
remote sensing  

Article

Snow Phenology and Hydrologic Timing in the Yukon River
Basin, AK, USA

Caleb G. Pan 1,2,*, Peter B. Kirchner 3 , John S. Kimball 2 , Jinyang Du 2 and Michael A. Rawlins 4

����������
�������

Citation: Pan, C.G.; Kirchner, P.B.;

Kimball, J.S.; Du, J.; Rawlins, M.A.

Snow Phenology and Hydrologic

Timing in the Yukon River Basin, AK,

USA. Remote Sens. 2021, 13, 2284.

https://doi.org/10.3390/rs13122284

Academic Editor: Annett Bartsch

Received: 9 May 2021

Accepted: 8 June 2021

Published: 10 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Innov8.ag Solutions, Walla Walla, WA 99362, USA
2 Numerical Terradynamic Simulations Group, W.A. Franke College of Forestry and Conservation, University

of Montana, Missoula, MT 59801, USA; john.kimball@umt.edu (J.S.K.); jinyang.du@umt.edu (J.D.)
3 Southwest Alaska Network Inventory and Monitoring Program, National Park Service, Anchorage,

AK 99501, USA; peter_kirchner@nps.gov
4 Department of Geosciences, University of Massachusetts, Amherst, MA 01003, USA; rawlins@geo.umass.edu

* Correspondence: caleb.pan@umt.edu

Abstract: The Yukon River basin encompasses over 832,000 km2 of boreal Arctic Alaska and north-

west Canada, providing a major transportation corridor and multiple natural resources to regional

communities. The river seasonal hydrology is defined by a long winter frozen season and a snowmelt-

driven spring flood pulse. Capabilities for accurate monitoring and forecasting of the annual spring

freshet and river ice breakup (RIB) in the Yukon and other northern rivers is limited, but critical for

understanding hydrologic processes related to snow, and for assessing flood-related risks to regional

communities. We developed a regional snow phenology record using satellite passive microwave

remote sensing to elucidate interactions between the timing of upland snowmelt and the downstream

spring flood pulse and RIB in the Yukon. The seasonal snow metrics included annual Main Melt

Onset Date (MMOD), Snowoff (SO) and Snowmelt Duration (SMD) derived from multifrequency

(18.7 and 36.5 GHz) daily brightness temperatures and a physically-based Gradient Ratio Polariza-

tion (GRP) retrieval algorithm. The resulting snow phenology record extends over a 29-year period

(1988–2016) with 6.25 km grid resolution. The MMOD retrievals showed good agreement with similar

snow metrics derived from in situ weather station measurements of snowpack water equivalence

(r = 0.48, bias = −3.63 days) and surface air temperatures (r = 0.69, bias = 1 day). The MMOD and SO

impact on the spring freshet was investigated by comparing areal quantiles of the remotely sensed

snow metrics with measured streamflow quantiles over selected sub-basins. The SO 50% quantile

showed the strongest (p < 0.1) correspondence with the measured spring flood pulse at Stevens

Village (r = 0.71) and Pilot (r = 0.63) river gaging stations, representing two major Yukon sub-basins.

MMOD quantiles indicating 20% and 50% of a catchment under active snowmelt corresponded

favorably with downstream RIB (r = 0.61) from 19 river observation stations spanning a range of

Yukon sub-basins; these results also revealed a 14–27 day lag between MMOD and subsequent RIB.

Together, the satellite based MMOD and SO metrics show potential value for regional monitoring

and forecasting of the spring flood pulse and RIB timing in the Yukon and other boreal Arctic basins.

Keywords: snow cover; snowmelt; passive microwave; streamflow; Alaska

1. Introduction

Annual hydrologic variability in snowmelt dominated basins is reflected in snow cover
dynamics [1]. Several studies in the western United States found warming temperatures
promoted an earlier snowmelt onset and subsequent runoff [2–4]. The earlier onset of
snowmelt can slow the rate of melt due to less early season incoming solar radiation [5]
while proportionally reducing annual streamflow [1]. However, seasonal trends toward
earlier snowmelt and longer melt durations and the associated impacts on snowmelt driven
flooding and river ice break up (RIB) patterns remain relatively uncertain [6,7].
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Snowmelt is the primary discharge component to river and stream networks across
the boreal Arctic and important to the timing of the spring flood pulse and RIB, which
in turn affects flood risk and navigational hazards along the Yukon River and its tribu-
taries [8]. The Yukon River, a linchpin for Arctic communities and people residing along its
banks, provides a primary travel route and opportunities for fishing and other subsistence
resources [9]. Changes in the timing of the Yukon River spring flood pulse and summer
flows can impact the river fluvial dynamics and erosion, influencing water quality, regional
infrastructure and travel [10]. Upland conditions, including snow depth and the timing of
snowmelt in spring, play an important role in downstream RIB which can lead to ice-jam
floods and serious threats to downstream communities [11].

Significant changes in the snow phenology of the Yukon basin and wider boreal Arctic
are occurring and projected to continue due to the polar amplification of global warm-
ing [12,13]. These changes will affect the regional climate, human activities, ecosystem
services, and hydrologic processes. Better monitoring and understanding of the spatio-
temporal variability in seasonal snowmelt is critical for assessing risk and for mitigating
potential adverse impacts on Alaskan communities [10]. However, capabilities for regional
monitoring and observations of the patterns and trends in snowmelt processes is limited
in the Yukon and other boreal Arctic regions due to the sparse and discontinuous obser-
vations of climate, discharge and ice conditions, and the vast geographic domain of the
region [14,15]. Remote sensing observations from polar orbiting satellites have global cov-
erage and frequent sampling over the boreal Arctic and provide an opportunity to observe
snow processes at moderate resolution. Passive microwave observations, in particular, are
useful because brightness temperature measurements from both lower frequency (1–2 GHz)
and higher frequency (18–37 GHz) radiometers are highly sensitive to liquid water content
(LWC) changes within the snowpack [16–18]. Further, clouds and polar darkness have
little influence over the passive microwave (PMW) retrievals due to the high atmospheric
transparency to land surface microwave emissions at these frequencies, which do not rely
on incoming solar energy [19]. Additionally, calibrated brightness temperature records
developed from similar sensors on successive satellite missions provide approximately
twice-daily sampling suitable for monitoring snowmelt dynamics with continuous and
relatively long-term records suitable for evaluating environmental trends.

Several different algorithms have been found useful for detecting snowmelt processes.
These algorithms exploit the sensitivity of PMW frequencies and polarizations to snow
surface conditions and have been developed using twice-daily (ascending and descending
orbit) PMW brightness temperature (Tb) acquisitions from polar orbiting environmental
satellites. The algorithm types include: (i) Tb diurnal amplitude variation [20,21], (ii)
brightness temperature (Tb) differencing approach [22], (iii) single frequency coupled
with reanalysis surface temperatures [23] and (iv) the gradient ratio polarization (GRP)
approach [24,25].

Several snow phenology metrics have been derived from PMW retrievals and asso-
ciated algorithms for mapping and monitoring purposes. As described here, the Mean
Melt Onset Date (MMOD) is an indicator of springtime snow surface wetness prior to the
onset of an isothermal snowpack and the associated spring snowmelt discharge pulse. The
Snowoff (SO) date, or last day of significant snow cover, corresponds with the relatively
abrupt shift in land surface albedo between the predominantly snow-covered winter sea-
son and the start of the growing season [26–28]. Hence, the difference between SO and
MMOD defines the Snowmelt Duration (SMD) [8,29,30], an important indicator of spring
phenology, regional hydrology and RIB [5,31].

