
How Do Students Feel About Automated Security
Static Analysis Exercises?

Akond Rahman∗ Hossain Shahriar† Dibyendu Brinto Bose‡
∗Department of Computer Science, Tennessee Technological University, Cookeville, TN, USA

†College of Computing and Software Engineering, Kennessaw State University, Kennessaw, Georgia, USA
‡Reeve Systems, Dhaka, Bangladesh

Email: ∗arahman@tntech.edu †hshahria2012@gmail.com ‡brintodibyendu@gmail.com

Abstract—This Innovative Practice, work in progress (WIP)
paper presents our experience related to two exercises that
focus on automated security static analysis, a practice used to
integrate security into development and operations (DevOps).
The concept has gained popularity amongst information technol-
ogy (IT) organizations. However, security-related concerns, such
as security weaknesses in DevOps artifacts can cause serious
consequences. Our preliminary findings indicate that (i) students
positively perceive the introduced exercises; and (ii) the students
perform well if they are provided necessary background on
the exercises. Our WIP paper lays the groundwork to build
course materials that will facilitate development, deployment,
and dissemination of DevOps-related education materials that
also incorporate cybersecurity concepts.

Index Terms—computer science, cybersecurity, devops, devsec-
ops, education, exercise, experience report, student perception

I. INTRODUCTION

The concept of development operations (DevOps) have
gained a lot of interest amongst information technology (IT)
organizations. DevOps advocates for automation for both
development and operations teams so that typical software
development activities, such as development, deployment, and
testing of software can be done seamlessly without involving
manual efforts [1]. Practitioners use a wide range of practices,
such as automated deployment [2], automated testing [2], and
infrastructure as code (IaC) [3] to implement DevOps in their
organizations. Adoption of DevOps has resulted in benefits
for IT organizations. For example according to an Atlassian
survey 1, 61% of the surveyed 500 practitioners, reported
DevOps to help “them produce higher quality deliverables”.
As another example, a Longitude survey 2 with 400 IT
professionals reports that DevOps have helped them to reduce
the number of system outages.

Despite reported benefits, security weaknesses remain a
concern for DevOps implementation. A survey conducted by
the SANS institute 3 found 46% of practitioners to neglect
cybersecurity in their implementation of DevOps, which can
introduce security weaknesses in artifacts used for DevOps.
Researchers have documented the presence of security weak-
ness in artifacts used to implement DevOps, for example,

1https://www.atlassian.com/whitepapers/devops-survey-2020
2https://www.businesswire.com/news/home/20200630005260/en/New-

Relic-Research-Uncovers-Gaps-Software-Leaders
3https://www.sans.org/reading-room/whitepapers/analyst/membership/38690

Rahman et al. [4], [5] reported that IaC scripts that are used to
automate configuration management are susceptible to security
weaknesses, such as including hard-coded password and using
weak cryptography algorithms. Rahman et al. [4] advocated
for increasing cybersecurity-related awareness amongst prac-
titioners who use IaC so that security weaknesses are mitigated
early in the development stage. Industry experts too have
discussed the importance of integrating cybersecurity into
DevOps, and advocated for a ‘shift left policy’, which will
integrate cybersecurity concepts early into the development
process 4.

Our above-mentioned discussion highlights the need for
educating students about integrating cybersecurity concepts,
such as automated security static analysis into the software
engineering curriculum. The first author of the paper instructed
a graduate course titled ‘Secure Software Development’, where
two exercises were dedicated to showcase the value of auto-
mated security static analysis in the context of DevOps. We
present an experience report of conducting the two exercises
in this work in progress (WIP) paper. The exercises are
related to automated security static analysis, a practice used
by IT organizations to integrate security into DevOps [2].
Our reported experience can be helpful for other educators
who want to adopt automated security static analysis into
prospective courses. Furthermore, our WIP paper can provide
clues for researchers on how to better integrate DevOps-
related concepts into the curriculum of software engineering
and cybersecurity.

