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Abstract. We examine the detailed scenario for implementing n-control-qubit Toffoli

gates and select gates on ion-trap quantum computers, especially those that shuttle

ions into interaction zones. We determine expected performance of these gates with

realistic parameters for an ion-trap quantum computer and taking into account the

time variation of the exchange integrals. This allows us to estimate the errors due

to spin-phonon entanglement as well. While there are challenges with implementing

these gates, because their performance always has some degree of error, they should

be feasible on current hardware, but they may be too slow to be used efficiently in

quantum codes on noisy intermediate scale quantum computers. Here, we estimate

these gate times for Yb-based ion trap quantum computers.

1. Introduction

Quantum computing is usually carried out with a universal gate set that commonly

employs single qubit rotations and one two-qubit entangling gate (such as a C-NOT

gate). Within this model for computing, programs are written with a small set of single

and two qubit gates (often larger than the minimum needed for a universal gate set).

Transpiling then converts the gate instructions into the native gate set of the hardware.

Often the final set of machine-level instructions is re-optimized by hand to make it run

as efficiently as possible on the quantum hardware.

While this approach is universal and allows the coding to be hardware agnostic, the

final step often requires a proper selection of qubits according to their connectivity and

a proper reduction of gate operations to the native gates of the hardware. Within this

model for computation, more complex gates, like the n-bit Toffoli gate, or the select

operation (a unitary operation controlled from an n-qubit ancilla bank that controls
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on all binary numbers from 0 to 2n − 1 according to the state of the ancilla), involve

complex decompositions into the single and two qubit gates. In addition, multi qubit

gates are possible in this architecture; they simply require complex engineering of the

control laser beams [1]. In addition, new ion-trap hardware, which allows for shuttling

of ions into computational zones, also permits one to create native n-qubit operations,

where n will typically be three or four in near term hardware [2]; in shuttling-based

computers the focus of the laser beams need not be as tight for multiqubit operations.

This is also true for mid-computation reset operations, which require optical pumping

that uses more light on the ion being reset and can more easily have cross-talk between

neighboring ions unless the laser focus is controlled extremely well.

In a recent paper, Rasmussen et al. [3] propose a methodology for an n-qubit i-

Toffoli gate, which first nulls the energy of a particular quantum state with an effective

longitudinal magnetic field and then uses an effective transverse driving field to invert

the target qubit if the controls are all in the state with the nulled energy. One can

construct a conventional Toffoli gate from this as well, as we describe below. In this work,

we provide additional details for how such a native n-qubit gate can be implemented

within an ion-trap architecture. This requires taking into account a number of issues

not discussed in Ref. [3] due to how the vibrations are coupled to the effective spin

degrees of freedom in the ion-trap quantum computer. We then choose concrete values

for the parameters of an ion trap computer to estimate the operation time and expected

fidelities of these multi qubit gates on an ion-trap platform.

An alternative approach to what we discuss in this work has been proposed by

Espinoza, et al. [4]. There, they employ an adiabatic approach that entangles the spins

with the center-of-mass phonon mode to examine the possibility for faster gate operation.

They conclude that such fast gate operation (under one ms) should be possible with

this approach. This is an interesting new proposal for implementation of these types of

gates. Here, we examine in more detail the direct implementation of these gates. We

will see that the direct implementation does often suffer from the gates being too long

to be practical at this stage on current near-term hardware.

The original Mølmer-Sørenson gate [5] is a two-qubit spin entangling gate in the

form of a two-qubit phase gate. For this gate, the longitudinal direction of the spin is

defined as the direction where the phase between the two qubits is entangled, or, if you

like, it is the direction of the Ising spin-spin coupling in the effective spin Hamiltonian,

which is described in more detail below. This gate is engineered to preserve the number

of vibrational quanta excited in the system after the gate operation. However, it can

only be implemented in the presence of an effective longitudinal magnetic field for the

effective spins of the qubits, because the noncomutativity of the spin-spin coupling

terms of the Hamiltonian with an effective transverse field leads to extra spin-phonon

entangling contributions that cannot be removed, as we describe in more detail below.

This is often called the z-z phase gate, but in this work, it is actually an x-x phase

gate where the x direction for the spins (qubits) is called the longitudinal direction, as

we elaborate below. Note that the spin directions and what is called “longitudinal” for
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spins has nothing to do with what is called the longitudinal direction for the vibrational

modes of the ion crystal. The Mølmer-Sørensen gate is an important element to have,

as the creation of vibrational quanta leads to unwanted spin-phonon entanglement and,

ultimately, to decoherence when only the spin degrees of freedom are measured. So,

preventing such effective decoherence for each two qubit operation is critical to allowing

the computer to sequentially carry out a large number of gates with high fidelity and

increases the depth of the circuits that can be run on the machine. The generalization

by Rassumussen et al. [3] is in a similar spirit as the original Mølmer-Sørenson gate, in

the sense that it also employs the native Ising coupling that is mediated between the

effective spin degrees of freedom via the spin-dependent laser force, after one integrates

out the vibrational degrees of freedom. But it does not provide the same protection

that guarantees phonons are not created. Note, however, that the implementation can

be done with phonon creation limited by the detuning of the spin-phonon entangling

laser pulses. The question of whether the additional phonon creation will make it more

difficult to implement these multiqubit gates is difficult to answer without performing

a full simulation that includes the phonon effects. But, earlier work on quantum

simulation with ion traps [6, 7], showed that the main effect of the phonon creation

was to make the system evolve as if the spin-spin couplings had no time dependence.

For this reason, we do not directly address phonon-creation effects here, but instead, we

focus on a simpler approach to describe the gate using an effective spin-only formalism.

We do this because we want to first determine whether the operational time of these

multiqubit gates is competitive with the times one would have for one and two-qubit

decompositions of these gates. Only if this is true, does it make sense to further pursue

employing these gates in this fashion on ion trap quantum computers.

