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Fluorescence microscopy enables imaging with submicrom-
eter spatial resolution, molecular specificity and high con-
trast. These attributes allow direct interrogation of biological 

structure and function, yet intrinsic blurring and noise degrade 
fluorescence data, yielding an imperfect estimate of the underlying 
sample. Provided the imaging process can be characterized, such 
degradation can be partially reversed using deconvolution1,2, result-
ing in improved resolution and contrast. For example, given the 
point spread function (PSF) and data corrupted by Poisson noise 
(often dominant in fluorescence microscopy), the Richardson–Lucy 
deconvolution (RLD)3,4 procedure deblurs the estimate of sample 
density with each iteration. In addition to deblurring, deconvolu-
tion can be used to combine multiple independent measurements 
taken on the same sample to produce an improved overall estimate 
of the sample5. This approach is especially useful in reconstructing 

super-resolution images in structured illumination microscopy6,7 or 
in performing joint deconvolution to improve spatial resolution in 
multiview light-sheet microscopy8–12.

Iterative deconvolution has been useful in these applications, but 
obtaining a resolution-limited result with RLD usually requires ten 
or more iterations. While the associated computational burden is 
manageable for single-view microscopes, deconvolving large multi-
view datasets can take days12,13, in many cases drastically exceeding 
the time for data acquisition.

Here we develop tools that address this problem. First, we show 
that in most cases the number of iterations can be reduced to one 
when using an unmatched back projector, fundamentally speeding 
iterative deconvolution. Second, we optimize three-dimensional 
(3D) image-based registration methods for efficient multiview 
fusion and deconvolution on graphics processing unit (GPU) cards. 
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The contrast and resolution of images obtained with optical microscopes can be improved by deconvolution and computational 
fusion of multiple views of the same sample, but these methods are computationally expensive for large datasets. Here we 
describe theoretical and practical advances in algorithm and software design that result in image processing times that are ten-
fold to several thousand fold faster than with previous methods. First, we show that an ‘unmatched back projector’ accelerates 
deconvolution relative to the classic Richardson–Lucy algorithm by at least tenfold. Second, three-dimensional image-based 
registration with a graphics processing unit enhances processing speed 10- to 100-fold over CPU processing. Third, deep learn-
ing can provide further acceleration, particularly for deconvolution with spatially varying point spread functions. We illustrate 
our methods from the subcellular to millimeter spatial scale on diverse samples, including single cells, embryos and cleared 
tissue. Finally, we show performance enhancement on recently developed microscopes that have improved spatial resolution, 
including dual-view cleared-tissue light-sheet microscopes and reflective lattice light-sheet microscopes.
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Finally, we show that computationally intensive deconvolution with 
a spatially varying PSF can be accelerated by using convolutional 
neural networks to ‘learn’ the relevant operations, provided that 
suitable training data can be assembled. These advances result in 
a speed-up factor of ten- to several thousand-fold over previous 
efforts. We illustrate the advantages on subcellular to macroscopic 
length scales, using samples that include single cells, zebrafish 
and nematode embryos and mouse tissue. In addition to demon-
strating improvements on super-resolution and large multiview 
datasets acquired with state-of-the-art microscopes, we also show 
that our methods enable the use of new microscopes, including 
dual-view cleared-tissue light-sheet microscopy and reflective lat-
tice light-sheet (LLS) microscopy.

Results
Drastically reducing the number of iterations in iterative decon-
volution. Iterative deconvolution algorithms attempt to esti-
mate the underlying sample density from noisy, blurred images. 
Important components of such algorithms are a ‘forward projector’, 
which describes the mapping from the desired image of the object 
to the noisy, blurred image measured by the microscope, and a ‘back 
projector’, which maps the measured image back onto the desired 
object image. For example, in RLD:

ekþ1 ¼ ek
i

ek*f

� �
*b

� �

where ek is the kth (current) estimate of the desired object image o, 
ek+1 is the (k+1)th (future) estimate, i is the measured image, f is the 
forward projector, b is the back projector and an asterisk denotes 
convolution. The PSF is typically used for f, because f must accu-
rately account for the blurring imparted by the band-limited micro-
scope. b is traditionally ‘matched’ to f as its transpose (that is, by 
flipping the PSF), but this is not the only possible choice. Work in 
the field of radiology14 suggests that using an ‘unmatched’ back pro-
jector can accelerate this procedure. Specifically, in the unmatched 
variant of RLD, iterates were shown to move more rapidly toward 
desirable reconstructed images when the operator product of the 
forward projector and back projector had a flatter eigenvalue spec-
trum. To our knowledge, this result has not been exploited in fluo-
rescence microscopy. When the forward operator is a shift-invariant 
convolution, as is usually the case in microscopy, the number of iter-
ations can be greatly reduced if b is chosen so that f * b tends toward 
a delta function (or, equivalently, if the product of the magnitude 
of the Fourier transforms (FT) of f and b approximates a constant 
in spatial frequency space; Fig. 1 and Supplementary Notes 1–3). 
To study this effect, we began with images acquired with instant 
structured illumination microscopy (iSIM)15, a super-resolution 
technique. The iSIM PSF, or f, resembles a confocal PSF but with 
smaller spatial extent (Fig. 1a). Although b is typically chosen to 
be identical to f given the transpose symmetry of the iSIM PSF, we 
considered other choices with progressively smaller spatial extent 
(or, equivalently, greater amplitude in the spatial frequency pass-
band of the microscope; Fig. 1b and Methods). The last of these 
was a Butterworth filter designed specifically to ‘invert’ the native 
iSIM frequency response up to the resolution limit, resulting in a 
much flatter frequency response of |FT(f) × FT(b)| (Fig. 1c). Given 
its conceptual similarity to a Wiener filter, we termed this choice the 
‘Wiener–Butterworth (WB) filter’.

When deconvolving images of 100-nm beads captured with a 
home-built iSIM, we found that our alternative b choices produced 
a resolution-limited result faster than the traditional back projector 
(Fig. 1d and Supplementary Fig. 1), with a speed-up factor correlat-
ing with the constancy of |FT(f) × FT(b)|. For example, the WB filter 
recovered the object’s resolution-limited size with only 1 iteration, 
whereas the traditional back projector required 15 iterations. The 

improved performance of the WB filter did not rely on an improved 
signal-to-noise ratio (SNR) in the input data (Supplementary Fig. 2), 
nor did it amplify noise more than other methods (Supplementary 
Fig. 3). We also compared the WB back projector to the classic 
Wiener filter employed in noniterative deconvolution. Here too 
we found that using the WB filter in RLD outperformed the clas-
sic Wiener filter (Supplementary Figs. 3 and 4). Butterworth and 
WB back projectors both introduced unphysical negative values 
into the deconvolved reconstructions (Fig. 1b and Supplementary 
Fig. 5). However, because these values were small and typically 
located within the noise floor of each image, we set them to zero to 
yield reconstructions that were nearly identical to the conventional 
RLD results for these and other datasets presented in the paper 
(Supplementary Tables 1 and 2).

In a simulation, we examined the relative performance of the 
traditional and WB back projectors in resolving two lines separated 
by 1.6 times the iSIM resolution limit (Fig. 1e and Supplementary 
Video 1). Using the same forward operator f affects the RLD proce-

dure equivalently in both cases, but inspection of the term i
ek*f

h i
*b

I

 
reveals that the WB filter applies a much larger ‘correction factor’ 
to ek, accelerating production of the final estimate. Further simu-
lations based on more complex 3D objects confirmed this result, 
again finding that Gaussian, Butterworth and WB back projec-
tors required fewer iterations to produce deconvolved images with 
similar (or better) image quality in comparison to traditional RLD 
(Supplementary Fig. 6 and Supplementary Table 1).

Next, we applied these methods to images of fixed U2OS cells that 
were immunolabeled to highlight the outer mitochondrial mem-
brane protein Tomm20 and acquired with iSIM (Fig. 1f,g). Each 
of the back projectors improved signal-to-background and spatial 
resolution relative to the raw data, better revealing interior voids 
within the mitochondria. As before, however, using the unmatched 
back projectors also substantially reduced the number of iterations 
needed (Supplementary Video 2), a benefit that also extended to 
time-lapse iSIM (Supplementary Video 3), as well as confocal, wide-
field and single-view light-sheet data (Supplementary Fig. 7).

Accelerating multiview deconvolution and registration. The 
more than tenfold improvement in processing speed obtained for 
single-view deconvolution prompted us to investigate whether 
our method could also be applied to the more computationally 
intensive task of multiview deconvolution. We began by applying 
our method to dual-view light-sheet microscopy (diSPIM9), using 
the WB back projector instead of the traditional transpose PSF 
to perform joint deconvolution on the two registered input views 
(Methods). As before, the WB back projector produced nearly iden-
tical results to the more traditional method, but with only one itera-
tion (Supplementary Fig. 8), a tenfold improvement in speed.

We used our method to reconstruct neuronal dynamics in devel-
oping Caenorhabditis elegans embryos, obtaining clear images of 
the plasma membrane of a subgroup of neurons labeled by green 
fluorescent protein (GFP) in a pan-nuclear mCherry background16 
(Fig. 2a and Supplementary Videos 4 and 5). After deconvolu-
tion, the morphologies of neurons and nuclei were sufficiently well 
resolved (Fig. 2b,c) that we could perform semiautomated lineag-
ing17 to identify neurons selectively labeled by the fmi-1 promoter 
in this strain. The anterior OLQVL and OLQVR neurons are glu-
tamatergic sensory neurons that facilitate head foraging and with-
drawal reflexes. OLQV neurons are born after their progenitor cells 
(AB prpaaappa and AB plpaaappa) undergo a terminal cell divi-
sion to produce OLQVL or OLQVR and sister cells (AB prpaaap-
pap and AB plpaaappap) that undergo programmed cell death18,19. 
The progenitor cells first elaborate broad lamellipodial extensions 
toward the nose of the animal, which eventually become sensory 
dendrites (Fig. 2d). Concomitantly with the terminal cell division, 
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the lamellipodial extensions become thinner and longer neurites, in 
line with the final morphological features of the dendrites. Dendrite 
extension then continues through what appears to be retrograde 

extension20. Perhaps forces generated during the terminal mitotic 
division help to create the morphological changes in dendrite 
shape. Although further experiments are needed to validate this 
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Fig. 1 | An unmatched back projector reduces the number of iterations required for Richardson–Lucy deconvolution. a, Lateral (left) and axial (right) 
slices through the forward projector for iSIM, shown in real space (top; PSF) or Fourier space (bottom; |FT(f)|). b, Different back projectors (BPs), including 
the traditional back projector (transpose PSF) usually employed in RLD, a Gaussian back projector, a Butterworth back projector and a WB back projector. 
The first two rows are as in a; the last row shows the product of the forward and backward projectors in Fourier space. Note that the color maps for 
Butterworth and WB PSFs have been adjusted to show the negative values (black rings) that result with these choices and that the color map for the WB 
Fourier transforms has been adjusted to better show the increase in amplitude at high spatial frequencies. c, Line profiles through the Fourier transforms 
in a and b, comparing the forward projector (left), back projector (middle) and product of the forward and back projectors (right). The resolution limit 
of iSIM is indicated by a vertical dashed line in the middle panel. d, The apparent size of a 100-nm bead (vertical axis; average FWHM of ten beads 
after deconvolution) as a function of iteration number (horizontal axis) compared for different back projectors. The resolution limit of iSIM is indicated 
with a horizontal dashed line. See also Supplementary Fig. 1. e, Left, simulated object consisting of two parallel lines in 3D space (top) and the object 
blurred by the iSIM (bottom). For clarity, only a transverse xy plane through the object is shown. Right, line profiles corresponding to the red dashed line 
to the left, comparing the effect of the original (blue) and WB (orange) back projectors in RLD. The estimates after 20 iterations using the original back 
projector and only 1 iteration using the WB filter are shown in the rightmost graph. it, iteration. f, U2OS cells were fixed and immunolabeled to highlight 
Tomm20, imaged with iSIM and deconvolved. Single planes from imaging stacks are shown, with iteration number and back projector as indicated. g, 
Higher-magnification views, corresponding to the red rectangular region in f. See also Supplementary Video 1. Scale bars: 1 μm in top row and 1/100 nm−1 
in middle and bottom rows (a,b); 1 μm (e); 10 µm (f); 1 µm (g). Experiments were repeated on similar datasets at least three times for e and f, with similar 
results obtained each time; representative data from a single experiment are shown.
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hypothesis, the form of asymmetric division in which the mother 
cell does not round up during division and one daughter inherits 
the shape and polarity of the mother has been described previously 
in fish21 and in C. elegans22. Notably, our reconstructions allowed 
us to identify single cells in living embryos and to contextualize the 
morphological changes undergone by neurons during terminal cell 
divisions leading to dendrite biogenesis.

