Shhh!. 12 Practices for Secret Management in
Infrastructure as Code

Akond Rahman
Department of Computer Science
Tennessee Tech University
Cookeville, TN, USA
Email: arahman@tntech.edu

Abstract—Despite being beneficial in automated provisioning
of computing infrastructure at scale, infrastructure as code
(IaC) scripts are susceptible to containing secrets, such as hard-
coded passwords. A derivation of practices related to secret
management for IaC can help practitioners to secure their secrets,
potentially aiding them to securely develop IaC scripts. The
goal of the paper is to help practitioners in secure development
of infrastructure as code (laC) scripts by identifying practices
for secret management in lIaC. We conduct a grey literature
review with 38 Internet artifacts to identify 12 practices. We
identify practices that are applicable for all IaC languages, e.g.,
prioritized encryption, as well as language-specific practices, such
as state separation for Terraform. Our findings can be beneficial
for (i) practitioners who can apply the identified practices to
secure secrets in IaC development, and (ii) researchers who can
investigate how the secret management process can be improved
to facilitate secure development of IaC scripts.

Index Terms—configuration as code, configuration scripts,
devops, devsecops, empirical study, grey literature, infrastructure
as code, practices

I. INTRODUCTION

Infrastructure as code (IaC) is the practice of using dedi-
cated programming constructs to provision computing infras-
tructure at scale [14]. Practitioners use languages, such as
Ansible [3], Puppet [25], and Terraform [37] to implement
the practice of [aC. Adoption of IaC has resulted in benefits
for practitioners. For example, Splunk ', an information tech-
nology (IT) organization that provides cloud-based monitoring
utilities, used Puppet to reduce its deployment time from
several weeks to a couple of hours [26]. Swisscom 2 a
Switzerland-based telecommunication provider, used Ansible
to save 3,000 hours of IT administration work [5].

Despite reported benefits, [aC scripts are susceptible to
include secrets [32], [31], such as hard-coded passwords and
private SSH keys. Figure 1 shows an example of a secret,
i.e., a hard-coded password. The code snippet presented in
Figure 1 is obtained from an open source software (OSS)
repository 3. Presence of secrets is prevalent in the OSS
domain: in recent work, Rahman and Williams [32] reported
9,175 hard-coded passwords to appear in a collection of

Thttps://www.splunk.com/en_us
Zhttps://www.swisscom.ch/en/residential.html
3https://github.com/alphagov/puppet-graphite

Farhat Lamia Barsha
Department of Computer Science
Tennessee Tech University
Cookeville, TN, USA
Email: fbarsha42@tntech.edu

Patrick Morrison
IBM
Research Triangle Park
Durham, NC, USA
Email: pjmorris @us.ibm.com

61,097 OSS IaC scripts. According to Common Weakness
Enumeration (CWE) [24], “if hard-coded passwords are used,
it is almost certain that malicious users will gain access to
the account in question”, which makes presence of secrets in
IaC scripts to be detrimental to the security of provisioned
computing infrastructures.

Prevalence of secrets in [aC scripts necessitates integration
of adequate secret management in IaC development. Such in-
tegration, however can be challenging due to lack of practices
that are pivotal to manage secrets. In the case of IaC, tools,
such as Ansible Vault [4], Chef Vault [6], and Hiera [25]
are available to store secrets respectively, for Ansible, Chef,
and Puppet. Yet, a lack of practices related to secret manage-
ment for TaC can limit the use of the aforementioned tools.
Systematic derivation of practices for secret management can
aid practitioners on how to use the aforementioned secret
management tools adequately, so that secrets used in I[aC
development are secured. Furthermore, practitioners can use
the derived list of practices as a benchmark against which to
compare their current practices for secret management in IaC.

One approach to deriving practices for secret management
is to analyze Internet artifacts, such as blog posts and video
presentations. Instead of academic forums, such as research
conferences practitioners are likely to expresses their per-
ceptions in Internet artifacts [8]. In prior work, researchers
have acknowledged the value of Internet artifacts in deriving
practices, and analyzed Internet artifacts to summarize security
practices [35], [22]. Analysis of Internet artifacts can be useful
to synthesize practices for secret management in IaC.

