Langevin equations of motion for several hundred millions of time steps. Solvent

molecules were not represented explicitly. To facilitate crystallization, we used the following

temperature protocol: Starting from an initial temperature well above crystallization condi-

tions, we lowered the temperature until the first cluster of 50 molecules was observed. We

then automatically adjusted the temperature to grow the largest molecular cluster at a fixed

rate. In the final step of the procedure, temperature was linearly increased to facilitate defect

annealing. For the vast majority of molecules, this protocol yields the same polymorphs as

constant-temperature simulations but with fewer defects and without the need for manual

optimization of simulation conditions. Independent simulation runs of the same molecules

consistently yield the same polymorphs. A detailed description of simulation methods can

be found in the Methods section and Ref. 50. Images of some of the molecules we studied

and the crystals they form are shown in Figure 1. (All other molecules and their crystals

are depicted in Figs. S2 and S3.)

Thermodynamic Polymorph Landscapes

We use a recently developed algorithm (POLYNUM) to identify millions of polymorphs for

each of the 65 molecules and evaluate their thermodynamic stability in terms of their lattice

energy. Because molecules are rigid and the range of intermolecular interactions is short,

polymorph free energies typically deviate from lattice energies by less than 1%.50 We will

therefore use the two terms interchangeably. To quantify the thermodynamic role of the
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polymorphs that form in our simulations, we calculate the relative energy di↵erence

�Eform =
Eform � Ecomp

|min (Eform, Ecomp)|
,

where Eform is the energy of the observed polymorph and Ecomp is the energy of the most

stable competing polymorph, i.e., the lowest energy of all polymorphs that did not form.

Negative values of �Eform therefore indicate that the observed polymorph is the thermo-

dynamic equilibrium structure, while cases of kinetically driven polymorph formation are

indicated by positive values of �Eform.

Polymorph energy landscapes of our model molecules show that a substantial fraction of

the crystals that form in our simulations are kinetic products (�Eform � 0), as illustrated in

Fig. 2. Of the 29 molecules in set A (which includes all good crystallizers from our previous

work), 11 (41%) feature energy landscapes with polymorphs that have energies equal to

or lower than the polymorph that is observed. This fraction of ”kinetic” crystallizers is

consistent with a recent estimate based on real organic molecules.52 The fraction of molecules

with �Eform � 0 is even larger in set B since most of these molecules were selected because

they form enantiopure crystals even though a racemic crystal is thermodynamically stable.

To further characterize the polymorph landscape for each molecule, we calculate the number

N0.95 of polymorphs that have an energy smaller than 0.95E0, where E0 is the minimum

polymorph energy of a given molecule. N0.95 varies substantially between molecules, but in

all but a few cases we find at least several (and up to ⇡ 100) competing polymorphs at low

energies. Numerical values of Eform and N0.95 for all molecules are given in Figure 1, Figure

S2, and Figure S3.

Polymorphs are heralded by oligomer species

Visual inspection of crystallization trajectories suggests that oligomer species can be a de-

cisive factor in the crystallization of our model molecules. As an example, let us consider
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molecule s9-A1, which forms an enantiopure polymorph (called X in the following) that does

not have the lowest energy (�Eform = 0.03, N0.95 = 168). The polymorph landscape of

s9-A1 is illustrated in Figure 4a and features 55 polymorphs with lower energies than X.

The unit cells of X and four racemic and enantiopure polymorphs with substantially lower

energy (called V, W, Y, and Z)1 are shown in Figure 3b.

Why does polymorph X prevail? Figure 3a shows a snapshot from a simulation of the

crystallization of s9-A1. As evident from this image, the solution surrounding the growing

nucleus of polymorph X contains various oligomeric species at substantial concentrations.

Conspicuously, many of these oligomers closely resemble motifs found in polymorph X; only

rarely do we observe oligomers that ”belong” to any of the four other polymorphs. The

relative concentrations of these oligomers are consistent with their zero-temperature ener-

gies. Figure 5 shows images of the lowest energy oligomers comprising between two and

six molecules for each of the five polymorphs; Figure 4c shows a plot of these energies as a

function of oligomer size. Even though polymorph X has a higher lattice energy than any

of the other four polymorphs, its oligomeric motifs have the lowest energies for all oligomer

sizes considered here. Energy di↵erences between oligomers amount to several kBT at the

temperature of crystal formation (T ⇡ 1.0 ✏/kB), consistent with the high concentrations of

oligomers of polymorph X in our simulations. This observation suggests that polymorph X

has a kinetic advantage over competing polymorphs: Oligomers resembling motifs of a given

polymorph are likely to attach productively to the surface of a nucleus of that polymorph,

while they will either only transiently attach to a di↵erent crystal surface or will need to

undergo energetically activated rearrangements before they can be incorporated. Can such

di↵erences in attachment rates of oligomeric species be su�cient to overcome a substantial

thermodynamic disadvantage? And can relative formation rates of di↵erent polymorphs be

predicted from knowledge of oligomeric species in solution?