Our methods extend to imaging configurations with more 
views. For example, we acquired a quadruple-view dataset on a 
triple-objective light-sheet microscope11 (Fig. 2e, Supplementary 
Fig. 9 and Supplementary Video 6). E6-1 Jurkat T cells stably trans-
fected to express EGFP–actin were plated on coverslips coated 
with anti-CD3 antibodies (mimicking antigen-presenting cells). 
After the T cells spread on the coverslip, we imaged them for 30 
time points (one time point every 15 s) spanning 7.5 min, acquiring 
four volumetric views at each time point. After adapting our decon-
volution method for this acquisition scheme (Methods), dynamic 
changes in membrane ruffles and cell protrusions were obvious 
in the reconstructions (Fig. 2f), but were obscured in the raw data 
(Supplementary Fig. 10). Using the WB back projector reduced the 
number of iterations from 90 to 5 (Fig. 2g). Notably, our method 
also outperformed the state-of-the-art efficient Bayesian multiview 
deconvolution (EBMD)10 method (which required 30 iterations to 
produce images of similar quality), which can be explained by the 
flatter frequency response of |FT(f) × FT(b)| when using the WB 
filter in comparison to the EBMD result (Supplementary Fig. 11).

In processing these dual- and quadruple-view datasets, we 
noticed that the time for image registration considerably exceeded 
the time for deconvolution, usually by 75- to 120-fold. One approach 
to faster image registration encases the sample in a labeled matrix, 

using the multiple feature points from many fiducials to obtain the 
registration among different views23. We opted instead for the less 
invasive option of greatly accelerating the speed of our image-based 
registration software. First, we rewrote our CPU-based registration 
code9 in CUDA so that the procedure could be run entirely on our 
GPU. Second, we improved the underlying registration algorithm 
by incorporating an initial two-dimensional (2D) registration and 
progressively more complex 3D registrations, which resulted in 
faster and more robust performance (Fig. 2h, Supplementary Fig. 
12, Methods and Supplementary Software). Collectively, these 
advances resulted in 175- and 30-fold speed-ups in registration 
(Fig. 2i), respectively, for the modestly sized C. elegans and T cell 
datasets presented in Fig. 2a,e, which enabled total processing times 
on par with the acquisition time (Supplementary Table 3). We also 
benchmarked our improved registration method against established 
registration tools, including elastix24 and NiftyReg25. In comparison 
to these state-of-the-art tools, our method enabled a speed improve-
ment of more than tenfold on large volumetric light-sheet datasets 
without sacrificing registration quality (Supplementary Table 4).

Our improved registration method enabled an even more dra-
matic speed-up (451-fold; Fig. 2i) for an extended diSPIM acquisi-
tion spanning 900 volumes (7.5 h, 1.05 teravoxels, 2.1 TB), where 
we followed the migration of the lateral line primordium in a 32-h 
zebrafish embryo expressing Lyn–eGFP under the control of the 
claudin B (cldnb) promoter26 (Fig. 2j and Supplementary Video 7). 
Following registration, joint WB deconvolution improved visualiza-
tion of vesicular structures and cell boundaries as compared to the 
raw data (Fig. 2k,l) and facilitated inspection of dynamic immune 
cells that appeared to migrate between the skin and underlying 
somites (Fig. 2m,n and Supplementary Video 8). WB deconvolution 

Fig. 2 | Improvements in deconvolution and registration accelerate the processing of multiview light-sheet datasets. a, Lateral (left) and axial (right) 
maximum-intensity projections demonstrating isotropic reconstructions of C. elegans embryos expressing neuronal (green, GFP–membrane marker)  
and pan-nuclear (magenta, mCherry–histone) markers. Images were captured with diSPIM, and deconvolution was performed using the WB filter.  
See also Supplementary Video 4. b,c, Higher-magnification single slices from the dashed rectangular regions in a, emphasizing the similarity  
between reconstructions obtained with traditional RLD (‘trad’) and WB deconvolution. The number of iterations for each method is displayed.  
d, Higher-magnification maximum-intensity projection view of neuronal dynamics, indicating neurite extension and terminal cell division, for a progenitor 
cell (purple arrow), OLQVR cell (blue arrow) and apoptotic sister cell (red arrow). See also the lower right schematic and Supplementary Video 5. e, WB 
reconstruction of a Jurkat T cell expressing EGFP–actin; raw data were captured in a quadruple-view light-sheet microscope. f, Selected slices 3.7 μm from 
the coverslip surface. Indicated time points display fine actin dynamics at the cell periphery (red arrows). See also Supplementary Video 6. g, Axial slice 
through the sample, indicating close similarity (orange arrows) between traditional, efficient Bayesian and WB deconvolution with the iteration number 
as indicated. h, Schematic of the GPU-based 3D registration used for multiview fusion. Example inputs are two 3D images, referred to as the source (S; 
image to be registered) and target (T; fixed image) images. Maximum-intensity projections of the input 3D images are used for preliminary alignment 
and to generate an initial transformation matrix (M0). Alternatively, a transformation matrix from a previous time point is used as M0. A 3D registration 
loop iteratively performs affine transformations on the source image (which is kept in GPU texture memory for fast interpolation), using Powell’s method 
for updating the transformation matrix by minimizing the correlation ratio between the transformed source image (S′) and the target image. i, Bar graphs 
showing the time required to process the datasets (file I/O not included) in this figure (left, middle and right columns correspond to the datasets in  
a, e and j, respectively, with voxel count as indicated) conventionally and with our new methods. The conventional registration method was performed 
with an existing MIPAV plugin (Methods) using CPUs, while the new registration method was performed using GPUs. Both deconvolution methods 
were performed with GPUs. Note the log scale on the ordinate and that the listed times apply for the entire time series in each case (the total time for 
the conventional registration method on the zebrafish dataset was extrapolated from the time required to register ten time points). j, Representative 
lateral (left, maximum-intensity projection) and axial (right, single plane corresponding to the white arrowheads in the left panel) images showing a 
32-h zebrafish embryo expressing Lyn–eGFP under the control of the claudin B (cldnb) promoter, marking cell boundaries within and outside the lateral 
line primordium. Images were captured with diSPIM; WB reconstructions are shown. Images were selected from the volume 30 min into the acquisition; 
see also Supplementary Video 7. k,l, Higher-magnification views of the dashed rectangles in j, emphasizing improvement in resolving vesicles (red and 
orange arrows) and cell boundaries (green and blue arrows) with WB deconvolution as compared to raw data. Note that k and l are rotated 90 degrees 
relative to j. m, Higher-magnification view of the leading edge of the lateral line, 97 min into the acquisition. n, Higher-magnification view of the dashed 
rectangular region in m, emphasizing immune cell (yellow arrows) migration between surrounding skin cells. White arrowheads are provided to give 
context, and white arrows point to the skin surface and coverslip. Top row, maximum-intensity projection of the lateral view; bottom row, single plane of 
the axial view. See also Supplementary Video 8. o, Lateral slice through the primordium, with automatically segmented cell boundaries marked in red. 
See also Supplementary Video 9. p, Higher-magnification view of the dashed rectangle in o, showing differential segmentation with raw single-view data 
(green, left) versus deconvolved data (red, middle). The overlay to the right shows common segmentations (yellow) versus segmentations found only 
in the deconvolved data (red). Note that the ‘z’ coordinate in j–p is defined normal to the coverslip surface. Scale bars: 10 μm (a,m,o,p); 5 μm (all other 
panels). Experiments were repeated on similar datasets at least three times for a–d and two times for e–g and j–p, with similar results obtained each time; 
representative data from a single experiment are shown.
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also substantially improved automated segmentation of cells within 
the lateral line, as only 71 of 120 cells were accurately segmented in 
the raw data versus 116 of 120 in the deconvolved data (Fig. 2o,p 
and Supplementary Video 9).

We also tested our methods on single-view and multiview data-
sets acquired with a commercial Zeiss Lightsheet Z.1 microscope 
(Supplementary Figs. 13 and 14, Supplementary Video 10 and 
Methods), obtaining improved resolution and contrast after decon-

volution and improved speed in comparison to the widely used 
commercial Huygens deconvolution software (Supplementary Fig. 
13, Supplementary Table 3 and Methods).

Submicrometer isotropic imaging of large cleared-tissue vol-
umes. Other samples that benefit from improved multiview fusion 
and deconvolution are large volumes of cleared tissue, which can 
be rapidly imaged using light-sheet microscopes. To explore this 
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possibility, we constructed a cleared-tissue diSPIM (Supplementary 
Fig. 15), replacing our original water-immersion objectives with 
a pair of mixed-immersion ×17.9, 0.4-numerical aperture (NA) 
objectives (Methods). To estimate spatial resolution, we imaged 
100-nm fluorescent beads in dibenzyl ether (Sigma, 108014), 
obtaining a single-view lateral full width at half maximum value 
(FWHM) of 0.84 ± 0.04 μm and an axial FWHM of 4.6 ± 0.4 μm 
(ten beads, mean ± s.d.; Supplementary Fig. 16). Registration and 
one iteration of WB deconvolution further improved spatial resolu-
tion, resulting in an isotropic 0.79 ± 0.04 μm, offering a several-fold 
improvement in axial resolution over previous single-view experi-
ments using the same lens27,28. Next, we fixed, cleared and immu-
nolabeled millimeter-scale samples of mouse tissue (Fig. 3a–d and 
Supplementary Videos 11–15) with iDISCO+ (ref. 29) or iDISCO30, 
subsequently imaging them with the cleared-tissue diSPIM in stage 
scanning mode31.

The resulting data span hundreds of gigavoxels to teravoxels, up 
to ~2 TB in size. This size presents a major challenge, as such whole 
raw views do not fit within the memory of single GPU cards and 
must be subdivided before processing. To address this challenge, 
we created a processing pipeline for terabyte-scale data: cropping 
the single-view data into subvolumes, registering and deconvolv-
ing the subvolumes, and finally stitching the resulting reconstruc-
tions back into a higher-resolution composite (Supplementary  
Figs. 17 and 18).

In a first example, we imaged a 4 × 2 × 0.5 mm3 slab of brain 
tissue derived from a V1b-transgenic mouse32, with sparse immu-
nolabeling of neurons and neurites across the entire volume  
(Fig. 3a). The isotropic resolution of the deconvolved reconstruc-
tion enabled us to resolve individual neurites at the micrometer 
scale (Fig. 3a) and to observe fine detail laterally and axially that 
was not resolved in the raw data (Fig. 3b). Manual tracing of neu-
rites was also substantially improved in the deconvolved data rela-
tive to the raw data (Fig. 3c). In a second example, we performed 
four-color imaging on the gut of an embryonic day (E) 18.5 mouse, 
spanning a 2.1 × 2.5 × 1.5 mm3 volume (Fig. 3d). Our reconstruction 
highlights the organized and hierarchical structure of the intestine, 
including the interconnected vascular plexus feeding the submu-
cosal and mucosal intestinal areas (PECAM-1 and DAPI staining), 
mitochondrially enriched regions within the mucosa (Tomm20 
and DAPI staining) and tubulin-dense regions within the outer 

intestinal wall (α-tubulin and PECAM-1 staining). As with the 
brain sample, the isotropic submicrometer-scale resolution allowed 
us to visualize fine details that were otherwise obscured by diffrac-
tion, including hollow blood vessels and cytoplasmic mitochondria 
surrounding individual nuclei (Supplementary Fig. 19). Notably, 
obtaining these as well as other large reconstructions of mouse 
intestine, stomach and ovary datasets (Supplementary Videos  
13–15 and Supplementary Tables 5 and 6) was facilitated by our much 
faster postprocessing methods. Collectively, the new registration  
(Fig. 2h) and deconvolution (Fig. 1) methods account for a 100-fold 
speed improvement over previous efforts, enabling postprocessing 
in tens of hours rather than tens of days (Fig. 3e). We note that our 
method delivers less light dose than a recent technique with similar 
reported resolution33, as our technique confines the illumination to 
the vicinity of the focal plane.

Accelerating deconvolution with a spatially varying PSF. Finally, 
we developed methods for accelerating the deconvolution of fluo-
rescence microscopy data blurred with a spatially varying PSF, 
acquired by imaging samples deposited on reflective coverslips (Fig. 
4 and Supplementary Table 7). As we previously demonstrated13, 
reflective diSPIM enables the collection of additional specimen 
views (Fig. 4a), increasing information content and boosting spatio-
temporal resolution. However, the raw reflective data are contami-
nated by substantial epifluorescence that varies over the imaging 
field (Fig. 4c). To remove the epifluorescence and fuse the views 
for optimal resolution enhancement, registration and subsequent 
deconvolution with a spatially varying PSF are needed (Methods). 
Unfortunately, spatially varying deconvolution carries a consid-
erable computational burden: as applied to reflective imaging, it 
requires calculation of the forward and back projectors at each axial 
slice instead of only once per volume13. For example, deconvolv-
ing an imaging volume spanning 340 × 310 × 340 voxels with 20 
iterations of traditional RLD with a spatially varying PSF requires 
340 slices × 2 views × 2 convolutions per RL update × 20 itera-
tions = 27,200 3D convolutions (14 min per volume with a single 
GPU card), instead of the 2 × 2 × 20 iterations = 80 3D convolu-
tions required with a spatially invariant PSF (only 2.5 s per volume). 
Unlike in our previous examples (Figs. 2 and 3), deconvolution 
rather than registration becomes the bottleneck in postprocessing 
the raw data.

