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The contrast and resolution of images obtained with optical microscopes can be improved by deconvolution and computational
fusion of multiple views of the same sample, but these methods are computationally expensive for large datasets. Here we
describe theoretical and practical advances in algorithm and software design that result in image processing times that are ten-
fold to several thousand fold faster than with previous methods. First, we show that an ‘unmatched back projector’ accelerates
deconvolution relative to the classic Richardson-Lucy algorithm by at least tenfold. Second, three-dimensional image-based
registration with a graphics processing unit enhances processing speed 10- to 100-fold over CPU processing. Third, deep learn-
ing can provide further acceleration, particularly for deconvolution with spatially varying point spread functions. We illustrate
our methods from the subcellular to millimeter spatial scale on diverse samples, including single cells, embryos and cleared
tissue. Finally, we show performance enhancement on recently developed microscopes that have improved spatial resolution,

including dual-view cleared-tissue light-sheet microscopes and reflective lattice light-sheet microscopes.

eter spatial resolution, molecular specificity and high con-

trast. These attributes allow direct interrogation of biological
structure and function, yet intrinsic blurring and noise degrade
fluorescence data, yielding an imperfect estimate of the underlying
sample. Provided the imaging process can be characterized, such
degradation can be partially reversed using deconvolution'”, result-
ing in improved resolution and contrast. For example, given the
point spread function (PSF) and data corrupted by Poisson noise
(often dominant in fluorescence microscopy), the Richardson-Lucy
deconvolution (RLD)** procedure deblurs the estimate of sample
density with each iteration. In addition to deblurring, deconvolu-
tion can be used to combine multiple independent measurements
taken on the same sample to produce an improved overall estimate
of the sample®. This approach is especially useful in reconstructing

| luorescence microscopy enables imaging with submicrom-

super-resolution images in structured illumination microscopy®’ or
in performing joint deconvolution to improve spatial resolution in
multiview light-sheet microscopy*~"°.

Iterative deconvolution has been useful in these applications, but
obtaining a resolution-limited result with RLD usually requires ten
or more iterations. While the associated computational burden is
manageable for single-view microscopes, deconvolving large multi-
view datasets can take days'>"*, in many cases drastically exceeding
the time for data acquisition.

Here we develop tools that address this problem. First, we show
that in most cases the number of iterations can be reduced to one
when using an unmatched back projector, fundamentally speeding
iterative deconvolution. Second, we optimize three-dimensional
(3D) image-based registration methods for efficient multiview
fusion and deconvolution on graphics processing unit (GPU) cards.
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Finally, we show that computationally intensive deconvolution with
a spatially varying PSF can be accelerated by using convolutional
neural networks to ‘learn’ the relevant operations, provided that
suitable training data can be assembled. These advances result in
a speed-up factor of ten- to several thousand-fold over previous
efforts. We illustrate the advantages on subcellular to macroscopic
length scales, using samples that include single cells, zebrafish
and nematode embryos and mouse tissue. In addition to demon-
strating improvements on super-resolution and large multiview
datasets acquired with state-of-the-art microscopes, we also show
that our methods enable the use of new microscopes, including
dual-view cleared-tissue light-sheet microscopy and reflective lat-
tice light-sheet (LLS) microscopy.

Results

Drastically reducing the number of iterations in iterative decon-
volution. Iterative deconvolution algorithms attempt to esti-
mate the underlying sample density from noisy, blurred images.
Important components of such algorithms are a ‘forward projector’,
which describes the mapping from the desired image of the object
to the noisy, blurred image measured by the microscope, and a ‘back
projector, which maps the measured image back onto the desired
object image. For example, in RLD:

oo-of [
ex

where e, is the kth (current) estimate of the desired object image o,
€., is the (k+1)th (future) estimate, i is the measured image, fis the
forward projector, b is the back projector and an asterisk denotes
convolution. The PSF is typically used for f, because f must accu-
rately account for the blurring imparted by the band-limited micro-
scope. b is traditionally ‘matched’ to f as its transpose (that is, by
flipping the PSF), but this is not the only possible choice. Work in
the field of radiology' suggests that using an ‘unmatched’ back pro-
jector can accelerate this procedure. Specifically, in the unmatched
variant of RLD, iterates were shown to move more rapidly toward
desirable reconstructed images when the operator product of the
forward projector and back projector had a flatter eigenvalue spec-
trum. To our knowledge, this result has not been exploited in fluo-
rescence microscopy. When the forward operator is a shift-invariant
convolution, as is usually the case in microscopy, the number of iter-
ations can be greatly reduced if b is chosen so that f* b tends toward
a delta function (or, equivalently, if the product of the magnitude
of the Fourier transforms (FT) of f and b approximates a constant
in spatial frequency space; Fig. 1 and Supplementary Notes 1-3).
To study this effect, we began with images acquired with instant
structured illumination microscopy (iSIM)", a super-resolution
technique. The iSIM PSE, or f, resembles a confocal PSF but with
smaller spatial extent (Fig. 1a). Although b is typically chosen to
be identical to f given the transpose symmetry of the iSIM PSE, we
considered other choices with progressively smaller spatial extent
(or, equivalently, greater amplitude in the spatial frequency pass-
band of the microscope; Fig. 1b and Methods). The last of these
was a Butterworth filter designed specifically to ‘invert’ the native
iSIM frequency response up to the resolution limit, resulting in a
much flatter frequency response of |[FT(f) X FT(b)| (Fig. 1c). Given
its conceptual similarity to a Wiener filter, we termed this choice the
‘Wiener-Butterworth (WB) filter’.

When deconvolving images of 100-nm beads captured with a
home-built iSIM, we found that our alternative b choices produced
a resolution-limited result faster than the traditional back projector
(Fig. 1d and Supplementary Fig. 1), with a speed-up factor correlat-
ing with the constancy of |[FT(f) X FT(b)|. For example, the WB filter
recovered the object’s resolution-limited size with only 1 iteration,
whereas the traditional back projector required 15 iterations. The
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improved performance of the WB filter did not rely on an improved
signal-to-noise ratio (SNR) in the input data (Supplementary Fig. 2),
nor did it amplify noise more than other methods (Supplementary
Fig. 3). We also compared the WB back projector to the classic
Wiener filter employed in noniterative deconvolution. Here too
we found that using the WB filter in RLD outperformed the clas-
sic Wiener filter (Supplementary Figs. 3 and 4). Butterworth and
WB back projectors both introduced unphysical negative values
into the deconvolved reconstructions (Fig. 1b and Supplementary
Fig. 5). However, because these values were small and typically
located within the noise floor of each image, we set them to zero to
yield reconstructions that were nearly identical to the conventional
RLD results for these and other datasets presented in the paper
(Supplementary Tables 1 and 2).

In a simulation, we examined the relative performance of the
traditional and WB back projectors in resolving two lines separated
by 1.6 times the iSIM resolution limit (Fig. 1e and Supplementary
Video 1). Using the same forward operator faffects the RLD proce-

dure equivalently in both cases, but inspection of the term [ﬁ} *b

reveals that the WB filter applies a much larger ‘correction factor’
to e, accelerating production of the final estimate. Further simu-
lations based on more complex 3D objects confirmed this result,
again finding that Gaussian, Butterworth and WB back projec-
tors required fewer iterations to produce deconvolved images with
similar (or better) image quality in comparison to traditional RLD
(Supplementary Fig. 6 and Supplementary Table 1).

Next, we applied these methods to images of fixed U20S cells that
were immunolabeled to highlight the outer mitochondrial mem-
brane protein Tomm20 and acquired with iSIM (Fig. 1f,g). Each
of the back projectors improved signal-to-background and spatial
resolution relative to the raw data, better revealing interior voids
within the mitochondria. As before, however, using the unmatched
back projectors also substantially reduced the number of iterations
needed (Supplementary Video 2), a benefit that also extended to
time-lapse iSIM (Supplementary Video 3), as well as confocal, wide-
field and single-view light-sheet data (Supplementary Fig. 7).

Accelerating multiview deconvolution and registration. The
more than tenfold improvement in processing speed obtained for
single-view deconvolution prompted us to investigate whether
our method could also be applied to the more computationally
intensive task of multiview deconvolution. We began by applying
our method to dual-view light-sheet microscopy (diSPIM’), using
the WB back projector instead of the traditional transpose PSF
to perform joint deconvolution on the two registered input views
(Methods). As before, the WB back projector produced nearly iden-
tical results to the more traditional method, but with only one itera-
tion (Supplementary Fig. 8), a tenfold improvement in speed.

We used our method to reconstruct neuronal dynamics in devel-
oping Caenorhabditis elegans embryos, obtaining clear images of
the plasma membrane of a subgroup of neurons labeled by green
fluorescent protein (GFP) in a pan-nuclear mCherry background'
(Fig. 2a and Supplementary Videos 4 and 5). After deconvolu-
tion, the morphologies of neurons and nuclei were sufficiently well
resolved (Fig. 2b,c) that we could perform semiautomated lineag-
ing" to identify neurons selectively labeled by the fmi-1 promoter
in this strain. The anterior OLQVL and OLQVR neurons are glu-
tamatergic sensory neurons that facilitate head foraging and with-
drawal reflexes. OLQV neurons are born after their progenitor cells
(AB prpaaappa and AB plpaaappa) undergo a terminal cell divi-
sion to produce OLQVL or OLQVR and sister cells (AB prpaaap-
pap and AB plpaaappap) that undergo programmed cell death'®".
The progenitor cells first elaborate broad lamellipodial extensions
toward the nose of the animal, which eventually become sensory
dendrites (Fig. 2d). Concomitantly with the terminal cell division,
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Fig. 1| An unmatched back projector reduces the number of iterations required for Richardson-Lucy deconvolution. a, Lateral (left) and axial (right)
slices through the forward projector for iSIM, shown in real space (top; PSF) or Fourier space (bottom; [FT(f)]). b, Different back projectors (BPs), including
the traditional back projector (transpose PSF) usually employed in RLD, a Gaussian back projector, a Butterworth back projector and a WB back projector.
The first two rows are as in a; the last row shows the product of the forward and backward projectors in Fourier space. Note that the color maps for
Butterworth and WB PSFs have been adjusted to show the negative values (black rings) that result with these choices and that the color map for the WB
Fourier transforms has been adjusted to better show the increase in amplitude at high spatial frequencies. ¢, Line profiles through the Fourier transforms
inaand b, comparing the forward projector (left), back projector (middle) and product of the forward and back projectors (right). The resolution limit

of iSIM is indicated by a vertical dashed line in the middle panel. d, The apparent size of a 100-nm bead (vertical axis; average FWHM of ten beads

after deconvolution) as a function of iteration number (horizontal axis) compared for different back projectors. The resolution limit of iSIM is indicated
with a horizontal dashed line. See also Supplementary Fig. 1. e, Left, simulated object consisting of two parallel lines in 3D space (top) and the object
blurred by the iSIM (bottom). For clarity, only a transverse xy plane through the object is shown. Right, line profiles corresponding to the red dashed line
to the left, comparing the effect of the original (blue) and WB (orange) back projectors in RLD. The estimates after 20 iterations using the original back
projector and only 1iteration using the WB filter are shown in the rightmost graph. it, iteration. f, U20S cells were fixed and immunolabeled to highlight
Tomm?20, imaged with iSIM and deconvolved. Single planes from imaging stacks are shown, with iteration number and back projector as indicated. g,
Higher-magnification views, corresponding to the red rectangular region in f. See also Supplementary Video 1. Scale bars: Tum in top row and 1/100 nm~'
in middle and bottom rows (a,b); Tum (e); 10 um (f); Tum (g). Experiments were repeated on similar datasets at least three times for e and f, with similar
results obtained each time; representative data from a single experiment are shown.

the lamellipodial extensions become thinner and longer neurites, in ~ extension®. Perhaps forces generated during the terminal mitotic
line with the final morphological features of the dendrites. Dendrite ~ division help to create the morphological changes in dendrite
extension then continues through what appears to be retrograde shape. Although further experiments are needed to validate this
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hypothesis, the form of asymmetric division in which the mother
cell does not round up during division and one daughter inherits
the shape and polarity of the mother has been described previously
in fish?! and in C. elegans®. Notably, our reconstructions allowed
us to identify single cells in living embryos and to contextualize the
morphological changes undergone by neurons during terminal cell
divisions leading to dendrite biogenesis.