The original ion trap hardware involves ions trapped in a (typically) linear Paul trap

with sufficient optical access to allow for lasers that induce the spin-dependent forces

and that allow readout of the quantum state via selective atomic cycling transitions (the

zero state is bright and the one state is dark, for example). It has been known for years,

that one can only hold a modest number of ions within a single linear trap, and still

have sufficient control over the system to apply the different quantum gates. To allow

these systems to be scaled to large numbers of qubits, the idea of shuttling ions from one

region to another was proposed [8, 9]. In a shuttling ion-trap computer, one moves ions

to different regions of the device in such a fashion that the spin degrees of freedom are

not affected by the motion through the system. Within such architectures, one usually

has interaction zones, where ions that will be entangled are moved into the zone, while

all other ions are far away [2, 10]. In this work, we rely on such interaction zones, so that

“global” operations on all qubits in the interaction zone can be carried out at the same

time. Commercial versions of such an ion trap computer are available [10] (currently

using two-ion interaction zones), and they also exist in scientific labs [2] (currently using

two-, three-, or four-ion interaction zones).

The proposal in Ref. [3], provides a general strategy for implementing the n-

qubit i-Toffoli gate (it is not a standard Toffoli gate, because it both flips the target
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qubit and produces an additional phase of i to the quantum state when it flips the

target). Its emphasis is on employing these gates within error correcting schemes. But

such gates arise in many other contexts as well, including time evolution by the sum

over unitaries algorithm (where one needs a select unitary operation) [11] and in the

implementation of Kraus maps for driven-dissipative systems (which often use multiple

controlled operations) [12, 13, 14]. They also can be used in simplifying circuits for high-

order unitary coupled cluster state preparation in a factorized form. The unitary coupled

cluster approximation applies unitary operators involving n-fermion excitations (and de-

excitations) from the Hartree-Fock state. Chemists usually employ all single fermion

and double fermion excitations in the variational ansatz. But as molecules become more

strongly correlated, higher-order excitations are needed, including triples and quads and

beyond. The circuit complexity for higher-order excitations grows (typically a quad

excitation requires an order of magnitude more one- and two-qubit gates than a double

excitation does), but if one uses multiple controlled rotations as elementary circuit

elements, then more efficient implementations of higher-order excitations (which also

employ additional ancilla) can significantly reduce the circuit depth [15], as opposed to

the standard implementation [16].

The organization of this work is as follows: in Sec. II, we present the formalism

for how one describes ion-trap systems; in Sec. III, we describe the details for how to

implement the i-Toffoli gate within the ion-trap systems; in Sec. IV, we present numerical

simulations of the gate implementations and we provide conclusions in Sec. V.

2. Formalism for an ion-trap quantum computer

We provide a formal description for how quantum computing is implemented within

an ion-trap-based quantum computer. While most of these results here are a backdrop

for how to work with ion traps, we are careful to provide explicit details for the time

evolution of the system, which involves a number of subtle points, even if the phonon

degrees of freedom are ultimately integrated out, as we do in this work.

2.1. Ion trap effective spin Hamiltonian

We choose to be concrete and focus on a specific ion-trap system and choose to work with

the 171Yb+ ion because it is commonly used in many different quantum systems [17, 10],

while calcium is used in other shuttling quantum computers [2]. Of course, while the

details change for other ions, the general methodology is similar for other systems and

it would be too much to try to describe all possible ions here. We follow closely the

description given in Ref. [7]. The use of the Yb+ system here is simply to compute the

precise spin-spin interactions as a function of a specific detuning, given a typical set of

trap frequencies. It is not to provide the final design of a specific ion-trap system, but

the concrete choice allows us to estimate times of operation of the gate in seconds.

One of the advantages of ion-trap systems is that they work with nearly ideal qubits
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given by atoms that are employed in atomic clocks—these systems are both well-studied

and understood, but they also have coherences for the qubit states that last essentially

as long as is needed for any quantum computation. Of course these systems still have

significant decoherence, which arises from other mechanisms.

It is common then to use the hyperfine clock states of the ions as the pseudospin

states of the quantum computer (these states often have zero total z-component

of angular momentum, which makes them insensitive to stray experimental or real

magnetic fields, to first-order). The two hyperfine energy levels are the spin up

(computational zero) and spin down (computational one) states of the qubit; these

states are separated in energy to make it easier to address and measure them. The

Hamiltonian that describes the energies of these two levels for an N -qubit ion-trap

system is then given by

Ĥ0 =
N∑
i=1

~ω0

2
σZj , (1)

where i refers to the different ion sites and ~ω0 is the energy difference between the

pseudospin states. The spins are described with Pauli matrices, so that ŜZi = ~
2
σZi . In

the 171Yb+ system, we use the hyperfine clock states with total (nuclear and electronic)

z-component of angular momentum equal to zero, given by the |F=0,mF=0〉 and

|F=1,mF=0〉 states. The frequency difference between the energy levels is a quadratic

function of the magnetic field, given by 12, 642, 812, 118.5+310.8B2 Hz, with B measured

in Gauss [18]. This varies so weakly with respect to typical experimental magnetic fields

(on the order of a few Gauss) that we can take it to be a constant given by ω0 ≈ 12.6 GHz.

Because the ions are trapped in space (typically at the zeros of the effective

electromagnetic pseudopotenial of the system), they also have vibrational motion

relative to these equilibrium positions (we ignore the micromotion in this work). The

phonon Hamiltonian that describes these harmonic-oscillator modes is expanded in

terms of the normal modes of the motion (determined by a simple classical analysis

for the pseudopotential) [21, 22]

Ĥph =
∑

α=x,y,z

N∑
ν=1

~ωαν
(
â†αν âαν +

1

2

)
, (2)

where ν is the index of normal mode and α denotes the spatial direction (x, y, or z).