The goal of this paper is to elucidate the spatiotemporal relationships between seasonal
snow properties, ice breakup dynamics and discharge in the Yukon River Basin (YRB) using
a new PMW satellite-derived snowmelt record of MMOD, SO, and SMD from 1988–2016.
Our objectives are to: (1) validate the PMW derived MMOD metric using in situ climate
observations and elucidate the roles of fractional water inundation, forest cover, and terrain
on MMOD retrieval uncertainty; (2) quantify regional variation in the selected snowmelt
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properties over the YRB and (3) describe the leading snowmelt contributors to the spring
flood pulse and RIB for the major YRB tributaries.

2. Materials and Methods

2.1. Study Domain

The Yukon River traverses east to west and, along with its tributaries, constitutes
one of North America’s largest river basins. This region experiences six to nine months
of snow cover annually, and spring snowmelt runoff is the main hydrologic contribution
to the system [10]. The YRB has a mean annual discharge of 6400 m3 s−1, a drainage
area exceeding 853,300 km2 [8,29] and covers 10 degrees of latitude from 59◦N to 69◦N,
extending into the Canadian Yukon and British Columbia to the east, and reaching the
Alaska Bering Sea coast to the west. The diverse topography, with a median elevation of
617 m and extending from sea level to the highest elevations of the Brooks (2735 m) and
Alaska (6190 m) Ranges, encompasses a diversity of northern boreal, arctic, alpine and
maritime biomes. Evergreen needleleaf forests are the dominant vegetation cover (54%)
followed by broadleaf deciduous forests (9%) covering the valley bottoms and into the
mid-elevations. The Yukon Delta and higher elevations have tall and low shrubs (9%)
mixed with some dry and wet herbaceous (9%) tundra as the dominant plant community.
Permafrost is present to a large extent in the YRB, and comprises several types including
sporadic (14%), discontinuous (46%) and continuous (16%) and moderately thick to thin
permafrost (24%) [32].

We constrained our analysis of the YRB to three major catchments defined by the loca-
tion of reliable long-term gauging stations located on main stem of the Yukon River. Catch-
ment distributions within the YRB are shown in Figure 1, including Eagle (287,800 km2),
Stevens Village (500,968 km2) and Pilot (817,961 km2), in order of catchment size.
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2.2. Passive Microwave Satellite Record 1988–2016

The detection of MMOD and SO used the 19 and 37 GHz afternoon Tb retrievals at
horizontal (H) and vertical (V) polarizations from the MEaSUREs Calibrated Enhanced-
Resolution Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature ESDR, avail-
able at the National Snow and Ice Data Center [33].This multidecadal data record represents
Tb retrieval records calibrated across multiple sensors and platforms for different frequen-
cies and polarizations from the NOAA DMSP Special Sensor Microwave/Imager (SSM/I)
and the Special Sensor Microwave Imager/Sounder (SSMIS) [34]. Each platform has sev-
eral sensors. When using SSM/I, we used DMSP-F8 (1987–1991), DMSP-F10 (1992–1997),
and DMSP-F13 (1997–2005). For missing temporal observations, we gap-filled using over-
lapping sensors. For the later years, DMSP-F15 and DMSP-F18 provided the bulk of
observations from 2000–2010 and 2010–2016, respectively. Missing temporal observations
were again gap-filled with overlapping observations from other sensors.

The sampling resolution of the combined 19 and 37 GHz Tb retrievals are ~ 25 km
or coarser; however, the MEaSUREs products used for this study were processed using
the scatterometer image reconstruction approach to obtain an enhanced spatial grid res-
olution of 6.25 km (19 GHz) and 3.125 km (37 GHz) from the overlapping Tb antenna
patterns [34,35]. To establish a continuous record, 3.125 km 37 GHz retrievals were re-
sampled to 6.25 km using a nearest neighbor interpolation, and missing grid cells were
gap-filled using a temporal linear interpolation of adjacent Tb retrievals [22].

2.3. Other Ancillary Datasets

We used composited weekly FW time series from a regional AMSR (Advanced Mi-
crowave Scanning Radiometer) FW record [36] to derive a mean summer (JJA) fractional
water (FW) map for the AMSR period of record (2002 to 2016). The resulting static FW map
was used to define where water bodies persist across the landscape and areas where the
PMW land retrievals may be influenced by surface water contamination. We used glacier
outlines acquired from the Global Land Ice Measurements from Space (GLIMS) program
to identify and mask out SO dates and SMD grids from statistical analysis for regions in
Alaska that have snow and ice year-round. We also used the Fractional Forest (FF) cover
(%) from the MODIS (Moderate Resolution Imaging Spectroradiometer) MOD44B land
cover product [37] to assess the influence of vegetation cover on the relative accuracy of
the snowmelt metrics. The 250 m resolution MOD44B data were reprojected to match the
6.25 km PMW grid using nearest-neighbor resampling.

Monthly gridded surface air temperatures were obtained for the YRB from the Weather
Research and Forecasting (WRF) Reanalysis, downscaled to 20 km using ERA-Interim
historical reanalysis data (1979–2015) acquired from the Scenarios Network for Alaska
and Arctic Planning (SNAP) [38]. We used nearest-neighbor interpolation to resample
monthly average temperatures to the 6.25 km PMW grid. Resampled annual monthly
temperature grids were then used to produce correlations with the annual snowmelt
metrics. A complete list of the primary datasets used in this study is found in Table 1.

Table 1. Datasets used in this study. See Appendix E for abbreviations.

Dataset Spatial Resolution Period of Record Use Reference/Source

PMW 6.25 km 1988–2016 MMOD Brodzik et al. 2018
Snowoff 6.25 km 1988–2016 SO, SMD Analysis Pan et al. 2020

FW 6.25 km 2003–2015 MMOD/Validation Du et al. 2017
FF 250 m 2011 Validation Carroll et al. 2011

WRF Reanalysis 20 km 1988–2015 Climate Analysis SNAP UAF
SNOTEL in situ 2004–2016 Validation NRCS

Streamflow in situ 1988–2016 Streamflow Analysis GRDC
River Ice Observations in situ 1988–2016 RIB Analysis NWS
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2.4. Deriving MMOD

We used a Tb spectral gradient ratio polarization (GRP) [24,39] and a Tb differencing
approach [40] to detect MMOD (henceforth we denote the PMW derived snow metrics as
MMODPMW, SOPMW, and SMDPMW). The GRP algorithm detects the MMODPMW within a
given grid cell and annual (water year) time series when the GRP running mean (rm) is less
than the difference between the water year’s average winter (January–March) GRP (win)
and an input melt parameter threshold, param (Figure 2). Here, param is a dynamic variable
that ranges from 0.2 to 0.6 and determines how low the GRP must be relative to win for
the MMODPMW to be detected. The duration of the rm and param are spatially dependent
on an ancillary static surface FW map. In general, we found the GRP snow signal to be
degraded for grid cells with higher FW cover. However, the GRP derived MMODPMW

performance was improved by assigning a higher param value for cells with higher water
coverage below a 39% FW threshold, while the param value was set at 0.2 for higher FW
levels above this threshold. For certain years and locations, the GRP algorithm was unable
to detect the MMODPMW and for these grid cells we used the Tb difference between the
19V and 37V channels for the MMODPMW classification [22,40].
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running mean (rm), (orange); mean GRP value from 1 January to 1 March (win) (black); threshold value derived from

subtracting the winter mean GRP (win) and FW melt threshold parameter (param) (horizontal blue line). (b) MMOD

detection algorithm outlined in [22]. (c) Daily average air temperature and snow depth.