We answer the following research questions:
• RQ1: What is the performance of students in exercises

related to automated security static analysis?
• RQ2: What are the perceptions of students for exercises

related to automated security static analysis?
We conduct an empirical study to evaluate the effectiveness

of automated security static analysis exercises. We answer the
research questions by analyzing grade books and survey results
collected from a graduate course titled ‘Secure Software
Development’, which was introduced for the first time at
Tennessee Tech University (TnTech). To synthesize students’
perceptions we apply open coding [6], a qualitative analysis

4https://cloud.google.com/solutions/devops/devops-tech-shifting-left-on-
security



TABLE I: Students’ Experience in Cybersecurity and Software
Engineering

Experience Respondents (Cyber) Respondents (Soft. Eng.)
< 1 year 8 4
1− 2 years 2 1
3− 4 years 2 4
> 4 years 0 3

technique to generate high-level categories from text input.
Prior to conducting the survey and analysis we obtain Internal
Review Board (IRB) approval from TnTech.

Our contribution is a list of student perceptions related to
automated security static analysis exercises.

II. OVERVIEW OF THE COURSE AND EXERCISES

The course is titled ‘Secure Software Development’, which
was introduced in the graduate curriculum in the Department
of Computer Science (CS) at TnTech for the first time in Fall
2020. The pre-requisite of this course for students was to be
enrolled as a graduate student in the Department of CS. Prior
to conducting the course, the syllabus was shared amongst
all graduate students through e-mails in April 2020. A total
of 12 students enrolled in the course. The instructor of the
course conducted an initial survey of students’ experience in
software engineering and cybersecurity. The students’ reported
academic and professional experience in software engineering
and cybersecurity is presented in Table I. The course included
three components: class lectures, exercises, and a semester
long project assigned individually to each student.

The course included two exercises related to automated
security static analysis. The first exercise focused on iden-
tifying security smells. The second exercise focused on how
Git hooks can be used to automatically conduct security static
analysis. Each of the exercises maps to a knowledge unit
(KU) recommended by the U.S. National Center of Academic
Excellence in Cyber Defense Education (CAE-CD) [7]. KUs
are CS-related topics deemed essential or recommended by
the U.S. National Center of Academic Excellence to develop
a curriculum related to cyber defense education. Before assign-
ing each exercise necessary theoretical concepts were covered
by the instructor. We describe each exercise as follows:
Exercise#1 - Security Smells: The purpose of this exercise was
to allow students to apply their knowledge related to security
smells gathered in the lecture and apply it to SaltStack 5

scripts. Security smells are recurring coding patterns that
are indicative of security weaknesses [4], [5]. A hard-coded
password, such as password => ‘‘v23zj59an’’ is an
example of a security smell [5]. SaltStack scripts are used
to implement the practice of infrastructure as code (IaC), the
practice of managing system configuration automatically using
dedicated programming languages and by applying recom-
mended software engineering best practices [8]. As part of this
exercise the students were asked to perform two tasks: first,
the students were asked to manually inspect three SaltStack

5https://www.saltstack.com/

scripts to identify security smells. Second, the students were
asked to build an automated program to detect the identified
security smell instances. This exercise maps to the CAE-CD
KU called ‘Secure Programming Practices’.
Exercise#2 - Git Hooks for Automated Security Static
Analysis: The purpose of this exercise was to help students
learn how to integrate security using a single example of Git
hook 6. Automated security static analysis is considered as a
good practice to integrate security into software development
workflows. If a software repository uses Git, then using Git-
based utilities, such as Git Hooks, automated security static
analysis can be performed. As part of this exercise, students
were asked to learn about Git hooks, and how to create a Git
hook so that upon committing a file, a security static analysis
tool can run and scan all files in the repository. To perform
security static analysis the students used cppcheck, a secu-
rity static analysis tool for C/C++ code. This exercise maps
to the CAE-CD KU called ‘Secure Programming Practices’.

III. RQ1: STUDENT PERFORMANCE IN EXERCISES

In this section, we provide the methodology and results
for RQ1: What is the performance of students in exercises
related to automated security static analysis?

A. Methodology to Answer RQ1

We answer RQ1 by using information related to the percent-
age of task completed obtained from the course gradebook.
Once the deadline for each exercise passed the instructor
inspected and graded the submission materials. The instructor
also documented the percentage of task completed for each
exercise.