Fig. 3 | Imaging millimeter-scale cleared-tissue volumes with isotropic micrometer-scale spatial resolution. a, Brain volume of 4 × 2 × 0.5 mm3 from 
fixed and iDISCO+-cleared V1b mouse, immunolabeled with Alexa Fluor 555-conjugated secondary antibody against anti-tdTomato primary antibody, 
imaged with cleared-tissue diSPIM and reconstructed after dual-view registration and WB deconvolution. Progressively higher-resolution subvolumes 
are shown, with line profiles indicating neurite FWHM of 1.3 μm (yellow arrowheads) and separation of 1.9 μm between neurites (blue arrowheads). See 
also Supplementary Video 11. b, Lateral and axial cross-sections from the region indicated with a white arrow in a, emphasizing the higher resolution 
obtained with WB deconvolution (decon) as compared to raw single-view data. c, Volume renderings of the region displayed in b, again comparing 
raw data to deconvolution. Manually traced neurites are shown in the bottom row; colored arrows indicate neurites traced in deconvolution that are 
obscured in raw single-view data. d, Intestinal volume of 2.1 × 2.5 × 1.5 mm3 from fixed and iDISCO-cleared E18.5 mouse labeled with DAPI (red), Alexa 
Fluor 647-conjugated secondary antibody against anti-Tomm20 primary antibody (green), Alexa Fluor 488-conjugated secondary antibody against 
anti-PECAM-1 primary antibody (yellow) and Alexa Fluor 568-conjugated secondary antibody against anti-α-tubulin primary antibody (purple); imaged 
with cleared-tissue diSPIM; and reconstructed after dual-view registration and WB deconvolution. See also Supplementary Video 12. i, Single plane 
demarcated by the dashed white rectangular region at left, showing a four-color cross-section and higher-magnification dual-color views highlighting 
a hollow blood vessel (white arrow) and mitochondria surrounding individual nuclei (orange arrows). ii, Subvolume demarcated by the dashed black 
parallelepiped above, illustrating different perspectives of the vascular plexus supplying the submucosa (blue arrow) and mucosa (white arrow) of 
the intestine. iii, Different perspectives of the four-color subvolume demarcated by the dashed black parallelepiped above and insets 1–4, highlighting 
hierarchical organization within the intestine, for example, submucosa (blue arrow) and mucosa (white arrow) (inset 2); mitochondrially enriched regions 
that support the high energy demand and constant cellular renewal within the mucosa (inset 3); and outer intestinal wall with dense α-tubulin staining 
(inset 4). See also Supplementary Fig. 19. e, Bar graphs showing the registration and deconvolution time required for postprocessing datasets (image 
sizes in a and d as indicated), comparing previous (blue) and new (orange; 100-fold reduction in time) postprocessing methods. Note that times for the 
previous method are estimated (see Methods for further detail) and the log scale on the ordinate axes. Scale bars: 500 µm, 100 µm, 30 µm and 10 µm for 
progressively higher magnifications (a); 30 µm (b,c); 300 µm in top left, 300 µm and 30 µm for insets in i, 200 µm in ii, and 200 µm and 100 µm for insets 
in iii (d). See also Supplementary Videos 13–15. Experiments were repeated on similar datasets at least three times, with similar results obtained each time; 
representative data from a single experiment are shown.
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By modifying the spatially varying RL update to incorporate 
the WB filter (Methods), we found that only two iterations were 
required to deconvolve a previously published dataset13 highlight-
ing calcium waves (marked with GCaMP3) within muscles in 
threefold-stage C. elegans embryos. As with traditional RLD, the 
WB modification improved contrast and resolution in the raw data 
(Fig. 4c and Supplementary Video 16), but with a tenfold reduction 
in processing time (Fig. 4h). These gains also extended to a new 
form of reflective microscopy, using a higher-NA LLS microscope 
instead of diSPIM (Fig. 4a,d–f,i and Methods).

LLS microscopy34 has garnered attention owing to its combi-
nation of high detection NA and illumination structure; together, 
these attributes result in a better compromise between field-of-view 

and light-sheet thickness than with previous microscopes using 
pseudo-non-diffracting beams. Nevertheless, the contrast and 
spatial resolution in raw LLS images still suffer from extraneous 
out-of-focus light owing to illumination sidelobes, an effect that can 
be ameliorated with deconvolution. We found that the performance 
of the base LLS microscope could be further improved by imaging 
samples deposited on reflective coverslips (Fig. 4d–f), registering 
the two resulting high-NA views oriented ~113 degrees apart and 
deconvolving them with a spatially varying PSF. As assayed with 
images of immunolabeled microtubules in U2OS cells captured on 
glass (Fig. 4d) and reflective (Fig. 4e) coverslips, axial resolution was 
improved twofold, from 750 ± 39 nm to 379 ± 23 nm (Supplementary 
Fig. 20). Deconvolving registered images of mEmerald–α-actinin in 
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live U2OS cells acquired in the reflective LLS microscope with the 
WB filter instead of traditional RLD resulted in a 15-fold reduction 
in processing time (Fig. 4i and Supplementary Video 17).

While a 10- to 15-fold reduction in processing time is substan-
tial, the time associated with deconvolution still far exceeds the time 
needed for data acquisition (3.5 h to deconvolve the 150-volume 
C. elegans dataset imaged with reflective diSPIM; 13.3 h to decon-
volve the 100-volume α-actinin dataset imaged with reflective LLS 
microscopy). To obtain further speed enhancements, we turned to 
deep learning35, which has resurged as a promising framework for 
image classification36, image recognition37, image segmentation38, 
denoising39, super-resolution40 and deconvolution41.

We constructed a convolutional neural network, terming it 
‘DenseDeconNet’, as it is based on linking together dense network 
blocks42 in a memory-efficient manner (Fig. 4b, Supplementary 
Note 4 and Supplementary Software). These blocks use multiple 
dense connections to extract features from the raw image stacks 
and then learn to deblur the images. Unlike previous attempts 
that deblur 2D image slices by comparing the data to synthetically 
blurred slices and average the network output from two orthogonal 
views to improve resolution isotropy43, we designed our method to 
operate on the full volumetric data, thereby learning the requisite 
3D restoration directly. This capability is especially important in 
reflective applications, in which a simple 2D spatially invariant blur 
cannot properly model the physics of the microscope.

We began by testing DenseDeconNet on nuclear and 
membrane-bound labels expressed in live C. elegans embryos, acquired 
on the diSPIM using conventional glass coverslips. We used the 
deconvolved dual-view data as ground truth. When using only a single 
view as the input to the network, DenseDeconNet provided resolution 
enhancement intermediate between the raw data and the deconvolved 
result (Supplementary Video 18). To some extent, this is unsurpris-
ing; presumably only with both views is there enough information 
to recover the isotropic resolution provided by diSPIM. However, 
for highly dynamic structures, the network output with a single-view 
input sometimes provided more accurate reconstructions than the 
deconvolved ground truth (Supplementary Note 4). We suspect this 
result is due to the lessened effect of motion blur, which otherwise 
causes errors in both registration and deconvolution. Additionally, in 

bypassing registration, the DenseDeconNet with single-view input 
provided a fivefold reduction in total processing time as compared 
to WB deconvolution, that is, ~1 s for application of DenseDeconNet 
versus 5 s for the new registration method (Fig. 2h) and one iteration 
of WB deconvolution (Supplementary Note 4).

Using both registered views for network input enabled resolution 
enhancement very similar to the ground-truth joint deconvolution 
on data acquired with glass coverslips (Supplementary Note 4). This 
result also extended to the reflective datasets. When training the net-
work using the raw specimen views as inputs and the WB result as 
the ground truth, DenseDeconNet produced outputs that were nearly 
identical to the ground truth (based on visual inspection; Fig. 4c,f; 
mean square error (MSE) of 4.8 × 10–4 (Fig. 4c) and 5.0 × 10–5 (Fig. 4f)  
and structural similarity (SSIM) index of 0.923 (Fig. 4c) and 0.965 
(Fig. 4f)), resulting in clear images of calcium dynamics in embryonic 
muscle (Supplementary Video 16) and α-actinin dynamics at the cell 
boundary (Fig. 4g and Supplementary Video 17). Notably, the net-
work output offered a 50-fold speed improvement over WB deconvo-
lution (1.68 s per volume, or a 500-fold improvement over traditional 
RLD) when processing the C. elegans data (Fig. 4h) and a 160-fold 
speed improvement (2 s per volume, or a 2,400-fold improvement 
over traditional RLD) when processing the α-actinin data (Fig. 4i and 
Supplementary Table 7).

Discussion
Our deconvolution method is inspired by RLD but achieves 
high-quality reconstructions more rapidly. Although the WB fil-
ter indeed enables deconvolution with fewer iterations than a tra-
ditional back projector, the potential to introduce artifacts still 
exists, particularly if too many iterations are applied (Fig. 1d and 
Supplementary Fig. 6). We recommend a single iteration as a good 
rule of thumb, because this choice resulted in resolution-limited 
performance on the majority of the datasets we examined (Table 2.1 
in Supplementary Note 2). With this caveat in mind, the algorith-
mic improvements we describe here should accelerate image-based 
biological discovery, especially for the increasingly rich and large 
datasets that can be obtained with modern light microscopes. For 
raw data that fit within the memory of a single GPU card (Figs. 
1, 2 and 4), our methods now enable multiview registration and 

Fig. 4 | Deep learning massively accelerates deconvolution with a spatially varying PSF. a, Reflective imaging geometries for a diSPIM (top) and LLS 
(bottom) microscope. In both cases, the sample is deposited on a reflective coverslip (mirror), which produces additional views of the specimen. Det 
OBJ, detection objective; Exc OBJ, excitation objective. b, Schematic architecture of our convolutional neural network (DenseDeconNet) used for deep 
learning. Inputs are concatenated (‘Concat’) image volumes (each containing width (w) × depth (d) × height (h) voxels) obtained from the microscope, 
which may contain multiple views (A, B) of the specimen. Three ‘dense blocks’ extract feature maps (circles) from the network input, eventually learning 
to reverse the spatially varying blurring imparted by the microscope by minimizing the difference (loss function) between the network output and the 
ground-truth reconstruction via back propagation. Conv, convolution; BN, batch normalization; ReLu, rectified linear unit. Circles within each dense block 
unit show the number of feature maps after each convolutional layer; colored arrows within each dense block show the concatenation of successive 
layers in the network. See Supplementary Note 4 for more details on the network architecture. c, Threefold C. elegans embryos expressing GCaMP3 from 
a myo-3 promoter were imaged by reflective diSPIM (150 volumes, each acquired every 350 ms). Maximum-intensity projections of raw data (left), WB 
deconvolution (middle) and deep learning reconstruction (right) are shown for lateral (top) and axial (bottom) views. See also Supplementary Video 16. 
d, U2OS cells were deposited on glass coverslips and fixed, microtubules were immunolabeled with anti-α-tubulin conjugated to Alexa Fluor 488, and 
cells were imaged with LLS microscopy. A lateral maximum-intensity projection (left) and axial slice (right; corresponding to the yellow dashed line at left) 
are shown. e, U2OS cells were deposited on reflective coverslips and fixed, immunolabeled and imaged as in d. A lateral maximum-intensity projection 
(left) and axial slice (right; corresponding to the yellow dashed line at left) are shown. Reconstructions in d and e were performed using traditional 
deconvolution with a spatially varying PSF. See also Supplementary Fig. 20. f, U2OS cells expressing mEmerald–α-actinin were deposited on reflective 
coverslips and imaged (100 volumes, each acquired every 2.5 s) in the LLS microscope. Reconstructions were performed via WB deconvolution (top) and 
deep learning (bottom). A lateral maximum-intensity projection (left) and axial slice (right; corresponding to the yellow dashed line at left) are shown. See 
also Supplementary Video 17. g, Higher-magnification view of the red rectangular region, emphasizing the dynamics of α-actinin near the cell boundary 
(yellow arrows). h,i, Bar graphs showing the time required for processing of a single volume using traditional deconvolution with a spatially varying PSF, 
deconvolution via the WB filter and deep learning for the dataset shown in c (h) and the dataset shown in f (i). Note the log scale on the ordinate. Note 
also that the time cost of file I/O is not included in h and i. Scale bars: 5 μm in all panels except 1 μm in the zy views in d and e. For c–i, traditional and WB 
deconvolution experiments were repeated on similar datasets at least two times, with similar results obtained each time; the deep learning model was 
trained on one time-lapse dataset and applied to multiple datasets (N ≥ 2), with similar results obtained for each dataset.
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deconvolution on a timescale on par with, and frequently faster than, 
image acquisition. For much larger multiview light-sheet datasets 
(Fig. 3), our approach drastically shortens the postprocessing time 
necessary for image reconstruction, instead placing the bottleneck 

on file reading, file writing and image stitching (Supplementary 
Table 5). Further speed improvements are possible if these opera-
tions are optimized. Alternatively, compressing the image data or 
using multiple graphics cards for additional parallelization12 could 
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further shorten postprocessing time. We freely provide our software 
(Supplementary Software) in the hope that others may improve 
it and expect that other multiview light-sheet12 (Supplementary  
Fig. 14) or light-field configurations44 could benefit from our work.