Our simulations suggest that polymorphs cannot be predicted based on speciation of

1
We selected these four polymorphs because they illustrate the broad range of structural motifs that

appear in low-energy polymorphs of this molecule.
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oligomers alone. Polymorphs with substantial thermodynamic advantage can form despite a

lack of suitable oligomers in solution. An example of such a system is molecule s7-A1, whose

polymorph landscape is shown in Figure 4b. There is a large energy gap between the lowest

energy polymorph (labeled Q) and its competitors. This decisive thermodynamic advantage

of polymorph Q is, however, not reflected in the energies of small oligomeric motifs, as

illustrated in Figure 7 and Figure 4d. Several other polymorphs (e.g., polymorphs R and S)

have oligomeric motifs at substantially lower energies and larger concentrations in solution,

as evident from the simulation snapshot in Figure 6. Nevertheless, polymorph Q forms,

either through monomer addition or through a more complicated growth process. Clearly,

kinetic factors associated with growth of crystalline clusters through oligomer addition must

be balanced appropriately with polymorph energies in order to predict which polymorph will

form in our simulations.

Estimating nucleation rates from crystal structures

Crystallization rates are typically analyzed assuming either nucleation or crystal growth

as the rate limiting step. In the former, the polymorph with the largest nucleation rate,

usually estimated using classical nucleation theory (CNT), is thought to prevail. In a growth-

dominated scenario, one assumes that any kinetic advantages in the nucleation stage are

irrelevant in comparison to di↵erences in polymorph growth rates, which determine the final

crystallization outcome. Convincing experimental and theoretical evidence exists for both

scenarios and it is reasonable to assume that molecular crystallization can be determined

by either, depending on conditions. In the majority of our simulations, clusters containing

several unit cells of the eventually successful polymorph form already in the early stages

of our simulations, albeit with high concentrations of defects. Concomitant polymorphism,

i.e., simultaneous formation of large clusters of di↵erent polymorphs, is observed in only a

few cases (molecules s10-B2, s2-B5, and s5-A3). We therefore concluded that crystallization

outcomes are determined primarily at the nucleation stage in our simulations and accordingly
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chose to estimate crystallization rates based on classical nucleation theory. However, the

kinetic factors associated with attachment of oligomeric species, which are the focus of

this work, are relevant also for crystal growth rates. For one case (molecule s9-A1), we

demonstrate further below that our nucleation rate estimates correctly identify the fastest

growing polymorph, too.

According to classical nucleation theory, the rate at which super-critical nuclei are pro-

duced per unit area in two dimensions is given by53

J = A exp

✓
��G

kBT

◆
, (1)

where A is the kinetic prefactor and �G is the free energy barrier associated with forming

a nucleus of critical size. The simplicity of Eqn. 1 belies tremendous complexity in practical

applications. The kinetic prefactor A encompasses various factors relating to the attachment

of growth units to the nucleus. These factors include the concentration and di↵usion rate

of growth units in solution, free energies of de-solvating growth units and nucleus surface,

as well as factors that determine the probability of growth units to attach correctly, in-

cluding the symmetry of growth units and the structural complexity of the crystal surface.

Di↵erences in the kinetic prefactor are often neglected in the analysis of nucleation rates of

di↵erent polymorphs under the assumption that the nucleation barrier is the most important

term.19,54 Other studies have shown that, on the contrary, A can be a decisive factor.55,56 We

show below that both prefactor and nucleation barrier need to be accounted for to predict

molecular crystallization in our simulations.

Assuming that the polymorph with the largest nucleation rate will form, we wish to

calculate nucleation rates Jp of all polymorphs p with su�ciently low lattice energy. But

accurate estimates of Jp cannot be easily obtained, even for a simple coarse-grained model like

the one analyzed here, because of the large number of energetically competitive polymorphs

and the substantial numerical e↵ort associated with determining the various thermodynamic
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and kinetic factors entering into Eq. 1. Motivated by the crystallization dynamics observed

in our simulations and with an eye towards applicability to real molecules, we therefore

focus on those elements of Eq. 1 that describe attachment of various oligomer species to a

growing nucleus and that can be straightforwardly estimated from a set of predicted crystal

structures. Other factors are assumed to vary insignificantly between di↵erent polymorphs

and are not considered here in any detail.

We rank polymorphs p of a given molecule according to a ”nucleation score” �p, which is

proportional to the CNT nucleation rate (under assumptions described below) and given by

�p = ⌫p exp (�⌘p). (2)

Here, ⌫p is a dimensionless quantity proportional to the rate of attachment of oligomeric

species to the nucleus, and ⌘p is a simple estimate of the nucleation barrier �Gp/kBTc at

the temperature Tc of crystallization. The most important steps in the calculation of the

nucleation score include the following:

1. We enumerate all oligomeric motifs containing up to six molecules that occur in the

crystal structures of the 100 lowest-energy polymorphs of a given molecule.

2. We estimate the concentrations of these oligomers in solution based on their potential

energies.

3. By appropriately summing up the concentrations of those oligomers that occur in a

given polymorph p, we estimate the total rate of attachment of molecules to a nucleus

of p to arrive at ⌫p.

4. To calculate the nucleation barrier ⌘p of polymorph p, we estimate the chemical poten-

tial di↵erence of molecules in p and in solution based on the lattice energy of p and a

single global fitting parameter that is the same for all polymorphs and all molecules.

We discuss the functional forms of ⌫p and ⌘p, as well as major approximations we make, in
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detail in the Methods and Discussion sections. In the following, we describe the success of

the nucleation score in predicting crystallization outcomes in our simulations.