The goal of the paper is to help practitioners in secure de-
velopment of infrastructure as code (1aC) scripts by identifying
practices for secret management in laC.

We answer the following research question: RQ: What
practices can be used for secret management in infras-
tructure as code scripts?

We use grey literature [13] review where we apply open
coding [33] on 38 Internet artifacts, such as blog posts to
identify practices related to secret management in IaC. We
also identify which practices are specific to a secret manage-
ment tool, such as Puppet Hiera [25], and practices that are
applicable for secret management tools in general.
Contributions: We list our contributions as follows:

class graphite::params {
$admin_password =

$bind_address = '127.0.0.1"'
$port = 8000

$root_dir = '/opt/graphite'
$version = '0.9.12'
$worker_processes = 2
$group = 'www-data'
$time_zone = 'UTC'
$memcache_hosts = []

}

Fig. 1: Example of an IaC script including a secret, i.e, a
hard-coded password.

o A list of practices that practitioners can follow while
managing secrets for IaC scripts; and

« A mapping between identified practices and secret man-
agement tools for IaC.

We organize the rest of the paper as follows: in Section II
we discuss background and related work. We provide the
methodology of our paper in Section III. We provide and
discuss our findings respectively, in Sections IV and Section V.
We conclude our paper in Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we discuss background information and
related work necessary for the paper.

A. Background

IaC is the process of automatically managing configura-
tions and provisioning computing environments at scale using
source code [14]. Along with automation IaC also advocates
the application of recommended software engineering prac-
tices, such as linting, testing, and use of version control.
A dedicated programming language allows specifying the
necessary environment settings, such as required libraries or
the amount of RAM for computing environments.

IaC languages, such as Ansible [3], Chef [6], and Pup-
pet [25] have dedicated syntax that can be used to accomplish
IT administration tasks. We present an example in Figure 2,
where a user called ‘testuser’ is created in three IaC languages,
namely, Ansible, Chef, and Puppet. As shown in Figures 2a,
2b, and 2c respectively, the syntax for creating the user
‘testuser’ is different for Ansible, Chef, and Puppet. For
Ansible, creation of the user occurs using a play, e.g., Create
user ’testuser’ isa play. In the case of Chef and Puppet
resources are used to create the user even though the
syntax of specifying resources are different between Chef and
Puppet. Specifying two properties of the file namely ‘uid’ and
‘comment’ are also different across Ansible, Chef, and Puppet.

B. Related Work

Our paper is closely related to prior research on IaC scripts.
In prior work researchers have focused on code maintainability
aspects, e.g., Schwarz [34] and Bent et al. [39], in separate
research studies investigated code maintainability aspects of
TaC scripts. Quality issues of IaC scripts have also garnered
interest. Rahman et al. [27] constructed a defect taxonomy for

IaC scripts that included eight defect categories. In another
work, Rahman et al. in separate studies have also quantified
security weaknesses that appear in Ansible [31], Chef [31], and
Puppet scripts [29]. Testing issues in IaC scripts have also been
investigated by researchers. Hanappi et al. [10] investigated
how the convergence of IaC scripts can be automatically
detected, and proposed an automated model-based detection
framework for convergence. Ikeshita et al [17] reported testing
of IaC scripts can be time-consuming, and proposed a test suite
reduction technique for IaC scripts. Hummer et al. [15] ob-
served that testing in IaC is different to that of GPLs, as testing
in IaC necessitates testing of remote production environments.
Rahman et al. [28] identified five development anti-patterns for
[aC scripts. In recent work, Kumara et al. [19] conducted a
grey literature review to identify IaC development practices.
The difference between our paper and Kumara et al. [19]’s
work is that Kumara et al. [19] did not investigate practices
for TaC-related secret management, whereas our paper solely
focuses on identifying practices for secret management in IaC.