Our notation uses x, y, z to represent the spatial directions of the trap and X, Y, Z to

indicate the pseudospin directions. The spatial motion separates into longitudinal (z)

and transverse (x and y) oscillations. The longitudinal harmonic modes (along the

one-dimensional trapping direction) are lower in energy than the transverse harmonic

modes, and one usually works with the transverse modes in an ion trap-based gated

quantum computer (where the center-of-mass normal mode is the highest-energy normal

mode). Often the trap has some asymmetry in the transverse direction, but we

ignore this small effect here. Using the raising and lowering operators of the normal

modes, we find that the αth spatial component of the position of ith ion is given by
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δR̂
α

i =
∑

ν b
αν
i

√
~

2mωαν

[
aαν + a†αν

]
where bανi is the νth normal mode at the ith ion site

and in the α direction.

In the Yb system, one addresses the ions via a spin-dependent force that is

implemented with two laser beams detuned from a Raman transition to a third higher-

energy atomic state. By detuning away from the precise transition, one can reduce

spontaneous emission effects and continuously drive the qubit as if it is being acted

on by a Pauli X operator, which flips the spin from up to down (we will drop calling

these clock states pseudospins from now on). A typical experimental implementation

uses both red and blue detuned lasers because this provides additional stability to the

applied spin-dependent force; this arises from the fact that keeping the red and blue

beams completely out of phase (easily attainable via an acoustic optical modulator)

fixes the direction of the spin-dependent force—this is more difficult to achieve with a

single detuned beam. Additional theoretical [19] and experimental [20] results on this

approach have been discussed as well. The effective Hamiltonian for the time-evolution

is constructed by first going to the interaction representation with respect to the qubit

Hamiltonian in Eq. (1), using the rotating-wave approximation and keeping only the

“slow” terms, expanding the wavevector dependence in the Lamb-Dicke limit, keeping

only the red and blue sideband transitions, and adjusting the phases of the laser beams

to an appropriate phase lock (for further details, see Ref. [7]). The net effect, is a laser-

ion Hamiltonian which drives the spin-flip transition between the qubits and is given

by

ĤLI(t) = −~
N∑
i=1

Ωi∆k · δR̂i(t)σ
X
i sin(µt), (3)

where Ωi is the effective Rabi frequency at the ith ion site and µ > 0 is detuning of

the laser (also called the beatnote frequency, the phonons are driven to the blue of

the transverse center-of-mass mode). Note that in this derivation we dropped a fast

oscillating and low amplitude term driven by the carrier transitions.

In addition, we also engineer an additional uniform effective magnetic field

(Zeeman) term by applying two lasers with frequencies separated by ω0. The phases

of the lasers are locked to be out of phase by precisely π, to get rid of the red and

blue sidebands. A second phase can then be adjusted to determine the direction of the

effective magnetic field, while an acoustic-optical modulator is employed to adjust the

amplitude of the field as desired. This Hamiltonian term is then

ĤB(t) =
N∑
i=1

B(t) · ~̂σi, (4)

where we use a nonstandard, but common, notation for the sign of the effective field-

spin coupling. Finally, because we went into the interaction picture with respect to

the initial qubit Hamiltonian, the final Hamiltonian for the dynamics of the system is

Ĥ(t) = Ĥph + ĤLI(t) + ĤB(t). Note that all time dependence with respect to Ĥ0 has

already been incorporated here, so we do not add additional e±iω0t dependence to the

X or Y Pauli spin operators. Our dynamics will now be determined by Ĥ(t).
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2.2. Time-evolution operator

The time evolution of our system is found from the time-evolution operator. Motivated

by the interaction picture, we will develop the time evolution in a hierarchical fashion

by factorizing the time-evolution operator in steps. First, we develop the time evolution

in the interaction picture with respect to the time-independent piece Ĥph. This extracts

the factor exp(−iĤpht/~) to the left, so that

Û(t) = Tte−
i
~
∫ t
0 Ĥ(t′)dt′ = e−

i
~ ĤphtÛI(t), (5)

with ÛI(t) the standard interaction-picture time-evolution operator with respect to

the phonon Hamiltonian and Tt denoting the time-ordering operator. The interaction-

picture time-evolution operator satisfies the following equation of motion

i~
d

dt
ÛI(t) =

[
e
i
~ ĤphtĤLI(t)e

− i
~ Ĥpht + ĤB(t)

]
ÛI(t), (6)

because the magnetic-field Hamiltonian commutes with the phonon Hamiltonian.

Evaluating the Hadamard lemma on the laser-ion Hamiltonian simply changes the

phonon raising and lowering operators into the interaction-picture operators, given by

aIαν(t) = aανe
−iωανt and a†Iαν(t) = a†ανe

iωανt. We denote this interaction-picture laser-ion

Hamiltonian by ĤI
LI(t).

Now, we can perform a second factorization by following the methodology used in

Landau and Lifshitz [23] and in Gottfried [24] for the driven harmonic oscillator. We

define an operator ŴI(t) =
∫ t

0
dt′ĤI

LI(t
′) that has no time ordering to it. Note that

d
dt
ŴI(t) = ĤI

LI(t). Using this operator we can factorize the unitary operator ÛI as

ÛI(t) = e−
i
~ ŴI(t)ÛII(t). While the time derivative of ÛI(t) is known, the time derivative

of e−
i
~ ŴI(t) is complicated and cannot be immediately evaluated, because it is not a

time-ordered product. Nevertheless, the equation of motion for ÛII(t) can be directly

found by starting from the equation of motion of ÛI(t) and isolating the terms for ÛII(t),

which yields

i~
d

dt
ÛII(t) = e

i
~ ŴI(t)

[
−i~ d

dt
+ ĤI

LI(t) + ĤB(t)

]{
e−

i
~ ŴI(t)ÛII(t)

}
, (7)

where the time derivative acts on both terms in the curly braces on the right hand side.