Nucleation score predicts outcomes of crystallization simulations

To assess the predictive power of the nucleation score introduced in the previous section,

we computed �p for each of the 100 lowest-energy enantiopure and racemic polymorphs of

each of the 63 molecular models. If the polymorph with the largest value of �p matched

the polymorph identified in MD simulations, the prediction was considered successful. In

the few cases of molecules that formed two polymorphs simultaneously, the prediction was

considered a success if either of the two polymorphs received the highest nucleation score.

(For a handful of molecules, the predicted and observed polymorphs were super-cell variants

of each other; consistent with other studies, we considered these to be identical.57)

Despite the approximations underlying our model, the nucleation score correctly predicts

almost all simulated crystallization outcomes. For molecules in set A, we predict the correct

polymorph in 28 out of 29 cases (97%). This success rate constitutes a significant increase

over a purely thermodynamic ranking based on lattice energies, which selects the correct

polymorph in 24 out of 29 cases (83%) or 18 out of 29 cases (62%), depending on whether

the correct polymorph is selected in cases where more than one polymorph is found at the

lowest energy or not. For molecules in set B, which contains a much larger fraction of

”kinetic” crystallizers with �Eform > 0, the nucleation score correctly predicted 32 out of

34 cases (94%). For this set of molecules, lattice energies correctly predict only 7 out of 34

cases (21%). (Due to the way interactions between molecules in set B were selected—see

Methods—all of these 7 models had non-degenerate ground states.) Remarkably, in both

sets A and B the nucleation score predicts spontaneous chiral separation (i.e., whether a

racemic or enantiopure polymorph will form) with 100% accuracy. Overall, the nucleation

score failed to predict the correct polymorph in only 3 out of 63 cases; for these molecules, the

polymorph with the highest nucleation score shared many similarities with the polymorph
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that formed in MD simulations (see Figures S2 and S3).

Dimers are not enough

Many studies have demonstrated correlations between polymorphs observed in experiments

and a specific pre-nucleation cluster with low energy. These investigations usually concen-

trate on dimers.38–43 We find that in most cases studied here it is not su�cient to consider a

single oligomer species; larger oligomers need to be included to achieve the best results. As

illustrated in Figure 8, prediction based on dimer species alone is successful only in 58% of

all cases, a modest improvement over a ranking based on lattice energies (45%). (Note that

because di↵erences in surface energies and packing fractions of polymorphs are neglected in

our model, rankings based on lattice energy are identical to rankings based on nucleation

barriers ⌘p.) When oligomers of larger sizes are included in the analysis, the success rate

increases approximately linearly and reaches 95% when all oligomer sizes up to hexamers

are considered.

As an illustration of the importance of larger oligomers, consider the crystallization of

molecule s9-A1/5. If only dimers and trimers of this molecule are included in the calculation

of ⌫p, polymorph Y receives the largest nucleation score, rather than the observed polymorph

X. A look at Figs. 4c and 5 reveals why: The dimer with the lowest energy occurs in both

X and Y, and the most important trimers present in the two polymorphs have the same

energy. Since polymorph Y has the lower lattice energy, it receives the higher prediction

score. The substantial kinetic advantage of polymorph X over Y only becomes apparent at

oligomer sizes larger than three.

Thermodynamics vs. Kinetics

Figure 8 demonstrates that our model achieves the highest prediction accuracy when both

kinetic and thermodynamic factors are included, as encoded in the attachment rate ⌫p and

the nucleation barrier ⌘p, respectively. To illustrate the competition between thermody-
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namic and kinetic factors in the nucleation score and in our MD simulations, we revisit the

crystallization of molecules s7-A1 and s9-A1. Table 1 lists the values of the nucleation score

�p, oligomer attachment rate ⌫p, and nucleation barrier ⌘p for the competing polymorphs

discussed earlier (see Figs. 3–7). Molecule s7-A1 forms the thermodynamically preferred

polymorph Q. As evident from the simulation snapshot in Figure 6, few of the oligomers

present in solution can directly contribute to the growth of Q, as reflected in a small attach-

ment rate (⌫Q << ⌫S < ⌫R). However, Q has a large energetic advantage over polymorphs R

and S, resulting in a nucleation barrier that is much smaller than those of competing poly-

morphs (⌘Q << ⌘R < ⌘S). As a result of its low lattice energy and despite its low oligomer

attachment rate, Q receives the largest nucleation score and indeed forms in simulations;

nuclei of R or S are not observed.

Table 1: Kinetic and thermodynamic factors in the nucleation of molecules s9-A1 and s7-
A1. Normalized nucleation score �p, barrier ⌘p, and oligomer attachment rate ⌫p, lattice
energy per molecule Ep, number of molecules in the asymmetric unit cell Z 0

p
, and composition

(racemic/enantiopure) of several competing polymorphs of molecules s9-A1 and s7-A1. (�max

and ⌫max are the largest nucleation score and attachment rate, respectively, found for any
polymorph of a given molecule, and ⌘min is the smallest nucleation barrier.) Polymorphs X
and Q form spontaneously in MD simulations, as illustrated in Figs. 3 and 6, respectively.

mol. pol.
�p

�max

exp (�⌘p)
exp (�⌘min)

⌫p

⌫max
Ep(✏) Z0

p comp.