The Tb difference algorithm requires the derivation of three variables, including the
daily difference between 19V–37V (TbDIFF), previous three-day average of TbDIFF (m), and
the product of m multiplied by an empirical constant, 0.35 (THold). When the difference
between m and TbDIFF exceeds THold for four or more days, this indicates the MMOD
(Figure 2b). More information on this algorithm is outlined in [22].

SOPMW was derived using the 19V–37V Tb differencing approach, which exploits
varying sensitivity of the different Tb frequencies to surface scattering, wetness and dielec-
tric properties between snow-covered and fully ablated landscapes [25]. The Tb difference
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is positive and relatively stable prior to the seasonal onset of snowmelt, but as the snow
begins to ablate the Tb difference precipitously decreases, mirroring the snow ablation rate
before reaching a seasonal minimum. The Tb difference reaches a seasonal minimum just
after the snowpack has largely ablated, which we use to represent the SOPMW condition.
SMDPMW is then derived by taking the difference between the SOPMW and MMODPMW,
resulting in the number of days required for the snowpack to melt out for a given grid cell.

2.5. MMOD Validation and Evaluation

The MMODPMW metric was validated using daily Snow Water Equivalent (SWE)
and air temperature measurements at 20 Alaska SNOw TELemetry (SNOTEL) network
stations (Appendix A). At each SNOTEL station, we calculated the site-level MMOD
using both SWE (MMODSWE) and temperature (MMODT) measurements and compared
these measurements to the collocated satellite based MMODPMW retrieval. Each local
station MMOD was derived using an eight-day forward moving window temporal mean
of the daily SWE measurements to extract the date where SWE was at its peak, with the
assumption that depletion after this date corresponds with a melting snowpack (Figure 2).
Each alternative temperature derived MMODT was calculated using an eight-day rolling
mean of daily air temperature measurements at each station, where the MMOD was defined
as the first date where the mean air temperature exceeded 0 ◦C. Both the SWE and air
temperature derived MMOD definitions infer the shift in the seasonal energy budget that
initializes snowmelt [41]. The relative accuracy of the MMODPMW retrievals was assessed
against the SNOTEL site-based MMOD observations using bias and correlation as measures
of performance. The MMODPMW record was also compared against a spatially continuous
annual record of primary spring thaw timing derived from a daily Freeze/Thaw (FT)
classification of SSM/I 37V GHz Tb retrievals spanning the same domain and multiyear
record as the current study but derived at a coarser 25 km spatial resolution [23].

2.6. Snow and Streamflow Indices in the Yukon River Basin

The differences in timing between upland snowmelt and basin streamflow were ex-
amined across a selection of regional catchments within the larger YRB. Daily streamflow
data were obtained from the Global Runoff Database Centre (GRDC) for three major river
gaging stations located along the Yukon River main stem at Eagle, AK (64.79, −141.20),
Stevens Village, AK (65.88, −149.72) and Pilot Station, AK (61.93, −162.88); the three
stations are located at the outlets of the major YRB catchments, representing respec-
tive drainage areas of 287,800 km2, 500,969 km2, and 817,962 km2. Except for the years
1997–2002 at Pilot, all stations had complete streamflow data records spanning the study
period (1988–2016).

Streamflow timing indices were represented as Q20, Q50, and Q80 terms calculated
as the respective days of the year (DOY) when 20, 50 and 80% of the total annual (WY)
flow passed the station gage location [2,3]. We also extracted the DOY representing the
peak annual discharge at each station (Figure 3). Snowmelt indices were also represented
from the PMW record as quantiles but calculated as the DOY when 20, 50 and 80% of the
cumulative catchment area [%] above each streamflow station was either under active
snowmelt or snowoff conditions. We represented the cumulative area of snowmelt con-
tributing to the measured discharge for each basin as the difference between the cumulative
catchment area under respective melt and snowoff conditions (denoted as contributing
in Figure 4). Discharge and snowmelt indices were extracted for each year and station
location. Least-squares linear regression was used to quantify the relationship between
the streamflow (dependent) and snowmelt (independent) indices to determine how much
streamflow variability could be explained by the level of snowmelt activity. The resulting
regressions were also used to identify any apparent lead time between the PMW derived
catchment snow metrics and the subsequent downstream flood pulse indicated from the
catchment discharge measurements.
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2.7. Snow and River Ice Breakup in the Yukon River Basin

We next examined the interaction between the timing of upland snowmelt and sea-
sonal river ice breakup within the YRB. RIB observations were acquired for 19 station
locations (Figure 1) along the Yukon River main stem from the National Weather Ser-
vice’s Historical River Observations Database (www.weather.gov/aprfc/rivobs, Accessed:
November 1, 2020). The number of annual RIB observations ranged from 18 to 28 years
with a mean record length of 24 years from 1988 to 2016. All river ice observation locations
used in this study are listed in Appendix B.

We again used linear regression analysis to quantify the relationship between annual
RIB date and the snowmelt indices within each catchment. However, unlike the discharge
analysis involving three major sub-basins, the river ice analysis encompassed a larger
number of catchments associated with the more extensive RIB station network. Similar
snow metric quantiles were calculated for the upstream catchments associated with each
RIB station location. For snowmelt metrics that were statistically significant (p < 0.05), we
then calculated the average annual difference (i.e. temporal lag) between the mean timing
(DOY) of a given catchment snowmelt metric and the associated RIB date.

3. Results

3.1. MMOD Classification Accuracy

The MMODPMW results were generally consistent with the primary spring thaw onset
indicated from the coarser (25 km resolution) FT-ESDR product [23]. In both datasets,
MMOD/Spring Onset typically occurs later in the Alaska North Slope and at higher
elevations (Figure 5). The mean MMODPMW in the YRB from 1988–2016 was DOY 113
(±11 days; temporal SD), while the FT-ESDR Spring Onset mean was DOY 108 (± 7 days)
for the same period. Thus, MMODPMW typically occurs about five days later than the
FT-ESDR spring onset and has higher spatial (SD) heterogeneity attributed to the spatially
enhanced Tb record used for the MMODPMW retrievals. The MMODPMW pattern also
appears to better preserve the influence of the regional topography and land cover on
spring melt timing, as described in the following sections.
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The mean correlation between the satellite MMODPMW retrievals and in situ MMOD
estimates derived from SNOTEL station SWE measurements (MMODSWE) was 0.49 with
a bias of −3.63 days, indicating an earlier MMODPMW. The mean correlation between
MMODPMW and the in situ air temperature measurement-based MMOD estimates (MMODT)
was stronger (0.69) and showed a smaller (~1 day) bias. Aggregation of the correlation
results by snow cover classification [39] showed generally stronger MMODPMW mean
correspondence in the colder Tundra/Taiga snow regime with the respective SNOTEL
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SWE and air temperature-based MMOD observations (0.62 and 0.81). The MMOD mean
correlations were generally lower for Alpine/Prairie (0.31 and 0.61) and Maritime (0.35
and 0.41) snow regimes.