Our methods extend to imaging configurations with more
views. For example, we acquired a quadruple-view dataset on a
triple-objective light-sheet microscope' (Fig. 2e, Supplementary
Fig. 9 and Supplementary Video 6). E6-1 Jurkat T cells stably trans-
fected to express EGFP-actin were plated on coverslips coated
with anti-CD3 antibodies (mimicking antigen-presenting cells).
After the T cells spread on the coverslip, we imaged them for 30
time points (one time point every 15s) spanning 7.5 min, acquiring
four volumetric views at each time point. After adapting our decon-
volution method for this acquisition scheme (Methods), dynamic
changes in membrane ruffles and cell protrusions were obvious
in the reconstructions (Fig. 2f), but were obscured in the raw data
(Supplementary Fig. 10). Using the WB back projector reduced the
number of iterations from 90 to 5 (Fig. 2g). Notably, our method
also outperformed the state-of-the-art efficient Bayesian multiview
deconvolution (EBMD)' method (which required 30 iterations to
produce images of similar quality), which can be explained by the
flatter frequency response of |[FT(f) X FT(b)| when using the WB
filter in comparison to the EBMD result (Supplementary Fig. 11).

In processing these dual- and quadruple-view datasets, we
noticed that the time for image registration considerably exceeded
the time for deconvolution, usually by 75- to 120-fold. One approach
to faster image registration encases the sample in a labeled matrix,

using the multiple feature points from many fiducials to obtain the
registration among different views*. We opted instead for the less
invasive option of greatly accelerating the speed of our image-based
registration software. First, we rewrote our CPU-based registration
code’ in CUDA so that the procedure could be run entirely on our
GPU. Second, we improved the underlying registration algorithm
by incorporating an initial two-dimensional (2D) registration and
progressively more complex 3D registrations, which resulted in
faster and more robust performance (Fig. 2h, Supplementary Fig.
12, Methods and Supplementary Software). Collectively, these
advances resulted in 175- and 30-fold speed-ups in registration
(Fig. 2i), respectively, for the modestly sized C. elegans and T cell
datasets presented in Fig. 2a,e, which enabled total processing times
on par with the acquisition time (Supplementary Table 3). We also
benchmarked our improved registration method against established
registration tools, including elastix** and NiftyReg”. In comparison
to these state-of-the-art tools, our method enabled a speed improve-
ment of more than tenfold on large volumetric light-sheet datasets
without sacrificing registration quality (Supplementary Table 4).
Our improved registration method enabled an even more dra-
matic speed-up (451-fold; Fig. 2i) for an extended diSPIM acquisi-
tion spanning 900 volumes (7.5h, 1.05 teravoxels, 2.1 TB), where
we followed the migration of the lateral line primordium in a 32-h
zebrafish embryo expressing Lyn-eGFP under the control of the
claudin B (cldnb) promoter® (Fig. 2j and Supplementary Video 7).
Following registration, joint WB deconvolution improved visualiza-
tion of vesicular structures and cell boundaries as compared to the
raw data (Fig. 2k,1) and facilitated inspection of dynamic immune
cells that appeared to migrate between the skin and underlying
somites (Fig. 2m,n and Supplementary Video 8). WB deconvolution

>
>

Fig. 2 | Improvements in deconvolution and registration accelerate the processing of multiview light-sheet datasets. a, Lateral (left) and axial (right)
maximume-intensity projections demonstrating isotropic reconstructions of C. elegans embryos expressing neuronal (green, GFP-membrane marker)
and pan-nuclear (magenta, mCherry-histone) markers. Images were captured with diSPIM, and deconvolution was performed using the WB filter.

See also Supplementary Video 4. b,¢, Higher-magnification single slices from the dashed rectangular regions in a, emphasizing the similarity

between reconstructions obtained with traditional RLD (‘trad’) and WB deconvolution. The number of iterations for each method is displayed.

d, Higher-magnification maximume-intensity projection view of neuronal dynamics, indicating neurite extension and terminal cell division, for a progenitor
cell (purple arrow), OLQVR cell (blue arrow) and apoptotic sister cell (red arrow). See also the lower right schematic and Supplementary Video 5. e, WB
reconstruction of a Jurkat T cell expressing EGFP-actin; raw data were captured in a quadruple-view light-sheet microscope. f, Selected slices 3.7 pm from
the coverslip surface. Indicated time points display fine actin dynamics at the cell periphery (red arrows). See also Supplementary Video 6. g, Axial slice
through the sample, indicating close similarity (orange arrows) between traditional, efficient Bayesian and WB deconvolution with the iteration number
as indicated. h, Schematic of the GPU-based 3D registration used for multiview fusion. Example inputs are two 3D images, referred to as the source (S;
image to be registered) and target (T, fixed image) images. Maximum-intensity projections of the input 3D images are used for preliminary alignment
and to generate an initial transformation matrix (M,). Alternatively, a transformation matrix from a previous time point is used as M,. A 3D registration
loop iteratively performs affine transformations on the source image (which is kept in GPU texture memory for fast interpolation), using Powell's method
for updating the transformation matrix by minimizing the correlation ratio between the transformed source image (S’) and the target image. i, Bar graphs
showing the time required to process the datasets (file I/O not included) in this figure (left, middle and right columns correspond to the datasets in

a, e and j, respectively, with voxel count as indicated) conventionally and with our new methods. The conventional registration method was performed
with an existing MIPAV plugin (Methods) using CPUs, while the new registration method was performed using GPUs. Both deconvolution methods

were performed with GPUs. Note the log scale on the ordinate and that the listed times apply for the entire time series in each case (the total time for
the conventional registration method on the zebrafish dataset was extrapolated from the time required to register ten time points). j, Representative
lateral (left, maximume-intensity projection) and axial (right, single plane corresponding to the white arrowheads in the left panel) images showing a

32-h zebrafish embryo expressing Lyn-eGFP under the control of the claudin B (cldnb) promoter, marking cell boundaries within and outside the lateral
line primordium. Images were captured with diSPIM; WB reconstructions are shown. Images were selected from the volume 30 min into the acquisition;
see also Supplementary Video 7. kI, Higher-magnification views of the dashed rectangles in j, emphasizing improvement in resolving vesicles (red and
orange arrows) and cell boundaries (green and blue arrows) with WB deconvolution as compared to raw data. Note that k and I are rotated 90 degrees
relative to j. m, Higher-magnification view of the leading edge of the lateral line, 97 min into the acquisition. n, Higher-magnification view of the dashed
rectangular region in m, emphasizing immune cell (yellow arrows) migration between surrounding skin cells. White arrowheads are provided to give
context, and white arrows point to the skin surface and coverslip. Top row, maximum-intensity projection of the lateral view; bottom row, single plane of
the axial view. See also Supplementary Video 8. o, Lateral slice through the primordium, with automatically segmented cell boundaries marked in red.
See also Supplementary Video 9. p, Higher-magnification view of the dashed rectangle in o, showing differential segmentation with raw single-view data
(green, left) versus deconvolved data (red, middle). The overlay to the right shows common segmentations (yellow) versus segmentations found only

in the deconvolved data (red). Note that the ‘'z’ coordinate in j-p is defined normal to the coverslip surface. Scale bars: 10 pm (a,m,0,p); 5 pm (all other
panels). Experiments were repeated on similar datasets at least three times for a-d and two times for e-g and j-p, with similar results obtained each time;
representative data from a single experiment are shown.

1340 NATURE BIOTECHNOLOGY | VOL 38 | NOVEMBER 2020 | 1337-1346 | www.nature.com/naturebiotechnology


http://www.nature.com/naturebiotechnology

NATUREBIOTECH

LOGY

also substantially improved automated segmentation of cells within
the lateral line, as only 71 of 120 cells were accurately segmented in
the raw data versus 116 of 120 in the deconvolved data (Fig. 20,p
and Supplementary Video 9).

We also tested our methods on single-view and multiview data-
sets acquired with a commercial Zeiss Lightsheet Z.1 microscope
(Supplementary Figs. 13 and 14, Supplementary Video 10 and
Methods), obtaining improved resolution and contrast after decon-
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volution and improved speed in comparison to the widely used
commercial Huygens deconvolution software (Supplementary Fig.
13, Supplementary Table 3 and Methods).

Submicrometer isotropic imaging of large cleared-tissue vol-
umes. Other samples that benefit from improved multiview fusion
and deconvolution are large volumes of cleared tissue, which can
be rapidly imaged using light-sheet microscopes. To explore this
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possibility, we constructed a cleared-tissue diSPIM (Supplementary
Fig. 15), replacing our original water-immersion objectives with
a pair of mixed-immersion X17.9, 0.4-numerical aperture (NA)
objectives (Methods). To estimate spatial resolution, we imaged
100-nm fluorescent beads in dibenzyl ether (Sigma, 108014),
obtaining a single-view lateral full width at half maximum value
(FWHM) of 0.84+0.04pm and an axial FWHM of 4.6+0.4pm
(ten beads, mean +s.d.; Supplementary Fig. 16). Registration and
one iteration of WB deconvolution further improved spatial resolu-
tion, resulting in an isotropic 0.79 +0.04 pm, offering a several-fold
improvement in axial resolution over previous single-view experi-
ments using the same lens?”*. Next, we fixed, cleared and immu-
nolabeled millimeter-scale samples of mouse tissue (Fig. 3a-d and
Supplementary Videos 11-15) with iDISCO+ (ref. °) or iDISCO™,
subsequently imaging them with the cleared-tissue diSPIM in stage
scanning mode®.

The resulting data span hundreds of gigavoxels to teravoxels, up
to ~2'TB in size. This size presents a major challenge, as such whole
raw views do not fit within the memory of single GPU cards and
must be subdivided before processing. To address this challenge,
we created a processing pipeline for terabyte-scale data: cropping
the single-view data into subvolumes, registering and deconvolv-
ing the subvolumes, and finally stitching the resulting reconstruc-
tions back into a higher-resolution composite (Supplementary
Figs. 17 and 18).

In a first example, we imaged a 4Xx2x0.5mm?’ slab of brain
tissue derived from a V1b-transgenic mouse”, with sparse immu-
nolabeling of neurons and neurites across the entire volume
(Fig. 3a). The isotropic resolution of the deconvolved reconstruc-
tion enabled us to resolve individual neurites at the micrometer
scale (Fig. 3a) and to observe fine detail laterally and axially that
was not resolved in the raw data (Fig. 3b). Manual tracing of neu-
rites was also substantially improved in the deconvolved data rela-
tive to the raw data (Fig. 3¢). In a second example, we performed
four-color imaging on the gut of an embryonic day (E) 18.5 mouse,
spanninga2.1x2.5x 1.5mm?® volume (Fig. 3d). Our reconstruction
highlights the organized and hierarchical structure of the intestine,
including the interconnected vascular plexus feeding the submu-
cosal and mucosal intestinal areas (PECAM-1 and DAPI staining),
mitochondrially enriched regions within the mucosa (Tomm20
and DAPI staining) and tubulin-dense regions within the outer

intestinal wall (a-tubulin and PECAM-1 staining). As with the
brain sample, the isotropic submicrometer-scale resolution allowed
us to visualize fine details that were otherwise obscured by diffrac-
tion, including hollow blood vessels and cytoplasmic mitochondria
surrounding individual nuclei (Supplementary Fig. 19). Notably,
obtaining these as well as other large reconstructions of mouse
intestine, stomach and ovary datasets (Supplementary Videos
13-15and Supplementary Tables 5 and 6) was facilitated by our much
faster postprocessing methods. Collectively, the new registration
(Fig. 2h) and deconvolution (Fig. 1) methods account for a 100-fold
speed improvement over previous efforts, enabling postprocessing
in tens of hours rather than tens of days (Fig. 3¢). We note that our
method delivers less light dose than a recent technique with similar
reported resolution™, as our technique confines the illumination to
the vicinity of the focal plane.

Accelerating deconvolution with a spatially varying PSF. Finally,
we developed methods for accelerating the deconvolution of fluo-
rescence microscopy data blurred with a spatially varying PSE,
acquired by imaging samples deposited on reflective coverslips (Fig.
4 and Supplementary Table 7). As we previously demonstrated”’,
reflective diSPIM enables the collection of additional specimen
views (Fig. 4a), increasing information content and boosting spatio-
temporal resolution. However, the raw reflective data are contami-
nated by substantial epifluorescence that varies over the imaging
field (Fig. 4c). To remove the epifluorescence and fuse the views
for optimal resolution enhancement, registration and subsequent
deconvolution with a spatially varying PSF are needed (Methods).
Unfortunately, spatially varying deconvolution carries a consid-
erable computational burden: as applied to reflective imaging, it
requires calculation of the forward and back projectors at each axial
slice instead of only once per volume”. For example, deconvolv-
ing an imaging volume spanning 340X 310X 340 voxels with 20
iterations of traditional RLD with a spatially varying PSF requires
340 slicesx2 viewsx2 convolutions per RL updatex20 itera-
tions =27,200 3D convolutions (14min per volume with a single
GPU card), instead of the 2x2x20 iterations=80 3D convolu-
tions required with a spatially invariant PSF (only 2.5 s per volume).
Unlike in our previous examples (Figs. 2 and 3), deconvolution
rather than registration becomes the bottleneck in postprocessing
the raw data.