B. Answer to RQ1

We answer RQ1 by reporting summary statistics for (i)
percentage of task completion for each exercise, and (ii) grades
obtained for each exercise. The summary statistics for grades
and completion amount is provided in Table II. From the
statistics presented in Table II, we observe students to perform
overall well in both exercises related to automated security
static analysis.

IV. RQ2: PERCEPTIONS OF EXERCISES

In this section, we provide the methodology and results for
RQ2: What are the perceptions of students for exercises
related to automated security static analysis?

A. Methodology to Answer RQ2

For each exercise the students were required to participate
in a survey that asked two questions:
• Survey(Q1): What are the positive aspects of the exercise?
• Survey(Q2): What are the negative aspects of the exercise?

We use the answers provided by the students for SurveyQ1

and SurveyQ2 to answer RQ2. We apply open coding [6] to
determine categories that express positive and negative aspects
of the students for the two exercises.

6https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks



TABLE II: Summary Statistics of Grades and Completion Amount For Two Exercises

Exercise Name Grades (Min., Median, Max.) Completion (Min., Median, Max.)
Security Smells (45%, 65%, 100%) (45%, 61%, 100%)
Git Hooks for Automated Security Static Analysis (30%, 100%, 100%) (40%, 100%, 100%)

B. Answer to RQ2

We answer RQ2 by providing positive and negative percep-
tions for the two exercises in the following subsections:

1) Positive Perceptions of Exercises: We identify four
categories of positive perceptions. A mapping between each
identified category and each exercise is presented in Table III.
The number of students who have reported the category for an
exercise is presented in parenthesis. For example according to
Table III, skill set development was mentioned by six students
for the exercise related to security smells. We describe each
identified perception below:
Positive Perception#1 - Skill Set Development: For multiple
exercises the students mentioned that the assigned exercises
helped them to learn new tools and techniques needed in
software engineering. For the security smell exercise one
student stated exercises of this nature “is highly appreciated as
it helps to get a diverse skill set”. The idea of using Git hooks
for secure software development came as a pleasant surprise
for one student “Very cool to learn about git hooks and realize
how useful it could be for software projects. I was not aware
that git provided this feature prior”.
Positive Perception#2 - Lecture Reinforcement: The con-
ducted exercises provided students the opportunity to get a
better understanding of what was being taught in the class
lectures. The exercises complemented the class lectures by
providing students clarity, as noticed by one student for the
security smell exercise “[it] was nice to actually use what we
learned in class and reinforce the material”.
Positive Perception#3 - Practicality: Both exercises were
perceived as practical by the students. One student stated
“I have never used git hooks before so I didn’t know how
easy they were. I will definitely be using them in the future. I
also want to run cppcheck on some of my own repositories.
I think this workshop was pretty easy, but very practical.”.
For the security smells exercise one student also mentioned
practicality and stated “Practical knowledge of inspecting a
configuration file and detecting ICPs.”.
Positive Perception#4 - Sense of Accomplishment: The ex-
ercises helped students to gain a sense of accomplishment.
For the security smells exercise one student felt satisfied as
the student was able to have working code that finds security
smells: “Taking the rules and turning them into working,
simplistic but working, code was very satisfying. The hands on
experience and exposure to short files that contained somewhat
hidden ICPs was also valuable”.

2) Negative Perceptions of Exercises: We identify three
categories of negative perceptions expressed by students for
exercises. A complete mapping between the identified cate-
gories and the applicable exercise is provided in Table IV. In
Table IV, the ‘Reported Negative Perception’ column states

TABLE III: Positive Perceptions for the Exercises.

Exercise Topic Reported Positive Perception
Security Smells Skill Set Development (6), Lecture Re-

inforcement (3), Practicality (5), Sense
of Accomplishment (1)