When performing deconvolution with a spatially varying PSF, 
the WB method provides a substantial speed-up over traditional 
RLD, yet we obtained an even greater acceleration with deep learn-
ing. We note several caveats, however, when using deep learning 
methods. First, enough high-quality training data (for our network, 
~50–100 training pairs) must be accumulated before application 
of the network, underscoring the point that deep learning aug-
ments, but does not replace, more classic deconvolution. Second, 
although application of the trained network takes only seconds per 
volume, training the network still takes days on a single graphics 
card. Finally, the networks are ‘brittle’; we obtained optimal results 
by retraining the network on each new sample (Supplementary  
Note 4). Designing more general neural networks remains an 
important area for further research.
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Methods
Widefield fluorescence imaging. Widefield imaging was performed on a 
previously described home-built system. In these experiments, we used a ×60, 
NA = 1.42 oil objective (Olympus) on an Olympus IX81 inverted microscope 
equipped with XT 640-W (Lumen Dynamics Group) as the illumination source 
and an automated xy stage with an additional z piezoelectric stage (100-μm 
range; Applied Scientific Instrumentation (ASI), PZ-2000). The illumination was 
filtered with an excitation filter (ET470/40x, Chroma) and then reflected toward 
the sample via a dichroic mirror (T495lpxr, Chroma). The emission was collected 
by the same objective and filtered with a bandpass emission filter (ET525/50m, 
Chroma) before imaging with an electron-multiplying charge-coupled device 
(EMCCD) (Evolve Delta, Photometrics). An exposure time of 20 ms and EM gain 
of 20 were used. The imaging axial step for both beads and fixed actin samples  
was 150 nm.

Fixed phalloidin-labeled actin samples. U2OS cells were cultured on glass-bottomed 
dishes (MatTek, P35G-1.5-14C) at 37 °C with 5% CO2. Before labeling, cells were 
rinsed three times with 1× PBS, fixed with 1 ml of 4% paraformaldehyde and 
2% glutaraldehyde in 1× PBS for 20 min at 37 °C, rinsed twice in 2 ml of 750 mM 
Tris-HCl (pH 7.5) and permeabilized in 0.2% Triton X-100 in 1× PBS for 10 min. 
Next, samples were washed three times in staining buffer and blocked in staining 
buffer containing 1% BSA for 30 min. Blocking buffer was removed, and the 
samples were stained with 200 μl of a 1:50 dilution of Alexa Fluor Phalloidin-488 
(Thermo Fisher Scientific, A12379) diluted in 0.2% Tween-20 in 1× PBS for 1 h. 
Cells were washed in 0.2% Tween-20 in 1× PBS three times and imaged in 1× PBS.

Bead samples. Glass-bottomed dishes (MatTek, P35G-1.5-14C) were cleaned with 
100% ethanol and coated with 0.1% poly(l-lysine) (Sigma-Aldrich, P8920) for 
10 min. 100-nm yellow-green beads (Thermo Fisher Scientific, F8803) were diluted 
~105-fold, and 20 μl was added to the coverslip. After 10 min, the dish was washed 
four times with clean water before imaging. Bead images were used for estimating 
the widefield PSFs used in Supplementary Fig. 7.

Confocal imaging. Confocal imaging was performed on a Leica SP8 confocal 
microscope with a 1.40-NA oil lens (HCX PL APO CS 63.0X1.40 OIL UV). The 
power for the 488-nm argon laser was set at 20%, and the AOTF (488) was set at 
5%. The sample was scanned bidirectionally with a voxel size of 48.1 nm in the xy 
plane and 125.9 nm in the z direction at 200 Hz with a 6× line average. The pinhole 
size was set to 20.1 μm (0.21 Airy units). The fluorescence signal was collected 
from 510 nm to 580 nm with a Leica HyD hybrid detector operating in photon 
counting mode (10% gain). Data were saved in eight-bit format.

Immunolabeled microtubule samples. U2OS cells were cultured on No. 1.5 
coverslips (Fisherbrand, 12-545-81) at 37 °C with 5% CO2. Before labeling, 
cells were rinsed three times with 1× PBS, fixed with 1 ml methanol for 3 min 
at −20 °C and rinsed twice in 2 ml of 1× PBS. Next, samples were washed three 
times in staining buffer and blocked in staining buffer containing 1% BSA for 
30 min. The blocking buffer was removed, and the samples were stained with 
200 μl of a 1:100 dilution of anti-α-tubulin primary antibody (Thermo Fisher 
Scientific, 322500) for 1 h. Cells were washed in 0.2% Tween-20 in 1× PBS 
and stained with 200 μl of a 1:200 dilution of Alexa Fluor 488-conjugated goat 
anti-mouse secondary antibody (Invitrogen, A11001) diluted in 0.2% Tween-20 
in 1× PBS for 1 h. Finally, cells were washed three times in 0.2% Tween-20 in 1× 
PBS and twice in distilled water before mounting in Prolong Diamond (Thermo 
Fisher Scientific, P36961).

iSIM imaging. The iSIM system has been previously described13. For all 
experiments, a ×60, NA = 1.42 oil-immersion objective (Olympus PlanApo N 60× 
Oil) was used, resulting in an image pixel size of 55.5 nm and a lateral resolution 
of ~150 nm. Fluorescence data were acquired with a pco.edge 4.2 sCMOS camera, 
and the exposure time was set to 40 ms per image frame. The imaging axial step 
for beads, immunolabeled mitochondrial samples and transfected endoplasmic 
reticulum (ER) samples was set to 100 nm, 100 nm and 500 nm, respectively.

Immunolabeled mitochondrial samples. U2OS cells were cultured on glass-bottomed 
dishes (MatTek, P35G-1.5-14C) at 37 °C with 5% CO2. Before labeling, cells were 
rinsed three times with 1× PBS, fixed with 1 ml of 4% paraformaldehyde and 2% 
glutaraldehyde (Electron Microscopy Sciences, 15710 and 16120) in 1× PBS for 
20 min at 37 °C, rinsed twice in 2 ml of 750 mM Tris-HCl (pH 7.5) (Corning, 46-
030-CM) and permeabilized in 0.2% Triton X-100 (Sigma, T9284) in 1× PBS for 
10 min. Next, samples were washed three times in staining buffer (0.2% Tween-20 
(Sigma, P9416) in 1× PBS) and blocked in staining buffer containing 1% BSA 
(Thermo Fisher Scientific, 37525) for 30 min. The blocking buffer was removed, 
and the samples were stained with 200 μl of a 1:200 dilution of anti-Tomm20 
primary antibody (Abcam, 78547) diluted in 0.2% Tween-20 in 1× PBS for 1 h. 
Cells were washed in 0.2% Tween-20 in 1× PBS and stained with 200 μl of a 1:200 
dilution of Alexa Fluor 488-conjugated donkey anti-rabbit secondary antibody 
(Invitrogen, A21206) for 1 h. Finally, cells were washed three times in 0.2%  
Tween-20 in 1× PBS and imaged in the iSIM in 1× PBS.

Transfected ER samples. U2OS cells were cultured in 1 ml of medium using a 
MatTek glass-bottomed dish at 37 °C with 5% CO2. At 80% confluency, cells were 
transfected with 100 μl of transfection buffer containing 2 μl of X-treme GENE, 
2 µl of plasmid DNA (ERmoxGFP45; Addgene, 68072; 420 ng μl–1) and 96 μl of PBS. 
Cells were imaged 1 d after transfection.

Bead samples. Yellow-green fluorescent beads (Thermo Fisher Scientific, F8803; 
100-nm diameter) were used for experimental FWHM measurements for iSIM. 
Beads were diluted from the stock concentration 1:1,300 (1:100 in distilled water 
and 1:13 in ethanol) and spread over cleaned glass coverslips. After air-drying for 
5 min, coverslips were washed twice in distilled water to remove unattached beads. 
After air-drying again, beads were mounted in oil (Cargille, 16241) on glass slides 
and sealed with nail polish.

Zeiss Lightsheet Z.1 imaging. Images were captured with a Zeiss Lightsheet Z.1 
Selective Plane Illumination microscope (Carl Zeiss Microscopy), tandem PCO.
edge sCMOS cameras (PCO.Imaging) and Zeiss Zen imaging software. A pair of 
Zeiss ×10, 0.2-NA dry illumination objectives were used alongside a Zeiss ×20, 
1.0-NA long-working-distance detection objective. The illumination sheet was 
narrowed to 2 μm, and images were acquired with an exposure time of 10 ms for 
both the green (488 nm) and red (561 nm) channels. In single-view experiments, 
samples were imaged dorsally with volumes acquired every 2 min. In multiview 
experiments, two views were collected at −15 and +15 degrees from dorsal, with 
volumes acquired every 5 min.

Zebrafish embryos. Imaging of the embryonic zebrafish hindbrain used three 
transgenic fish lines: Tg(h2az2a:h2az2a-GFP)46, Tg(en.crest1-hsp70l:mRFP)ch100 
(ref. 47) and Tg(sox10:mRFP)vu234 (ref. 48). Adult females carrying the nuclear 
label hist2h2l:GFP were crossed to males carrying either the cranial efferent 
marker en.crest1-hsp70l:mRFP (for single-view experiments) or the neural crest 
marker sox10:mRFP (for multiview experiments). The resulting progeny were 
staged to 18 hours post-fertilization following standard morphological criteria49. 
For single-view experiments, embryos were prepared via multilayer mounting50 
in Fluorostore Fractional FEP Tubing (F018153-5). For multiview experiments, 
embryos were mounted in 1.2% agarose (Invitrogen, UltraPure Agarose, 16500) 
in glass capillary tubes. Specimens were immersed in embryo medium with 
0.2 mg ml–1 tricaine and incubated at 28.5 °C during data collection.

Fiber-coupled diSPIM imaging. We used our original fiber-coupled diSPIM 
system51 in addition to another recently described fiber-coupled diSPIM 
system52 to acquire volumetric time-lapse datasets of zebrafish embryo lateral 
line and nematode embryo neurodevelopment, respectively. Data were acquired 
in light-sheet scan mode (scanning the light sheet through the stationary 
sample) with the ASI diSPIM Micromanager53,54 (http://dispim.org/software/
micro-manager) plugin instead of the LabVIEW control software used previously51. 
For zebrafish data, the xy stage was manually moved periodically to ensure that the 
growing tip of the lateral line did not exit the field of view.

Nematode embryos. The 718-bp promoter in plasmid DACR3078 (fmi-
1p(718 bp)(EcoRV–EcoRV)::Syn21-GFP-CAAX::p10 3′ UTR) is a bashed 
fragment from the 3,186-bp promoter upstream of the fmi-1 start codon. To 
make plasmid DACR3078, EcoRV was used to digest plasmid DACR2984 (fmi-
1p(3,186 bp)::Syn21-GFP-CAAX::p10 3′ UTR) followed by subsequent religation. 
Transgenic strain DCR6371 was made by injecting plasmid DACR3078 at 50 ng μl–1 
into the lineaging strain BV514, which ubiquitously expresses mCherry::histone 
reporter constructs, pie-1p::mCherry::H2B::pie-1 3′ UTR and nhr-2p::his-
24::mCherry::let-858 3′ UTR16. From a spontaneous integration of DACR3078 
into BV514, olaIs98 was isolated. The integrated strain was designated DCR6371. 
The Syn21–p10 3′ UTR is a translational enhancer system used in Drosophila to 
boost translational expression55. We have found that this also seems to help boost 
expression in C. elegans (unpublished results).

Worms were cultivated at 20 °C on nematode growth medium seeded with a 
lawn of Escherichia coli strain OP50 using standard methods. Embryos were laid by 
gravid adults and picked from the plate into M9 buffer with 0.25% methylcellulose 
and were then pipetted onto a poly(l-lysine)-coated coverslip and imaged in M9 
buffer, as previously described9. Samples were imaged every 100 s for 50 time points 
with both the 561-nm and 488-nm lasers. Further details are available in ref. 52.

Zebrafish embryos. For zebrafish posterior lateral line imaging, cldnb:lyn-GFP26 
embryos at 30–32 hours post-fertilization were placed in embryo medium (60 mg 
RedSea Coral Pro Salt (Drs Foster and Smith Pet Supplies) per liter of ddH2O) 
supplemented with 600 μM MS-222 (Sigma, E10521). For diSPIM imaging, 
embryos were mounted in 1% low-melt agarose (Cambrex, 50080) and covered 
with embryo medium; the agarose above the posterior lateral line primordium was 
manually removed with forceps before imaging.