s7-A1
Q 1.0 1.0 6.8E-3 -19.0 1 rac
R 0.18 1.3E-3 1.0 -16.5 2 rac
S 3.8E-3 1.1E-4 0.23 -16.1 6 pure

s9-A1

X 1.0 0.46 1.0 -18.5 1 pure
Y 0.50 1.0 0.23 -19.0 1 rac
V 1.8E-3 1.0 8.3E-4 -19.0 1 rac
W 3.6E-4 1.0 1.6E-4 -19.0 1 pure
Z 2.4E-4 1.0 1.1E-4 -19.0 1 rac

By contrast, molecule s9-A1 crystallizes through a kinetically preferred route. The poly-

morph that forms in MD simulations, X, has a clear energetic disadvantage and therefore

a larger nucleation barrier than the four other polymorphs (Y, V, W, Z) considered here

(⌘X > ⌘Y, ⌘V, ⌘W, ⌘Z). However, V, W, and Z have structural motifs that are not reflected in
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the prevalent oligomer species in solution, resulting in small oligomer attachment rates ⌫p for

these polymorphs. Polymorph Y shares some of the same dimer motifs with X, but larger

oligomers of Y have lower concentrations than those contributing to the growth of X, leaving

X with a modestly larger nucleation score than Y despite its higher lattice energy. These

two examples illustrate that the proposed nucleation score is able to successfully balance

lattice energies and kinetic factors of oligomer attachment to produce reliable polymorph

predictions.

Depending on the relative values of attachment rate ⌫form and nucleation barrier ⌘form of

the polymorph that forms in our simulation, we identify four physically distinct crystalliza-

tion scenarios:

I: The crystal that forms has both a lower energy and a larger oligomer attachment rate

than any competing polymorph.

II: The crystal that forms has the lowest energy but there is at least one competing

polymorph that has a larger oligomer attachment rate. Molecule s7-A1 is an example

of this crystallization scenario.

III: The crystal that forms is thermodynamically metastable but has the largest oligomer

attachment rate. Molecule s9-A1 is an example of this crystallization scenario.

IV: The crystal that forms has neither the lowest energy nor the largest oligomer attach-

ment rate, but nevertheless has the largest nucleation rate.

Crystallization scenarios I and II result in thermodynamically stable crystals and can in

principle be predicted with CPS methods, given that accurate free energies can be calculated.

(Note, however, that these scenarios include molecules that have ground state energies shared

by several polymorphs.) Crystallization scenarios III and IV result in metastable, ”kinetic”

polymorphs that cannot be easily predicted with current CSP methods. Table 2 shows that

all four types are represented in molecule sets A and B, with a majority of cases of type I in

set A, and a majority of type III in set B.
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Table 2: Number of molecules in sets A and B that crystallize according to scenarios I–IV
defined in the text.

Scenario I II III IV

Set A 17 7 3 2
Set B 3 4 22 5

Accounting for kinetic e↵ects of oligomer attachment is particularly e↵ective if one only

wishes to know if a given molecule is likely to undergo spontaneous chiral separation, i.e., if

it will form an enantiopure or racemic crystal. In contrast to predictions of specific crystal

lattices (Fig. 8), our ability to predict chiral separation does not improve when lattice energies

(via the nucleation barrier ⌘p) are included; predictions based on oligomer attachment rates

alone (⌫p) are just as successful, as illustrated in Figure S9. Note that also in this case all

oligomer sizes up to hexamers need to be included in the calculation of ⌫p to achieve the best

results. We hypothesize that accounting for these larger oligomer sizes successfully captures

the fact that racemic polymorphs typically do not contain enantiopure motifs consisting of

more than a few monomers. While low-energy enantiopure dimer or trimer motifs frequently

appear in both enantiopure and racemic crystals, the presence of larger enantiopure oligomers

in solution clearly favors formation of enantiopure crystals.

Discussion

The nucleation score presented in this paper is designed to systematically capture contri-

butions of oligomeric species (or pre-nucleation clusters) in solution to the nucleation rate

of di↵erent polymorphs within a numerical framework that emphasizes computational sim-

plicity. The nucleation score contains only a single fitting parameter and can be evaluated

from a list of low-energy crystal structures, as furnished routinely by CSP methods—no

dynamic information is needed. We have demonstrated that the nucleation score accurately

predicts crystallization and chiral separation in simulations of a family of model molecules

that display a range of crystallization outcomes similar to real molecules.
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We discuss several limitations and caveats of our model. The hexagonal geometry and

simple interactions of our molecules facilitate the formation of close-packed crystal structures.

However, these features of our model are not the primary driver of the observed crystallization

behavior. In our previous work,50 we studied a related model that in addition to short-

ranged attractions includes repulsive interactions between functional groups, providing a

more realistic description of electrostatic interactions. Crystals formed by that model are

typically more open and in many of these crystals the positions of functional groups within

unit cells did not align with the sites of a hexagonal lattice. Nevertheless, we observed

the same qualitative crystallization behavior for these ”charged” models: Molecules form

substantial numbers of oligomers in solution and these oligomeric motifs tend to appear in

the crystal structure that forms in simulations. We are therefore confident that the kinetics

of oligomer attachment observed in our work are not caused by the simple geometry of our

model molecules.