For each of the three snow classification zones, we investigated the influence of
different landscape factors on the relative bias between the MMODPMW retrievals and
the SNOTEL MMODSWE,T observations, including FW cover; fractional forest (FF) cover;
terrain aspect and elevation, and topographic roughness index (TRI). In the Tundra/Taiga
region, the MMODPMW and MMODSWE bias was moderately correlated with FF (r = −0.61,
p < 0.1) and moderately correlated with FW (r = −0.86, p < 0.1) within a surrounding
grid cell. In contrast, the MMODPMW and MMODT bias corresponded more strongly with
terrain aspect northness (r = −0.87, p < 0.1). In the Alpine/Prairie region, MMODPMW

and MMODSWE biases were strongly influenced by elevation (r = 0.92, p < 0.1) and TRI
(r = 0.94, p < 0.1), whereas the MMODPMW and MMODT biases were only influenced by
FW (r = 0.99, p < 0.1). In the Maritime region, MMODPMW and MMODSWE biases were
influenced by FW (r = −0.74, p < 0.1), whereas the MMODPMW and MMODT biases were
influenced by FW (r = −0.77, p < 0.1) and aspect northness (r = −0.68, p < 0.1). These results
indicate that enhanced surface moisture influences the agreement between the MMODPMW

and SNOTEL observations, as the 37 GHz Tb observations are strongly sensitive to surface
water within the satellite footprint [23]. The influence of FF cover particularly in the boreal
interior regions was demonstrated, as microwave emissions from surface snow cover can
be adversely affected by the overlying forest cover at both 19 and 37 GHz frequencies [42].

3.2. Snow Metric Distribution in the YRB

The average snow metric spatial distribution (1988–2016) indicated a topographic
influence with generally earlier (later) MMODPMW and SOPMW at lower (higher) elevations.
The PMW record also showed significant interannual variability in the spring snow metrics,
indicated by the extensive early spring onset during the exceptionally warm year of 2016
relative to a more climatological normal year in 2001. The SMDPMW distribution showed
relatively less spatial and annual variability but a longer duration of spring snowmelt in
the YRB upper headwaters and lower delta regions (Figure 6).
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On average, MMODPMW in the YRB ranged from DOY 82 at lower elevations to DOY
153 at higher elevations, with a regional mean of DOY 113 ± 12. Alaska experienced
record-setting warmth during the 2015/16 snow season (October–April), with statewide
temperatures 4 ◦C above the mean [43]. During this year, the average MMODPMW in the
YRB was DOY 101 ± 16, which was 12 days earlier than the long-term mean (1988–2016)
and 22 days earlier than in 2001.

SOPMW in the YRB on average ranged from DOY 116 to 162 between lower and higher
elevations, with a regional mean value of DOY 138 ± 9. Like MMODPMW, SOPMW showed
a regional mean of DOY 127 ± 13 during the exceptionally warm year in 2016, which was
approximately 11 days earlier than normal relative to the long-term mean (1988–2016), and
20 days earlier than in 2001.

The average spring SMDPMW in the YRB ranged spatially from 16 to 42 days, with a
regional average of 25 ± 4 days over the long-term record. SMDPMW appeared to have
a less distinct spatial distribution relative to MMODPMW and SOPMW, but with longer
durations in the YRB upper headwater and delta regions. A longer SMDPMW occurred
during the unprecedented warm year in 2016 (26 ± 8 days) relative to 2001 (24 ± 9 days).
The longer duration in 2016 is in line with other studies that identified a lengthening
snowmelt season under warming conditions [44,45].

The spatial distribution of correlations between the snow metrics and annual May tem-
peratures are shown in Figure 7. Here, we quantified the relationship between annual snow
metrics and temperature using monthly aggregated air temperatures from the downscaled
(20 km resolution) WRF Reanalysis (Table 2). Overall, all spring snow metrics showed
generally significant but variable correlations with May temperatures in both sign and
magnitude. MMODPMW and temperature regressions conducted within 100 m elevational
bins showed lower elevations having the greatest percentage of significant (p < 0.1) grid
cells, ranging from 51–60% over the 0–700 m elevational range, with moderate correlations
(−0.41 to −0.44). The strongest correlations occurred at higher elevations (1200–1600 m)
and ranged from −0.45 to −0.47, although the area of significant grid cells was lower (30%).
Overall, MMODPMW had a significant relationship with temperature for 42% of the YRB,
respectively.
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The SOPMW correlations with May temperatures showed significant relationships
over 60 to 85 percent of the area at elevations below 1000 m in the YRB with correlations
ranging from −0.40 to −0.57. The number of grid cells with significant SOPMW and
spring temperature relationships were lower at higher elevations (1100–3000 m), with
correlations ranging from −0.30 to −0.52. The SOPMW relationship with temperature was
also predominantly negative over 87% of the YRB, indicating generally earlier (delayed)
snowpack depletion in warmer (cooler) years.
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Table 2. Snow metrics and discharge regressions summary table including significant interactions

and correlations. All regression outputs are found in Appendix C.

Snow Variables
Correlation [r] Significant

Variables
Basin

Mean Minimum Maximum

MMOD Q20 0.5 0.5 0.5 [’Q20 ’] EAGLE
SO Q20 0.61 0.61 0.61 [’Q20 ’] EAGLE

Contribution Peak 0.6 0.6 0.6 [’Q20 ’] EAGLE
MMOD Q80 0.68 0.65 0.71 [’Peak’, ’Q20’] STEVENS VILLAGE

SO Q50 0.675 0.64 0.71 [’Peak’, ’Q20’] STEVENS VILLAGE
SO Q80 0.59 0.52 0.66 [’Peak’, ’Q20’] STEVENS VILLAGE

MMOD Q50 0.41 0.4 0.42 [’Peak’, ’Q20’] PILOT
MMOD Q80 0.49 0.4 0.58 [’Peak’, ’Q20’] PILOT

SO Q20 0.5 0.48 0.52 [’Peak’, ’Q20’] PILOT
SO Q50 0.59 0.55 0.63 [’Peak’, ’Q20’] PILOT

The SMDPMW relationship with May temperatures was relatively spatially complex
due to the variable influence of temperature on MMODPMW and SOPMW. SMDPMW was
significantly correlated with temperature over 75% of the YRB, but with both positive
and negative relationships for 22% and 53% of the domain, respectively. The positive
SMDPMW temperature response was predominantly located at higher elevations (>800 m)
characterized by deeper snowpack conditions [46].

3.3. Streamflow and River Ice Breakup

3.3.1. Interaction between Snow Metrics and Discharge in the YRB

We iterated through 36 regressions for Eagle, Stevens Village and Pilot sub-basins.
Regressions included quantiles (Q20, Q50, Q80) for each snow metric (MMOD, SO, and
SMD) defined as the percent area of a catchment regressed against streamflow quantiles
(Q20, Q50, Q80, and Peak), defined as the percent of cumulative annual flow at each gaging
station. At the Eagle station, statistically significant (p < 0.1) regressions were observed
only for the timing of MMODPMW quantiles (Q20MMOD, Q50MMOD, and Q80MMOD) and
streamflow Q20Flow. Regressions were also significant for the same SO quantiles (Q20SO,
Q50SO, and Q80SO) and streamflow Q20Flow (Appendix C). For MMOD, Q20MMOD had
the highest correlation with the observed Q20Flow (r = 0.5) followed by Q50Flow (0.48) and
Q80Flow (0.47). SOPMW regressions were higher relative to MMODPMW, with Q20SO having
a moderately strong correlation of 0.61 with Q20Flow, suggesting a stronger relationship
between SOPMW and streamflow compared to MMODPMW at Eagle (Table 2).