Y

Fig. 3 | Imaging millimeter-scale cleared-tissue volumes with isotropic micrometer-scale spatial resolution. a, Brain volume of 4 x 2 x 0.5 mm?3 from
fixed and iDISCO+-cleared V1b mouse, immunolabeled with Alexa Fluor 555-conjugated secondary antibody against anti-tdTomato primary antibody,
imaged with cleared-tissue diSPIM and reconstructed after dual-view registration and WB deconvolution. Progressively higher-resolution subvolumes
are shown, with line profiles indicating neurite FWHM of 1.3 um (yellow arrowheads) and separation of 1.9 um between neurites (blue arrowheads). See
also Supplementary Video 11. b, Lateral and axial cross-sections from the region indicated with a white arrow in a, emphasizing the higher resolution
obtained with WB deconvolution (decon) as compared to raw single-view data. ¢, Volume renderings of the region displayed in b, again comparing

raw data to deconvolution. Manually traced neurites are shown in the bottom row; colored arrows indicate neurites traced in deconvolution that are
obscured in raw single-view data. d, Intestinal volume of 2.1x 2.5x 1.5 mm?3 from fixed and iDISCO-cleared E18.5 mouse labeled with DAPI (red), Alexa
Fluor 647-conjugated secondary antibody against anti-Tomm20 primary antibody (green), Alexa Fluor 488-conjugated secondary antibody against
anti-PECAM-1 primary antibody (yellow) and Alexa Fluor 568-conjugated secondary antibody against anti-a-tubulin primary antibody (purple); imaged
with cleared-tissue diSPIM; and reconstructed after dual-view registration and WB deconvolution. See also Supplementary Video 12. i, Single plane
demarcated by the dashed white rectangular region at left, showing a four-color cross-section and higher-magnification dual-color views highlighting

a hollow blood vessel (white arrow) and mitochondria surrounding individual nuclei (orange arrows). ii, Subvolume demarcated by the dashed black
parallelepiped above, illustrating different perspectives of the vascular plexus supplying the submucosa (blue arrow) and mucosa (white arrow) of

the intestine. iii, Different perspectives of the four-color subvolume demarcated by the dashed black parallelepiped above and insets 1-4, highlighting
hierarchical organization within the intestine, for example, submucosa (blue arrow) and mucosa (white arrow) (inset 2); mitochondrially enriched regions
that support the high energy demand and constant cellular renewal within the mucosa (inset 3); and outer intestinal wall with dense a-tubulin staining
(inset 4). See also Supplementary Fig. 19. e, Bar graphs showing the registration and deconvolution time required for postprocessing datasets (image
sizes in a and d as indicated), comparing previous (blue) and new (orange; 100-fold reduction in time) postprocessing methods. Note that times for the
previous method are estimated (see Methods for further detail) and the log scale on the ordinate axes. Scale bars: 500 um, 100 um, 30 um and 10 um for
progressively higher magnifications (a); 30 um (b,c); 300 um in top left, 300 um and 30 um for insets in i, 200 um in i, and 200 um and 100 um for insets
in iii (d). See also Supplementary Videos 13-15. Experiments were repeated on similar datasets at least three times, with similar results obtained each time;

representative data from a single experiment are shown.
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By modifying the spatially varying RL update to incorporate
the WB filter (Methods), we found that only two iterations were
required to deconvolve a previously published dataset™ highlight-
ing calcium waves (marked with GCaMP3) within muscles in
threefold-stage C. elegans embryos. As with traditional RLD, the
WB modification improved contrast and resolution in the raw data
(Fig. 4c and Supplementary Video 16), but with a tenfold reduction
in processing time (Fig. 4h). These gains also extended to a new
form of reflective microscopy, using a higher-NA LLS microscope
instead of diSPIM (Fig. 4a,d-f,i and Methods).

LLS microscopy® has garnered attention owing to its combi-
nation of high detection NA and illumination structure; together,
these attributes result in a better compromise between field-of-view

and light-sheet thickness than with previous microscopes using
pseudo-non-diffracting beams. Nevertheless, the contrast and
spatial resolution in raw LLS images still suffer from extraneous
out-of-focus light owing to illumination sidelobes, an effect that can
be ameliorated with deconvolution. We found that the performance
of the base LLS microscope could be further improved by imaging
samples deposited on reflective coverslips (Fig. 4d-f), registering
the two resulting high-NA views oriented ~113 degrees apart and
deconvolving them with a spatially varying PSE As assayed with
images of immunolabeled microtubules in U20S cells captured on
glass (Fig. 4d) and reflective (Fig. 4e) coverslips, axial resolution was
improved twofold, from 750 +39 nm to 379 + 23 nm (Supplementary
Fig. 20). Deconvolving registered images of mEmerald-a-actinin in
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live U20S cells acquired in the reflective LLS microscope with the
WHB filter instead of traditional RLD resulted in a 15-fold reduction
in processing time (Fig. 4i and Supplementary Video 17).

While a 10- to 15-fold reduction in processing time is substan-
tial, the time associated with deconvolution still far exceeds the time
needed for data acquisition (3.5h to deconvolve the 150-volume
C. elegans dataset imaged with reflective diSPIM; 13.3h to decon-
volve the 100-volume a-actinin dataset imaged with reflective LLS
microscopy). To obtain further speed enhancements, we turned to
deep learning®, which has resurged as a promising framework for
image classification®, image recognition”, image segmentation®,
denoising™, super-resolution” and deconvolution*'.

We constructed a convolutional neural network, terming it
‘DenseDeconNet, as it is based on linking together dense network
blocks”” in a memory-efficient manner (Fig. 4b, Supplementary
Note 4 and Supplementary Software). These blocks use multiple
dense connections to extract features from the raw image stacks
and then learn to deblur the images. Unlike previous attempts
that deblur 2D image slices by comparing the data to synthetically
blurred slices and average the network output from two orthogonal
views to improve resolution isotropy*’, we designed our method to
operate on the full volumetric data, thereby learning the requisite
3D restoration directly. This capability is especially important in
reflective applications, in which a simple 2D spatially invariant blur
cannot properly model the physics of the microscope.

We began by testing DenseDeconNet on nuclear and
membrane-bound labels expressed in live C. elegans embryos, acquired
on the diSPIM using conventional glass coverslips. We used the
deconvolved dual-view data as ground truth. When using only a single
view as the input to the network, DenseDeconNet provided resolution
enhancement intermediate between the raw data and the deconvolved
result (Supplementary Video 18). To some extent, this is unsurpris-
ing; presumably only with both views is there enough information
to recover the isotropic resolution provided by diSPIM. However,
for highly dynamic structures, the network output with a single-view
input sometimes provided more accurate reconstructions than the
deconvolved ground truth (Supplementary Note 4). We suspect this
result is due to the lessened effect of motion blur, which otherwise
causes errors in both registration and deconvolution. Additionally, in

bypassing registration, the DenseDeconNet with single-view input
provided a fivefold reduction in total processing time as compared
to WB deconvolution, that is, ~1s for application of DenseDeconNet
versus 5s for the new registration method (Fig. 2h) and one iteration
of WB deconvolution (Supplementary Note 4).

Using both registered views for network input enabled resolution
enhancement very similar to the ground-truth joint deconvolution
on data acquired with glass coverslips (Supplementary Note 4). This
result also extended to the reflective datasets. When training the net-
work using the raw specimen views as inputs and the WB result as
the ground truth, DenseDeconNet produced outputs that were nearly
identical to the ground truth (based on visual inspection; Fig. 4c.f;
mean square error (MSE) of 4.8 x 10~ (Fig. 4c) and 5.0 10~ (Fig. 4f)
and structural similarity (SSIM) index of 0.923 (Fig. 4c) and 0.965
(Fig. 4f)), resulting in clear images of calcium dynamics in embryonic
muscle (Supplementary Video 16) and a-actinin dynamics at the cell
boundary (Fig. 4g and Supplementary Video 17). Notably, the net-
work output offered a 50-fold speed improvement over WB deconvo-
lution (1.68s per volume, or a 500-fold improvement over traditional
RLD) when processing the C. elegans data (Fig. 4h) and a 160-fold
speed improvement (2s per volume, or a 2,400-fold improvement
over traditional RLD) when processing the a-actinin data (Fig. 4i and
Supplementary Table 7).

Discussion

Our deconvolution method is inspired by RLD but achieves
high-quality reconstructions more rapidly. Although the WB fil-
ter indeed enables deconvolution with fewer iterations than a tra-
ditional back projector, the potential to introduce artifacts still
exists, particularly if too many iterations are applied (Fig. 1d and
Supplementary Fig. 6). We recommend a single iteration as a good
rule of thumb, because this choice resulted in resolution-limited
performance on the majority of the datasets we examined (Table 2.1
in Supplementary Note 2). With this caveat in mind, the algorith-
mic improvements we describe here should accelerate image-based
biological discovery, especially for the increasingly rich and large
datasets that can be obtained with modern light microscopes. For
raw data that fit within the memory of a single GPU card (Figs.
1, 2 and 4), our methods now enable multiview registration and

\/

Fig. 4 | Deep learning massively accelerates deconvolution with a spatially varying PSF. a, Reflective imaging geometries for a diSPIM (top) and LLS
(bottom) microscope. In both cases, the sample is deposited on a reflective coverslip (mirror), which produces additional views of the specimen. Det
OBJ, detection objective; Exc OBJ, excitation objective. b, Schematic architecture of our convolutional neural network (DenseDeconNet) used for deep
learning. Inputs are concatenated (‘Concat’) image volumes (each containing width (w) x depth (d) x height (h) voxels) obtained from the microscope,
which may contain multiple views (A, B) of the specimen. Three ‘dense blocks' extract feature maps (circles) from the network input, eventually learning
to reverse the spatially varying blurring imparted by the microscope by minimizing the difference (loss function) between the network output and the
ground-truth reconstruction via back propagation. Conv, convolution; BN, batch normalization; ReLu, rectified linear unit. Circles within each dense block
unit show the number of feature maps after each convolutional layer; colored arrows within each dense block show the concatenation of successive
layers in the network. See Supplementary Note 4 for more details on the network architecture. ¢, Threefold C. elegans embryos expressing GCaMP3 from
a myo-3 promoter were imaged by reflective diSPIM (150 volumes, each acquired every 350 ms). Maximume-intensity projections of raw data (left), WB
deconvolution (middle) and deep learning reconstruction (right) are shown for lateral (top) and axial (bottom) views. See also Supplementary Video 16.
d, U20S cells were deposited on glass coverslips and fixed, microtubules were immunolabeled with anti-a-tubulin conjugated to Alexa Fluor 488, and
cells were imaged with LLS microscopy. A lateral maximum-intensity projection (left) and axial slice (right; corresponding to the yellow dashed line at left)
are shown. e, U20S cells were deposited on reflective coverslips and fixed, immunolabeled and imaged as in d. A lateral maximum-intensity projection
(left) and axial slice (right; corresponding to the yellow dashed line at left) are shown. Reconstructions in d and e were performed using traditional
deconvolution with a spatially varying PSF. See also Supplementary Fig. 20. f, U20S cells expressing mEmerald-a-actinin were deposited on reflective
coverslips and imaged (100 volumes, each acquired every 2.55s) in the LLS microscope. Reconstructions were performed via WB deconvolution (top) and
deep learning (bottom). A lateral maximume-intensity projection (left) and axial slice (right; corresponding to the yellow dashed line at left) are shown. See
also Supplementary Video 17. g, Higher-magnification view of the red rectangular region, emphasizing the dynamics of a-actinin near the cell boundary
(yellow arrows). h,i, Bar graphs showing the time required for processing of a single volume using traditional deconvolution with a spatially varying PSF,
deconvolution via the WB filter and deep learning for the dataset shown in ¢ (h) and the dataset shown in f (i). Note the log scale on the ordinate. Note
also that the time cost of file /O is not included in h and i. Scale bars: 5pm in all panels except Tpm in the zy views in d and e. For c-i, traditional and WB
deconvolution experiments were repeated on similar datasets at least two times, with similar results obtained each time; the deep learning model was
trained on one time-lapse dataset and applied to multiple datasets (N >2), with similar results obtained for each dataset.
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on file reading, file writing and image stitching (Supplementary
Table 5). Further speed improvements are possible if these opera-
tions are optimized. Alternatively, compressing the image data or
using multiple graphics cards for additional parallelization'” could

deconvolution on a timescale on par with, and frequently faster than,
image acquisition. For much larger multiview light-sheet datasets
(Fig. 3), our approach drastically shortens the postprocessing time
necessary for image reconstruction, instead placing the bottleneck
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further shorten postprocessing time. We freely provide our software
(Supplementary Software) in the hope that others may improve
it and expect that other multiview light-sheet'? (Supplementary
Fig. 14) or light-field configurations* could benefit from our work.