Quadruple-view light-sheet microscopy. We modified our previously described 
triple-view SPIM system11 to acquire four volumetric views. Two ×40, 0.8-NA 
water-immersion objectives (OBJ A and OBJ B in Supplementary Fig. 9; Nikon, 
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MRD07420) were used in a free-space coupled diSPIM configuration9. A ×60, 
1.2-NA water-immersion objective (OBJ C in Supplementary Fig. 9; Olympus, 
UPLSAPO60XWPSF) was mounted beneath the coverslip. Each objective was 
housed within a piezoelectric objective positioner (PZT, Physik Instrumente, 
PIFOC-P726), enabling independent axial control of each detection objective.

Four volumetric views were obtained with the three objectives in stage scanning 
mode; that is, samples were translated through the light sheet via an xy piezo stage 
(Physik Instrumente, P-545.2C7; 200 μm × 200 μm). When excitation was introduced 
from OBJ B, one top view (collected from OBJ A) and one bottom view (from OBJ 
C) were simultaneously acquired. Similarly, when illumination was introduced from 
OBJ A, another top view (collected from OBJ B) and bottom view (from OBJ C) were 
simultaneously acquired. Views collected from OBJ A and OBJ B were acquired as 
usual in light-sheet microscopy (that is, they were perpendicular to the illumination); 
views collected from OBJ C were acquired by scanning OBJ C vertically during each 
exposure. Thus, the top two sCMOS cameras corresponding to OBJ A and OBJ 
B were operated in hybrid rolling/global shutter mode, but the lower camera was 
operated in virtual confocal slit mode, to obtain partially confocal images during 
light-sheet illumination introduced from OBJ A and OBJ B.

T cells. E6-1 Jurkat T cells stably transfected to express EGFP–actin were grown 
in RPMI-1640 medium with l-glutamine and supplemented with 10% FBS, at 
37 °C in a 5% CO2 environment. Glass coverslips (24 mm × 50 mm × 0.17 mm; 
VWR, 48393241) were coated with 0.01% (wt/vol) poly(l-lysine) (Sigma-Aldrich) 
and incubated with anti-CD3 antibody (Hit-3a, eBiosciences) at 10 μg ml–1 for 
2 h at 37 °C the same day that cells were imaged. Before imaging, 1 ml of cells 
was centrifuged at 250 RCF for 5 min, resuspended in L-15 imaging buffer 
supplemented with 2% FBS and plated onto coverslips.

Cleared-tissue imaging. We modified our original fiber-coupled diSPIM51 for 
cleared-tissue imaging by incorporating elements of the commercially available 
ASI DISPIM and DISPIM for Cleared Tissue (CT-DISPIM). All components were 
designed and manufactured by ASI unless otherwise specified. The microscope 
body was built inside an incubator box (RAMM-Incu) on a 450 mm × 600 mm 
breadboard (Incu-breadboard). Samples were placed on an FTP-2000 Focusing 
Translation Platform to provide precise and repeatable x,y,z positioning of the 
sample as well as rapid stage scanning31 during cleared-tissue imaging. CAD 
drawings of the setup are shown in Supplementary Fig. 15.

Dovetail mounts (DV-6010) were attached to the SPIM head (SPIM-DUAL-K2) 
lower Cube III modules and connected to angled dovetails on support arms from 
posts mounted to the breadboard (Camera Support Kit CAM_SUP-K4-13-5). This 
configuration fixes the SPIM head while the sample can be moved relative to the 
head using the FTP-2000, minimizing vignetting of the fluorescence emission, 
which compromised earlier diSPIM performance on large samples.

Each camera (Hamamatsu Orca Flash 4.0) was attached to a tube lens assembly 
(MIM-Tube-K), which was clamped to Ø1.5-inch support posts (Thorlabs) from 
the breadboard, leaving an air gap of 1–2 mm between the tube lens assembly and 
the SPIM head. The resulting vibrational decoupling of the cameras from the SPIM 
head minimized image jitter caused by the camera fans. The cameras themselves 
were additionally supported on brackets angled at 45 degrees (Thorlabs, AP45) 
mounted on Ø1.5-inch vibrationally damped posts (Thorlabs, DP14A).

For cleared-tissue imaging, we used a pair of Special Optics 0.4-NA 
cleared-tissue immersion objectives (ASI, 54-10-12). At the refractive index of 
the solvent we used (dibenzyl ether), the magnification of these lenses is ~17.9. 
Because the back focal planes of these objectives are at a different location than 
for the Nikon ×40, 0.8-NA water-immersion objectives used for live work, the 
excitation scanners and their associated tube lenses were mounted to adjustable 
spacers (C60-SPACER-ADJ ASSEMBLY) to ensure 4f spacing of the light-sheet 
excitation path. All cleared-tissue experiments used quad notch filters (Semrock 
StopLine Notch Filter NF03-405/488/561/635E-25) and associated dichroic mirrors 
(Semrock BrightLine Laser Dichroic DiO3-R405/488/561/635-t1-25x36), which 
together isolated the fluorescence from the excitation light (405, 488, 561 and 
637 nm from Coherent OBIS sources).

Data were acquired by moving the stage in a raster pattern with the aid of the 
ASI diSPIM Micromanager53 plugin (http://dispim.org/software/micro-manager; 
ref. 54). The number of imaging tiles/rows as well as other acquisition parameters of 
interest is reported in Supplementary Table 5.

Because of the volume size and speed of data acquisition during cleared-tissue 
imaging, it was necessary to use an NVMe solid-state drive (Samsung 960 PRO 
M.2 2TB) to write data during an acquisition. Data were transferred to a local 
300-TB server after acquisition for longer-term storage.

Cleared brain slab. The mouse brain sample was prepared using the iDISCO+ 
procedure29. Briefly, the brain from an adult arginine vasopressin receptor 
1B (Avpr1b)-Cre × Ai9 (B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze56; 
Cre-recombinase-dependent tdTomato) mouse32 (a gift from W.S. Young) was fixed 
by transcardiac perfusion with 4% paraformaldehyde. It was then cut into 2-mm 
slabs and dehydrated through a methanol series, rehydrated, immunolabeled 
with an antibody that recognizes tdTomato (1:200 dilution of rabbit anti-RFP; 
Rockland Antibodies and Assays, 600-401-379) and an Alexa Fluor 555-conjugated 
secondary antibody (Invitrogen, A27039; 1:100 dilution), and then dehydrated 

with a methanol series and dichloromethane before equilibration in dibenzyl ether 
(Sigma, 108014) and imaging.

Cleared gut, stomach and ovary. Mouse tissue stored in 4% paraformaldehyde was 
dissected and washed in 20 ml of 1× PBS for 1 h at room temperature. Desired organs 
were dehydrated and rehydrated in a serial dilution of methanol in water and bleached 
in 5% hydrogen peroxide in methanol according to the iDISCO protocol30. After 
rehydration, pretreated samples were stained with 400 μl of primary antibody dilution 
(1:100) in PBS containing 0.5% Triton X-100 and 0.05% sodium azide and shaken at 
37 °C for 4 d. Samples were washed in 5 ml washing buffer consisting of 0.5% Triton 
X-100 and 0.05% sodium azide in PBS on a rotator for 1 d at room temperature. The 
next day, samples were stained with 400 μl of secondary antibody dilution (1:100) 
consisting of 0.5% Triton X-100 and 0.05% sodium azide in PBS in a 37 °C shaker for 
4 d. Samples were washed for 1 d before optical clearing. For some samples, a 1:1,000 
dilution of DAPI (1 mg ml–1 stock) was incorporated in the first washing step. All 
labels are indicated in Supplementary Table 6.

Immunolabeled samples were dehydrated sequentially in 5 ml of 20%, 40%, 
60%, 80%, 90% and 100% tetrahydrofuran in water (30 min at room temperature 
for each step). Samples were washed in 5 ml of 100% tetrahydrofuran for another 
30 min at room temperature and incubated in 5 ml of 100% dichloromethane until 
samples sank to the bottom of the tube. Samples were then incubated overnight 
at room temperature in another 5 ml of fresh 100% dichloromethane. The next 
day, samples were cleared twice in 5 ml of dibenzyl ether (Sigma, 108014) at room 
temperature for 30 min each time. Cleared samples were mounted on a glass slide 
with a minimal amount of Krazy Glue surrounding the bottom of the samples for 
imaging with cleared-tissue diSPIM.

Bead sample. No. 1.5 coverslips (VWR, 48393241) were cleaned with 100% ethanol 
and coated with 0.1% poly(l-lysine) (Sigma-Aldrich) for 10 min. Then, 100-nm 
yellow-green beads (Thermo Fisher Scientific, F8803) were diluted ~105-fold, and 
20 μl was added to the central region of the coverslip. After 10 min, the coverslip 
was washed four times with clean water before imaging. During imaging, the beads 
were immersed in dibenzyl ether (Sigma, 108014).

Free-space coupled diSPIM, conventional and reflective imaging. The geometry 
of the diSPIM (0.8/0.8 NA) used for conventional and reflective imaging has 
been previously described13. Glass coverslips (24 mm × 50 mm × 0.17 mm; VWR, 
48393241) for conventional experiments were modified for reflective experiments 
by sputtering a 150-nm-thick aluminum film over their entire surface and then 
protecting them with a 700-nm-thick layer of SiO2 (Thin Film Coating). During 
conventional imaging, dual views were sequentially acquired in light-sheet 
scanning mode via two objectives (Nikon, MRD07420; ×40, 0.8 NA) and imaged 
with 200-mm tube lenses (ASI, C60-TUBE_B) onto two sCMOS cameras (PCO, 
Edge 5.5), resulting in an image pixel size of 162.5 nm. During reflective imaging, 
four views (direct fluorescence and mirror images) were simultaneously collected 
in stage scanning mode with the same detection optics. In all acquisitions, the 
exposure time for each plane was 5 ms.

Nematode embryos. C. elegans were maintained on nematode growth medium 
seeded with E. coli (OP50). Embryos were dissected from gravid adults, placed 
on poly(l-lysine)-coated coverslips and imaged in M9 buffer, as previously 
described9. Strain BV24 (ltIs44(pie-1p-mCherry::PH(PLC1delta1) + unc-
119(+)); zuIs178((his-72 1 kb::HIS-72::GFP); unc-119(+))V) was used for 
imaging nuclei in conventional mode, and strain AQ2953 ljIs131(myo-
3p::GCaMP3-SL2-tagRFP-T) was used for imaging calcium flux in threefold 
embryos in reflective mode.

Lattice light-sheet microscopy, conventional and reflective imaging. The LLS 
microscope (1.1, 0.71 NA) for reflective imaging was constructed as previously 
described34. The annular mask was set at 0.325–0.4 NA, and a square lattice 
in dithered mode was produced at the sample. The excitation power (488 nm) 
was measured at the back focal plane of the excitation objective at ~25 µW. 
The ×25 Nikon CFI APO LWD detection objective was paired with a 500-mm 
achromat lens for an effective magnification of 63.7, resulting in an image 
pixel size of 102 nm. The exposure time for each plane was 8 ms, and the stage 
scanning step size for the volumetric imaging was 0.4 μm, corresponding to 
209 nm along the optical axis after deskewing. When deconvolving the data with 
a spatially variant PSF for resolution recovery and removal of epifluorescence 
contamination13, the excitation pattern was based on the measured dimensions 
of the LLS (propagation distance of ~26.6 µm FHWM along the optical axis 
and a waist of 0.99 µm FWHM), and the detection PSF was simulated as a 
widefield PSF with 1.1 NA using the PSF generator ImageJ plugin (http://
bigwww.epfl.ch/algorithms/psfgenerator/). The light-sheet dimensions 
were measured by sweeping the sheet axially through a 0.1-µm-diameter 
fluosphere (Thermo Fisher) while stepping the bead along the propagation 
length of the sheet. Conventional imaging experiments were conducted on 
5-mm-diameter × 0.15 mm glass coverslips (Warner Instruments, CS-5R). 
For reflective experiments, 5-mm-diameter × 0.17 mm glass coverslips were 
sputtered as for the free-space diSPIM experiments with a 150-nm-thick film of 
aluminum followed by a 700-nm-thick layer of SiO2 (Thin Film Coating).
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Microtubule and actin samples. For imaging microtubules, U2OS cells (ATCC, 
HTB-96) were grown on uncoated coverslips, fixed with glutaraldehyde, washed 
with PBS at room temperature and then immunolabeled with anti-DM1A antibody 
conjugated with Alexa Fluor 488 (Sigma, T9026). For imaging of α-actinin, 
U2OS cells stably transfected to express mEmerald-tagged α-actinin (a gift from 
M. Davidson, Florida State University) were plated onto coverslips 24 h before 
imaging. Cells were imaged within 1 h of plating on the reflective coverslips.