1II. METHODOLOGY

We conduct a grey literature review to identify practices for
secret management in IaC. A grey literature review is the pro-
cess of reviewing and synthesizing content included in Internet
artifacts, such as blog posts and video presentations [13]. A
grey literature review is different from a systematic mapping
study (SMS) or a systematic literature review (SLR), as in
the case of a SMS or a SLR, researchers use peer-reviewed
articles indexed in scholar databases. In the case of grey
literature review, researchers use artifacts that are available on
the Internet, and not peer-reviewed. We take motivation from
prior research related to security practices where researchers
have used Internet artifacts to derive security practices that
can be integrated into the software development process [38],
[35]. Our hypothesis is that by systematically collecting and
analyzing we also can identify practices for secret management
in TaC.

An overview of our methodology is presented in Figure 3.
We describe each step of our methodology as follows:

A. Search for Internet Artifacts

We collect Internet artifact using a set of search strings.
We start with the search string ‘secret management practices
for infrastructure as code’, as our research study focuses
on identifying secret management practices related to IaC.
We collect the top 100 relevant search results as determined
by the Google search engine. From manual inspection of
the 100 search results, we observe practitioners to mention
the following secret management tools: ‘ansible vault’, ‘chef
vault’, ‘puppet hiera’, and ‘hashicorp vault’. As these tools are
used to manage secrets, we include the names of these tools
as part of search string construction process. Furthermore, the
phrase ‘configuration as code’ is also used as a synonym to
refer to IaC [30]. Based on the above-mentioned observations,
we altogether use six search strings to conduct our search
process, which are listed below:

- name: Create user 'testuser'
user:
name: testuser
comment: "testuser is a temporary user"

uid: 1234

user 'testuser' do

uid 1234
end

(a) (b)

comment 'testuser is a temporary user'

user {'testuser':
comment => 'testuser is a temporary user',
uid => '1234',

}

()

Fig. 2: Creation of a user with user name ‘testuser’. Figures 2a, 2b, and 2c presents the syntax of creating a user respectively,

in Ansible , Chef, and Puppet.

©,

Apply Inclusion
Criteria

it

Search Internet
Artifacts

=+

— 4

LKL

Secret Management
Practices

Open Coding

Fig. 3: An overview of our methodology.

s

« ‘secret management practices for infrastructure as code
« ‘secret management practices for configuration as code’
« ‘practices for ansible vault’

o ‘practices for chef vault’

« ‘practices for hashicorp vault’

« ‘practices for puppet hiera’

For each of the 6 search strings we collect the top 100
relevant search results returned by the Google search engine.
We use the Google Chrome web browser in incognito mode
to collect the search results.

B. Apply Inclusion Criteria

We collect 600 search results collected using the 6 search
strings listed in Section III-A. We apply an inclusion criteria
to identify Internet artifacts that are relevant for our research
study:

o The artifact is written in English;

o The artifact is available for reading;

« The artifact explicitly discusses secret management for [aC;

o The artifact is not a duplicate of another Internet artifact;
and

o The artifact mentions at least one practice for secret man-
agement related to IaC.

C. Open Coding to Determine Practices

We use a qualitative analysis technique called open cod-
ing [33] with the collected Internet artifacts to answer the
research question. Open coding is a technique for qualitative

analysis that can summarize the latent theme from unstructured
text data [33]. Our hypothesis is that by analyzing Internet
artifacts we will have an understanding of secret management
practices related to IaC. We use open coding as it can be
used to extract patterns from Internet artifacts, as done in prior
work [11], [19], [35]. The first author of the paper, who has 5
years of experience in [aC development conduct open coding.
As part of the open coding process, the first author reads
each Internet artifact, and extracts any mentioned practices.
If multiple practices yield similar meaning, they are merged
together as one practice.

IV. RESULTS

From our set of 6 search strings we obtain 600 results sorted
based on relevance as determined by the Google search engine.
Upon applying an inclusion criteria stated in Section III-B
we obtain 38 Internet artifacts. A complete breakdown of our
filtering process is shown in Figure 4. Our set of 38 Internet
artifacts consists of 2 YouTube videos, 2 question and answer
posts, 1 Slideshare presentation, and 33 blog posts.