When performing deconvolution with a spatially varying PSE,
the WB method provides a substantial speed-up over traditional
RLD, yet we obtained an even greater acceleration with deep learn-
ing. We note several caveats, however, when using deep learning
methods. First, enough high-quality training data (for our network,
~50-100 training pairs) must be accumulated before application
of the network, underscoring the point that deep learning aug-
ments, but does not replace, more classic deconvolution. Second,
although application of the trained network takes only seconds per
volume, training the network still takes days on a single graphics
card. Finally, the networks are ‘brittle’; we obtained optimal results
by retraining the network on each new sample (Supplementary
Note 4). Designing more general neural networks remains an
important area for further research.
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Methods

Widefield fluorescence imaging. Widefield imaging was performed on a
previously described home-built system. In these experiments, we used a X60,
NA =1.42 oil objective (Olympus) on an Olympus IX81 inverted microscope
equipped with XT 640-W (Lumen Dynamics Group) as the illumination source
and an automated xy stage with an additional z piezoelectric stage (100-um
range; Applied Scientific Instrumentation (ASI), PZ-2000). The illumination was
filtered with an excitation filter (ET470/40x, Chroma) and then reflected toward
the sample via a dichroic mirror (T495lpxr, Chroma). The emission was collected
by the same objective and filtered with a bandpass emission filter (ET525/50m,
Chroma) before imaging with an electron-multiplying charge-coupled device
(EMCCD) (Evolve Delta, Photometrics). An exposure time of 20 ms and EM gain
of 20 were used. The imaging axial step for both beads and fixed actin samples
was 150 nm.

Fixed phalloidin-labeled actin samples. U20S cells were cultured on glass-bottomed
dishes (MatTek, P35G-1.5-14C) at 37 °C with 5% CO,. Before labeling, cells were
rinsed three times with 1x PBS, fixed with 1 ml of 4% paraformaldehyde and

2% glutaraldehyde in 1x PBS for 20 min at 37 °C, rinsed twice in 2ml of 750 mM
Tris-HCI (pH 7.5) and permeabilized in 0.2% Triton X-100 in 1Xx PBS for 10 min.
Next, samples were washed three times in staining buffer and blocked in staining
buffer containing 1% BSA for 30 min. Blocking buffer was removed, and the
samples were stained with 200 pl of a 1:50 dilution of Alexa Fluor Phalloidin-488
(Thermo Fisher Scientific, A12379) diluted in 0.2% Tween-20 in 1x PBS for 1 h.
Cells were washed in 0.2% Tween-20 in 1x PBS three times and imaged in 1x PBS.

Bead samples. Glass-bottomed dishes (MatTek, P35G-1.5-14C) were cleaned with
100% ethanol and coated with 0.1% poly(r-lysine) (Sigma-Aldrich, P8920) for

10 min. 100-nm yellow-green beads (Thermo Fisher Scientific, F8803) were diluted
~10°-fold, and 20 pl was added to the coverslip. After 10 min, the dish was washed
four times with clean water before imaging. Bead images were used for estimating
the widefield PSFs used in Supplementary Fig. 7.

Confocal imaging. Confocal imaging was performed on a Leica SP8 confocal
microscope with a 1.40-NA oil lens (HCX PL APO CS 63.0X1.40 OIL UV). The
power for the 488-nm argon laser was set at 20%, and the AOTF (488) was set at
5%. The sample was scanned bidirectionally with a voxel size of 48.1 nm in the xy
plane and 125.9nm in the z direction at 200 Hz with a 6x line average. The pinhole
size was set to 20.1 pm (0.21 Airy units). The fluorescence signal was collected
from 510 nm to 580 nm with a Leica HyD hybrid detector operating in photon
counting mode (10% gain). Data were saved in eight-bit format.

Immunolabeled microtubule samples. U20S cells were cultured on No. 1.5
coverslips (Fisherbrand, 12-545-81) at 37 °C with 5% CO,. Before labeling,

cells were rinsed three times with 1x PBS, fixed with 1 ml methanol for 3 min

at —20°C and rinsed twice in 2 ml of 1x PBS. Next, samples were washed three
times in staining buffer and blocked in staining buffer containing 1% BSA for
30 min. The blocking buffer was removed, and the samples were stained with
200 pl of a 1:100 dilution of anti-a-tubulin primary antibody (Thermo Fisher
Scientific, 322500) for 1 h. Cells were washed in 0.2% Tween-20 in 1X PBS

and stained with 200 pl of a 1:200 dilution of Alexa Fluor 488-conjugated goat
anti-mouse secondary antibody (Invitrogen, A11001) diluted in 0.2% Tween-20
in 1x PBS for 1h. Finally, cells were washed three times in 0.2% Tween-20 in 1x
PBS and twice in distilled water before mounting in Prolong Diamond (Thermo
Fisher Scientific, P36961).

iSIM imaging. The iSIM system has been previously described". For all
experiments, a X60, NA =1.42 oil-immersion objective (Olympus PlanApo N 60x
Oil) was used, resulting in an image pixel size of 55.5nm and a lateral resolution
of ~150 nm. Fluorescence data were acquired with a pco.edge 4.2 sCMOS camera,
and the exposure time was set to 40 ms per image frame. The imaging axial step
for beads, immunolabeled mitochondrial samples and transfected endoplasmic
reticulum (ER) samples was set to 100 nm, 100 nm and 500 nm, respectively.

Immunolabeled mitochondrial samples. U20S cells were cultured on glass-bottomed
dishes (MatTek, P35G-1.5-14C) at 37 °C with 5% CO,. Before labeling, cells were
rinsed three times with 1x PBS, fixed with 1 ml of 4% paraformaldehyde and 2%
glutaraldehyde (Electron Microscopy Sciences, 15710 and 16120) in 1x PBS for
20 min at 37°C, rinsed twice in 2ml of 750 mM Tris-HCI (pH 7.5) (Corning, 46-
030-CM) and permeabilized in 0.2% Triton X-100 (Sigma, T9284) in 1X PBS for
10 min. Next, samples were washed three times in staining buffer (0.2% Tween-20
(Sigma, P9416) in 1x PBS) and blocked in staining buffer containing 1% BSA
(Thermo Fisher Scientific, 37525) for 30 min. The blocking buffer was removed,
and the samples were stained with 200 pl of a 1:200 dilution of anti-Tomm20
primary antibody (Abcam, 78547) diluted in 0.2% Tween-20 in 1x PBS for 1h.
Cells were washed in 0.2% Tween-20 in 1x PBS and stained with 200 pl of a 1:200
dilution of Alexa Fluor 488-conjugated donkey anti-rabbit secondary antibody
(Invitrogen, A21206) for 1 h. Finally, cells were washed three times in 0.2%
Tween-20 in 1X PBS and imaged in the iSIM in 1Xx PBS.
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Transfected ER samples. U20S cells were cultured in 1 ml of medium using a
MatTek glass-bottomed dish at 37 °C with 5% CO,. At 80% confluency, cells were
transfected with 100 pl of transfection buffer containing 2 pl of X-treme GENE,
2ul of plasmid DNA (ERmoxGFP*; Addgene, 68072; 420 ngpl™) and 96 pl of PBS.
Cells were imaged 1d after transfection.

Bead samples. Yellow-green fluorescent beads (Thermo Fisher Scientific, F8803;
100-nm diameter) were used for experimental FWHM measurements for iSIM.
Beads were diluted from the stock concentration 1:1,300 (1:100 in distilled water
and 1:13 in ethanol) and spread over cleaned glass coverslips. After air-drying for
5min, coverslips were washed twice in distilled water to remove unattached beads.
After air-drying again, beads were mounted in oil (Cargille, 16241) on glass slides
and sealed with nail polish.

Zeiss Lightsheet Z.1 imaging. Images were captured with a Zeiss Lightsheet Z.1
Selective Plane Illumination microscope (Carl Zeiss Microscopy), tandem PCO.
edge sSCMOS cameras (PCO.Imaging) and Zeiss Zen imaging software. A pair of
Zeiss x10, 0.2-NA dry illumination objectives were used alongside a Zeiss x20,
1.0-NA long-working-distance detection objective. The illumination sheet was
narrowed to 2 pm, and images were acquired with an exposure time of 10 ms for
both the green (488 nm) and red (561 nm) channels. In single-view experiments,
samples were imaged dorsally with volumes acquired every 2 min. In multiview
experiments, two views were collected at —15 and 415 degrees from dorsal, with
volumes acquired every 5min.

Zebrafish embryos. Imaging of the embryonic zebrafish hindbrain used three
transgenic fish lines: Tg(h2az2a:h2az2a-GFP)", Tg(en.crest1-hsp70l:mRFP)ch100
(ref. 7) and Tg(sox10:mRFP)vu234 (ref. **). Adult females carrying the nuclear
label hist2h2l:GFP were crossed to males carrying either the cranial efferent
marker en.crest]-hsp70l:mRFP (for single-view experiments) or the neural crest
marker sox10:mRFP (for multiview experiments). The resulting progeny were
staged to 18 hours post-fertilization following standard morphological criteria®.
For single-view experiments, embryos were prepared via multilayer mounting™
in Fluorostore Fractional FEP Tubing (F018153-5). For multiview experiments,
embryos were mounted in 1.2% agarose (Invitrogen, UltraPure Agarose, 16500)
in glass capillary tubes. Specimens were immersed in embryo medium with
0.2mgml™ tricaine and incubated at 28.5°C during data collection.

Fiber-coupled diSPIM imaging. We used our original fiber-coupled diSPIM
system®' in addition to another recently described fiber-coupled diSPIM

system*” to acquire volumetric time-lapse datasets of zebrafish embryo lateral

line and nematode embryo neurodevelopment, respectively. Data were acquired

in light-sheet scan mode (scanning the light sheet through the stationary

sample) with the ASI diSPIM Micromanager*>** (http://dispim.org/software/
micro-manager) plugin instead of the LabVIEW control software used previously”'.
For zebrafish data, the xy stage was manually moved periodically to ensure that the
growing tip of the lateral line did not exit the field of view.

Nematode embryos. The 718-bp promoter in plasmid DACR3078 (fmi-

Ip(718 bp)(EcoRV-EcoRV)::Syn21-GFP-CAAX::;p10 3' UTR) is a bashed
fragment from the 3,186-bp promoter upstream of the fmi-1 start codon. To
make plasmid DACR3078, EcoRV was used to digest plasmid DACR2984 (fmi-
1p(3,186 bp)::Syn21-GFP-CAAX::p10 3' UTR) followed by subsequent religation.
Transgenic strain DCR6371 was made by injecting plasmid DACR3078 at 50 ng pl™!
into the lineaging strain BV514, which ubiquitously expresses mCherry::histone
reporter constructs, pie-1p:mCherry::H2B::pie-1 3’ UTR and nhr-2p::his-
24:mCherry:let-858 3’ UTR'. From a spontaneous integration of DACR3078
into BV514, olals98 was isolated. The integrated strain was designated DCR6371.
The Syn21-p10 3’ UTR is a translational enhancer system used in Drosophila to
boost translational expression®. We have found that this also seems to help boost
expression in C. elegans (unpublished results).

Worms were cultivated at 20 °C on nematode growth medium seeded with a
lawn of Escherichia coli strain OP50 using standard methods. Embryos were laid by
gravid adults and picked from the plate into M9 buffer with 0.25% methylcellulose
and were then pipetted onto a poly(L-lysine)-coated coverslip and imaged in M9
buffer, as previously described’. Samples were imaged every 100s for 50 time points
with both the 561-nm and 488-nm lasers. Further details are available in ref. **.

