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Figure 2. (a) Diagram of the vertical profiles for the Permafrost Water Balance Model (PWBM) showing characteristic water storage and flux elements for 
winter, late spring when active layer is developing, and a thawed profile consistent with summer in an area absent of permafrost. (b) Flowchart showing model 
parameterizations, forcings, outputs, and submodels used to estimate DOC loading and export to coastal zones. River routing of DOC mass loading is not 
employed in the present study.
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warming will likely result in shifts to greater riverine DOC exports from groundwater sources (Walvoord 

& Kurylyk, 2016). Key calibration and validation data to assist model development include river chemistry 

and discharge measurements during the shoulder seasons (Shogren et al., 2020) and observations of the 

quantity and quality of DOC in subsurface flow (Neilson et al., 2018; Connolly et al., 2020).

5. Conclusions

This study investigates the loading of DOC to rivers of the western Arctic derived from process modeling 

that involves dynamics of terrestrial hydrology and DOC production and mobilization. Results suggest that 

simulated runoff reflects the characteristic pattern of high flow following snowmelt, subsequent recession, 

Figure 9. (a–e) boxplots of monthly total DOC loading (Gg C) for the Y2M region, Mackenzie, Yukon, western, and northern Alaska regions shown in Figure 1. 
Northern AK region includes a small area just west of the Mackenzie delta that is not part of the 24 North Slope basins examined in Section 3.2 (Figure 7). Each 
boxplot depicts the distribution of monthly total loading across each regions for the 30 months over years 1981–2010. Boxplot rectangles bracket the 25th and 
75th percentiles. Whiskers extend to the 5th and 95th percentiles. Thick and thin horizontal lines mark the distribution mean and median respectively.
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and the relatively low flows during the cold season. Simulated annual totals for the four large basins exam-

ined agree well with observed runoff, and the seasonal cycles, based on monthly climatological runoff, are 

well simulated.

Our simulated leachate DOC concentrations for Alaska's North Slope drainage areas show a distinct east-

west gradient owing to spatial variations in soil organic carbon content and watershed hydrology (Connolly 

et al., 2018). While basin averages for the Kuparuk are similar in magnitude to available observations, the 

simulated DOC concentrations for Kuparuk basin grids exceed the range in observations, suggesting that 

loading per unit of soil organic matter may be less sensitive than the model predicts. DOC yields for the 

Mackenzie and Yukon show reasonable agreement with annual and seasonal total loading for spring and 

winter, although overestimates do occur for summer loading for the Yukon. The modeling points to relative-

ly equivalent loadings to watersheds draining north to the Beaufort Sea, and west into the Bering and Chuk-

chi Seas. Overestimates relative to flux data derived from river measurements near the coast are expected, 

as processing within streams and rivers through biological degradation and photo-oxidation reduces, in 

effect, the total mass transported downstream in the DOC pool (Lauerwald et al., 2012; Cory et al., 2014). In 

a scenario where losses for the North Slope rivers average 10%–20% and the large rivers 15%–25%, estimates 

in this study become closely aligned with river export mass fluxes described in recent studies.

Our modeling approach captures the spatial variability in DOC export, the characteristic seasonal variations 

in leachate DOC concentrations, and differences in concentrations of surface and subsurface runoff ob-

served in field studies. Process modeling of the lateral transfer of carbon and other nutrients in Arctic rivers 

provide a contemporary baseline for future model refinements and related studies of the biogeochemistry 

of Arctic coastal waters.

Data Availability Statement

The LAI data were obtained from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive 

Center (DAAC) (Mao & Yan, 2019), available at https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1653. The 

Arctic-GRO database is available online at the Cooperative Arctic Data and Information Service (CADIS) 

and Arctic-GRO websites (https://arcticgreatrivers.org/). Data used in the analysis are available from the 

ESS-DIVE data archive at https://data.ess-dive.lbl.gov/view/doi:10.15485/1809256 (Rawlins et al., 2021).
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