Starting from classical nucleation theory, we made several approximations to render the

nucleation score useful for practical application. The most severe of these approximations

arguably include the neglect of variations in surface tension of di↵erent polymorphs and the

assumption that oligomers of size 2–6 are present in solution at similar concentrations. As

shown in Fig. S7, surface tensions of di↵erent polymorphs of a given molecule can in fact

vary by up to ⇡ 1✏/�; such variations, if included in our model, would result in substantially

di↵erent nucleation barriers. At the same time, the total concentrations of oligomers of

di↵erent size at the temperature of crystallization can vary substantially between di↵erent

molecules, as evident from simulation snapshots in Figs. 3 and 6. These variations are not

captured in the nucleation score. In particular, our model likely overestimates the concen-

trations (and therefore also the attachment rates) of larger oligomers. Why are successful

polymorph predictions possible despite these simplifications? We hypothesize that variations

of polymorph surface tension are partly encoded in the energies of oligomers, particularly

larger ones. Polymorphs containing low-energy oligomeric motifs can be dissected into sub-
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units that have strong bonds within a given motif but much weaker interactions between

di↵erent motifs, as illustrated in Figure S8. Such a pronounced separation of strong and

weak interactions within a given crystal typically allows for cleavage of the polymorph along

planes of weaker interactions, resulting in a small surface tension. In contrast, a polymorph

in which all monomers are bound to their neighbors with similar strength will, on average,

have a larger surface tension and few oligomers with low energy, resulting in a lower esti-

mated attachment rate ⌫p. E↵ects of varying surface tension are thus included e↵ectively by

overemphasizing larger oligomers in our nucleation score.

Another potential caveat of our approach is related to the short time and length scales

accessible to our MD simulations. On much longer, experimental time scales, di↵erences in

crystal growth rates rather than nucleation rates might determine the fate of the crystalliza-

tion process. However, oligomer attachment, as estimated in our model, can be an equally

important factor in crystal growth. We have convinced ourselves for one case (molecule s9-

A1) that the nucleation score also predicts the fastest-growing polymorph at temperatures

at which spontaneous nucleation cannot be observed in our simulations. Figure 9 shows

the time evolution of the number of molecules, averaged over three independent simulation

runs, of large seed crystallites of di↵erent polymorphs in supersaturated solutions (see Meth-

ods). We find that the polymorph with the largest nucleation score (X) also grows fastest.

Furthermore, we find that the ranking of polymorphs according to increasing growth rates

(Z–W–V–Y–X) is identical to the ranking according to increasing oligomer attachment rates

(see Table 1). This observation is consistent with reports showing that nucleation rates

and growth rates can be highly correlated.58,59 We are therefore optimistic that our model

robustly captures several important factors in molecular crystallization.

We expect our model to be most predictive under conditions of large supersaturation. In

this regime, oligomers will be present at substantial concentrations and nucleation barriers

will be small. Closer to the saturation curve (i.e., at higher temperatures or smaller concen-

trations), the importance of oligomer attachment in nucleation and growth is diminished and
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di↵erences in nucleation barrier heights, which our model only crudely estimates, can become

decisive. On the other hand, recent work has shown that oligomers can be the dominant

growth unit even when their concentration in solution is low compared to monomers.60 We

cannot straightforwardly simulate crystal nucleation at low supersaturation due to exces-

sively long time scales required to cross nucleation barriers that exceed a few kBT . We have,

however, simulated growth of crystalline seeds of molecule s9-A1 at di↵erent temperatures

above Tc, as illustrated in Figure S5. Polymorph X grows fastest within ⇡ 10% of Tc, in

good agreement with our model. At higher temperatures polymorph Y prevails, which has

a substantially lower lattice energy than X and an estimated oligomer attachment rate that

is smaller but comparable to that of X (Table 1). This result is consistent with the dimin-

ished role of larger oligomers in the growth of polymorphs at higher temperatures. Figure

5 shows that the larger oligomer attachment rate of X estimated by our model is primarily

due to larger oligomers; this advantage vanishes if only dimer and trimers are considered. To

more accurately predict nucleation (and growth) at smaller supersaturation, more accurate

estimates of nucleation barriers and oligomer concentrations need to be employed in our

model.

Conclusion

How applicable is our model to the crystallization of real molecules from solution? In its cur-

rent form, our model neglects explicit solvent e↵ects, which can markedly influence oligomer

concentrations and polymorph surface energies. Solvent can also play an important kinetic

role in the attachment of molecules and oligomers to the crystal surface, as these growth

units need to be partially desolvated before they can be incorporated into the lattice.55,61 In

addition, while organic molecules can have substantial flexibility, our model molecules are

rigid. As a result, configurations of oligomeric motifs appearing in crystal structures and in

solution are essentially identical in our model. Oligomer motifs in real crystal structures,
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however, might rearrange substantially in a solvent environment. This makes identification

of low-energy oligomers from real crystal structure less straightforward than in our model, as

oligomer transformations and associated energy changes need to be accounted for. Still, we

believe that the nucleation score presented in this paper constitutes a significant step towards

e↵ective and numerically tractable incorporation of kinetic e↵ects into existing methods of

crystal structure prediction. While correlations between oligomer motifs and crystallization

are well documented, our work is the first successful attempt to systematically connect en-

ergetically favorable oligomeric motifs and lattice energies with crystallization outcomes in

a molecular model with realistic polymorph landscapes. We expect that appropriate exten-

sions of our model will be useful for the prediction of chiral separation, crystallization, and

co-crystallization of organic and inorganic molecules, as well as the self-assembly of larger

particles including proteins and nanoparticles.