Zebrafish embryos. For zebrafish posterior lateral line imaging, cldnb:lyn-GFP*
embryos at 30-32 hours post-fertilization were placed in embryo medium (60 mg
RedSea Coral Pro Salt (Drs Foster and Smith Pet Supplies) per liter of ddH,0)
supplemented with 600 uM MS-222 (Sigma, E10521). For diSPIM imaging,
embryos were mounted in 1% low-melt agarose (Cambrex, 50080) and covered
with embryo medium; the agarose above the posterior lateral line primordium was
manually removed with forceps before imaging.

Quadruple-view light-sheet microscopy. We modified our previously described
triple-view SPIM system'' to acquire four volumetric views. Two x40, 0.8-NA
water-immersion objectives (OBJ A and OBJ B in Supplementary Fig. 9; Nikon,
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MRD07420) were used in a free-space coupled diSPIM configuration’. A X60,
1.2-NA water-immersion objective (OBJ C in Supplementary Fig. 9; Olympus,
UPLSAPO60XWPSF) was mounted beneath the coverslip. Each objective was
housed within a piezoelectric objective positioner (PZT, Physik Instrumente,
PIFOC-P726), enabling independent axial control of each detection objective.
Four volumetric views were obtained with the three objectives in stage scanning
mode; that is, samples were translated through the light sheet via an xy piezo stage
(Physik Instrumente, P-545.2C7; 200 pm X 200 pm). When excitation was introduced
from OB] B, one top view (collected from OBJ A) and one bottom view (from OBJ
C) were simultaneously acquired. Similarly, when illumination was introduced from
OB]J A, another top view (collected from OB] B) and bottom view (from OBJ C) were
simultaneously acquired. Views collected from OBJ A and OBJ B were acquired as
usual in light-sheet microscopy (that is, they were perpendicular to the illumination);
views collected from OBJ C were acquired by scanning OBJ C vertically during each
exposure. Thus, the top two sCMOS cameras corresponding to OBJ A and OBJ
B were operated in hybrid rolling/global shutter mode, but the lower camera was
operated in virtual confocal slit mode, to obtain partially confocal images during
light-sheet illumination introduced from OBJ A and OBJ B.

T cells. E6-1 Jurkat T cells stably transfected to express EGFP-actin were grown
in RPMI-1640 medium with L-glutamine and supplemented with 10% FBS, at
37°Cin a 5% CO, environment. Glass coverslips (24 mm X 50 mm X 0.17 mm;
VWR, 48393241) were coated with 0.01% (wt/vol) poly(L-lysine) (Sigma-Aldrich)
and incubated with anti-CD3 antibody (Hit-3a, eBiosciences) at 10 pgml™ for

2h at 37°C the same day that cells were imaged. Before imaging, 1 ml of cells

was centrifuged at 250 RCF for 5min, resuspended in L-15 imaging buffer
supplemented with 2% FBS and plated onto coverslips.

Cleared-tissue imaging. We modified our original fiber-coupled diSPIM*' for
cleared-tissue imaging by incorporating elements of the commercially available
ASI DISPIM and DISPIM for Cleared Tissue (CT-DISPIM). All components were
designed and manufactured by ASI unless otherwise specified. The microscope
body was built inside an incubator box (RAMM-Incu) on a 450 mm X 600 mm
breadboard (Incu-breadboard). Samples were placed on an FTP-2000 Focusing
Translation Platform to provide precise and repeatable x,y,z positioning of the
sample as well as rapid stage scanning’’ during cleared-tissue imaging. CAD
drawings of the setup are shown in Supplementary Fig. 15.

Dovetail mounts (DV-6010) were attached to the SPIM head (SPIM-DUAL-K2)
lower Cube IIT modules and connected to angled dovetails on support arms from
posts mounted to the breadboard (Camera Support Kit CAM_SUP-K4-13-5). This
configuration fixes the SPIM head while the sample can be moved relative to the
head using the FTP-2000, minimizing vignetting of the fluorescence emission,
which compromised earlier diSPIM performance on large samples.

Each camera (Hamamatsu Orca Flash 4.0) was attached to a tube lens assembly
(MIM-Tube-K), which was clamped to @1.5-inch support posts (Thorlabs) from
the breadboard, leaving an air gap of 1-2 mm between the tube lens assembly and
the SPIM head. The resulting vibrational decoupling of the cameras from the SPIM
head minimized image jitter caused by the camera fans. The cameras themselves
were additionally supported on brackets angled at 45 degrees (Thorlabs, AP45)
mounted on @1.5-inch vibrationally damped posts (Thorlabs, DP14A).

For cleared-tissue imaging, we used a pair of Special Optics 0.4-NA
cleared-tissue immersion objectives (ASI, 54-10-12). At the refractive index of
the solvent we used (dibenzyl ether), the magnification of these lenses is ~17.9.
Because the back focal planes of these objectives are at a different location than
for the Nikon x40, 0.8-NA water-immersion objectives used for live work, the
excitation scanners and their associated tube lenses were mounted to adjustable
spacers (C60-SPACER-AD] ASSEMBLY) to ensure 4f spacing of the light-sheet
excitation path. All cleared-tissue experiments used quad notch filters (Semrock
StopLine Notch Filter NF03-405/488/561/635E-25) and associated dichroic mirrors
(Semrock BrightLine Laser Dichroic DiO3-R405/488/561/635-t1-25x36), which
together isolated the fluorescence from the excitation light (405, 488, 561 and
637 nm from Coherent OBIS sources).

Data were acquired by moving the stage in a raster pattern with the aid of the
ASI diSPIM Micromanager® plugin (http://dispim.org/software/micro-manager;
ref. **). The number of imaging tiles/rows as well as other acquisition parameters of
interest is reported in Supplementary Table 5.

Because of the volume size and speed of data acquisition during cleared-tissue
imaging, it was necessary to use an NVMe solid-state drive (Samsung 960 PRO
M.2 2TB) to write data during an acquisition. Data were transferred to a local
300-TB server after acquisition for longer-term storage.

Cleared brain slab. The mouse brain sample was prepared using the iDISCO+
procedure”. Briefly, the brain from an adult arginine vasopressin receptor

1B (Avpr1b)-Cre x Ai9 (B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato) Hze™;
Cre-recombinase-dependent tdTomato) mouse™ (a gift from W.S. Young) was fixed
by transcardiac perfusion with 4% paraformaldehyde. It was then cut into 2-mm
slabs and dehydrated through a methanol series, rehydrated, immunolabeled

with an antibody that recognizes tdTomato (1:200 dilution of rabbit anti-RFP;
Rockland Antibodies and Assays, 600-401-379) and an Alexa Fluor 555-conjugated
secondary antibody (Invitrogen, A27039; 1:100 dilution), and then dehydrated

with a methanol series and dichloromethane before equilibration in dibenzyl ether
(Sigma, 108014) and imaging.

Cleared gut, stomach and ovary. Mouse tissue stored in 4% paraformaldehyde was
dissected and washed in 20ml of 1x PBS for 1h at room temperature. Desired organs
were dehydrated and rehydrated in a serial dilution of methanol in water and bleached
in 5% hydrogen peroxide in methanol according to the iDISCO protocol ™. After
rehydration, pretreated samples were stained with 400 pl of primary antibody dilution
(1:100) in PBS containing 0.5% Triton X-100 and 0.05% sodium azide and shaken at
37°C for 4d. Samples were washed in 5ml washing buffer consisting of 0.5% Triton
X-100 and 0.05% sodium azide in PBS on a rotator for 1d at room temperature. The
next day, samples were stained with 400 pl of secondary antibody dilution (1:100)
consisting of 0.5% Triton X-100 and 0.05% sodium azide in PBS in a 37 °C shaker for
4d. Samples were washed for 1d before optical clearing. For some samples, a 1:1,000
dilution of DAPI (1 mgml™ stock) was incorporated in the first washing step. All
labels are indicated in Supplementary Table 6.

Immunolabeled samples were dehydrated sequentially in 5ml of 20%, 40%,
60%, 80%, 90% and 100% tetrahydrofuran in water (30 min at room temperature
for each step). Samples were washed in 5ml of 100% tetrahydrofuran for another
30 min at room temperature and incubated in 5ml of 100% dichloromethane until
samples sank to the bottom of the tube. Samples were then incubated overnight
at room temperature in another 5ml of fresh 100% dichloromethane. The next
day, samples were cleared twice in 5ml of dibenzyl ether (Sigma, 108014) at room
temperature for 30 min each time. Cleared samples were mounted on a glass slide
with a minimal amount of Krazy Glue surrounding the bottom of the samples for
imaging with cleared-tissue diSPIM.

Bead sample. No. 1.5 coverslips (VWR, 48393241) were cleaned with 100% ethanol
and coated with 0.1% poly(L-lysine) (Sigma-Aldrich) for 10 min. Then, 100-nm
yellow-green beads (Thermo Fisher Scientific, F8803) were diluted ~10°-fold, and
20 pl was added to the central region of the coverslip. After 10 min, the coverslip
was washed four times with clean water before imaging. During imaging, the beads
were immersed in dibenzyl ether (Sigma, 108014).

Free-space coupled diSPIM, conventional and reflective imaging. The geometry
of the diSPIM (0.8/0.8 NA) used for conventional and reflective imaging has

been previously described”. Glass coverslips (24 mm x 50 mm X 0.17 mm; VWR,
48393241) for conventional experiments were modified for reflective experiments
by sputtering a 150-nm-thick aluminum film over their entire surface and then
protecting them with a 700-nm-thick layer of S$iO, (Thin Film Coating). During
conventional imaging, dual views were sequentially acquired in light-sheet
scanning mode via two objectives (Nikon, MRD07420; x40, 0.8 NA) and imaged
with 200-mm tube lenses (ASI, C60-TUBE_B) onto two sCMOS cameras (PCO,
Edge 5.5), resulting in an image pixel size of 162.5 nm. During reflective imaging,
four views (direct fluorescence and mirror images) were simultaneously collected
in stage scanning mode with the same detection optics. In all acquisitions, the
exposure time for each plane was 5ms.

Nematode embryos. C. elegans were maintained on nematode growth medium
seeded with E. coli (OP50). Embryos were dissected from gravid adults, placed
on poly(L-lysine)-coated coverslips and imaged in M9 buffer, as previously
described’. Strain BV24 (ItIs44(pie-1p-mCherry::PH(PLCldeltal) + unc-
119(+)); zuls178((his-72 1kb::HIS-72::GFP); unc-119(+))V) was used for
imaging nuclei in conventional mode, and strain AQ2953 JjIs131(myo-
3p::GCaMP3-SL2-tagRFP-T) was used for imaging calcium flux in threefold
embryos in reflective mode.

Lattice light-sheet microscopy, conventional and reflective imaging. The LLS
microscope (1.1, 0.71 NA) for reflective imaging was constructed as previously
described™. The annular mask was set at 0.325-0.4 NA, and a square lattice

in dithered mode was produced at the sample. The excitation power (488 nm)
was measured at the back focal plane of the excitation objective at ~25pW.

The x25 Nikon CFI APO LWD detection objective was paired with a 500-mm
achromat lens for an effective magnification of 63.7, resulting in an image

pixel size of 102 nm. The exposure time for each plane was 8 ms, and the stage
scanning step size for the volumetric imaging was 0.4 pm, corresponding to

209 nm along the optical axis after deskewing. When deconvolving the data with
a spatially variant PSF for resolution recovery and removal of epifluorescence
contamination”, the excitation pattern was based on the measured dimensions
of the LLS (propagation distance of ~26.6 um FHWM along the optical axis

and a waist of 0.99 um FWHM), and the detection PSF was simulated as a
widefield PSF with 1.1 NA using the PSF generator Image] plugin (http://
bigwww.epfl.ch/algorithms/psfgenerator/). The light-sheet dimensions

were measured by sweeping the sheet axially through a 0.1-um-diameter
fluosphere (Thermo Fisher) while stepping the bead along the propagation
length of the sheet. Conventional imaging experiments were conducted on
5-mm-diameter X 0.15 mm glass coverslips (Warner Instruments, CS-5R).

For reflective experiments, 5-mm-diameter X 0.17 mm glass coverslips were
sputtered as for the free-space diSPIM experiments with a 150-nm-thick film of
aluminum followed by a 700-nm-thick layer of SiO, (Thin Film Coating).