The Hadamard lemma expressions corresponding to the similarity transformations with

respect to the exponentials of ŴI(t) can be evaluated explicitly for the first two of the

three terms because the commutator of the laser-ion Hamiltonian (in the interaction

picture) with itself at two different times produces an operator proportional to σX ,

which commutes with the laser-ion Hamiltonian. (The Hadamard lemma is the name

often used for the identity eÂB̂e−Â = B̂ + [Â, B̂] + 1
2
[Â, [Â, B̂]] + · · ·, which involves

n-fold nested comutators in the nth-order term and is employed in proving the Baker-

Campbell-Hausdorff identity.) Further details of the derivation are given in Ref. [7]. We

have

e
i
~ ŴI(t)

(
i~
d

dt

)
e−

i
~ ŴI(t) = ĤI

LI(t) +
i

2~
[ŴI(t), ĤI

LI(t)], (8)
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e
i
~ ŴI(t)ĤI

LI(t)e
− i

~ ŴI(t) = ĤI
LI(t) +

i

~
[ŴI(t), ĤI

LI(t)], (9)

e
i
~ ŴI(t)ĤBe

− i
~ ŴI(t) =

N∑
i=1

[
B(t) · ~̂σi +

i

~
[ŴI(t),B(t) · ~̂σi] + · · ·

]
; (10)

this last term is an infinite series that typically does not terminate. For a vanishing

transverse magnetic field, given by BY (t) = BZ(t) = 0, Eq. (10) simplifies to the

Zeeman Hamiltonian of Eq. (4) even in the interaction picture. In such a case,

our interaction picture Hamiltonian reduces to a simple spin Hamiltonian Ĥs(t) =
i

2~ [ŴI(t), ĤI
LI(t)] + ĤB(t). Because the spin operators σXi in both ŴI(t) and ĤI

LI(t)

commute, one can easily derive that the time-dependent Ising spin Hamiltonian is given

by

Ĥs(t) =
N∑

i,j=1

Jij(t)σ
X
i σ

X
j +

N∑
i=1

BX(t)σ̂Xi , (11)

where we have defined Jij(t) as the time-dependent spin-exchange interaction and it is

given by [25]

Jij(t) =
~
2

∑
ν

ΩiΩjη
2
xνb

xν
i b

xν
j

µ2 − ω2
xν

[ωxν − ωxν cos 2µt− 2µ sin(ωxνt) sin(µt)](12)

= J0
ij + ∆Jij(t). (13)

Here, J0
ij is the time-averaged exchange interaction and ∆Jij(t) is the time-dependent

part of the exchange interaction. We used the Lamb-Dicke parameter for the xν mode,

given by ηxν = ∆kx

√
~

2mωxν
. ∆kx is the x-component of the difference in the wavenumber

for the two laser beams applied to the ion crystal. Note that the exchange interactions

are generically time-dependent. Yet, most analysis of ion-trap simulators assumes the

time-independent exchange interactions only. While this may sound like an extreme

approximation, it actually works quite well in many cases. Part of the reason why is

that the entanglement of the phonons with the spins in the system tend to dampen the

oscillations from the time-dependent spin exchange. Note further that our summation

is over all i and j. It is common to remove the (unimportant) constant terms that

arise when i = j and to combine the terms with unequal indices into a summation over

the neighboring pairs, with an exchange constant that is twice as large. In this work,

however, we continue to freely sum over both indices, but we set the diagonal terms to

zero, because they are unimportant (J0
ii = 0).

When the transverse field is non-zero (we assume a nonzero effective field in

the Y-direction only), we are left with a residual Hamiltonian given by Ĥres(t) =

e
i
~ ŴI(t)ĤB(t)e−

i
~ ŴI(t) − ĤB(t) after extracting the spin Hamiltonian. This residual

Hamiltonian produces the residual spin-phonon interactions and is responsible for

additional spin-phonon entanglement (the operator ŴI(t) also entangles spins with

phonons). But, we can still factorize ÛII into two terms: ÛII(t) = Ûspin(t)Ûent(t),
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where the spin evolution operator is now given by

Ûspin(t) = T exp

[
− i
~

∫ t

0

dt′

(
N∑

i,j=1

Jij(t
′)σXi σ

X
j +B(t′)

N∑
i=1

σYi

)]
. (14)

We defined Ĥspin(t) = i[ŴI(t), ĤI
LI(t)]/2~ + ĤB(t) in the exponent. This factorization

gives the following equation of motion for the entanglement evolution operator:

i~ d
dt
Uent(t) = U †spin(t)Ĥres(t)Uspin(t)Uent(t).

This entanglement operator is generally quite complicated. If the time dependence

of the transverse component of the effective magnetic field is rapid, then this time-

evolution operator is close to one. In other cases, one needs to approximate it, or

include it exactly, which can be done by solving for the time evolution of the combined

spin and phonon systems. We will not do this here, though.

3. n-qubit i-Toffoli gates

Rasmussen et al. [3] describe the basic principles behind creating an i-Toffoli gate. We

briefly summarize their strategy before describing how to carry it out in an ion-trap

system. The methodology uses a technique termed selective subspace inversion. We

illustrate the principle using a time-independent Ising Hamiltonian with n + 1 spins

ĤIs =
∑n+1

i,j=1 J
0
ijσ

X
i σ

X
j where the exchange coefficients can be thought of as the time-

averaged terms in Eq. (12). In an actual implementation, we will be working just with

the chain of ions in the interaction zone, so we will have N = n + 1. We represent the

states using Ising spins in the X-basis and denoted by |σ1, σ2, · · · σn+1〉 for the many-

body tensor-product state given by |σ1〉⊗|σ2〉⊗· · ·⊗|σn+1〉; here σi is the corresponding

eigenvalue in the X-direction, which is given by ±1 (abbreviated to ±). The first spin

will be the target qubit; the remaining n spins are the control qubits. These states are

all eigenstates of ĤIs with vanishing magnetic field, whose energies can be represented

by

E|σ1···σn+1〉 =
n+1∑
i,j=1

Jijσiσj. (15)

We define the energy difference between target states, with a fixed control state,

via

∆σ2,···,σn+1 = E|+,σ2,···,σn+1〉 − E|−,σ2,···,σn+1〉 = 4
n+1∑
i=2

J0
i1σi, (16)

where we used the fact that J0
ij = J0

ji. Then the Hamiltonian of the target spin for each

control state is given by

Hσ1,···σn+1 =
1

2
∆σ2,···,σn+1σ

X
1 +

1

2
(E|+,σ2···σn+1〉 + E|−,σ2···σn+1〉)I. (17)

We think of this situation as the target qubit spin being in an effective magnetic field

determined by the control qubits. The goal of the i-Toffoli gate is to flip the target spin
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if the control qubits have a specific value. This can be done by applying a field in the X-

direction that cancels the control field 1
2
∆σ2=+,···,σn+1=+ (corresponding to the coefficient

of the σX1 term when the ancilla are in the state for which the gate is controlled) and

also simultaneously applying a field in the Y -direction that is a π
2
-pulse to flip the spin.