Methods

Molecular dynamics simulations.

All molecular dynamics simulations were performed with HOOMD.62,63 All functional groups

of molecules have the same mass m and diameter �, which we use as our units of mass and

length; the unit of energy is ✏. Langevin equations of motion for rigid bodies are integrated

with a time step of 0.004
p

m�2/✏ and a damping coe�cient of 5.0
p
m✏/�2. All simulation

snapshots were produced with OVITO.64

Molecular Interactions

Functional groups (beads) of molecules interact via the short-ranged pair potential

u(r) = urep(r) + uatt(r).
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The repulsive part of the potential is of the WCA form,65

urep(r) =

8
>><

>>:

✏rep

h�
�

r

�12 � 2
�
�

r

�6i
+ ✏rep if r < �,

0 else.

The attractive part is given by

uatt(r) =

8
>>>>>><

>>>>>>:

�✏att, if r < �,

� ✏att
2

⇣
cos

h
(r��)⇡

!

i
+ 1

⌘
if �  r < � + !,

0 if r � � + !.

We set ✏rep = 5.0 ✏ and ! = 0.2 �. For molecules in set A, we use ✏att = ✏ for all weakly

interacting functional groups and ✏att = 5 ✏ for strongly interacting functional groups. The

process we used to select attractive interactions between molecules in set B is described

below. A comprehensive list of attractive interactions in sets A and B is given in the SI,

tables S1 and S2, respectively.

Molecular interactions in set B

Set B contains many molecules that undergo spontaneous chiral separation even though the

lowest-energy crystal is racemic. To select molecules that would produce the desired behav-

ior, we only considered molecular shapes s2, s4, s5, s7, and s10, because these shapes tend

to crystallize best in our MD simulations.50 We then generated a set of random interaction

vectors using the Bayesian Bootstrap method.66 Here, the interaction vector ~✏ is defined as

an ordered list of attractive interactions between all pairs of functional groups (numbered

1–5) of a given molecule,

~✏ = (✏att,1:1, ✏att,1:2, . . . , ✏att,5:5)
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For each interaction vector, we determined the ”heterogeneity” '~✏ of interactions according

to

'~✏ = cos�1

✓
~✏0 · ~✏
|~✏0||~✏|

◆
,

where ~✏0 is the uniform interaction vector

~✏0 = (✏, ✏, . . . , ✏).

We discarded interaction vectors with '~✏ < 38� since we have previously shown that molecules

with such interactions have a small likelihood of producing good crystals in MD simula-

tions.50 For interaction vectors with '~✏ � 38�, we determined the lowest-energy racemic

(E(R)
0 ) and enantiopure (E(P)

0 ) polymorphs using the molecular shapes mentioned above.

Approximately 1000 molecules with 0  E
(P)
0 � E

(R)
0  0.4 ✏/molecule were selected as po-

tential candidates for MD simulations. (These molecules have a racemic polymorph at the

lowest energy but its energetic advantage over enantiopure polymorphs is small enough to

be overcome by kinetic factors.)

For all candidate molecules, we performed MD simulations using the crystallization pro-

tocol described in our previous study.50 All molecules that either formed an enantiopure

crystal or produced a racemic polymorph that had not been observed in set A were selected

for set B, resulting in a set of 34 molecules.

Polymorph enumeration (POLYNUM)

POLYNUM uses a numerically e�cient exact-cover algorithm to tile periodic unit cells with

molecular shapes, exploiting the simple hexagonal symmetry of our molecules. This method

naturally generates polymorphs with all symmetries, with di↵erent numbers of molecules in

the asymmetric unit, and di↵erent enantiomer ratios ranging from enantiopure to racemic.

While POLYNUM is limited to unit cells containing less than⇡ 15 molecules, it has identified

all but one polymorph found in MD simulations in this work (a polymorph with exceptionally
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large unit cell), as well as the vast majority of polymorphs for hundreds of other molecules

we have studied so far. We are therefore confident that POLYNUM identifies essentially all

low-energy polymorphs of a given molecule. Details of POLYNUM are described in Ref. 50.

Nucleation Score

Before deriving the nucleation score �p = ⌫p exp (�⌘p), we briefly review common expressions

for the nucleation rate Jp = Ap exp
⇣
��Gp

kBT

⌘
of a given polymorph p in two dimensions.53

According to CNT, Ap / !pDp, where !p is related to the curvature of the free energy

barrier at its top and Dp is the e↵ective di↵usion coe�cient associated with the number of

molecules in the nucleus. !p can be expressed in terms of the surface tension �p (i.e., the

line tension in 2D) and �µp = |µp � µsol|, the chemical potential di↵erence of molecules

in the crystal and solution phase, respectively: !p / (�µp)3/2

�p
. The di↵usion coe�cient Dp

is related to the rates of attachment ratt,p and detachment rdet,p of molecules to and from

the critical nucleus, respectively. At the barrier top, one can show that ratt,p ⇡ rdet,p and

therefore Dp = ratt,p. The rate of attachment can be written as ratt,p / CR
⇤
p
, where C is

the concentration of molecules in solution and R
⇤
p
/ �p

�µp
is the radius of the critical nucleus.