Data processing. Preprocessing. Raw single-view and multiview images were 
preprocessed by subtracting a uniform background with intensity equivalent to 
the average of 100 dark (no excitation light) background images before registration 
and/or deconvolution. For deconvolution, the measured image or the average of 
the measured images after elimination of zero values (zeros replaced by a small 
value, 0.001) was used as the initial estimate. However, we note that the more rapid 
deconvolution reported in this work is robust to changes in the initial guess, as we 
obtained similar acceleration when using a constant-valued image as the initial 
estimate.

diSPIM deconvolution. The joint RLD scheme used in diSPIM improves the overall 
estimate e of sample density by alternately considering each view57:

e0 ¼ iA þ iBð Þ=2

For k ¼ 0; 1; ¼N ði:e:; iteration numberÞ

~ek ¼ ek
iA

ek*fA

� �
*bA

� �

ekþ1 ¼ ~ek
iB

~ek*fB

� �
*bB

� �

where iA, fA, bA and iB, fB, bB are the raw images, forward projector (PSF) and back 
projector corresponding to views A and B, respectively. Traditionally, b is taken 
to be the transpose of f. However, as in single-view deconvolution, we found that 
using unmatched back projectors (for example, Gaussian, Butterworth or WB 
filters) considerably accelerated this procedure (reducing N).

Quadruple-view deconvolution. In quadruple-view deconvolution, we start with the 
additive RLD update, finding as previously reported11 that this method yields better 
reconstructions than the alternating joint deconvolution update57 used for diSPIM:

e0 ¼ iA þ iB þ iC þ iDð Þ=4

For k ¼ 0; 1; ¼N ði:e:; iteration numberÞ

eA ¼ ek
iA

ek*fA

� �
*bA

� �

eB ¼ ek
iB

ek*fB

� �
*bB

� �

eC ¼ ek
iC

ek*fC

� �
*bC

� �

eD ¼ ek
iD

ek*fD

� �
*bD

� �

ekþ1 ¼ eA þ eB þ eC þ eDð Þ=4

with f, b, e and i defined as above and the subscripts A, B, C and D indicating each 
view. Choosing each back projector b to be the transpose of the forward operator f 
yields the traditional RL update. Choosing the back projectors as follows yields the 
previously described ‘virtual-view’ update in EBMD10 (where * denotes convolution 
and ^ denotes the transpose), speeding up this procedure:

bA ¼ f̂A f̂A*fB*f̂B
� �

f̂A*fC*f̂C
� �

f̂A*fD*f̂D
� �

bB ¼ f̂B f̂B*fC*f̂C
� �

f̂B*fD*f̂D
� �

f̂B*fA*f̂A
� �

bC ¼ f̂C f̂C*fD*f̂D
� �

f̂C*fA*f̂A
� �

f̂C*fB*f̂B
� �

bD ¼ f̂D f̂D*fA*f̂A
� �

f̂D*fB*f̂B
� �

f̂D*fC*f̂C
� �

Finally, setting b to be the unmatched WB filter appropriate for each view 
provides the fastest update, as for dual-view and single-view microscopes.

Joint deconvolution for reflective light-sheet imaging. Raw image data from 
the four views in reflective diSPIM imaging (0.8/0.8 NA) or two views in 
reflective lattice light imaging (0.7/1.1 NA) are merged to produce a single 
volumetric view, after processing steps that include background subtraction, 
interpolation, transformation, fusion, registration, epifluorescence removal and 
joint deconvolution. The data processing steps for removing epifluorescence 
contamination and enhancing resolution for reflective diSPIM and reflective LLS 
imaging are similar to those previously described13 for the symmetric (0.8/0.8 NA) 
and asymmetric (0.71/1.1 NA) diSPIM configurations. We represent the effect of 
the mirrored coverslip by reflecting the object across the coverslip to obtain an 
extended object consisting of real and virtual objects. During each RL update, we 
construct the forward model by (1) shifting the illumination pattern at each axial 
(𝑧) slice in the extended object; (2) multiplying the shifted illumination pattern 
by the estimate of the extended object; (3) looping over 𝑧 in the estimate and, at 
each 𝑧, performing 2D convolution with the detection PSF; and (4) collapsing over 
the 𝑧 coordinate. In the backward model, we perform back projection of the ratio 
image (that is, the ratio of the raw data to the blurred estimate), convolve it with 
the appropriate back projector function (the flipped PSF for traditional RLD or 
the unmatched back projector for the WB case) and then multiply by the shifted 
illumination pattern. This deconvolution process is not blind, that is, the PSFs are 
simulated widefield detection PSFs based on experimentally measured PSFs. For 
the datasets we report here, there was no need to crop the data. When processing 
the reflective LLS data, the excitation profile was based on the measured dithered 
LLS illumination.

In more detail, we form view U1 (which includes both the conventional 
view and mirrored views) and a second, virtual view U2 by reflecting view U1 
across the mirror, as previously described13. U1 and U2 are thus blurred with 
complementary detection PSFs. We register the two views U1 and U2 and perform 
joint deconvolution on them by applying the joint RL update with the WB back 
projector for each view as follows:

F̂ nþ1ð Þ ¼ F̂ nð Þ 1
V1

MB1
U1

MF1F̂ nð Þ

� �

F̂ nþ2ð Þ ¼ F̂ nþ1ð Þ 1
V2

MB2
U2

MF2F̂ nþ1ð Þ

� �

Here MF1
I

 and MF2
I

 are the forward operators that map the object stack 
~F

 
to measured conventional view stack U1 and virtually reflected view stack U2, 
respectively, and ~F and MB2

I
 are the backward operators that map from data 

space back to object space. Four steps are sequentially applied in obtaining each 
update. First, we compute MB2

I
 or MF2F̂

ðnÞ

I
 by applying the forward operator 

MF1
I

 or MF2
I

 to the current estimate of the object F̂ðnÞ

I
 according to three cascaded 

operations 
F̂ðnÞ

I

 at each light-sheet position (or z slices), where matrix D represents 
multiplication of the estimate D by the crossed light sheets; matrix H

I
 represents 

looping over all the z slices and performing 2D convolution with a slice of the 
detection PSF at each z; and matrix P applies projection over all z slices. Second, 
we divide the measured data stack 𝑈 by this quantity and denote the resulting ratio 
image R. Third, we apply the transpose operator P or MB2

I
 to R, which involves 

applying the cascaded operations DTHTPT

I
 and then summing over all z slices. 

Here PT

I
 is a back projection matrix, which smears the vector to which it is applied 

back across the image grid; HT

I
 represents looping over z in the object distribution 

and performing 2D convolution with a slice of the transposed but unmatched 
detection PSF (that is, the WB back projector appropriate for the particular 
microscope; Supplementary Note 2) at each z; and DT

I
 is equivalent to matrix D, 

denoting multiplication by the illumination pattern. Finally, we update the current 
estimate D by multiplying by the correction image F̂ðnÞ

I
 or MB2

I
 and dividing by the 

normalization image V1 or V2 (that is, MB11
I

 or MB21
I

, where 1 denotes an image 
of ones).

GPU deconvolution with Huygens software. For the deconvolution comparison in 
Supplementary Fig. 13, both WB and Huygens deconvolution (Scientific Volume 
Imaging, Essential 19.10 version) use the same theoretical PSF, generated as the 
product of the excitation light sheet and widefield emission PSF. When testing 
Huygens, we used the light-sheet deconvolution module. All parameters were set at 
their default values. Deconvolution was performed on a Windows 10 workstation 
(CPU: Intel Xeon, Platinum 8168, two processors; RAM: 512 GB; GPU: Nvidia 
Quadro RTX6000 graphics card, 24 GB of memory).

Conventional 3D affine registration. Some CPU-based registrations were performed 
in the open-source Medical Imaging Processing, Analyzing and Visualization 
(MIPAV) programming environment (http://mipav.cit.nih.gov/). As previously 
described9, we applied an affine transform with 12 degrees of freedom (d.f.) to 
register the source image (S; image to be registered) to the target image (T; fixed 
image). The d.f. matrix is a 12-element transformation matrix that applies the 
four affine image transformation operations (translation, rotation, scaling and 
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shearing) from the source to the target image. We used an intensity-based method 
to iteratively optimize the d.f. matrix by minimizing a cost function via Powell’s 
method (http://mathfaculty.fullerton.edu/mathews/n2003/PowellMethodMod.
html). We set the search angle range from –10 degrees to 10 degrees, with a 
coarse angle increment of 3 degrees and a fine angle increment of 1 degree. This 
registration function ‘Optimized Automatic Image Registration 3D’ has already 
been incorporated in MIPAV as plugin ‘SPIM-fusion’ (ref. 51). With this CPU-based 
registration environment, we registered the data imaged with diSPIM (Fig. 2a,j) 
and quadruple-view light-sheet microscopy (Fig. 2e; see below for more detail 
on how we registered four views) and compared the registration outcomes and 
computational costs with those of the GPU-based registration described in the 
following section (Fig. 2i). To estimate the computational costs for registering large 
cleared-tissue volumes with the CPU-based approach (Fig. 3i), we randomly chose 
ten subvolumes (each 640 × 640 × 640 pixels), calculated the time for registration, 
averaged the times (that is, ~31 min per subvolume) and then multiplied the 
averaged time by the total number of subvolumes (for example, 4,576 subvolumes 
in Fig. 3d) to estimate the total registration time (that is, ~100 d).

For the comparative data shown in Supplementary Table 4, registration was 
also performed using the NiftyReg software package (http://cmictig.cs.ucl.ac.uk/
wiki/index.php/NiftyReg) and the elastix software package (http://elastix.isi.uu.nl). 
For NiftyReg, the reg_aladin command was used with default settings except that 
the ‘-pv’ and ‘-pi’ parameters were both set as 100. In this case, NiftyReg performed 
a rigid + affine-based registration. For elastix, the transform type was set as 
‘AffineTransform’ to perform affine-based registration; the Interpolator was set 
as ‘LinearInterpolator’, and the Resampler was set as ‘DefaultResampler’ for CPU 
implementation and ‘OpenCLResampler’ for GPU implementation.

New GPU-based 3D affine registration. We developed a new registration 
pipeline that accelerates the registration of multiview light-sheet data via GPU 
programming (Supplementary Fig. 12), including data acquired with diSPIM (Fig. 
2a,j), quadruple-view light-sheet microscopy (Fig. 2e), reflective diSPIM (Fig. 4c) 
and reflective LLS microscopy (Fig. 4f). More notably, this GPU-based registration 
method also enables the registration of large cleared-tissue datasets imaged with 
diSPIM (Fig. 3), which is impractical if implemented in the CPU-based registration 
method (for example, ~100 d with CPU-based registration as estimated above 
versus ~24 h with GPU-based registration for the data in Fig. 3d).

Our GPU-based method uses the same method (that is, intensity-based 
iterative optimization of the transformation matrix) as in the CPU-based MIPAV 
registration but dramatically improves the registration speed and accuracy for 
several reasons. First, we iteratively perform affine transformations on the source 
image, which is always kept in the GPU texture memory. The main computational 
burden in 3D transformation is trilinear interpolation, which can be substantially 
lessened by the use of texture memory. Second, the correlation ratio between 
the intensity of the transformed source and target images that is used in the cost 
function can be rapidly calculated via the parallel computations enabled by the 
GPU. Third, when minimizing the cost function by using Powell’s method to 
update the 12-element transformation matrix, we do not simultaneously optimize 
all 12 elements (that is, full translation, rotation, scaling and shearing, which 
comprise 12 d.f.). Instead, the optimization is serial, successively optimizing 
translation; rigid body (translation and rotation, 6 d.f.); translation, rotation and 
scaling (9 d.f.); and finally the full translation, rotation, scaling and shearing 
operations (12 d.f.). We observed that such serial optimization makes registration 
more accurate and robust. Finally, although the initial transformation matrix (M0) 
for beginning the optimization process is an identity matrix by default, we also 
provide an option to generate M0 by performing a 2D registration (translation and 
rotation) on the xy and zy maximum-intensity projections of the source and target 
images. This 2D registration is an intensity-based rigid body transformation with 
the same optimization routine as 3D registration, but performing registration in 
2D with only translation and rotation is very rapid, only taking ~1% of the time 
required for performing full 3D registration. This additional step also guarantees 
a reasonable starting initialization of M0 for further 3D optimization in 3D. 
Alternatively, a transformation matrix from a previous time point in a time-lapse 
four-dimensional (4D) dataset can be used as M0 to accelerate registration. In some 
cases (for example, Fig. 2a), we observed that using a matrix from a previous time 
point could reduce the registration time for a new volume by as much as 65%, for 
example, from ~8.8 s per volume to ~3.1 s per volume.