Practices for Secret Management in Infrastructure as

Code: From our analysis of Internet artifacts we identify 12
practices, which we present below based on how many Internet
artifacts mention the practice. Below, each practice name is
followed by the count of Internet artifacts that mention the
practice. For example, the practice of data organization is
mentioned in 11 of the 38 Internet artifacts.
I. Data Organization (11): This category of practice is related
to the organization process of secrets when IaC scripts are
interfaced with secret management tools. We identify three
practices that belong to this category:

o Adequate directory structure: The practice of using adequate
directory structure when managing secrets with secret man-
agement tools. Adequate directory organization helps in bet-
ter maintenance. According to one practitioner: “Following
a proper directory structure for Ansible variables, vaults,
main tasks will help in easy understanding and incur less
time consumption” [2]. One practitioner strongly discourage
storing all secret-related artifacts in one single directory
saying “DO MAKE USE OF FOLDERS! For the love of god,
[do] this. Putting all files in a single folder both makes that
a BIG folder, but also introduces a namespace collision” [9].
For Ansible, we observe practitioners to recommend specific
structures, for example, creating separate sub-directories
called ‘group_vars’, ‘vars’, and ‘vault’.

e Hiera data hierarchy: The practice of placing secret data
at the appropriate hierarchy when using Hiera. The practice

[SearchResult: 600 |

English-based filtering

[written in English: 539 |

Availability-based filtering

(Available: 427)

Content-based filtering

[SecretmMgmt: 131 |

Duplicate-based filtering

[Non-duplicate: 78]

Practice-based filtering

[Mention of Practice: 38]

Final Set: 38

Fig. 4: Application of our inclusion criteria to collect our set
of 38 Internet artifacts that we use in our paper.

is specific for Hiera, a secret management tool that can be
used to manage secrets for Puppet. Even though Hiera helps
practitioners to avoid hard-coding secrets in Puppet scripts,
use of Hiera can negatively impact readability. To mitigate
the problems with readability, practitioners advocate to store
secrets that are used by few Puppet scripts at the top of the
hierarchy, whereas the secrets used by many Puppet scripts
should be stored at the bottom. In this manner, readability
can be achieved as the practitioner will know the secrets that
are used by many Puppet scripts are available at the bottom
of the Hiera data hierarchy, whereas the secrets listed at the
top of the hierarchy have limited use cases. We provide an
example in Figure 5 that demonstrates how secrets shared
across a few scripts can be placed at the top level (line#2-3),
whereas secrets used by all Puppet scripts can be placed at
the bottom level (line#11-12).

o Naming conventions: For better readability and maintenance,
practitioners state the use of dedicated naming conventions
for variables for managing secrets. According to one prac-
titioner, naming conventions should be applied from the
beginning of IaC secret management: “Keep a convention
to use secrets! You will not be able to review changes to the
secrets and you will not be able to grep for ansible variables
in secrets files! So be thorough since the beginning” [40].
One practitioner recommended use of a prefix or a suffix so
that variables that are used in secret management are easily
recognizable. For Ansible, another practitioner recommend
the use of the prefix vault_ stating “The vault variables
should be written starting with ‘vault_’. This will help
in differentiating easily the vault variables and normal
variables”.

lhierarchy:

2 - name: "Secret Data for Script#1"

3 path: "secret_dir/scriptl.yaml" # Path to YAML file
— with secrets for Script#l

5 - name: "Secret Data for Script#2-10"
6 path: "secret_dir/script10.yaml" # Path to YAML
— file with secrets for Script#2-10

7

8 - name: "Secret Data for Script#11-25"

9 path: "secret_dir/script25.yaml" # Path to YAML
— file with secrets for Script#11-25

11 - name: "Secret Data Used by All Scripts"
12 path: "common.yaml" # Path to YAML file with
— secrets used by all scripts

Fig. 5: An example to demonstrate how secret data can be
organized adequately in Hiera.