Moving downriver from Eagle to Stevens Village, we found overall relationships
strengthened between the MMODPMW and SOPMW quantiles, and streamflow. At Stevens
Village, the regressions showed significant relationships between the snow metric quantiles
and Q20Flow in addition to peak flow. The timing of Q80MMOD correlated well with the
timing of the hydrologic peak (r = 0.71). Moreover, the timing of Q50SO and Q80SO were
also strongly correlated with the timing of the hydrologic peak, with respective correlations
of 0.71 and 0.66. We also found a strong relationship between Q20SO and the Q20Flow

(r = 0.68) at Stevens Village.
At the Pilot gaging station, Q20MMOD no longer showed a significant relationship

with streamflow. However, Q50MMOD and Q80MMOD were still moderately correlated
with the timing of the streamflow peak, with respective correlations of 0.42 and 0.58. The
SOPMW quantiles and the streamflow quantiles remained stronger than for MMODPMW,
with Q20SO and Q50SO having correlations of 0.52 and 0.63 with the timing of the peak flow.
Overall, Q20SO had the highest correlation with Q20Flow at the Eagle station. However, for
Stevens Village and Pilot stations, Q50SO had the strongest relationship with the timing
of the streamflow peak. For the 1988 to 2016 record, Q50SO occurred, on average, 16 ± 16
days earlier than the streamflow peak at Eagle; the lag time was less at Stevens Village
(9 ± 10 days) and longer at the Pilot (17 ± 9 days) station (Figure 8).
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hydrologic peak (blue) from 1988–2016 for Eagle, Stevens Village, and Pilot gaging stations.

Overall, there is an initial influence of snow processes on discharge at the higher
reaches, represented by Eagle. Snowmelt had a stronger influence on discharge in the
middle YRB reaches at Stevens Village. Moving to Pilot, larger MMOD quantiles (Q50,
Q80) influenced the peak flow but to a lesser degree relative to Q20SO and Q50SO.

3.3.2. Interaction between Snow Metrics and River Ice Breakup in the YRB

We examined the interaction between the satellite PMW-derived annual snow met-
rics and observed RIB dates using snow metric pixel values at 19 RIB measurement
locations along the Koyukuk and Yukon rivers. Significant relationships (p < 0.1) be-
tween MMODPMW and RIB were identified at 11 of the 19 locations (Figure 9). The
strongest relationships were found at Beaver (r = 0.75), Nulato (r = 0.62) and Allakaket
(r = 0.6) (Appendix D). The remaining eight RIB locations had modest correlations with
MMODPMW averaging 0.42. For these 11 RIB locations, the MMODPMW occurred 26 days
earlier than the RIB. SMDPMW was statistically significant at only four RIB locations, includ-
ing Russian Mountain (r = 0.52), Circle (r = 0.42), Holy Cross (r = 0.4) and Kaltag (r = 0.36)
(Table 3).

Table 3. Snow metrics and RIB regressions mentioned in this section, including significant interactions and correlations. All

regression outputs are found in Appendix D.

Station Metric Correlation [r] Pvalue Observations
Snow Metric

[DOY]
Observed

RIB [DOY]
Difference

[Days]

Allakaket mmod 0.6 0.001 26 112.5 130.19 −17.69
Beaver mmod 0.75 0 20 108.2 130.1 −21.9
Nulato mmod 0.62 0.004 20 98.85 132.35 −33.5
Beaver snowoff 0.81 0 20 130.2 130.1 0.1
Circle snowoff 0.63 0 28 131.43 128.71 2.71
Eagle snowoff 0.63 0 29 135.14 123.66 11.48

Holy Cross snowoff 0.64 0 26 125.04 134.27 −9.23
Russian Mission smd 0.52 0.007 26 40.38 134.12 −93.73

Circle smd 0.42 0.024 28 22.25 128.71 −106.46
Holy Cross smd 0.4 0.042 26 33.73 134.27 −100.54

Kaltag smd 0.36 0.07 26 34.27 133.31 −99.04
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PMW retrievals (MMODPMW) across the YRB from the 1988–2016 record. RIB occurs later at lower elevations and earlier

towards the headwater reaches.

The SOPMW snow metric was significantly correlated with RIB timing at all 19 ob-
servation locations, with an average correlation of 0.58. Nine of the 19 locations were
exceptionally significant (p < 0.001), had a mean correlation of 0.71 and ranged between
0.63 (Circle and Eagle) and 0.81 (Beaver). On average for the 19 observation locations,
SOPMW occurred less than a day before RIB, although for some sites and years SOPMW

preceded RIB by up to nine days (Holy Cross) or followed RIB by up to 11 days (Eagle).
We next examined relations between the timing of the satellite PMW-derived snow

metric quantiles and observed RIB on the premise that river ice conditions are responsive
to the snowmelt runoff pulse contributed from the surrounding drainage basin. The
PMW snow metric quantiles generally showed a stronger relationship with RIB than the
streamflow quantiles. RIB timing was significantly correlated with Q20MMOD (p < 0.01)
and Q50MMOD (p < 0.05) in the surrounding catchments at all 19 RIB observation locations.
The correlation between Q20MMOD and RIB averaged 0.61 and ranged from 0.48 (Galena)
to 0.77 (Bettles) across the 19 RIB observation sites. At the 19 RIB locations, Q20MMOD

occurred an average of 27 days before the RIB. At the Bettles station, Q20MMOD occurred
only eight days before RIB on average, while Q20MMOD preceded RIB by an average of
35 days at the Pilot station. The correlation between Q50MMOD and RIB was slightly lower
than for Q20MMOD but still significant, ranging from 0.37 (Eagle) to 0.79 (Allakaket). As
expected, the temporal window between Q50MMOD and RIB dates was narrower than for
Q20MMOD, with Q50MMOD preceding RIB by an average of only 16 days throughout the
YRB (Table 4).



Remote Sens. 2021, 13, 2284 14 of 22

Table 4. Selected regressions outputs between snow metric quantiles and RIB.

Snow Metric Basin Correlation [r] Pvalue Observations Mean RIB [DOY] Mean Snow Metric [DOY]

mmodq20 Bettles 0.77 0 29 129 121
mmodq20 Galena 0.48 0.008 29 131 102
mmodq50 Allakaket 0.79 0 26 130 122
mmodq50 Eagle 0.37 0.051 29 124 115

Contribution Peak Allakaket 0.78 0 26 130 133
Contribution Peak Bettles 0.75 0 29 129 139
Contribution Peak Dawson 0.5 0.005 29 124 128
Contribution Peak Eagle 0.43 0.021 29 124 128
Contribution Peak Hughes 0.81 0 24 130 131

Q20SO was the strongest correlated snow metric to RIB and significant at all RIB
locations, with a mean correlation of 0.77. There were also strong interactions with the
other SO quantiles, but correlations diminished as quantiles increased. However, we again
found the annual mean difference between Q20SO and RIB to occur within a day of each
other, while the other SO quantiles occurred, on average, after RIB. Hence, the potential for
the satellite-derived SO metric in forecasting RIB is limited.

In addition to quantiles, we also derived a Contributing Peak metric defined as the
date at which the most grid cells in each catchment had begun melting, as indicated from
the MMODPMW retrievals, but where the snowpack had not yet fully depleted (identified
by SOPMW). We found the Contributing Peak to be a strong indicator of RIB, showing
significant (p < 0.05) relationships at all RIB locations, and with a mean correlation of
0.67. The Contributing Peak occurred after the RIB date at only five locations (Allakaket,
Bettles, Dawson, Eagle, and Hughes). For the remaining 14 locations, the Contributing
Peak occurred an average of seven days before RIB.