NATURE BIOTECHNOLOGY | www.nature.com/naturebiotechnology
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Microtubule and actin samples. For imaging microtubules, U20S cells (ATCC,
HTB-96) were grown on uncoated coverslips, fixed with glutaraldehyde, washed
with PBS at room temperature and then immunolabeled with anti-DM1A antibody
conjugated with Alexa Fluor 488 (Sigma, T9026). For imaging of a-actinin,

U20S cells stably transfected to express mEmerald-tagged a-actinin (a gift from
M. Davidson, Florida State University) were plated onto coverslips 24 h before
imaging. Cells were imaged within 1h of plating on the reflective coverslips.

Data processing. Preprocessing. Raw single-view and multiview images were
preprocessed by subtracting a uniform background with intensity equivalent to

the average of 100 dark (no excitation light) background images before registration
and/or deconvolution. For deconvolution, the measured image or the average of
the measured images after elimination of zero values (zeros replaced by a small
value, 0.001) was used as the initial estimate. However, we note that the more rapid
deconvolution reported in this work is robust to changes in the initial guess, as we
obtained similar acceleration when using a constant-valued image as the initial
estimate.

diSPIM deconvolution. The joint RLD scheme used in diSPIM improves the overall
estimate e of sample density by alternately considering each view"”:

ey = (IA +IB)/2

Fork=0,1,... N (ie.,

SN
S

where i, fy, b, and iy, f;, by are the raw images, forward projector (PSF) and back
projector corresponding to views A and B, respectively. Traditionally, b is taken
to be the transpose of f. However, as in single-view deconvolution, we found that
using unmatched back projectors (for example, Gaussian, Butterworth or WB
filters) considerably accelerated this procedure (reducing N).

iteration number)

Quadruple-view deconvolution. In quadruple-view deconvolution, we start with the
additive RLD update, finding as previously reported'' that this method yields better
reconstructions than the alternating joint deconvolution update” used for diSPIM:

eo = (ia +ip +ic +ip)/4

Fork=0,1,... N (i.e

SEARY
=[]}
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err1 = (ea+ep+ec+ep)/4

., iteration number)

with f, b, e and i defined as above and the subscripts A, B, C and D indicating each
view. Choosing each back projector b to be the transpose of the forward operator f
yields the traditional RL update. Choosing the back projectors as follows yields the
previously described ‘virtual-view’ update in EBMD' (where * denotes convolution
and A denotes the transpose), speeding up this procedure:

ba =fa (fA*fB*fB) (fA*fc*fc) (fA*fD*fD)
)

by *fB B*fC"fC) B*fD*fD) B*fA*fA
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Finally, setting b to be the unmatched WB filter appropriate for each view
provides the fastest update, as for dual-view and single-view microscopes.

Joint deconvolution for reflective light-sheet imaging. Raw image data from
the four views in reflective diSPIM imaging (0.8/0.8 NA) or two views in
reflective lattice light imaging (0.7/1.1 NA) are merged to produce a single
volumetric view, after processing steps that include background subtraction,
interpolation, transformation, fusion, registration, epifluorescence removal and
joint deconvolution. The data processing steps for removing epifluorescence
contamination and enhancing resolution for reflective diSPIM and reflective LLS
imaging are similar to those previously described'’ for the symmetric (0.8/0.8 NA)
and asymmetric (0.71/1.1 NA) diSPIM configurations. We represent the effect of
the mirrored coverslip by reflecting the object across the coverslip to obtain an
extended object consisting of real and virtual objects. During each RL update, we
construct the forward model by (1) shifting the illumination pattern at each axial
(z) slice in the extended object; (2) multiplying the shifted illumination pattern
by the estimate of the extended object; (3) looping over z in the estimate and, at
each z, performing 2D convolution with the detection PSF; and (4) collapsing over
the z coordinate. In the backward model, we perform back projection of the ratio
image (that is, the ratio of the raw data to the blurred estimate), convolve it with
the appropriate back projector function (the flipped PSF for traditional RLD or
the unmatched back projector for the WB case) and then multiply by the shifted
illumination pattern. This deconvolution process is not blind, that is, the PSFs are
simulated widefield detection PSFs based on experimentally measured PSFs. For
the datasets we report here, there was no need to crop the data. When processing
the reflective LLS data, the excitation profile was based on the measured dithered
LLS illumination.

In more detail, we form view U, (which includes both the conventional
view and mirrored views) and a second, virtual view U, by reflecting view U,
across the mirror, as previously described”. U, and U, are thus blurred with
complementary detection PSFs. We register the two views U, and U, and perform
joint deconvolution on them by applying the joint RL update with the WB back
projector for each view as follows:

N . 1 U,
Flnt1) — Rn) L

g gy Ly U
V2 M Fnt1)

Here Mp; and Mp; are the forward operators that map the object stack
to measured conventional view stack U, and virtually reflected view stack U,F
respectively, and F and M, are the backward operators that map from data
space back to object space. Four steps are sequentlally applied in obtaining each
update. First, we compute M, or Mg, F" by applying the forward operator
M1 or Mp; to the current estimate of the object f(n) according to three cascaded
operations -, at each light-sheet position (or z slices), where matrix D represents
multiplication of the estimate D by the crossed light sheets; matrix 7{ represents
looping over all the z slices and performing 2D convolution with a slice of the
detection PSF at each z; and matrix p applies projection over all z slices. Second,
we divide the measured data stack U by this quantity and denote the resulting ratio
image R. Third, we apply the transpose operator p or M, to R, which involves
applying the cascaded operations D'+’ PT and then summing over all z slices.
Here T is a back projection matrix, which smears the vector to which it is applied
back across the image grid; H represents looping over z in the object distribution
and performing 2D convolution with a slice of the transposed but unmatched
detection PSF (that is, the WB back projector appropriate for the particular
microscope; Supplementary Note 2) at each z; and D is equivalent to matrix D,
denoting multiplication by the illumination pattern. Finally, we update the current
estimate D by multiplying by the correction image (") or M, and dividing by the
normalization image V, or V, (that is, Mg, 1 or Mg, 1, where 1 denotes an image
of ones).

GPU deconvolution with Huygens software. For the deconvolution comparison in
Supplementary Fig. 13, both WB and Huygens deconvolution (Scientific Volume
Imaging, Essential 19.10 version) use the same theoretical PSF, generated as the
product of the excitation light sheet and widefield emission PSE. When testing
Huygens, we used the light-sheet deconvolution module. All parameters were set at
their default values. Deconvolution was performed on a Windows 10 workstation
(CPU: Intel Xeon, Platinum 8168, two processors; RAM: 512 GB; GPU: Nvidia
Quadro RTX6000 graphics card, 24 GB of memory).

Conventional 3D affine registration. Some CPU-based registrations were performed
in the open-source Medical Imaging Processing, Analyzing and Visualization
(MIPAV) programming environment (http://mipav.cit.nih.gov/). As previously
described’, we applied an affine transform with 12 degrees of freedom (d.f.) to
register the source image (S; image to be registered) to the target image (T; fixed
image). The d.f. matrix is a 12-element transformation matrix that applies the

four affine image transformation operations (translation, rotation, scaling and
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shearing) from the source to the target image. We used an intensity-based method
to iteratively optimize the d.f. matrix by minimizing a cost function via Powell’s
method (http://mathfaculty.fullerton.edu/mathews/n2003/PowellMethodMod.
html). We set the search angle range from 10 degrees to 10 degrees, with a

coarse angle increment of 3 degrees and a fine angle increment of 1 degree. This
registration function ‘Optimized Automatic Image Registration 3D’ has already
been incorporated in MIPAV as plugin ‘SPIM-fusion’ (ref. *'). With this CPU-based
registration environment, we registered the data imaged with diSPIM (Fig. 2a,j)
and quadruple-view light-sheet microscopy (Fig. 2e; see below for more detail

on how we registered four views) and compared the registration outcomes and
computational costs with those of the GPU-based registration described in the
following section (Fig. 2i). To estimate the computational costs for registering large
cleared-tissue volumes with the CPU-based approach (Fig. 3i), we randomly chose
ten subvolumes (each 640 X 640 X 640 pixels), calculated the time for registration,
averaged the times (that is, ~31 min per subvolume) and then multiplied the
averaged time by the total number of subvolumes (for example, 4,576 subvolumes
in Fig. 3d) to estimate the total registration time (that is, ~100d).

For the comparative data shown in Supplementary Table 4, registration was
also performed using the NiftyReg software package (http://cmictig.cs.ucl.ac.uk/
wiki/index.php/NiftyReg) and the elastix software package (http://elastix.isi.uu.nl).
For NiftyReg, the reg_aladin command was used with default settings except that
the “-pv’ and ‘-pi’ parameters were both set as 100. In this case, NiftyReg performed
arigid +affine-based registration. For elastix, the transform type was set as
‘AffineTransform’ to perform affine-based registration; the Interpolator was set
as ‘LinearInterpolator, and the Resampler was set as ‘DefaultResampler’ for CPU
implementation and ‘OpenCLResampler’ for GPU implementation.

New GPU-based 3D affine registration. We developed a new registration

pipeline that accelerates the registration of multiview light-sheet data via GPU
programming (Supplementary Fig. 12), including data acquired with diSPIM (Fig.
2a,j), quadruple-view light-sheet microscopy (Fig. 2¢), reflective diSPIM (Fig. 4c)
and reflective LLS microscopy (Fig. 4f). More notably, this GPU-based registration
method also enables the registration of large cleared-tissue datasets imaged with
diSPIM (Fig. 3), which is impractical if implemented in the CPU-based registration
method (for example, ~100d with CPU-based registration as estimated above
versus ~24h with GPU-based registration for the data in Fig. 3d).

Our GPU-based method uses the same method (that is, intensity-based
iterative optimization of the transformation matrix) as in the CPU-based MIPAV
registration but dramatically improves the registration speed and accuracy for
several reasons. First, we iteratively perform affine transformations on the source
image, which is always kept in the GPU texture memory. The main computational
burden in 3D transformation is trilinear interpolation, which can be substantially
lessened by the use of texture memory. Second, the correlation ratio between
the intensity of the transformed source and target images that is used in the cost
function can be rapidly calculated via the parallel computations enabled by the
GPU. Third, when minimizing the cost function by using Powell’s method to
update the 12-element transformation matrix, we do not simultaneously optimize
all 12 elements (that is, full translation, rotation, scaling and shearing, which
comprise 12 d.f.). Instead, the optimization is serial, successively optimizing
translation; rigid body (translation and rotation, 6 d.f.); translation, rotation and
scaling (9 d.f.); and finally the full translation, rotation, scaling and shearing
operations (12 d.f.). We observed that such serial optimization makes registration
more accurate and robust. Finally, although the initial transformation matrix (M,)
for beginning the optimization process is an identity matrix by default, we also
provide an option to generate M, by performing a 2D registration (translation and
rotation) on the xy and zy maximum-intensity projections of the source and target
images. This 2D registration is an intensity-based rigid body transformation with
the same optimization routine as 3D registration, but performing registration in
2D with only translation and rotation is very rapid, only taking ~1% of the time
required for performing full 3D registration. This additional step also guarantees
a reasonable starting initialization of M, for further 3D optimization in 3D.
Alternatively, a transformation matrix from a previous time point in a time-lapse
four-dimensional (4D) dataset can be used as M, to accelerate registration. In some
cases (for example, Fig. 2a), we observed that using a matrix from a previous time
point could reduce the registration time for a new volume by as much as 65%, for
example, from ~8.8 s per volume to ~3.1s per volume.

We implemented this GPU-based registration pipeline in CUDA/C++
(Supplementary Software) and called it in MATLAB or Fiji to register the data
imaged with conventional and reflective diSPIM and LLS microscopy (Figs. 2a,j
and 4c,f). To increase registration accuracy for the quadruple-view data (Fig.
2e and Supplementary Fig. 10) acquired with the quadruple-view light-sheet
system (Supplementary Fig. 9), we (1) transformed view A and view B into the
coordinate system of bottom views C and D and deconvolved each view to increase
image quality; (2) registered the deconvolved view D to the deconvolved view
C, thus obtaining a registration matrix mapping view D to view C, and applied
this registration matrix to the raw view D, thus registering it to the raw view C;

(3) registered the deconvolved view B to the deconvolved view A, thus obtaining
a registration matrix mapping view B to view A, and applied this registration
matrix to the raw view B, thus registering it to the raw view A; (4) performed

joint deconvolution on the two registered raw views A and B; (5) registered the
jointly deconvolved views A and B to the deconvolved view C, thus obtaining

a registration matrix mapping views A and B to view C; and (6) applied both
registration matrices (view B to view A and then views A and B to view C) to
register all raw views to the coordinate system of the bottom views (that is, views
C and D). For deconvolving time series data (Fig. 2¢ and Supplementary Video
6), we applied this process to the first time point in each view, obtaining a set of
registration matrices that were then applied to all other time points in the 4D
dataset.