Of course, when the longitudinal field is not zeroed out (that is, when the ancilla are in

any other state), there is a time evolution of the system, but if the longitudinal field is

large for all other cases (|∆ − Bx| � By), then it is difficult for the target spin to flip

in the cases that are not signalled by the control qubits because the system is not on

resonance. Hence, the field we apply is

~B = −1

2
Bx~ex +By~ey, (18)

and by tuning the control field Bx, we will be able to control the gate operation. Our

full Hamiltonian is time-independent (except for the turn-on and turn-off of the extra

field), so we can immediately determine the time evolution when the extra field is on.

We first write the full Hamiltonian using the eigenbases for the control qubits as

H =
∑

σ2,···,σn+1

(
1

2
(∆σ2,···,σn+1 − Bx)σ

X
1 +Byσ

Y
1 (19)

+
1

2
(E|+,σ2,···,σn+1〉 + E|−,σ2,···,σn+1〉)I2

)
⊗ |σ2, · · · , σn+1〉 〈σ2, · · · , σn+1|

since the Hamiltonian is diagonal with respect to the control states. The time evolution

operator is then straightforward to write down and it is

Û(t) = e−iĤt (20)

=
∑

σ1,···σn+1

e−
i
2

(E|+,σ2,···,σn+1〉+E|−,σ2,···,σn+1〉)t

×
(

cos
√

1
4
(∆σ2,···,σn+1 − Bx)2 +B2

yt |σ1〉 〈σ1|

+ i
sin
√

1
4
(∆σ2,···,σn+1 − Bx)2 +B2

yt√
1
4
(∆σ2,···,σn+1 − Bx)2 +B2

y

(σ1

2
(∆σ2,···,σn+1 − Bx)|σ1〉 〈σ1|

+By

(
|σ1〉 〈−σ1|+ | − σ1〉 〈σ1|

))
⊗ |σ2, · · · , σn+1〉 〈σ2, · · · , σn+1|.

Now it is clear how we proceed. We fix Bx to equal the ∆σ2,···,σn+1 for the desired

control qubit sequence and choose the product so that Byt = π
2
. This then will flip

the target qubit and multiply it by a factor of i for the quantum state corresponding

to the control qubit; one can also achieve the same result when Byt = (2n+1)π
2

,

but because we want fast operation of the circuits, we will focus on the case with

n = 0). Other control configurations will have a complicated time evolution that is

given by Eq. (20). The argument given in Ref. [3] is that when |∆ − Bx| � By,

then the phase will be almost that of the free time evolution in the absence of By.

Indeed, by expanding the time evolution when the By component is small relative to

|∆ − Bx|, the corrections to the proper time evolution (corresponding to By = 0 and
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given by
∑

σ1,···,σn+1
exp(−iE|σ1,···,σn+1〉t)|σ1, · · · , σn+1〉 〈σ1, · · · , σn+1|) are proportional to

By/|∆ − Bx| = π/(2|∆ − Bx|t) � 1. This is what must be small to guarantee small

errors and improve the gate fidelity. But note that the form of this gate is never error

free! Nevertheless, it does suggest that running the gate for a longer time with a smaller

By is preferable to reduce the errors. This protocol also allows us to run an n-qubit

“i-select” gate, which is determined by simply choosing the Bx field appropriately for

the desired select operation in addition to the simpler Toffoli gate.

We now describe how such a gate can be used as a standard Toffoli or select gate

(without the extra phase of i). The strategy is to run the full Toffoli control qubits and

the target qubit as ancilla. Then, when the target ancilla has been controlled, we can

use that ancilla qubit only to control the system, with a standard two-qubit control.

We just have to keep in mind the phase kickback of i, which may require additional

controlled z rotations in any given circuit.

How does this work in an ion trap? While it can be carried out, in principle, for

all ion-trap quantum computers, for concreteness, we describe how this works on an

ion-trap quantum computer that uses shuttling of ions. Then one has only the target

and control ions in the interaction zone during the application of the gate. So we have

N = n + 1 in this case. By choosing the detuning, one can adjust the values for the

exchange coefficients and thereby engineer the different ∆ values. But, these systems

have two parity symmetries, which show that when the transverse field is nonzero, the

energy eigenstates typically mix two or four parity reflected states. One parity is the

spin reflection parity (where the spins in the X and Z directions are inverted, but the

Y component is preserved). There is no state in the product-state representation with

respect to the X eigenstates that is invariant with respect to this parity operation. The

second parity is a spatial reflection symmetry about the center of the ion crystal. There

are a number of product states invariant under this parity operation (such as the all

up state). The presence of this symmetry need not cause problems with the operation

of the gate, but it does mean that the control qubit states no longer are instantaneous

eigenstates during the gate operation (due to the nonzero transverse field). Since the

gate requires precise timing, it is at these times that the states return to their product

state form (valid when By = 0) and thereby timing errors for the gate operation may

lead to some undesired entanglement generation in the gate. Or, stated in other words,

one must achieve precise timing control to successfully run these gates.