We implemented this GPU-based registration pipeline in CUDA/C++ 
(Supplementary Software) and called it in MATLAB or Fiji to register the data 
imaged with conventional and reflective diSPIM and LLS microscopy (Figs. 2a,j 
and 4c,f). To increase registration accuracy for the quadruple-view data (Fig. 
2e and Supplementary Fig. 10) acquired with the quadruple-view light-sheet 
system (Supplementary Fig. 9), we (1) transformed view A and view B into the 
coordinate system of bottom views C and D and deconvolved each view to increase 
image quality; (2) registered the deconvolved view D to the deconvolved view 
C, thus obtaining a registration matrix mapping view D to view C, and applied 
this registration matrix to the raw view D, thus registering it to the raw view C; 
(3) registered the deconvolved view B to the deconvolved view A, thus obtaining 
a registration matrix mapping view B to view A, and applied this registration 
matrix to the raw view B, thus registering it to the raw view A; (4) performed 

joint deconvolution on the two registered raw views A and B; (5) registered the 
jointly deconvolved views A and B to the deconvolved view C, thus obtaining 
a registration matrix mapping views A and B to view C; and (6) applied both 
registration matrices (view B to view A and then views A and B to view C) to 
register all raw views to the coordinate system of the bottom views (that is, views 
C and D). For deconvolving time series data (Fig. 2e and Supplementary Video 
6), we applied this process to the first time point in each view, obtaining a set of 
registration matrices that were then applied to all other time points in the 4D 
dataset.

Postprocessing pipeline for large cleared-tissue data imaged with diSPIM. We 
developed a postprocessing pipeline that can register and jointly deconvolve 
large datasets imaged with diSPIM, including the cleared-tissue data presented 
in this paper (Supplementary Fig. 17). Such datasets span hundreds of gigabytes 
to terabytes, a size that exceeded either the RAM or GPU memory on our 
workstation.

First, raw image data recorded by the cameras in cleared-tissue diSPIM 
(multiple 16-bit TIFF files, each less than or equal to 4 GB) need to be reorganized 
and resaved as TIFF stacks, each corresponding to a distinct spatial subvolume 
(tile), color and view. Second, tiles for each color and view are combined with 
Imaris Stitcher (based on ref. 58), the ImageJ plugin implementation of BigStitcher59 
or custom software written in MATLAB during the revision process for this 
manuscript (Supplementary Fig. 18, Supplementary Table 5 and Supplementary 
Software).

Our custom stitching software uses two steps to compute locations for every 
tile with subpixel accuracy (Supplementary Fig. 18): (1) using the GPU, calculate 
coarse 3D translational shifts for all pairs of adjacent tiles using Fourier-based 
phase correlation58,59 on downsampled images (final size of 512–1,024 pixels in 
each dimension) and (2) compute fine (subpixel) 3D translational shifts for the 
coarsely registered tiles using our GPU-based registration method.

In more detail, we calculate the Fourier-based phase correlation shifts 
according to

P ¼ IFT
FT tileAð Þ´ conj FT tileBð Þ½ 

k FT tileAð Þ´ conj FT tileBð Þ½  k

� �

where tile A and tile B represent two adjacent overlapped tiles, ‘conj’ denotes 
conjugation, and FT and IFT represent the Fourier transform and inverse Fourier 
transform. The peak of the phase image stack S corresponds to the tile location in 
real space. However, because of the periodic nature of the Fourier shift theorem, 
each peak corresponds to two possible shifts in each spatial dimension, and thus 
there are 23 = 8 possible peaks that arise when calculating a 3D shift. We test each 
candidate shift by applying the shift, cropping the overlapped regions between 
the shifted tiles, calculating the normalized cross-correlation (NCC) between the 
cropped regions and selecting the candidate shift corresponding to the highest 
NCC. To increase the robustness of this correlation-based approach for stitching 
images with extensive noise or low information content, we take the logarithm of 
the tiles before Fourier transformation.

After coarse shifts between adjacent tiles are obtained as above, we apply 
the coarse shifts, crop the overlapped regions between shifted tiles and use our 
GPU-based registration method for computing subpixel shifts between tiles. With 
this two-step stitching method, we achieve the same NCC values as BigStitcher 
yet with a shorter processing time (for example, an NCC of 0.95 for the two tiles 
shown in Supplementary Fig. 18, part of the dataset shown in Fig. 3d, each tile with 
2,048 × 2,048 × 1,300 pixels and a registration time of 165 s with this method versus 
580 s with BigStitcher). Finally, image tiles are fused by performing linear blending 
between the finely aligned overlapped regions. We create weight images for each 
tile (Supplementary Fig. 18), multiply the tiles by the weight images and then 
sum the resulting weighted images together. For multicolor datasets, we apply the 
subpixel shifts and weighted images obtained from a single color (users have the 
option to choose the desired color in the software GUI) to all other colors.

Like BigStitcher, our stitching framework is able to fuse terabyte-sized volumes 
without needing to load the raw data into CPU RAM. Stitching the entire volume 
from multiple tiles is accomplished by looping across the lateral slices of tiles, 
stitching them and subsequently resaving as a TIFF file for each lateral slice. 
The overall processing time (including file I/O and stitching) of our method is 
competitive with those of Imaris Stitcher and BigStitcher (for example, ~15 min 
with our method versus ~18 min with BigStitcher and ~13 min with Imaris Stitcher 
for the data shown in Supplementary Fig. 18; more comparisons are listed in 
Supplementary Table 5). Moreover, conducting the stitching pipeline in MATLAB 
has the advantage that a single program can be used for the entire processing 
pipeline without needing to convert TIFF files to IMS format in Imaris or define 
an XML format as in BigStitcher. Like Imaris Stitcher, our software also provides a 
GUI for assisting users in loading files, organizing the order of tiles, aligning tiles, 
and previewing tiles before and after stitching (see the description provided in the 
Supplementary Software for details on using the software).

After stitching, the resulting large TIFF stacks are de-skewed (transforming 
from stage scanning mode to light-sheet scanning mode), interpolated (obtaining 
isotropic pixel resolution), rotated (transformed from the objective view to the 
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perspective of the coverslip), cropped (saving memory) and resaved as TIFF files 
(for example, ~2 TB for the four colors and two views acquired for the dataset 
shown in Fig. 3d). Because of the large data size and our limited memory, we 
could not directly register the two views via our GPU card and performing the 
registration with CPU processing9 is impractical because of the ~100-fold-slower 
processing that would result (Fig. 3e). Our strategy for dealing with the GPU 
memory bottleneck is to downsample views A and B by a factor β, to view A′ and 
view B′, such that the total size of the views is reduced by β3 (for example, 125-fold 
if β = 5). Registering these downsampled volumes can then be achieved in GPU 
memory, obtaining a registration matrix MD that maps view B′ to view A′. A 
coarse, global 3D affine transformation matrix MG that maps view B to view A can 
then be derived from MD:

MD ¼
sx mx

my sy
nx tx
ny ty

mz nz
0 0

sz tz
0 1

2
664

3
775

MG ¼
sx mx

my sy
nx βtx
ny βty

mz nz
0 0

sz βtz
0 1

2
664

3
775

Here the three terms tx, ty and tz represent translations in each dimension, while 
the other nine terms, sx, sy, sz, mx, my, mz, nx, ny and nz, combine scaling, rotation 
and shearing in 3D.

Note that MG cannot be directly applied to view B to obtain a coarsely 
registered view B (again because of the large size). But MG can be used to crop 
views A and B into multiple subvolumes that are sufficiently small that they can 
be registered (for example, ~1,000 subvolumes, each 640 × 640 × 640 pixels with an 
interval of 512 × 512 × 512 pixels, with 20% overlap between adjacent subvolumes 
in each dimension). If the position of the kth subvolume in view A is specified by 
the vector Pk

A ¼ xkA y
k
A z

k
A1

� �

I
, then the starting position of the kth subvolume in 

view B can be obtained by

Pk
B ¼ xkBy

k
Bz

k
B1

� �
¼ Pk

A ´M
T
G ¼ xkAy

k
Az

k
A1

� �
´MT

G

After cropping, this subvolume can be coarsely registered with the 
corresponding cropped subvolume in view A using a new matrix Mk

S
I

, which can 
be derived from the cropping position matrix (Mk

A
I

, Mk
B

I
) and global transformation 

matrix MG:

Mk
A ¼

1 0
0 1

0 xkA
0 ykA

0 0
0 0

1 zkA
0 1

2
664

3
775

Mk
S ¼ inv Mk

B

� 
MGM

k
A ¼

sx mx

my sy
nx 0
ny 0

mz nz
0 0

sz 0
0 1

2
664

3
775

Fine registration and joint WB deconvolution are then applied to the coarsely 
registered paired subvolumes of view A and view B. For each deconvolved 
subvolume (640 × 640 × 640 pixels), boundary regions (45 pixels from each edge, 
in all three dimensions) are removed to eliminate edge artifacts, and the resulting 
subvolumes are resaved with a size of 550 × 550 × 550 pixels. Finally, stitching all 
deconvolved and newly cropped subvolumes results in the final reconstruction (for 
example, ~1 TB for the dataset displayed in Fig. 3d). Note that, during the stitch, 
linear blending is performed on the remaining overlapped regions of the adjacent 
subvolumes (38 pixels from each edge, in each dimension) to lessen stitching 
artifacts.

Zebrafish segmentation. For segmenting cells in the lateral line primordium 
(Fig. 2o,p), the ‘morphological segmentation’ feature in the MorpholibJ plugin60 
was used, with identical settings for raw and deconvolved images. Before 
segmentation, images were blurred in ImageJ using a Gaussian kernel with 
sigma = 1.5. A watershed tolerance of 15 and a connectivity of 26 were used during 
the segmentation. Cells in the raw data and successfully segmented cells in the 
processed images were manually counted in ImageJ.

Full width at half maximum calculations. All FWHM calculations were 
implemented in MATLAB. For statistical measures, values were averaged from 
ten simulated beads (Supplementary Fig. 2), ten experimental beads (Fig. 1d and 
Supplementary Figs. 1, 3 and 7e,f) or ten microtubule filaments (Supplementary 
Figs. 7d and 20e).

Simulation of images with different SNRs. SNR simulations were conducted in 
MATLAB. For the images shown in Supplementary Fig. 2, a noise-free image was 

obtained by blurring ten point objects with the iSIM PSF (simulated as the product 
of the excitation and emission PSFs). We next added Gaussian noise (simulating 
the background noise of the camera in the absence of fluorescence) and Poisson 
noise (proportional to the square root of the signal). We defined SNR as

SNR ¼ S=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sþ G2

p

where S is the signal defined by the average of all pixels with intensity above a 
threshold (here set as 1% of the maximum intensity of the blurred objects in the 
noise-free image) and G is the Gaussian noise (set as ten counts according to the 
measured s.d. of the background noise of the camera). The final images shown in 
Supplementary Fig. 2c were then generated by scaling the signal level S and adding 
noise according to the equation above to achieve the target SNR. For the images 
shown in Supplementary Fig. 6, the simulated ground-truth image consisted of 
spheres seeded at random locations and with random size and intensity, generated 
with ImgLib2 (ref. 61; http://imglib2.net) and then smoothed. The ground-truth 
image was then blurred with the iSIM PSF and degraded with Poisson and 
Gaussian noise as described above. The signal level S was defined by the average 
intensity of all spheres. The NCC to the ground truth was also calculated as a 
metric to quantify the quality of the deconvolved images. The NCC is defined as

NCC ¼ 1
N

XN

j¼1

e jð Þ � μeð Þ o jð Þ � μoð Þ
σeσo

where N is the total number of image voxels and j is the index of each voxel; o is the 
ground-truth image; e is the deconvolved image; μe and μo are the average value of e 
and o; and σe and σo are the s.d. of e and o.

Bleach correction. For several time-lapse datasets (Figs. 2a,e,j and 4c,f, and 
Supplementary Videos 3, 6, 17 and 18), we performed standard bleaching 
correction using an ImageJ plugin (Bleach Correction62; https://imagej.net/Bleach_
Correction) with the ‘simple ratio’ method.

Delining data. In the mitochondrial dataset acquired with iSIM (Fig. 1f, 
Supplementary Fig. 4 and Supplementary Video 2), we applied notch filters 
in Fourier space to suppress slight line artifacts in the raw data, as previously 
described63.

Video compression and rendering. The zebrafish lateral line volumes shown in 
Supplementary Video 9 were median filtered with a 5 × 5 × 5 kernel in Imaris 
9.2.1 (Bitplane) and manually segmented with the ‘local contrast’ function at 
each time point to isolate the immune cell from the skin. The isolated immune 
cell was then further manually segmented by an absolute intensity threshold to 
remove unwanted pixels and finally false colored in red. The isolated lymphocyte 
was recreated as an independent channel and false colored in red. Supplementary 
Videos 10–14 were also rendered in Imaris 9.2.1 and exported as uncompressed avi 
files (usually multiple gigabytes in size). These files were JPEG compressed (down 
to several hundred megabytes) in ImageJ and then compressed again in the VLC 
media player using H.264 compression. In some cases, the total image size was also 
slightly downsampled to achieve the final file size.

Neural network for deep learning. We developed the DenseDeconNet neural 
network (Fig. 4b and Fig. 4.1 in Supplementary Note 4) by adapting a densely 
connected network42 for 3D image data. This network consists of three dense 
blocks and uses multiple dense connections between convolutional layers to 
extract relevant features from the image volumes, learning the deblurring 
necessary for image reconstruction. All operations are implemented on 3D data 
and thus can directly incorporate 3D information contained within the image 
stacks to simultaneously improve axial and lateral resolution. The total number of 
learned parameters in our DenseDeconNet is approximately 18,000. The network 
is optimized using the backpropagation algorithm with the adaptive moment 
estimation (Adam) optimizer64 and a starting learning rate that decays during 
the training procedure. More details about this fully convolutional network and 
associated validation tests are described in Supplementary Note 4.