Postprocessing pipeline for large cleared-tissue data imaged with diSPIM. We
developed a postprocessing pipeline that can register and jointly deconvolve
large datasets imaged with diSPIM, including the cleared-tissue data presented
in this paper (Supplementary Fig. 17). Such datasets span hundreds of gigabytes
to terabytes, a size that exceeded either the RAM or GPU memory on our
workstation.

First, raw image data recorded by the cameras in cleared-tissue diSPIM
(multiple 16-bit TIFF files, each less than or equal to 4 GB) need to be reorganized
and resaved as TIFF stacks, each corresponding to a distinct spatial subvolume
(tile), color and view. Second, tiles for each color and view are combined with
Imaris Stitcher (based on ref. **), the Image] plugin implementation of BigStitcher™
or custom software written in MATLAB during the revision process for this
manuscript (Supplementary Fig. 18, Supplementary Table 5 and Supplementary
Software).

Our custom stitching software uses two steps to compute locations for every
tile with subpixel accuracy (Supplementary Fig. 18): (1) using the GPU, calculate
coarse 3D translational shifts for all pairs of adjacent tiles using Fourier-based
phase correlation’**” on downsampled images (final size of 512-1,024 pixels in
each dimension) and (2) compute fine (subpixel) 3D translational shifts for the
coarsely registered tiles using our GPU-based registration method.

In more detail, we calculate the Fourier-based phase correlation shifts
according to

p— IFT{ FT (tileA) x conj[FT (tileB)] }

|| FT(tileA) x conj[FT (tileB)] ||

where tile A and tile B represent two adjacent overlapped tiles, ‘conj’ denotes
conjugation, and FT and IFT represent the Fourier transform and inverse Fourier
transform. The peak of the phase image stack S corresponds to the tile location in
real space. However, because of the periodic nature of the Fourier shift theorem,
each peak corresponds to two possible shifts in each spatial dimension, and thus
there are 2° =8 possible peaks that arise when calculating a 3D shift. We test each
candidate shift by applying the shift, cropping the overlapped regions between
the shifted tiles, calculating the normalized cross-correlation (NCC) between the
cropped regions and selecting the candidate shift corresponding to the highest
NCC. To increase the robustness of this correlation-based approach for stitching
images with extensive noise or low information content, we take the logarithm of
the tiles before Fourier transformation.

After coarse shifts between adjacent tiles are obtained as above, we apply
the coarse shifts, crop the overlapped regions between shifted tiles and use our
GPU-based registration method for computing subpixel shifts between tiles. With
this two-step stitching method, we achieve the same NCC values as BigStitcher
yet with a shorter processing time (for example, an NCC of 0.95 for the two tiles
shown in Supplementary Fig. 18, part of the dataset shown in Fig. 3d, each tile with
2,048 % 2,048 x 1,300 pixels and a registration time of 165 s with this method versus
580 s with BigStitcher). Finally, image tiles are fused by performing linear blending
between the finely aligned overlapped regions. We create weight images for each
tile (Supplementary Fig. 18), multiply the tiles by the weight images and then
sum the resulting weighted images together. For multicolor datasets, we apply the
subpixel shifts and weighted images obtained from a single color (users have the
option to choose the desired color in the software GUI) to all other colors.

Like BigStitcher, our stitching framework is able to fuse terabyte-sized volumes
without needing to load the raw data into CPU RAM. Stitching the entire volume
from multiple tiles is accomplished by looping across the lateral slices of tiles,
stitching them and subsequently resaving as a TIFF file for each lateral slice.

The overall processing time (including file I/O and stitching) of our method is
competitive with those of Imaris Stitcher and BigStitcher (for example, ~15min
with our method versus ~18 min with BigStitcher and ~13 min with Imaris Stitcher
for the data shown in Supplementary Fig. 18; more comparisons are listed in
Supplementary Table 5). Moreover, conducting the stitching pipeline in MATLAB
has the advantage that a single program can be used for the entire processing
pipeline without needing to convert TIFF files to IMS format in Imaris or define
an XML format as in BigStitcher. Like Imaris Stitcher, our software also provides a
GUI for assisting users in loading files, organizing the order of tiles, aligning tiles,
and previewing tiles before and after stitching (see the description provided in the
Supplementary Software for details on using the software).

After stitching, the resulting large TIFF stacks are de-skewed (transforming
from stage scanning mode to light-sheet scanning mode), interpolated (obtaining
isotropic pixel resolution), rotated (transformed from the objective view to the
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perspective of the coverslip), cropped (saving memory) and resaved as TIFF files
(for example, ~2 TB for the four colors and two views acquired for the dataset
shown in Fig. 3d). Because of the large data size and our limited memory, we
could not directly register the two views via our GPU card and performing the
registration with CPU processing’ is impractical because of the ~100-fold-slower
processing that would result (Fig. 3¢). Our strategy for dealing with the GPU
memory bottleneck is to downsample views A and B by a factor p, to view A’ and
view B’, such that the total size of the views is reduced by p* (for example, 125-fold
if f=5). Registering these downsampled volumes can then be achieved in GPU
memory, obtaining a registration matrix M;, that maps view B’ to view A’. A
coarse, global 3D affine transformation matrix M that maps view B to view A can
then be derived from M,

SX mX nX tX
my sy A

Mp =
b m, n, s, Lt
0 0 0 1

seo ome ne Py
Me=|™ % Pty

m;, n, s, Pty
0 0 0 1

Here the three terms ¢,, £, and t, represent translations in each dimension, while
the other nine terms, s, s, 5., m n,, n,and n,, combine scaling, rotation
and shearing in 3D.

Note that M, cannot be directly applied to view B to obtain a coarsely
registered view B (again because of the large size). But M; can be used to crop
views A and B into multiple subvolumes that are sufficiently small that they can
be registered (for example, ~1,000 subvolumes, each 640 X 640 X 640 pixels with an
interval of 512 x 512X 512 pixels, with 20% overlap between adjacent subvolumes
in each dimension). If the position of the kth subvolume in view A is specified by
the vector P§ = [x% yk 2k 1], then the starting position of the kth subvolume in
view B can be obtained by

Py = [xpypepl] = Pix Mg = [xhyhah1] < Mg

After cropping, this subvolume can be coarsely registered with the
corresponding cropped subvolume in view A using a new matrix M¥, which can
be derived from the cropping position matrix (M¥, M%) and global transformation
matrix Mg:

1 0 o0
k_ |0 1 0
MA’OOlzjg

00 0 1

M§ = iny(ME) MM =

0
my, s, n, 0
m, n, s; 0

1

Fine registration and joint WB deconvolution are then applied to the coarsely
registered paired subvolumes of view A and view B. For each deconvolved
subvolume (640 X 640 X 640 pixels), boundary regions (45 pixels from each edge,
in all three dimensions) are removed to eliminate edge artifacts, and the resulting
subvolumes are resaved with a size of 550 X 550 X 550 pixels. Finally, stitching all
deconvolved and newly cropped subvolumes results in the final reconstruction (for
example, ~1 TB for the dataset displayed in Fig. 3d). Note that, during the stitch,
linear blending is performed on the remaining overlapped regions of the adjacent
subvolumes (38 pixels from each edge, in each dimension) to lessen stitching
artifacts.

Zebrafish segmentation. For segmenting cells in the lateral line primordium

(Fig. 20,p), the ‘morphological segmentation’ feature in the MorpholibJ plugin®
was used, with identical settings for raw and deconvolved images. Before
segmentation, images were blurred in ImageJ using a Gaussian kernel with
sigma=1.5. A watershed tolerance of 15 and a connectivity of 26 were used during
the segmentation. Cells in the raw data and successfully segmented cells in the
processed images were manually counted in Image].

Full width at half maximum calculations. Al FWHM calculations were
implemented in MATLARB. For statistical measures, values were averaged from
ten simulated beads (Supplementary Fig. 2), ten experimental beads (Fig. 1d and
Supplementary Figs. 1, 3 and 7e,f) or ten microtubule filaments (Supplementary
Figs. 7d and 20e).

Simulation of images with different SNRs. SNR simulations were conducted in
MATLAB. For the images shown in Supplementary Fig. 2, a noise-free image was
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obtained by blurring ten point objects with the iSIM PSF (simulated as the product
of the excitation and emission PSFs). We next added Gaussian noise (simulating
the background noise of the camera in the absence of fluorescence) and Poisson
noise (proportional to the square root of the signal). We defined SNR as

SNR = S/VS+ G

where S is the signal defined by the average of all pixels with intensity above a
threshold (here set as 1% of the maximum intensity of the blurred objects in the
noise-free image) and G is the Gaussian noise (set as ten counts according to the
measured s.d. of the background noise of the camera). The final images shown in
Supplementary Fig. 2c were then generated by scaling the signal level S and adding
noise according to the equation above to achieve the target SNR. For the images
shown in Supplementary Fig. 6, the simulated ground-truth image consisted of
spheres seeded at random locations and with random size and intensity, generated
with ImgLib2 (ref. ©; http://imglib2.net) and then smoothed. The ground-truth
image was then blurred with the iSIM PSF and degraded with Poisson and
Gaussian noise as described above. The signal level S was defined by the average
intensity of all spheres. The NCC to the ground truth was also calculated as a
metric to quantify the quality of the deconvolved images. The NCC is defined as

Neo— L XNI (e(i) = ) (0()) — o)
N = 6,0,

where N is the total number of image voxels and j is the index of each voxel; o is the

ground-truth image; e is the deconvolved image; i, and y, are the average value of

and o; and ¢, and o, are the s.d. of e and o.

Bleach correction. For several time-lapse datasets (Figs. 2a,e,j and 4c,f, and
Supplementary Videos 3, 6, 17 and 18), we performed standard bleaching
correction using an ImageJ plugin (Bleach Correction®; https://imagej.net/Bleach_
Correction) with the ‘simple ratio’ method.

Delining data. In the mitochondrial dataset acquired with iSIM (Fig. 1f,
Supplementary Fig. 4 and Supplementary Video 2), we applied notch filters
in Fourier space to suppress slight line artifacts in the raw data, as previously
described®.

Video compression and rendering. The zebrafish lateral line volumes shown in
Supplementary Video 9 were median filtered with a 5X5 x5 kernel in Imaris

9.2.1 (Bitplane) and manually segmented with the ‘local contrast’ function at

each time point to isolate the immune cell from the skin. The isolated immune

cell was then further manually segmented by an absolute intensity threshold to
remove unwanted pixels and finally false colored in red. The isolated lymphocyte
was recreated as an independent channel and false colored in red. Supplementary
Videos 10-14 were also rendered in Imaris 9.2.1 and exported as uncompressed avi
files (usually multiple gigabytes in size). These files were JPEG compressed (down
to several hundred megabytes) in Image] and then compressed again in the VLC
media player using H.264 compression. In some cases, the total image size was also
slightly downsampled to achieve the final file size.

Neural network for deep learning. We developed the DenseDeconNet neural
network (Fig. 4b and Fig. 4.1 in Supplementary Note 4) by adapting a densely
connected network® for 3D image data. This network consists of three dense
blocks and uses multiple dense connections between convolutional layers to
extract relevant features from the image volumes, learning the deblurring
necessary for image reconstruction. All operations are implemented on 3D data
and thus can directly incorporate 3D information contained within the image
stacks to simultaneously improve axial and lateral resolution. The total number of
learned parameters in our DenseDeconNet is approximately 18,000. The network
is optimized using the backpropagation algorithm with the adaptive moment
estimation (Adam) optimizer® and a starting learning rate that decays during

the training procedure. More details about this fully convolutional network and
associated validation tests are described in Supplementary Note 4.

In our DenseDeconNet, we designed our objective function with three terms:
the mean square error (MSE), the structural similarity (SSIM) index and the
minimum value of the output (MIN). The MSE term ensures that the difference
between network outputs and ground truths is as small as possible. The SSIM term
is used to preserve the global structural similarity between the network output and
the ground truth. We monitor the MIN of the output to avoid negative values.