Git Hooks for Automated
Security Static Analysis

Skill Set Development (8), Practicality
(7)

the negative perception category names and the count of
students who stated the category enclosed within parenthesis.
For example, for the security smell exercise, the category ‘lack
of background’ is expressed by two students. ‘None’ indicates
that no negative perceptions were reported by students for a
certain exercise. We describe each of the categories below:
Negative Perception#1 - Lack of Background: Despite de-
tailed written instructions, we observe students to express a
lack of background for both exercises. For example, while
identifying and detecting security smells in SaltStack scripts
one student found comprehension of SaltStack scripts to be
difficult: “I think SaltStack scripts are hard to look through
especially if your not familiar ... I spent a lot of time trying to
look up and research how to get the scripts to parse”. Another
student expressed similar views and identified learning about
SaltStack as a “barrier created by unfamiliar language which
made it harder to focus”. Even though the instructions on how
to use the Docker image were given for each exercise, the
students faced challenges: “I didn’t know that ‘exiting’ from
the shell will destroy the running image, and when I rerun the
Docker image all my work was gone”.
Negative Perception#2 - Artifact Management: All artifacts
i.e., datasets and scripts for each exercise was shared using
a Docker image. The Docker image was available using the
instructor’s DockerHub account, which included all necessary
dependencies to run certain programs needed to complete each
exercise. While downloading the Docker images the students
provided negative feedback stating the “Took a long time to
setup docker and run the code”. Another student commented:
“seems unnecessary to download a docker image of some 800+
MB to work on a small python file”. Transfer of files back
and forth between the Docker image and the development
environment also created negative experience for one student:
“dev environment is in Windows ... Docker is in a virtual
machine ... passing files back and forth is tedious”.

TABLE IV: Negative Perceptions for the Exercises.

Exercise Topic Reported Negative Perception
Security Smells Lack of Background (2), Artifact Man-

agement (1)
Git Hooks for Automated
Security Static Analysis

None



V. RELATED WORK

Our paper is closely related with prior publications related
to cybersecurity education. Mountrouidou et al. [9] described
their experience in integrating cybersecurity concepts into
the general curriculum of a liberal arts degree and reported
that if cybersecurity modules are flexible, then they can
be incorporated into a general education curriculum. Olano
et al. [10] reported their experience of introducing ‘Securi-
tyEmpire’ in an undergraduate course to teach cybersecurity
concepts to students. They [10] reported SecurityEmpire to
help increase awareness and engagement about cybersecu-
rity amongst students. Parrish et al. [11] synthesized edu-
cator experience related to teaching cybersecurity concepts
to students, and advocated to treat cybersecurity as a meta-
discipline because applications of cybersecurity concepts are
applicable for a diverse set of domains, such as computer
science, law, and business. Celeda et al. [12] reported their
experience of using ‘KYPO4INDUSTRY’, a testbed to teach
cybersecurity of industrial control systems. They [12] observed
that while ‘KYPTO4INDUSTRY’ shows promise, physical
processes that are related with industrial control systems make
the proposed testbed generalizable.

The above-mentioned description shows the prevalence of
experience reports related to a wide range of cybersecurity
education concepts, such as gaming and industrial control
systems. However, we observe a lack of research that dis-
cusses the experience of conducting a course related to secure
software development, which we address in this paper.

VI. FUTURE WORK AND CONCLUSION

One limitation of our findings is that it is limited to the
sample size, i.e., 12 students. We plan to build upon our
preliminary work to collect and analyze more student data
from courses related to secure software development taught
at TnTech. We also plan to add exercises related to security
smells for other types of artifacts, such as Kubernetes, a
container orchestration tool used in DevOps [13]. Recent work
by Shamim et al. [13] shows that open source development
of Kubernetes manifest can include security defects [14],
which necessitates integration of education materials related
to Kubernetes security into the course curriculum.

As DevOps has become mainstream amongst IT organiza-
tions, the need for integrating cybersecurity has become pivotal
to ensure the software development and deployment process
is secure. As part of the Secure Software Development course
taught at TnTech, the first author has developed exercises to
teach students how cybersecurity concepts can be integrated
into DevOps. From our preliminary results we observe stu-
dents to perceive the exercises positively. Furthermore, we
observe majority of the students to perform well into the
exercises. Our WIP paper shows promise on how automated
security static analysis can be integrated into CS curriculum.

ACKNOWLEDGMENT

We thank the PASER group at Tennessee Technological
University for their valuable feedback. This research was

partially funded by the National Science Foundation (NSF)
award # 2026869.

REFERENCES

[1] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation, 1st ed.
Addison-Wesley Professional, 2010.

[2] A. A. U. Rahman and L. Williams, “Software security in devops: Syn-
thesizing practitioners’ perceptions and practices,” in 2016 IEEE/ACM
International Workshop on Continuous Software Evolution and Delivery
(CSED), 2016, pp. 70–76.