A secondary issue for the gate operation is that the exchange constants are actually

time dependent. As has been seen in numerous experiments [26, 27, 6], this time

dependence turns out not to have a significant impact on expected results if one

approximates instead with the time-averaged exchange constants. This may require

the gate operation to be longer than some threshold time for the system to properly

average over those time-dependent exchange terms. We examine this question below.

Finally, there are potential issues that arise from the spin-phonon-entangling

unitary time evolution during the gate operation. While we plan to keep the transverse

field small, the product of the field times the time it is applied satisfies Byt = π
2
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and remains nonnegligible; this could give rise to extra unwanted errors due to the

additional entanglement generated by the spin-phonon-entanglement piece of the time-

ordered product. We will not model such effects in this paper. In general, these effects

tend to be small in most calculations, as seen when one simulates the full spin-phonon

system [7]. Since the gate involves transverse fields, one cannot ignore the effect of the

phonons during the gate operation, unlike the Mølmer-Sørenson gate, where phonon

effects can be completely removed. If these phonon entangling effects turn out to be

important, then one would need to simulate a system that includes the phonon creation

explicitly in the calculations. Such calculations are significantly more complicated than

the spin-only calculations performed here. There is no indication, at this time, that

such a generalization will be needed to describe these gates. But, typically when phonon

effects are included, the results lie in between that of a system with time-independent

spin exchange, versus one with the full time dependence. So, this work also shows

whether one would expect phonon effects to be important to include. At this stage,

they do not appear to be needed.

4. Numerical results

We start our numerical work by considering the i-Toffoli gate (Bx = ∆σ2,···,σn+1 when

σ2, · · · , σn+1 are all up). To verify this, we simulate the time-dependent Schrodinger

equation for the spin-only Hamiltonian (both with time averaged and time-varying

exchange coefficients). To be concrete, we choose to use the experimental parameters

used in Ref. [7] (and tabulated below). The differential equation is solved by employing

the “ode23” differential equation solver from MATLAB.

4.1. Two-bit i-Toffoli gate

We consider the simplest example of a state selective i-Toffoli gate; that is, when n = 2

(two control qubits, one target qubit), the doubly controlled i-Toffoli gate. For this

gate, we must have three ions coupled together. Although these ions can be either in

the interaction zone of a shuttling ion-trap computer or coupled via tightly focused light

on a larger ion-trap quantum computer, we assume the former, so that our entire system

consists of just the three ions. We also assume that the laser-spin interaction is given by

the form discussed above with realistic parameters for an ion trap. Then, from Eq. (16),

when all control qubits are in the up state, we have that ∆σ2,σ3 = −4(J12 + J13). We

detune our laser frequency close to the transverse center-of-mass phonon mode. then we

obtain J12 ≈ J13. Note that J is actually time-dependent [see Eq. (12)], but as discussed

above, it is often appropriate to work with the time-averaged exchange coefficients, so,

we set Bx = −8Jrms, where Jrms =
√∑

i>j |2J0
ij|2/N(N − 1) where N = 3 is the total

number of ions.

We use the following concrete parameters (all frequencies are angular frequencies)

ωCM = 2π × 4.63975 MHz, Lambe-Dicke parameter η = 0.06, Rabi frequency Ω =
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2π × 369.7 KHz and a detuning of µ = 1.0095ωCM . The trap anisotropy is 0.2092

for cases where the total number of ions is even and 0.1 for cases where the total

number of ions is odd (which is what we have here). Since, we have excited near

the center-of-mass mode, Jij is approximately the same for all exchange couplings and

Jrms/~ = J0/~ ≈ 2π × 926.019 Hz. We perform simulations for two cases: (a) We

ignore the time-dependence of the exchange interaction and consider the model with

static exchange coupling only and (b) we use the exact form of J(t) as given in Eq. (13).

For both cases, we take By/~ = 2π × 75.98 Hz, with case (a) given in Fig. (1) and case

(b) in Fig. 2, respectively.

Figure 1. Two-i-Toffoli gate with static exchange coupling parameters summarized

in the text. We plot the probability for the target state to be in |+〉 (solid line)

and |−〉 (dashed line), when the control qubits are in state |−,−〉 (red). All the

other orientations of control qubits lead to probabilities given by the blue lines. This

plot shows near perfect operation when the gate runs over a long operation time of

approximately 3 ms.

These results clearly show that the best operation occurs for the simple π/2-pulse.

If we extend the simulations to longer times, we find, for example, that for the 21π/2

flip the probability of success decreased to 0.8298 for time-dependent J and 0.9591 for

the static case. This confirms that the gate fidelity continues to drop for longer runs.

Experience with other simulations that include the full time-dependent effects of

phonons showed that when those full effects were included, results were in between those

of the static exchange constants and the time-dependent ones. So, to compute what is an

expected lower bound on the fidelity, we perform the remaining calculations with time-

dependent exchange coefficients (but no phonons). One cannot rigorously verify that it

is a true lower bound, without actually including the phonons in the calculations—this

lies beyond the scope of this work.
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Figure 2. Two-i-Toffoli gate for time-dependent exchange coupling. We plot the

probability for the target state to be in |+〉 (solid line) and |−〉 (dashed line) when

control qubits are in state |−,−〉 (red). All the other orientations of control qubits lead

to probability variation represented by blue lines. Comparing to Fig. 1, we see that

the fidelity erodes for longer times and due to the time-dependence of the exchange

coefficients. Compare the time-independent results of 0.9999 to the time dependent

results of 0.9985 and 0.9724 for the first two periods of run times.

Note that the success of the gate depends on the assumption that |∆− Bx| � By

for the off-resonant spaces. We examine how the gate fidelity varies by increasing By.

This makes the gate run faster, at the expense of reduced fidelity. This can be seen in

the Fig. 3.

The probability for the target state to flip, Pflip, (which is required when control is

correct) and to not flip, Pno flip, (required for all other control combinations) for different

values of By are listed in the Table 1. One can see that the probability to flip under the

control is nearing 0.999, but the probability to flip for other control bits, is nearly 4%

in the worst case. While this is reasonable operation fidelity, the error is still somewhat

high. It may require more engineering of the field, detuning, etc. to achieve better

operation.