In our DenseDeconNet, we designed our objective function with three terms: 
the mean square error (MSE), the structural similarity (SSIM) index and the 
minimum value of the output (MIN). The MSE term ensures that the difference 
between network outputs and ground truths is as small as possible. The SSIM term 
is used to preserve the global structural similarity between the network output and 
the ground truth. We monitor the MIN of the output to avoid negative values.

DenseDeconNet is implemented with Tensorflow framework version 1.4.0 
and Python version 3.5.2 in the Ubuntu 16.04.4 LTS operating system. Training 
was performed on a workstation equipped with 32 GB of memory, an Intel Core 
i7 (8,700 K, 3.70 GHz CPU) and two Nvidia GeForce GTX 1080 Ti GPU cards 
with 11 GB of memory each. Kernels in the convolution layers were randomly 
initialized with a Gaussian distribution (mean = 0, s.d. = 0.1). For an input image 
stack ~80 MB in size, fully training the network with 7,000 iterations took ∼57 h, 
but during the revision process for this manuscript we found that this training time 
could be substantially reduced to ~2.5 h if training was performed with a small 
cropped subvolume (~15 MB) instead of the entire volume.
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We tested DenseDeconNet on 3D images of membranes and nuclei in live 
C. elegans embryos acquired with diSPIM, images of GCaMP3 expression in live 
C. elegans embryos acquired with reflective diSPIM and images of α-actinin in 
live cells acquired with reflective LLS microcopy. The input data were either raw 
single-view image volumes or dual-view image volumes. The ground-truth data 
consisted of traditional RL joint deconvolution with ten iterations for diSPIM 
data (conventional and reflective coverslips) and RL deconvolution with the WB 
back projector with one iteration for reflective LLS data. All data were derived 
from volumetric time series (‘4D’ data); usually, 80% of volumes were randomly 
selected for training and the remaining 20% were used for validation and testing. 
The parameters for all datasets used in deep learning are summarized in Table 4.1 
in Supplementary Note 4. More details are shown in Fig. 4 and Figs. 4.2–4.16 in 
Supplementary Note 4.

Supplementary software. We attach our software as a compressed zip file, which 
is also freely available and maintained through GitHub. The software includes 
four sets of programs for implementing (1) WB deconvolution on a variety of 
different microscopes; (2) rapid registration of two volumetric images, for example, 
for subsequent WB deconvolution; (3) registration and deconvolution of large 
cleared-tissue datasets, imaged with diSPIM; and (4) our convolutional neural 
network (DenseDeconNet) for resolution recovery. Programs run in MATLAB 
except for DenseDeconNet, which is written in Python. The zip file also includes 
a README file that explains how to run our software on a PC with specifications 
similar to ours (CPU: Intel Xeon, E5-2660-v4, 28 threads; RAM: 256 GB; GPU: 
Nvidia Quadro M6000 graphics card, 24 GB of memory).

The WB deconvolution program uses MATLAB scripts for WB single-view 
deconvolution of widefield fluorescence microscopy (Supplementary Fig. 7), 
confocal microscopy (Supplementary Fig. 7), iSIM (Fig. 1f, Supplementary 
Fig. 4 and Supplementary Video 3) and light-sheet fluorescence microscopy 
(Supplementary Fig. 7) data; WB joint deconvolution of diSPIM data acquired 
on glass coverslips (Supplementary Fig. 8); WB additive deconvolution of 
quadruple-view light-sheet imaging data acquired on glass coverslips (Fig. 2e and 
Supplementary Video 6); WB deconvolution for data contaminated with a spatially 
variant PSF taken with reflective, symmetric diSPIM (Fig. 4c and Supplementary 
Video 16); and WB deconvolution for data contaminated with a spatially varying 
PSF acquired with reflective LLS microscopy (Fig. 4f and Supplementary Video 18).

The registration program includes two main MATLAB scripts for performing 
affine registration with 12 d.f.: one that calls the registration function from a 
Dynamic-link Library (DLL) written in C++/CUDA (Supplementary Fig. 2e and 
Supplementary Video 6) and the other for conducting both registration and WB 
deconvolution for diSPIM data by calling the relevant functions from the DLL  
(Fig. 2a,f and Supplementary Videos 5 and 7). For program developers, we also 
provide the source code for the DLL in case they wish to customize their own 
library.

The program for registration and deconvolution of large cleared-tissue volumes 
imaged with diSPIM (Fig. 3 and Supplementary Videos 11–15) includes three main 
MATLAB scripts: the first is for stitching raw TIFF tiles with a GUI; the second 
is for preprocessing the stitched TIFF data by converting the data from stage 
scanning mode to the perspective of the coverslip; and the last script implements 
coarse registration, subvolume cropping, fine registration, WB joint deconvolution 
and stitching back into a large dataset. Associated MATLAB scripts and MEX files 
are also provided for reading and writing TIFF stacks, phasor registration and 3D 
convolution in the Fourier domain.

The last program includes two Python scripts for running DenseDeconNet 
with Tensorflow. These scripts are designed for single-view input training, 
single-view input validation (Figs. 4.2, 4.3 and 4.5 in Supplementary Note 4 and 
Supplementary Video 18), dual-input training and dual-input validation (Fig. 
4c,f, Figs. 4.4–4.6 in Supplementary Note 4 and Supplementary Videos 16 and 
17). Additionally, we provide a more user-friendly ImageJ plugin dedicated for 
registration and joint deconvolution (both traditional RLD and WB deconvolution) 
on diSPIM data. The plugin can process either single- or multicolor data. Users 
have the options to rotate, interpolate the two perpendicular views for obtaining 
isotropic pixels before registration and generate 2D or 3D maximum-intensity 
projections of deconvolved images.

Animal use ethical statement. Mouse and zebrafish tissue used in this study were 
obtained under approved Institutional Animal Care and Use Committee protocols. 
Animal experiments complied with all relevant ethical regulations.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request.

Code availability
The code used in this study is available as Supplementary Software. A code 
description and several test datasets are also included. Users can also download the 

code and updates from GitHub at https://github.com/eguomin/regDeconProject; 
https://github.com/eguomin/diSPIMFusion; https://github.com/eguomin/
microImageLib.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection The simulated images in Fig. 1e, Sup. Figs. 2, 6 were generated using customized MATLAB 2016b scripts. Customized Python software 
was used to acquired iSIM images. Customized Python software was used to acquire data from free-space coupled diSPIM and reflective 
diSPIM imaging. Customized hybrid Python/LabVIEW software was used to acquire quad-view light-sheet images. Micromanager 2.0 
(https://micro-manager.org/) was used to acquired wide-field images. ASI diSPIM Micromanager (http://dispim.org/software/micro-
manager) was used to acquire images from control fiber-coupled diSPIM and Cleared-tissue diSPIM. LAS X software (Leica Microsystems, 
Germany) was used to acquired Leica SP8 confocal data. Zeiss Zen imaging software (Carl Zeiss, Germany) was used to collect Zeiss 
Lightsheet Z.1 data.  All customized scripts and software are available upon request from the corresponding author.

Data analysis Customized ImageJ macros, MATLAB scripts and CUDA v9.0 codes were used for data analysis. These are available upon request from the 
corresponding author or from GitHub at: https://github.com/eguomin/regDeconProject; https://github.com/eguomin/diSPIMFusion; 
https://github.com/eguomin/microImageLib. Additional software was also used for comparison purpose, including Medical Imaging 
Processing Analyzing and Visualization (MIPAV, http://mipav.cit.nih.gov/), NiftyReg software package (http://cmictig.cs.ucl.ac.uk/wiki/
index.php/NiftyReg), elastix software package (http://elastix.isi.uu.nl) and Huygens (Scientific Volume Imaging, Essential 19.10 version).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size For estimating spatial resolution, it is common that >= 10 beads (or small structures) are sufficient to statistically calculate the FWHM, we 
used 10 in all cases (Fig. 1d, Sup. Figs. 1-3, 7, 17, 20). 

Data exclusions No data were excluded from analysis.

Replication All imaging experiments were independently performed more than 3 times with similar results. We will add statements to indicate the 
number of times experiments were repeated in corresponding figure legends in the revision. 

Randomization No allocation into experimental groups was performed.

Blinding No allocation into experimental groups was performed.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Fig. 1f,g, Sup. Fig. 4  

Primary antibody: Rabbit anti-Tomm20 (Abcam, Cat. # 78547, dilution 1:200); 
Secondary antibody:   donkey anti-rabbit Alexa-488 (Invitrogen, Cat. # A21206, dilution 1:200); 
 
Fig. 2e, Sup Fig. 10: Anti-CD3 (eBiosciences, Hit-3a, dilution 1:100); 
 
Sup. Fig. 7a 
Primary antibody: Mouse anti-alpha Tubulin (Thermo Fisher Scientific, 322500, dilution 1:100); 
Secondary antibody:  Goat anti-mouse Alexa-488 (Invitrogen, A11001, dilution 1:200); 
 
Sup. Fig. 20: DM1A Alexa-488 (Sigma, T9026) 
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For cleared tissues 
Primary antibodies: 
Rabbit anti RFP (Rockland, 600-401-379, dilution 1:200); 
Mouse anti alpha-tubulin (Thermo Fisher Scientific, 322500, dilution 1:100); 
Rabbit anti Tomm20 (Abcam, ab78547, dilution 1:100); 
Goat anti PECAM-1 (R&D Systems, AF3628, dilution 1:100); 
Mouse anti CD11c (Integrin αX) (Santa Cruz, sc-398708, dilution 1:100); 
Rat anti CD11b (R&D Systems, MAB1124, dilution 1:100); 
Secondary antibodies: 
Goat anti Rabbit IgG (H+L) Alexa-555 (Invitrogen, A2703, dilution 1:100); 
Donkey anti Goat IgG (H+L) AffiniPure F(ab')₂ Fragment Alexa-488 (Jackson ImmunoResearch, 705-546-147, dilution 1:100); 
Goat anti Mouse IgG1 Alexa-488 (Thermo Fisher Scientific, A21121, dilution 1:100); 
Donkey anti Rat IgG (H+L) CF-568 (Sigma, SAB-4600077, dilution 1:100); 
Donkey anti Mouse IgG (H+L) Alexa-568 (Thermo Fisher Scientific, A10037, dilution 1:100); 
Donkey anti Rabbit IgG (H+L) AffiniPure F(ab')₂ Alexa-647 (Jackson ImmunoResearch, 711-606-152, dilution 1:100); 
Donkey anti Goat IgG(H+L) Alexa-Plus-647 (Thermo Fisher Scientific, A32849, dilution 1:100); 
DAPI (Thermo Fisher Scientific, D1306, dilution 1:1000). 
More details can be found in  Methods and Sup. Table 4, 5.

Validation All the primary antibodies are commercial and have been extensively used in previous studies, and our staining pattern was 
compared to existing literature and images published online. The details of these antibodies and their validations can be found in 
manufacturer's websites (including references): 
Rabbit anti RFP (Rockland, 600-401-379):  https://rockland-inc.com/store/Antibodies-to-GFP-and-Antibodies-to-
RFP-600-401-379-O4L_24299.aspx 
Mouse anti alpha-tubulin (Thermo Fisher Scientific, 322500): https://www.thermofisher.com/antibody/product/alpha-Tubulin-
Antibody-clone-B-5-1-2-Monoclonal/32-2500 
Rabbit anti Tomm20 (Abcam, ab78547): https://www.abcam.com/tomm20-antibody-mitochondrial-marker-ab78547.html 
Goat anti PECAM-1 (R&D Systems, AF3628): https://www.rndsystems.com/products/mouse-rat-cd31-pecam-1-antibody_af3628 
Mouse anti CD11c (Integrin αX) (Santa Cruz, sc-398708); https://www.scbt.com/p/integrin-alphax-antibody-d-8 
Rat anti CD11b (R&D Systems, MAB1124): https://www.rndsystems.com/products/mouse-cd11b-integrin-alpha-m-antibody-
m1-70_mab1124

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) The following cell lines were used: U2OS(ATCC), Jurkat T cell(ATCC).

Authentication None of the cell lines used have been authenticated.

Mycoplasma contamination Cell lines were not tested for mycoplasma contamination

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals C. elegans embryos (varies from gastrulation to hatch); a 32-hour embryonic zebrafish; an adult vasopressin receptor 1B Cre X 
Ai9 mouse for the cleared brain slab; Fixed samples from an 8-week old female C57Black6 mouse for cleared intestine and ovary 
samples; Fixed E18.5  C57Black6 mouse embryo for cleared embryonic intestine and stomach samples.

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight Mouse and zebrafish tissue used in this study were obtained under approved Institutional Animal Care and use Committee 
protocols.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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