[3] C. Parnin, E. Helms, C. Atlee, H. Boughton, M. Ghattas, A. Glover,
J. Holman, J. Micco, B. Murphy, T. Savor, M. Stumm, S. Whitaker,
and L. Williams, “The top 10 adages in continuous deployment,” IEEE
Software, vol. 34, no. 3, pp. 86–95, 2017.

[4] A. Rahman, M. R. Rahman, C. Parnin, and L. Williams, “Security
smells in ansible and chef scripts: A replication study,” ACM Trans.
Softw. Eng. Methodol., vol. 30, no. 1, Jan. 2021. [Online]. Available:
https://doi.org/10.1145/3408897

[5] A. Rahman, C. Parnin, and L. Williams, “The seven sins: Security
smells in infrastructure as code scripts,” in Proceedings of the 41st
International Conference on Software Engineering, ser. ICSE ’19.
Piscataway, NJ, USA: IEEE Press, 2019, pp. 164–175. [Online].
Available: https://doi.org/10.1109/ICSE.2019.00033

[6] J. Saldana, The coding manual for qualitative researchers, 2nd ed. Los
Angeles, CA, USA: Sage, 2015.

[7] NIETP, “NIETP About CAE Program,” https://www.iad.gov/nietp/
CAERequirements.cfm, 2020, [Online; accessed 18-Dec-2020].

[8] A. Rahman, R. Mahdavi-Hezaveh, and L. Williams, “A systematic
mapping study of infrastructure as code research,” Information
and Software Technology, 2018. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0950584918302507

[9] X. Mountrouidou, X. Li, and Q. Burke, “Cybersecurity in liberal arts
general education curriculum,” in Proceedings of the 23rd Annual
ACM Conference on Innovation and Technology in Computer Science
Education, ser. ITiCSE 2018. New York, NY, USA: Association
for Computing Machinery, 2018, p. 182–187. [Online]. Available:
https://doi.org/10.1145/3197091.3197110

[10] M. Olano, A. Sherman, L. Oliva, R. Cox, D. Firestone, O. Kubik,
M. Patil, J. Seymour, I. Sohn, and D. Thomas, “Securityempire:
Development and evaluation of a digital game to promote cybersecurity
education,” in 2014 USENIX Summit on Gaming, Games, and
Gamification in Security Education (3GSE 14). San Diego, CA:
USENIX Association, Aug. 2014. [Online]. Available: https://www.
usenix.org/conference/3gse14/summit-program/presentation/olano

[11] A. Parrish, J. Impagliazzo, R. K. Raj, H. Santos, M. R. Asghar,
A. Jøsang, T. Pereira, and E. Stavrou, “Global perspectives on
cybersecurity education for 2030: A case for a meta-discipline,”
in Proceedings Companion of the 23rd Annual ACM Conference
on Innovation and Technology in Computer Science Education,
ser. ITiCSE 2018 Companion. New York, NY, USA: Association
for Computing Machinery, 2018, p. 36–54. [Online]. Available:
https://doi.org/10.1145/3293881.3295778

[12] P. Čeleda, J. Vykopal, V. Švábenský, and K. Slavı́ček, “Kypo4industry:
A testbed for teaching cybersecurity of industrial control systems,”
in Proceedings of the 51st ACM Technical Symposium on Computer
Science Education, ser. SIGCSE ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 1026–1032. [Online]. Available:
https://doi.org/10.1145/3328778.3366908

[13] M. I. Shamim, F. A. Bhuiyan, and A. Rahman, “Xi commandments
of kubernetes security: A systematization of knowledge related to
kubernetes security practices,” in 2020 IEEE Secure Development
(SecDev). Los Alamitos, CA, USA: IEEE Computer Society, sep
2020, pp. 58–64. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1109/SecDev45635.2020.00025

[14] D. B. Bose, A. Rahman, and S. I. Shamim, “‘under-reported’
secuirty defects in kubernetes manifests,” in Proceedings of
the IEEE/ACM 43rd International Conference on Software
Engineering Workshops, ser. ICSEW’21, 2021, to appear, pre-print:
https://akondrahman.github.io/papers/k8s-encycris2021.pdf.