What is interesting about this approach is that the gate fidelity for the target spin

to flip when the control is correct, remains essentially unchanged as By is increased. The

problem we encounter is that faster operation induces target spin flips in cases when

the control is such that they should not flip. This will be an unacceptable gate error, as

the probabilities for these “false” flips are sizable. We find a good transverse field seems

to be equal to be about 1/10th of our Jrms. Note, however, that because the periods

of the oscillations of the target qubit probabilities depend on the different control bit

states, it may be possible to engineer a fast gate operation where we have high fidelity

for all possible control qubit configurations by engineering the highest fidelity for the
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Figure 3. Probability for the target qubit to be in the |+〉 (solid line) and |−〉 (dashed

line) when the control qubits are in the |−,−〉 (red) and |+,+〉 (blue) state and By/~
equal to (a) 2π × 759.8 Hz and (b) 2π × 7598 Hz.

Control Qubits By/~ = 2π × 759.8 Hz By/~ = 2π × 7598 Hz

Pflip Pno flip Pflip Pno flip

|−,−〉 0.9986 0.0014 0.9992 0.0008

|−,+〉 0.0373 0.9627 0.3640 0.6360

|+,−〉 0.0373 0.9627 0.3640 0.6360

|+,+〉 0.0116 0.9884 0.5952 0.4048

Table 1. Probabilities of flipping the target state for different By values and all

possible control states in a two-bit i-Toffoli gate.

other control bit configurations to occur at the same time as the π/2 pulse for the all

down control. This requires a significant optimization procedure, which is beyond the

scope of this work and may be difficult to implement if it requires precise timing and

high accuracy in applying the gate.

Next, we examine the effect of the detuning, as we move further from the transverse

center-of-mass mode frequency (moving further into the blue). For the case where

By/~ = 2π × 75.98 Hz, we find a degradation of the probability to not flip when the

control qubits are in the wrong state, and also a degradation of the switching probability,

when the control configuration is correct. These results are shown in Fig. 4.

The most likely reason for this is that the energy spacings decrease as the detuning

is made larger, which creates a higher probability for an error with respect to the state

of the control qubits.
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Figure 4. Probability for the target qubit to be in the state |+〉 (solid line) and |−〉
(dashed line) when the control qubits are in the |−,−〉 (red) and |+,+〉 (blue) states

for By/~ = 2π × 75.98 Hz and the detuning µ/ωCM equal to (a) 1.0380, (b) 1.0655,

(c) 1.0950.

Control |−,−,−〉 |−,−,+〉 |−,+,−〉 |−,+,+〉 |+,−,−〉 |+,−,+〉 |+,+,−〉 |+,+,+〉
Pflip 0.99582 0.00029 0.00029 0.00004 0.00029 0.00004 0.00004 0.00003

Table 2. Probability to flip the target state for all possible control states of a 3-bit

i-Toffoli gate. Note that the probability not to flip is 1 − Pflip.

4.2. n-bit i-Toffoli gate

Since we have proposed a method to implement an n-bit i-Toffoli gate, we also ran

simulations for n = 3, 4 and 5 by taking µ values such that Jrms was nearly equal for

all cases. These simulations are shown in Fig. 5. The detunings used were:

• n=3: µ = 1.00713ωCM ⇒ Jrms/~ = 2π × 926.307 Hz

• n=4: µ = 1.00571ωCM ⇒ Jrms/~ = 2π × 925.924 Hz

• n=5: µ = 1.00476ωCM ⇒ Jrms/~ = 2π × 925.876 Hz

For these parameters, the probabilities to flip for different combinations of control

qubits for n=3, 4 and 5 have been tabulated in Tables 2, 3 and 4. We see from the

tables that probability to flip is large only when control is correct; i.e., |−,−,−〉.
One can see that the fidelity remains quite high for these cases. This means scaling

these gates to larger n values should be viable if the gate operation is short enough for

efficient use in digital circuits.
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Figure 5. Probability for the target qubit to be in the state |+〉 (solid line) and |−〉
(dashed line) when the control qubits are in the all down (red) and all up (blue) states

for n equal to (a) 3, (b) 4 and (c) 5.

Control |−,−,−,−〉 |−,−,−,+〉 |−,−,+,−〉 |−,−,+,+〉
Pflip 0.99851 0.00006 0.00006 0.00004

Control |−,+,−,−〉 |−,+,−,+〉 |−,+,+,−〉 |−,+,+,+〉
Pflip 0.00005 0.00004 0.00004 0.00005

Control |+,−,−,−〉 |+,−,−,+〉 |+,−,+,−〉 |+,−,+,+〉
Pflip 0.00005 0.00004 0.00004 0.00005

Control |+,+,−,−〉 |+,+,−,+〉 |+,+,+,−〉 |+,+,+,+〉
Pflip 0.00004 0.00003 0.00003 0.00009

Table 3. Probability to flip the target state for all possible control states of a 4-bit

i-Toffoli gate. Note that the probability not to flip is 1 − Pflip.

4.3. Two-bit i-select gate

A select gate is a more complicated gate than a Toffoli gate. In a select gate, the target

will flip for any of the chosen controls and we have a tunable (or programmable) ability

to select the control configuration (in this case by adjusting the Bx value). The select

gate is used for the sum over unitaries algorithm and is likely to have wide application

in fault-tolerant quantum computers. Here, we discuss the possible applications in noisy

intermediate scale quantum computers.