4. Discussion

4.1. MMOD Algorithm Performance

The MMODPMW retrieval method performed favorably in relation to independent
SWE and temperature measurement-based MMOD estimates from in situ SNOTEL sites
distributed across Alaska. There was an overall stronger mean relationship between
MMODPMW and MMODT (r = 0.69, bias = −1 day) than with MMODSWE (r = 0.49,
bias = −3.63 days). The stronger temperature relationship was attributed to generally
greater spatial and temporal heterogeneity in the in situ SWE measurements relative to air
temperature, which can propagate to greater uncertainty in identifying the MMOD signal.
The satellite retrievals may also falsely classify MMODPMW in response to early season
temporary melt events in lieu of the actual seasonal melt signal [22,47]. Our results identi-
fied the weakest correspondence with air temperature in the maritime regions and a strong
correlation between the temperature bias and FW (r = −0.77, p < 0.1). This FW interaction
in the maritime region suggests that enhanced regional moisture, such as rain-on-snow,
can adversely affect the GRP algorithm performance [24]. Future work should address a
more comprehensive approach to distinguish between rain-on-snow and early season melt
events from the MMOD [24,46].

While the MMODPMW retrievals showed generally less correspondence with
MMODSWE than MMODT, we found SWE bias to be modestly correlated to FF in the
Tundra/Taiga (r = −0.61, p < 0.1) and FW in both the Tundra/Taiga (r = −0.86, p < 0.1)
and Alpine/Prairie (r = −0.74, p < 0.1). These results suggest MMODPMW to be most
strongly sensitive to the change in surface wetness conditions during seasonal transitions.
Further, vegetation biomass contribution to the landscape freeze-thaw (FT) signal can
inflate MMODPMW errors where the timing of the vegetation canopy seasonal FT transi-
tion differs from the surrounding snow cover [42]. In more densely vegetated areas, we
would expect to see much less direct snow signal and more vegetation FT signal [28,47].
Vegetation cover can also influence snowpack spatial heterogeneity and representativeness
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of in situ SNOTEL SWE measurements relative to the surrounding satellite footprint; thus,
contributing to larger satellite-site differences [23].

4.2. Changes in Snowmelt Properties

We initially examined long-term trends in snowmelt properties across the YRB from
1988–2016 but found no temporally or spatially consistent patterns despite an overall
declining trend in snow cover extent across the Northern Hemisphere [48,49]. Yet, our
results indicate that both MMODPMW and SOPMW occur earlier during anomalously warm
years and, conversely, occur later during cooler years. This identified interaction between
temperature and snow metrics is very important, as Alaska has experienced several annual
temperature records broken over the last few years [43]. With anticipated warming, future
lines of research should focus on how these snow metrics can inform the intensity of
oncoming wildfire seasons, wildlife movements and ecosystem productivity.

4.3. Snow and Hydrologic Interactions

We found significant relationships (p < 0.01) between the satellite-derived snowmelt
quantiles and the spring flood pulse indicated from in situ streamflow measurements
within the major YRB catchments. Yet, the timing of Q50SO and Q80SO generally showed
the strongest correspondence with the streamflow quantiles (Q20, Q50) but occurred after
these events, degrading their forecast potential. The day of peak flow is used here to
represent the spring flood pulse in the YRB and was strongly correlated to Q50SO at Stevens
Village (r = 0.71) and Pilot (r = 0.63). The peak flow consistently occurred after the Q50SO,
on average 16, 9, and 17 days earlier than the peak flow for Eagle, Stevens Village, and
Pilot, respectively. We would anticipate a smaller lag time at Eagle; however, the associated
stream gage station has relatively high interannual variability and showed a weak corre-
lation to Q20SO (r = 0.21). Regardless, other studies have placed greater importance on
MMOD in understanding the timing of the Spring flood pulse [8,50], although our results
indicate that SO quantiles are stronger predictors of peak flow in the YRB. Additional
research can benefit by exploring a lower quantile to identify further relationships between
snow metrics and their forecasting potential.

A novel component of this study was the derivation of the Contributing Peak metric,
derived using MMOD and SO. This metric effectively defines the area that is actively
melting, or not melting, across a basin. Of the 19 RIB locations, strong relationships
between RIB and Contributing Peak were identified at 11 stations, with a mean correlation
of 0.67. At the 11 locations, the Contributing Peak occurred seven days before the RIB on
average. Hence, the strong correlation and occurrence before RIB, indicate the Contributing
Peak as having forecasting potential. There were five stations (Allakaket, Bettles, Dawson,
Eagle, and Hughes) where RIB occurred before the day of Contributing Peak. These stations
all exist at the higher elevations, where we also noted RIB occurs earlier relative to the
lower elevations. This likely indicates other driver, other than snowmelt, governing RIB.

Our ground observations identified an earlier RIB date in the upper reaches of the
Yukon, relative to the lower reaches. These results are in line with other large rivers
including the Mackenzie and Yenisey. However, for large high-latitude rivers flowing north,
latitude plays a prominent role in an earlier RIB date in southern reaches relative to northern.
As the YRB trends from east to west, the influence of latitude is minimized in favor of river
channel characteristics such as slope, curvature and other channel-scale factors [51]. The
amount of SWE and rate of warming/melting in the catchment, freeze/thaw status and
moisture holding capacity of underlying soils also influences the magnitude and rate of
melt pulse to rivers affecting the RIB [51,52]. Our satellite-derived snow metrics did not
fully capture these additional factors, which may degrade the observed correspondence
with discharge and RIB.

The satellite-derived snow metrics developed here have several intrinsic limitations.
The moderate spatial resolution (6.25 km) captures the overall latitudinal and altitudinal
patterns across the domain. However, a significant amount of landscape heterogeneity
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exists within each pixel, which influences algorithm performance. Currently, the snow
metrics capture the timing of snow processes rather than amount of melt. Hence, the snow
metrics lack a representation of SWE and snowmelt rates controlling runoff magnitude,
routing and soil storage influencing discharge. The strength of the snow metrics resides in
the use of daily Tb observations and their strong sensitivity to the rapid changes in surface
wetness from snowmelt.

5. Conclusions

The seasonal and spatial timing in snowmelt properties are important controls on
ecosystem and socioeconomic processes across Arctic boreal landscapes, including the YRB.
However, capabilities for regional monitoring of snow phenology and its influence on the
spring flood pulse and RIB are constrained by the sparse in situ station observation network
and limited satellite resources. In this study, we presented a new satellite PMW MMOD
retrieval method and dataset that exploits the differential response between 19V and 37V
GHz Tb channels with daily repeat and 6.25 km resolution gridding from 1988 to 2016 over
the YRB. The developed algorithm is physically-based, drawing from the established GRP
method and incorporating a dynamic detection threshold adjusted according to surface FW
cover. The MMODPMW results compared favorably with the regional pattern and annual
variability in the primary spring thaw signal from the FT-ESDR occurring about five days
later. The MMODPMW retrievals also showed favorable agreement with independent in situ
SWE (r = 0.49, bias = −3.6 days) and air temperature (r = 0.69, bias = 1 day) measurement
based MMOD estimates from the regional weather station network. The regional pattern in
MMODPMW performance was influenced by one or more landscape factors, including the
prevailing climate and snow type, terrain complexity, forest cover (FF) and the fractional
open water body cover (FW) within the satellite footprint.

The resulting satellite snow metrics developed in this study showed that MMOD
extends from early March into early June across the YRB. Melt begins at lower elevations
and reaches of the Yukon before progressing inland and into higher elevations of the upper
YRB reaches. SO timing followed a similar pattern to MMOD, but with a delayed response,
where SO generally occurred in March in the YRB coastal areas and lower elevations, and
extended as late as July in the higher elevations and upper reaches of the basin. The SMD
was generally longer where MMOD and SO occurred earlier. Conversely, SMD was the
shortest (<20 days) at higher elevations and in more interior regions. The timing of all
snow metrics was sensitive to relatively warm and cool years. For example, both MMOD
and SO occurred approximately 12 days and 11 days earlier during the anomalous warm
year in 2016, respectively.