DenseDeconNet is implemented with Tensorflow framework version 1.4.0
and Python version 3.5.2 in the Ubuntu 16.04.4 LTS operating system. Training
was performed on a workstation equipped with 32 GB of memory, an Intel Core
i7 (8,700K, 3.70 GHz CPU) and two Nvidia GeForce GTX 1080 Ti GPU cards
with 11 GB of memory each. Kernels in the convolution layers were randomly
initialized with a Gaussian distribution (mean=0, s.d.=0.1). For an input image
stack ~80 MB in size, fully training the network with 7,000 iterations took ~57h,
but during the revision process for this manuscript we found that this training time
could be substantially reduced to ~2.5h if training was performed with a small
cropped subvolume (~15MB) instead of the entire volume.
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We tested DenseDeconNet on 3D images of membranes and nuclei in live
C. elegans embryos acquired with diSPIM, images of GCaMP3 expression in live
C. elegans embryos acquired with reflective diSPIM and images of a-actinin in
live cells acquired with reflective LLS microcopy. The input data were either raw
single-view image volumes or dual-view image volumes. The ground-truth data
consisted of traditional RL joint deconvolution with ten iterations for diSPIM
data (conventional and reflective coverslips) and RL deconvolution with the WB
back projector with one iteration for reflective LLS data. All data were derived
from volumetric time series (‘4D’ data); usually, 80% of volumes were randomly
selected for training and the remaining 20% were used for validation and testing.
The parameters for all datasets used in deep learning are summarized in Table 4.1
in Supplementary Note 4. More details are shown in Fig. 4 and Figs. 4.2-4.16 in
Supplementary Note 4.

Supplementary software. We attach our software as a compressed zip file, which
is also freely available and maintained through GitHub. The software includes
four sets of programs for implementing (1) WB deconvolution on a variety of
different microscopes; (2) rapid registration of two volumetric images, for example,
for subsequent WB deconvolution; (3) registration and deconvolution of large
cleared-tissue datasets, imaged with diSPIM; and (4) our convolutional neural
network (DenseDeconNet) for resolution recovery. Programs run in MATLAB
except for DenseDeconNet, which is written in Python. The zip file also includes
a README file that explains how to run our software on a PC with specifications
similar to ours (CPU: Intel Xeon, E5-2660-v4, 28 threads; RAM: 256 GB; GPU:
Nvidia Quadro M6000 graphics card, 24 GB of memory).

The WB deconvolution program uses MATLAB scripts for WB single-view
deconvolution of widefield fluorescence microscopy (Supplementary Fig. 7),
confocal microscopy (Supplementary Fig. 7), iSIM (Fig. 1f, Supplementary
Fig. 4 and Supplementary Video 3) and light-sheet fluorescence microscopy
(Supplementary Fig. 7) data; WB joint deconvolution of diSPIM data acquired
on glass coverslips (Supplementary Fig. 8); WB additive deconvolution of
quadruple-view light-sheet imaging data acquired on glass coverslips (Fig. 2e and
Supplementary Video 6); WB deconvolution for data contaminated with a spatially
variant PSF taken with reflective, symmetric diSPIM (Fig. 4c and Supplementary
Video 16); and WB deconvolution for data contaminated with a spatially varying
PSF acquired with reflective LLS microscopy (Fig. 4f and Supplementary Video 18).

The registration program includes two main MATLAB scripts for performing
affine registration with 12 d.f.: one that calls the registration function from a
Dynamic-link Library (DLL) written in C++/CUDA (Supplementary Fig. 2e and
Supplementary Video 6) and the other for conducting both registration and WB
deconvolution for diSPIM data by calling the relevant functions from the DLL
(Fig. 2a,f and Supplementary Videos 5 and 7). For program developers, we also
provide the source code for the DLL in case they wish to customize their own
library.

The program for registration and deconvolution of large cleared-tissue volumes
imaged with diSPIM (Fig. 3 and Supplementary Videos 11-15) includes three main
MATLAB scripts: the first is for stitching raw TIFF tiles with a GUI; the second
is for preprocessing the stitched TIFF data by converting the data from stage
scanning mode to the perspective of the coverslip; and the last script implements
coarse registration, subvolume cropping, fine registration, WB joint deconvolution
and stitching back into a large dataset. Associated MATLAB scripts and MEX files
are also provided for reading and writing TIFF stacks, phasor registration and 3D
convolution in the Fourier domain.

The last program includes two Python scripts for running DenseDeconNet
with Tensorflow. These scripts are designed for single-view input training,
single-view input validation (Figs. 4.2, 4.3 and 4.5 in Supplementary Note 4 and
Supplementary Video 18), dual-input training and dual-input validation (Fig.
4c,f, Figs. 4.4-4.6 in Supplementary Note 4 and Supplementary Videos 16 and
17). Additionally, we provide a more user-friendly Image] plugin dedicated for
registration and joint deconvolution (both traditional RLD and WB deconvolution)
on diSPIM data. The plugin can process either single- or multicolor data. Users
have the options to rotate, interpolate the two perpendicular views for obtaining
isotropic pixels before registration and generate 2D or 3D maximum-intensity
projections of deconvolved images.

Animal use ethical statement. Mouse and zebrafish tissue used in this study were
obtained under approved Institutional Animal Care and Use Committee protocols.
Animal experiments complied with all relevant ethical regulations.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the
corresponding authors upon reasonable request.

Code availability
The code used in this study is available as Supplementary Software. A code
description and several test datasets are also included. Users can also download the

code and updates from GitHub at https://github.com/eguomin/regDeconProject;
https://github.com/eguomin/diSPIMFusion; https://github.com/eguomin/
microlmageLib.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

>
~
Q

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XXX X [0 XX X [
OO0 0 X OdoXKK

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection The simulated images in Fig. 1e, Sup. Figs. 2, 6 were generated using customized MATLAB 2016b scripts. Customized Python software
was used to acquired iSIM images. Customized Python software was used to acquire data from free-space coupled diSPIM and reflective
diSPIM imaging. Customized hybrid Python/LabVIEW software was used to acquire quad-view light-sheet images. Micromanager 2.0
(https://micro-manager.org/) was used to acquired wide-field images. ASI diSPIM Micromanager (http://dispim.org/software/micro-
manager) was used to acquire images from control fiber-coupled diSPIM and Cleared-tissue diSPIM. LAS X software (Leica Microsystems,
Germany) was used to acquired Leica SP8 confocal data. Zeiss Zen imaging software (Carl Zeiss, Germany) was used to collect Zeiss
Lightsheet Z.1 data. All customized scripts and software are available upon request from the corresponding author.

Data analysis Customized ImageJ macros, MATLAB scripts and CUDA v9.0 codes were used for data analysis. These are available upon request from the
corresponding author or from GitHub at: https://github.com/eguomin/regDeconProject; https://github.com/eguomin/diSPIMFusion;
https://github.com/eguomin/microlmagelib. Additional software was also used for comparison purpose, including Medical Imaging
Processing Analyzing and Visualization (MIPAV, http://mipav.cit.nih.gov/), NiftyReg software package (http://cmictig.cs.ucl.ac.uk/wiki/
index.php/NiftyReg), elastix software package (http://elastix.isi.uu.nl) and Huygens (Scientific Volume Imaging, Essential 19.10 version).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size For estimating spatial resolution, it is common that >= 10 beads (or small structures) are sufficient to statistically calculate the FWHM, we
used 10 in all cases (Fig. 1d, Sup. Figs. 1-3, 7, 17, 20).

Data exclusions  No data were excluded from analysis.

Replication All imaging experiments were independently performed more than 3 times with similar results. We will add statements to indicate the
number of times experiments were repeated in corresponding figure legends in the revision.

Randomization  No allocation into experimental groups was performed.

Blinding No allocation into experimental groups was performed.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies [] chip-seq
Eukaryotic cell lines |:| Flow cytometry
|:| Palaeontology |:| MRI-based neuroimaging

Animals and other organisms
|:| Human research participants

[ ] clinical data

XXOXOOS

Antibodies

Antibodies used Fig. 1f,g, Sup. Fig. 4
Primary antibody: Rabbit anti-Tomm20 (Abcam, Cat. # 78547, dilution 1:200);
Secondary antibody: donkey anti-rabbit Alexa-488 (Invitrogen, Cat. # A21206, dilution 1:200);

Fig. 2e, Sup Fig. 10: Anti-CD3 (eBiosciences, Hit-3a, dilution 1:100);

Sup. Fig. 7a

Primary antibody: Mouse anti-alpha Tubulin (Thermo Fisher Scientific, 322500, dilution 1:100);
Secondary antibody: Goat anti-mouse Alexa-488 (Invitrogen, A11001, dilution 1:200);

Sup. Fig. 20: DM1A Alexa-488 (Sigma, T9026)




For cleared tissues

Primary antibodies:

Rabbit anti RFP (Rockland, 600-401-379, dilution 1:200);

Mouse anti alpha-tubulin (Thermo Fisher Scientific, 322500, dilution 1:100);

Rabbit anti Tomm?20 (Abcam, ab78547, dilution 1:100);

Goat anti PECAM-1 (R&D Systems, AF3628, dilution 1:100);

Mouse anti CD11c (Integrin aX) (Santa Cruz, sc-398708, dilution 1:100);

Rat anti CD11b (R&D Systems, MAB1124, dilution 1:100);

Secondary antibodies:

Goat anti Rabbit IgG (H+L) Alexa-555 (Invitrogen, A2703, dilution 1:100);

Donkey anti Goat IgG (H+L) AffiniPure F(ab'), Fragment Alexa-488 (Jackson ImmunoResearch, 705-546-147, dilution 1:100);
Goat anti Mouse 1gG1 Alexa-488 (Thermo Fisher Scientific, A21121, dilution 1:100);

Donkey anti Rat 1gG (H+L) CF-568 (Sigma, SAB-4600077, dilution 1:100);

Donkey anti Mouse IgG (H+L) Alexa-568 (Thermo Fisher Scientific, A10037, dilution 1:100);

Donkey anti Rabbit 1gG (H+L) AffiniPure F(ab'), Alexa-647 (Jackson ImmunoResearch, 711-606-152, dilution 1:100);
Donkey anti Goat IgG(H+L) Alexa-Plus-647 (Thermo Fisher Scientific, A32849, dilution 1:100);

DAPI (Thermo Fisher Scientific, D1306, dilution 1:1000).

More details can be found in Methods and Sup. Table 4, 5.
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Validation All the primary antibodies are commercial and have been extensively used in previous studies, and our staining pattern was
compared to existing literature and images published online. The details of these antibodies and their validations can be found in
manufacturer's websites (including references):

Rabbit anti RFP (Rockland, 600-401-379): https://rockland-inc.com/store/Antibodies-to-GFP-and-Antibodies-to-
RFP-600-401-379-04L_24299.aspx

Mouse anti alpha-tubulin (Thermo Fisher Scientific, 322500): https://www.thermofisher.com/antibody/product/alpha-Tubulin-
Antibody-clone-B-5-1-2-Monoclonal/32-2500

Rabbit anti Tomm20 (Abcam, ab78547): https://www.abcam.com/tomm?20-antibody-mitochondrial-marker-ab78547.html

Goat anti PECAM-1 (R&D Systems, AF3628): https://www.rndsystems.com/products/mouse-rat-cd31-pecam-1-antibody_af3628
Mouse anti CD11c (Integrin aX) (Santa Cruz, sc-398708); https://www.scbt.com/p/integrin-alphax-antibody-d-8

Rat anti CD11b (R&D Systems, MAB1124): https://www.rndsystems.com/products/mouse-cd11b-integrin-alpha-m-antibody-
m1-70_mab1124

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) The following cell lines were used: U20S(ATCC), Jurkat T cell(ATCC).
Authentication None of the cell lines used have been authenticated.
Mycoplasma contamination Cell lines were not tested for mycoplasma contamination

Commonly misidentified lines No commonly misidentified cell lines were used.
(See ICLAC register)

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals C. elegans embryos (varies from gastrulation to hatch); a 32-hour embryonic zebrafish; an adult vasopressin receptor 1B Cre X
Ai9 mouse for the cleared brain slab; Fixed samples from an 8-week old female C57Black6 mouse for cleared intestine and ovary
samples; Fixed E18.5 C57Black6é mouse embryo for cleared embryonic intestine and stomach samples.

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight Mouse and zebrafish tissue used in this study were obtained under approved Institutional Animal Care and use Committee
protocols.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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