In the previous i-Toffoli gates described above, we used the center-of-mass mode

because the longitudinal magnetic field lifts the degeneracy of the control state and

detuning to the blue of the transverse modes produces no cross-talk with other phonon
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Control |−,−,−,−,−〉 |−,−,−,−,+〉 |−,−,−,+,−〉 |−,−,−,+,+〉
Pflip 0.99223 0.00027 0.00025 0.00013

Control |−,−,+,−,−〉 |−,−,+,−,+〉 |−,−,+,+,−〉 |−,−,+,+,+〉
Pflip 0.00025 0.00013 0.00015 0.00979

Control |−,+,−,−,−〉 |−,+,−,−,+〉 |−,+,−,+,−〉 |−,+,−,+,+〉
Pflip 0.00025 0.00019 0.00019 0.00898

Control |−,+,+,−,−〉 |−,+,+,−,+〉 |−,+,+,+,−〉 |−,+,+,+,+〉
Pflip 0.00019 0.00898 0.00898 0.00002

Control |+,−,−,−,−〉 |+,−,−,−,+〉 |+,−,−,+,−〉 |+,−,−,+,+〉
Pflip 0.00025 0.00019 0.00019 0.00898

Control |+,−,+,−,−〉 |+,−,+,−,+〉 |+,−,+,+,−〉 |+,−,+,+,+〉
Pflip 0.00019 0.00898 0.00898 0.00002

Control |+,+,−,−,−〉 |+,+,−,−,+〉 |+,+,−,+,−〉 |+,+,−,+,+〉
Pflip 0.00010 0.01366 0.01030 0.00001

Control |+,+,+,−,−〉 |+,+,+,−,+〉 |+,+,+,+,−〉 |+,+,+,+,+〉
Pflip 0.01030 0.00001 0.00002 0.00001

Table 4. Probability to flip the target state for all possible control states of a 5-bit

i-Toffoli gate. Note that the probability not to flip is 1 − Pflip.

modes, since they are all lower in energy. But, when we need to also perform state

inversion for control qubits in the |−,+〉 state, we find that ∆σ2,σ3 is the same for

both control configurations |−,+〉 and |+,−〉 in this case. Hence, we cannot invert the

target qubit for each control-qubit configuration separately. To achieve a true select

qubit operation, we can use detuning from the zigzag mode of the 3-ion system, which

has J12 = −2J = J23 and J31 = J where J is given by Eq. (13) with the phonon

eigenvector given by bzigzag = {0.4082,−0.8164, 0.4082}. In this mode, if we assign site

1 as the target ion site, we obtain four different values of ∆σ2,σ3 for the four different

combinations of control qubits.

We obtain ∆ ≈ 4J , 12J , −12J and −4J for control qubit state |−,−〉,
|−,+〉, |+,−〉 and |+,+〉, respectively. Therefore, we can simply adjust our effective

longitudinal magnetic field according to whichever subspace inversion is required and

we have created an i-select gate. To use the zigzag mode, we used the fact that the

transverse phonon mode frequency for zigzag mode is 0.9879 of the CM mode frequency.

Thus, ωzigzag = 2π × 4.58361 MHz. We used the detuning of 0.9905ωzigzag (to the red

of the zigzag mode) to perform the simulations of the select gate. The probabilities of

flipping the target state for a given subspace are tabulated in Table 5. The action of

select gate for the subspace ∆ = 12J has also been plotted in Fig. 6 in which we can see

that the target state flips only when control qubits are in |−,+〉 state. One can see the

performance here is excellent, even better than the center-of-mass tuned i-Toffoli gates.

Of course one does have to be careful when detuning to the red of the transverse zigzag
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Bx in terms of J

Control Qubits ≈ 4J ≈ 12J ≈ −12J ≈ −4J

|−,−〉 0.9995 0.0005 0.0004 0.0002

|−,+〉 0.0007 0.9997 0.0002 0.0004

|+,−〉 0.0003 0.0001 0.9945 0.0006

|+,+〉 0.0006 0.0004 0.0007 0.9972

Table 5. Probabilities of flipping the target state for different Bx and control states

in a 2-bit select gate at Byt = π/2. Note that the probability not to flip is 1 − Pflip.

This has better than 0.99 performance and is approaching 0.999 in many cases.

mode not to simultaneously be detuned close to the longitudinal modes, but that does

not occur in this case. The longitudinal mode frequency of the zigzag mode is given by

ωzigzag,L = 2.408ωCM,L. Since, for n = 2; i.e., a 3-ion system, our anisotropy is 0.1, we

have that ωCM,L = 0.1ωCM which implies that ωzigzag,L = 0.2408ωCM . This is far from

the red-detuned transverse zigzag mode at 0.9879ωCM . This means we are unlikely to

excite longitudinal modes when we detune to the red of the transverse zigzag mode.

Figure 6. Probability of the target state being in |+〉 (red) and |−〉 (blue) when

Bx = 12J and the control qubits are in state (a) |−,−〉, (b) |−,+〉, (c) |+,−〉 and

(d) |+,+〉. Other controlled cases are similar to this and are not shown. Detailed

quantitative data can be found in the accompanying table.

5. Conclusions

In this work, we examined the possibility of executing Toffoli and select gates as multi-

qubit gates in ion-trap-based quantum computers. We find that generically, one can

achieve fairly good fidelity of operation, but the gates tend to be slow (about an order
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of magnitude or more slower than two-qubit entangling gates). It is possible that one

can improve the speed of operation by precise tuning of parameters in the time-evolving

effective Hamiltonian of the spin system. We did not try to engage in this engineering

here, because it requires detailed knowledge of the parameters in the specific quantum

computer.

Our Toffoli gates were implemented by detuning near the center-of-mass mode and

the select gate by detuning near the zig-zag mode. The latter tended to have better

performance, even though that detuning has the possibility to drive other phonon modes

more easily.

We did not include the phonon creation in these calculations. Driving close to

phonon mode can create phonons entangled with the spins. Indeed, this effect has been

examined as a possible means to speed up the gate time of these circuits [4]. Further

work along these lines is certainly warranted.

In summary, this work shows that it should be possible to directly implement these

types of multi-qubit gates, although achieving high gate fidelity will be a challenge

that faces a number of additional obstacles not needing to be dealt with for two qubit

entangling gates. We hope that future work will investigate this behavior on quantum

hardware, possibly leading to the introduction of these gates as part of the native gate

set of ion-trap quantum computers.
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