Positive and significant regressions were identified between the spring flood pulse
and both MMOD and SO. The timing of Q50SO was found to be the best indicator of
peak discharge at the Stevens Village and Pilot stations. Q50SO also occurred before peak
discharge at both locations, making it one of the better predictors of the spring flood pulse.
Overall, regressions were stronger between the snow metrics and RIB, with Q20SO having
the best correlation at all stations. However, for all stations, on average, Q20SO occurred
within one day of the RIB, limiting its potential utility as a forecast indicator. The Q20MMOD

and Q50MMOD metrics indicated stronger potential utility as early predictors of seasonal
ice breakup in the YRB, showing strong correlations with RIB and preceding seasonal ice
breakup by approximately 35 days and 16 days, respectively. Yet, the Contributing Peak
possessed the strongest correlations and occurred seven days on average before RIB at 11
of the 19 locations.

Anomalously warm years like 2016, when the cold season temperatures were + 4 ◦C
above normal, coincided with MMOD and SO timing that was more than 10 days earlier
than normal. This interaction indicates that the snow metrics accurately reflect seasonal
surface air temperature conditions represented from regional reanalysis data, which is
congruent with other studies [51,53]. Hence, projected regional warming trends of approxi-
mately 1–3 ◦C in spring air temperatures by midcentury [9,54] are expected to promote
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generally earlier onset of MMOD and SO across the YRB, along with generally earlier ice
breakup and earlier onset of the spring flood pulse. Such changes in snow and hydrologic
processes will affect fluvial dynamics and fisheries, as well as terrestrial processes like
spring carbon uptake and wildfires, making further research at the intersection of snow
and ecologic processes of high value.
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Appendix A

Table A1. SNOTEL validation stations used in this study. FW is fractional cover. FF is forest fraction.

Name
Period of Record

Latitude Longitude FW [%] FF [%]
Start End

ANCHOR RIVER DIVIDE 2007 2020 59.86 −151.32 23.17 20
BETTLES FIELD 2011 2020 66.92 −151.53 0.81 19

COLDFOOT 2003 2020 67.25 −150.18 0.60 15
FAIRBANKS F.O. 2011 2020 64.85 −147.80 1.11 11
GRANITE CRK 2003 2020 63.94 −145.40 1.83 37
GRANDVIEW 2003 2020 60.61 −149.06 8.70 48

INDEPENDENCE MINE 2007 2020 61.79 −149.28 3.79 0
KENAI MOOSE PENS 2003 2020 60.73 −150.48 31.02 45

LITTLE CHENA RIDGE 2003 2020 65.12 −146.73 0.34 14
MONUMENT CREEK 2003 2020 65.08 −145.87 0.26 3

MUNSON RIDGE 2003 2020 64.85 −146.21 0.22 4
MT. RYAN 2003 2020 65.25 −146.15 0.30 5

POINT MACKENZIE 2003 2015 61.39 −150.03 17.84 33
MAY CREEK 2009 2020 61.35 −142.71 4.05 55

SUMMIT CREEK 2003 2020 60.62 −149.53 7.28 31
SUSITNA VALLEY HIGH 2003 2020 62.13 −150.04 2.34 34

TEUCHET CREEK 2003 2020 64.95 −145.52 0.23 29
TOKOSITNA VALLEY 2007 2020 62.63 −150.78 3.35 35

TURNAGAIN PASS 2003 2020 60.78 −149.18 10.37 24
UPPER TSAINA RIVER 2009 2020 61.19 −145.65 5.59 4

Appendix B

Table A2. River Ice breakup observation information in this analysis acquired from the GRDC.

Location Longitude [dd] Latitude [dd] Start End Obs Basin

Koyukuk River at Allakaket −152.64 66.57 1988 2017 28 Pilot
Koyukuk River at Bettles −151.51 66.93 1988 2017 30 Pilot

Koyukuk River at Hughes −154.26 66.05 1988 2017 25 Pilot
Yukon River at Anvik −160.19 62.66 1988 2017 28 Pilot
Yukon River at Beaver −147.39 66.36 1997 2017 21 Stevens
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Table A2. Cont.

Location Longitude [dd] Latitude [dd] Start End Obs Basin

Yukon River at Circle −144.06 65.83 1988 2017 29 Stevens
Yukon River at Dawson −139.43 64.07 1988 2017 30 Eagle

Yukon River at Eagle −141.33 64.79 1988 2017 30 Eagle
Yukon River at Fort Yukon −145.28 66.56 1988 2017 29 Stevens

Yukon River at Galena −156.9 64.74 1988 2017 30 Pilot
Yukon River at Holy Cross −159.77 62.21 1988 2017 28 Pilot

Yukon River at Kaltag −158.73 64.33 1988 2017 27 Pilot
Yukon River at Marshall −162.09 61.88 1988 2017 21 Pilot
Yukon River at Nulato −158.1 64.72 1997 2017 21 Pilot

Yukon River at Rampart −150.17 65.51 1996 2017 20 Pilot
Yukon River at Ruby −155.48 64.74 1988 2017 30 Pilot

Yukon River at Russian Mission −161.32 61.78 1988 2017 28 Pilot
Yukon River at Stevens Village −149.72 65.88 1998 2017 18 Stevens

Yukon River at Tanana −152.07 65.17 1988 2017 28 Pilot

Appendix C

Table A3. Snowmelt and hydrologic regression outputs at each catchment. Correlation values are

only calculated for statistically significant relationships.

Snow Variable Meanr Minr Maxr Significant Variables Basin

Contribution Peak 0.565 0.55 0.58 [’Peak’, ’Q20 ’] PILOT
MMOD Q50 0.41 0.4 0.42 [’Peak’, ’Q20 ’] PILOT
MMOD Q80 0.49 0.4 0.58 [’Peak’, ’Q20 ’] PILOT

SO Q20 0.5 0.48 0.52 [’Peak’, ’Q20 ’] PILOT
SO Q50 0.59 0.55 0.63 [’Peak’, ’Q20 ’] PILOT
SO Q80 0.47 0.47 0.47 [’Peak’] PILOT

Contribution Peak 0.655 0.64 0.67 [’Peak’, ’Q20 ’] STEVENS VILLAGE
MMOD Peak 0.455 0.4 0.51 [’Peak’, ’Q20 ’] STEVENS VILLAGE
MMOD Q20 0.39 0.37 0.41 [’Peak’, ’Q20 ’] STEVENS VILLAGE
MMOD Q50 0.58 0.58 0.58 [’Peak’, ’Q20 ’] STEVENS VILLAGE
MMOD Q80 0.68 0.65 0.71 [’Peak’, ’Q20 ’] STEVENS VILLAGE

SO Peak 0.475 0.38 0.57 [’Peak’, ’Q20 ’] STEVENS VILLAGE
SO Q20 0.675 0.67 0.68 [’Peak’, ’Q20 ’] STEVENS VILLAGE
SO Q50 0.675 0.64 0.71 [’Peak’, ’Q20 ’] STEVENS VILLAGE
SO Q80 0.59 0.52 0.66 [’Peak’, ’Q20 ’] STEVENS VILLAGE

Contribution Peak 0.6 0.6 0.6 [’Q20 ’] EAGLE
MMOD Q20 0.5 0.5 0.5 [’Q20 ’] EAGLE
MMOD Q50 0.48 0.48 0.48 [’Q20 ’] EAGLE
MMOD Q80 0.47 0.47 0.47 [’Q20 ’] EAGLE

SO Q20 0.61 0.61 0.61 [’Q20 ’] EAGLE
SO Q50 0.49 0.49 0.49 [’Q20 ’] EAGLE
SO Q80 0.46 0.46 0.46 [’Q20 ’] EAGLE

Appendix D

Table A4. Snowmelt and RIB regression outputs at each RIB observation location.