The CNT expression for the kinetic prefactor is therefore Ap / C(�µp)
1
2 .

In our nucleation score, we neglect the weak dependence of the kinetic prefactor on �µp

and focus on the concentration C of molecular building blocks in solution. We assume

that the kinetic prefactor for a nucleus of polymorph p is proportional to the total rate of

attachment of all oligomeric species in solution that match at least one oligomeric motif

found in p. We denote the set of these special oligomers as Op. We restrict our analysis to

hexamers and smaller oligomers. The numerical procedure used to identify these oligomers is

described in section . We ignore attachment of monomers (assuming they contribute equally

to the growth of all polymorphs) and attachment of oligomeric species that are structurally

incompatible with p. The rate of attachment of a specific oligomer i is assumed to be

proportional to its concentration Ci in solution and to its likelihood to attach to the nucleus
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in the ”right” place. This ”sticking probability”, �i,p, depends in complicated ways on the

details of the surface of the nucleus and on the structure of the oligomer. For simplicity, we

assume that �i,p / si/Z
0
p
, where Z 0

p
is the number of molecules in the asymmetric unit cell of

p and si is the rotational symmetry of the oligomer. Crystals with larger Z 0
p
have structurally

more complex surfaces on average and display a smaller density of attachment points for a

given oligomer, resulting in a smaller attachment rate, as illustrated schematically in Figure

S4. Oligomers with higher rotational symmetry si have a larger probability to attach to the

surface in the correct orientation. The contribution of a specific oligomer i comprised of ni

molecules to the total growth rate of the nucleus of polymorph p is therefore proportional

to niCisi/Z
0
p
. (Di↵erences in the di↵usion constants of oligomers are neglected.) The part of

the nucleation score describing oligomer attachment, ⌫p, is thus obtained by summing over

all oligomers of size 2–6,

⌫p =
1

Z 0
p

X

i2Op

nisiCi. (3)

While oligomers consisting of more than six molecules can sometimes be observed in our

simulations, we show below that satisfactory polymorph predictions can be achieved based

on hexamers and smaller species.

We estimate oligomer concentrations Ci straightforwardly based on their energies and ge-

ometry. Accurate estimates of oligomer concentrations would require the numerically stren-

uous calculation of partition functions for all oligomeric species, including loosely bound

oligomers and oligomers not found in any low-energy polymorph. To obtain a computa-

tionally more tractable estimate of oligomer concentrations, we first assume that the total

concentrations of species of size n do not vary much, i.e., that there are, on average, the

same total numbers of dimers, trimers, 4-mers, 5-mers, and 6-mers in solution (see Discussion

section). Furthermore, we assume that the relative concentrations of oligomers of the same

size are well represented by Boltzmann factors and rotational partition functions of energy-

optimized configurations. Based on these considerations, we estimate the concentration of
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oligomer i of size ni as

Ci /
s
�1
i

p
Iie

�Ei/kBTc

P
j2Oni

s
�1
j

p
Ije

�Ej/kBTc
. (4)

Here, Ii and Ei are the moment of inertia and potential energy of the oligomer i in its

optimized configuration, respectively, the sum extends over the set On of all n-mers that

appear in at least one low-energy polymorph (see Methods), and Tc is the temperature at

which crystallization is observed. While Tc could be obtained directly from our simulations,

it is more convenient to estimate it based on crystal energies. In fact, we find that Tc is

approximately proportional to the lowest polymorph energy, kBTc ⇡ ↵E0, where ↵ = �0.055,

as shown in Fig. S6. (This relation is reminiscent of the well-known relation between crystal

melting points and sublimation enthalpies.67)

We now turn to estimating the polymer-specific nucleation barrier, ⌘p = �Gp/kBTc.

According to CNT,

�Gp =
⇡�

2
p

⇢p�µp

,

where ⇢p is the number of molecules per unit area in the crystal. We use a single value

⇢p = ⇢̄ = 2
p
3/15 ��2 (i.e., the density of a close-packed crystal) for all polymorphs because

polymorph packing fractions vary only little across our models. Since the surface tension �p

cannot be straightforwardly determined from knowledge of the crystal structure alone, we

similarly use the same value of �p = �̄ = 1.78 ✏/� for all polymorphs, which we determined

as an average over several large crystalline clusters observed in our simulations (see SI).

To obtain an estimate of the polymorph supersaturation �µp, we assume that upon cool-

ing a solution of a given molecule, crystallization is observed at a temperature (Tc) at which

the nucleation barrier of the lowest-energy polymorph is small enough to be surmounted

spontaneously on the simulation time scale. Specifically, we assume that �G0/kBTc ⌘ g,

where �G0 is the nucleation barrier of the polymorph with the lowest energy and g is a

constant that we treat as a fitting parameter. We find that our model is most predictive

for g = 7.62. (This value implies �G0 = 7.62 kBTc, consistent with the assumption of
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spontaneous barrier crossing on the microsecond timescale of simulations.)

With �G0/kBTc thus fixed, the nucleation barrier of a given polymorph p can be obtained

by expressing �µp in terms of �µ0,

�µp = �µ0 ��Ep.