Station Metric Cor Pval Nobs Meansnow Meanri Dif

Koyukuk River at Allakaket mmod 0.6 0.001 26 112.50 130.19 −17.69
Koyukuk River at Bettles mmod 0.42 0.023 29 109.72 129.38 −19.66

Koyukuk River at Hughes mmod 0.36 0.085 24 106.67 130.08 −23.42
Yukon River at Anvik mmod 0.42 0.035 25 91.92 135.00 −43.08
Yukon River at Beaver mmod 0.75 0 20 108.20 130.10 −21.90
Yukon River at Circle mmod 0.12 0.559 28 111.00 128.71 −17.71

Yukon River at Dawson mmod 0.4 0.034 29 110.48 123.97 −13.48
Yukon River at Eagle mmod 0.45 0.014 29 111.83 123.66 −11.83

Yukon River at Fort Yukon mmod 0.15 0.457 28 105.00 129.50 −24.50
Yukon River at Galena mmod 0.41 0.029 29 101.79 131.34 −29.55

Yukon River at Holy Cross mmod 0.46 0.018 26 91.73 134.27 −42.54
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Table A4. Cont.

Station Metric Cor Pval Nobs Meansnow Meanri Dif

Yukon River at Kaltag mmod 0.17 0.396 26 94.00 133.31 −39.31
Yukon River at Marshall mmod 0.34 0.141 20 91.40 134.45 −43.05
Yukon River at Nulato mmod 0.62 0.004 20 98.85 132.35 −33.50

Yukon River at Rampart mmod 0.36 0.125 19 112.89 131.79 −18.89
Yukon River at Ruby mmod 0.48 0.019 24 97.38 130.04 −32.67

Yukon River at Russian Mission mmod 0.25 0.214 26 85.42 134.12 −48.69
Yukon River at Stevens Village mmod 0.32 0.217 17 111.94 130.88 −18.94

Yukon River at Tanana mmod 0.11 0.596 25 102.60 128.88 −26.28
Koyukuk River at Allakaket smd −0.02 0.929 26 22.88 130.19 −107.31

Koyukuk River at Bettles smd 0.18 0.346 29 24.86 129.38 −104.52
Koyukuk River at Hughes smd −0.03 0.881 24 24.96 130.08 −105.13

Yukon River at Anvik smd 0.18 0.384 25 33.88 135.00 −101.12
Yukon River at Beaver smd −0.25 0.292 20 22.35 130.10 −107.75
Yukon River at Circle smd 0.42 0.024 28 22.25 128.71 −106.46

Yukon River at Dawson smd −0.15 0.43 29 21.76 123.97 −102.21
Yukon River at Eagle smd 0.05 0.792 29 22.31 123.66 −101.34

Yukon River at Fort Yukon smd 0.16 0.424 28 24.36 129.50 −105.14
Yukon River at Galena smd −0.21 0.279 29 27.69 131.34 −103.66

Yukon River at Holy Cross smd 0.4 0.042 26 33.73 134.27 −100.54
Yukon River at Kaltag smd 0.36 0.07 26 34.27 133.31 −99.04

Yukon River at Marshall smd 0.16 0.51 20 35.55 134.45 −98.90
Yukon River at Nulato smd −0.05 0.82 20 33.35 132.35 −99.00

Yukon River at Rampart smd 0.21 0.381 19 21.21 131.79 −110.58
Yukon River at Ruby smd 0.01 0.973 24 29.29 130.04 −100.75

Yukon River at Russian Mission smd 0.52 0.007 26 40.38 134.12 −93.73
Yukon River at Stevens Village smd 0.17 0.511 17 21.41 130.88 −109.47

Yukon River at Tanana smd −0.08 0.696 25 24.96 128.88 −103.92
Koyukuk River at Allakaket snowoff 0.78 0 26 134.08 130.19 3.88

Koyukuk River at Bettles snowoff 0.7 0 29 134.66 129.38 5.28
Koyukuk River at Hughes snowoff 0.48 0.018 24 131.38 130.08 1.29

Yukon River at Anvik snowoff 0.7 0 25 125.40 135.00 −9.60
Yukon River at Beaver snowoff 0.81 0 20 130.20 130.10 0.10
Yukon River at Circle snowoff 0.63 0 28 131.43 128.71 2.71

Yukon River at Dawson snowoff 0.5 0.006 29 131.69 123.97 7.72
Yukon River at Eagle snowoff 0.63 0 29 135.14 123.66 11.48

Yukon River at Fort Yukon snowoff 0.34 0.08 28 130.93 129.50 1.43
Yukon River at Galena snowoff 0.42 0.025 29 129.07 131.34 −2.28

Yukon River at Holy Cross snowoff 0.64 0 26 125.04 134.27 −9.23
Yukon River at Kaltag snowoff 0.54 0.005 26 127.85 133.31 −5.46

Yukon River at Marshall snowoff 0.39 0.093 20 126.00 134.45 −8.45
Yukon River at Nulato snowoff 0.73 0 20 133.75 132.35 1.40

Yukon River at Rampart snowoff 0.59 0.008 19 135.05 131.79 3.26
Yukon River at Ruby snowoff 0.54 0.007 24 127.25 130.04 −2.79

Yukon River at Russian Mission snowoff 0.46 0.017 26 125.81 134.12 −8.31
Yukon River at Stevens Village snowoff 0.73 0.001 17 132.00 130.88 1.12

Yukon River at Tanana snowoff 0.5 0.011 25 124.48 128.88 −4.40

Appendix E

Table A5. List of abbreviations.

Abbreviation Description

MMOD Main Melt Onset Date
SMD Snow Melt Duration
SO Snowoff Date

PMW Passive Microwave
MMODPMW MMOD derived from passive microwave observations

SMDPMW SMD derived from passive microwave observations
SOPMW SO derived from passive microwave observations

RIB River ice breakup date
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Table A5. Cont.

Abbreviation Description

LWC Liquid water content
Tb Brightness temperature

GRP Gradient Ratio Polarization
YRB Yukon River Basin

DMSP Defense Meteorological Satellite Program
NOAA National Oceanic and Atmospheric Administration
SSM/I Special Sensor Microwave/Imager

km Kilometer
Ghz Gigahertz

H Horizontal
V Vertical

MEaSUREs Making Earth Data Systems Data Records for Use in Research
WY Water year
FW Fractional water

SNOTEL Snow Telemetry
MMODT MMOD detected from SNOTEL temperature

MMODSWE MMOD detected from SNOTEL SWE
FT Freeze/Thaw

GRDC Global Runoff Database Centre
Q Quantiles

DOY Day of year
GLIMS Global Land Ice Measurements from Space

JJA June July August
AMSR Advanced Microwave Scanning Radiometer
SNAP Scenarios Network for Alaska and Arctic Planning

MODIS Moderate Resolution Imaging Spectroradiometer
FF Fractional Forest

Q20MMOD MMOD Q20
Q20Flow Quantile derived from streamflow
Q20SO SO Q20
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