Here, �Ep = Ep � E0 > 0 is the di↵erence in lattice energy between polymorph p and the

lowest energy polymorph. (Entropic di↵erences between polymorphs are neglected.) We

therefore have

�Gp

kBTc
=

⇡�̄
2

kBTc⇢̄�µp

=
⇡�̄

2

kBTc⇢̄(�µ0 ��Ep)
=

✓
g
�1 � kBTc⇢̄�Ep

⇡�̄2

◆�1

.

Substituting our estimate for Tc, the barrier part of the nucleation score is therefore given

by

⌘p =

✓
g
�1 � ↵E0⇢̄�Ep

⇡�̄2

◆�1

. (5)

Equations 2, 3, 4, and 5 completely describe the nucleation score �p used to rank poly-

morphs in this work.

Oligomer Enumeration

In order to enumerate all oligomeric motifs of a given polymorph that contain n = 2–6

molecules, we first replicate the unit cell of the polymorph in two dimensions until both edge

lengths of the resulting supercell are longer than 16�, ensuring that oligomers do not make

contact with their periodic images. We then construct a neighbor list of functional groups

belonging to di↵erent molecules with a cuto↵ distance of 1.65�. (This cuto↵ selects only

directly contacting molecules.) From the neighbor list, we generate a graph that represents

molecules as nodes and contacts between molecules as edges. An e�cient connected induced

subgraph algorithm is used to enumerate all subgraphs with n nodes.68 These subgraphs
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represent oligomers of size n within the given polymorph. Resulting oligomers are then

checked for uniqueness using oligomer fingerprints, which are described in the SI.

Simulations of seeded crystal growth

We create initial configurations for the simulated growth of a given polymorph from a seed

as follows. First, we create a single compact crystallite of the polymorph containing at least

500 molecules by replicating its unit cell. To equilibrate the shape of the crystallite, it is

then surrounded by a racemic mixture of 4684 molecules in a simulation box of dimension

361.25 � ⇥ 361.25 �. A molecular dynamics simulation is performed at a temperature of

1.5 ✏/kB, resulting in slow dissolution of the crystallite. When the crystallite has reached a

size of 250 molecules, the simulation is terminated and the configuration is saved. This con-

figuration is then used as the initial condition in growth simulations at di↵erent temperatures

(Fig. 9 and S5).

Supporting Information

Additional methods, simulation results, and data analysis.
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Figure 1: Examples of the 65 chiral molecules studied in this paper sorted by �Eform. For
each molecule, we show from left to right: space-filling representation of the two enantiomers
(light colors indicate functional groups with strong interactions); snapshot of the largest
crystalline cluster observed in MD simulations and the bulk energy of the polymorph; number
N0.95 of energetically competing polymorphs; unit cells of examples of competing polymorphs
and their energies. Crystal energies are given in units of ✏ per molecule. �Eform values are
given in percent. Interactions between functional groups are specified in the SI.
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Figure 2: Histograms of �Eform for molecules in sets A (blue) and B (green).
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Figure 3: Crystallization of molecule s9-A1. (a) Snapshot from an MD simulation of a
racemic mixture of s9-A1, showing formation of a cluster of polymorph X. Various oligomers
of size n are highlighted and labeled according to the polymorph(s)they occur in. (b) Unit
cells of select low energy polymorphs (EX = �18.5✏, EV = EW = EY = EZ = �19.0✏).

Figure 4: Thermodynamic landscapes of polymorphs and oligomers of molecules s9-A1 and
s7-A1. (a-b) Histogram of polymorph energies of (a) s9-A1 and (b) s7-A1. (c-d) Energies
per molecule of most stable oligomers of size n found in select polymorphs of molecules (c)
s9-A1 and (d) s7-A1. n = 1 indicates lattice energy per molecule.
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Figure 5: MD snapshots and energies (per molecule) of the most stable oligomers of size n

found in select polymorphs of molecule s9-A1. Polymorph unit cells and lattice energies are
shown in the left-most column.

Figure 6: Crystallization of molecule s7-A1. (a) Snapshot from an MD simulation of a
racemic mixture of s7-A1, showing formation of a cluster of polymorph Q. Various oligomers
of size n are highlighted and labeled according to the polymorph(s) they occur in. (b) Unit
cells of select low energy polymorphs (EQ = �19.0✏, ER � 16.5✏, and ES � 16.1✏).
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Figure 7: MD snapshots and energies (per molecule) of the most stable oligomers of size n

found in select polymorphs of molecule s7-A1. Polymorph unit cells and lattice energies are
shown in the left-most column.

Figure 8: Fraction of correctly predicted polymorphs as a function of the largest oligomer
size included in �p (green). The red line represents the success rate (44%) based on lattice
energies alone (assuming that the correct polymorph is selected in half of all cases with
multiple polymorphs at the lowest energy). The success rate using only estimated oligomer
attachment rates ⌫p (disregarding lattice energies) is shown in blue color.
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Figure 9: Average number of molecules in growing nuclei of polymorphs X, Y, Z, W, and
V of molecule s9-A1 at a temperature of T = 1.125 ✏/kB, slightly above the temperature
at which spontaneous nucleation is observed. The inset shows a snapshot of a crystallite of
polymorph X containing 254 molecules, at the beginning of the simulation.
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