II. Password Management for Ansible Vault (9) : This
category refers to practices unique to managing passwords for
Ansible Vault. In Ansible Vault, a password is used to encrypt
necessary secrets with a file called ‘vault’. The password
is later used to decrypt the encrypted secrets. We observe
practitioners to suggest two practices on how to manage the
vault files:

o Separation of vaults from the version control system: The
vault file must not be committed to a version control
system (VCS). One practitioner recommended the use
of automation scripts that can check if a vault file is
being committed to a VCS. The practitioner observes
that the ansible-vault [encrypt|decrypt] com-
mand, which is typically used to add/edit vault files, is
susceptible of committing a vault file in the version his-
tory [1]. According to the practitioner, a Git Hook can be
used to check if vault files are being committed to the VCS,
potentially preventing the vault file from being included in
the VCS [1]. A Git hook is a custom script that executes a
set of actions when an event, such as a commit or a push
occurs in a Git-based VCS [21].

o Use of command line utilities: We observe use of command
line utilities, such as ——vault—-id to be a recommended
approach to provide Ansible Vault passwords. One prac-
titioner stated: “Since Ansible 2.4, the recommended way
to provide a vault password from the cli is to use the
——vault-1id cli option” [4]. Without the use of command
line utilities, passwords for Ansible Vault need to be pro-
vided using a file, which can be accidentally pushed into a
VCS.

III. Access Control (6) : The practice of applying access con-
trol policies on secrets as well as artifacts that are used to store
secrets. Practitioners recommend restriction on who stores and
reads secrets so that a person or a machine with unauthorized
access is incapable of using these secrets. Practitioners also
recommend application of access control for artifacts, such
as vault files used in Ansible Vault to mitigate unauthorized
access.

IV. Prioritized Encryption (6): The category of practices
related to prioritizing what secrets need to be encrypted.
Practitioners have recommended against encrypting all data
provided in IaC scripts. Encryption of all data can lead to
maintainability issues as suggested by one practitioner: “Do
not take all the variables in vault encryption, otherwise it will
be difficult for reviewing in case of errors, if occurred” [2].
While managing secrets, practitioners need to identify what
secrets can be consequential and prioritize those secrets for
encryption. For example, a private SSH key to interface with
an AWS instance can be prioritized over a user name called
‘temp’, that is used to create a temporary user in the AWS
instance.

V. Separation (4) : The practice is related to separation
of concerns, which asserts that the software artifacts should
be separated based on the computing task that is being
accomplished [16]. In the case of secret management for
IaC, practitioners recommend separating secret management
environments so that secrets are grouped based on a certain
characteristic. We observe practitioners to recommend two
practices related to separation:

o Artifact separation: The practice of using separate artifacts
when managing secrets. For example, while describing
secret management practices for Ansible, a practitioner
advocated for using separate vaults for separate tasks
stating “Although it’s convenient to have a single vault with
all of the encrypted secrets, a better security practice is
to separate the secure credentials into separate relevant
vaults” *. In this manner, with separate vaults practitioners
are aware of what vault file is used for what purpose,
potentially mitigating maintainability issues.

 State separation: This practice is applicable for Terraform
states. States refer to the snapshots managed by Terraform,
where each snapshot refers to the provisioned infrastruc-
ture and corresponding configuration at a certain point
in time [37]. States are stored as ‘tfstate’ files. While
managing secrets for Terraform it is recommended to keep
tfstate files separate from secrets .

VI. Logging (4): The practice of applying logging to track
all secret-related operations. Logging is helpful to understand
what actors are accessing secrets at what time, providing better
visibility in the secret management process [18].

VII. Unsealing (4) : This practice is unique to Hashicorp
Vault [12]. In Hashicorp Vault unsealing refers to the process
of decrypting the data encryption key that Hashicorp Vault
uses to encrypt all necessary data [18]. We identify two
practices to adequately accomplish unsealing:

o Automation: For unsealing, Hashicorp Vault uses Shamir’s
Secret Sharing principle [36], where the master key is
split into multiple pieces, each of which must be provided
manually by the developer, and later combined to regenerate
the master key. The manual process is tedious and error-

“https://www.cloudsavvyit.com/3902/how-to-use-ansible-vault-to-store-
secret-keys/
Shttps://caylent.com/managing-secrets-in-terraform

prone, which can be mitigated using an automated feature
provided by Hashicorp Vault called ‘auto-unseal’. In this
manner, automation can be used when unsealing the master
key, potentially mitigating possible errors that can occur due
to manual unsealing.

o Replication: Practitioners recommend use of multiple vault
servers to perform unsealing so that the unsealing process
as well as the secrets stored in Hashicorp Vault are not
susceptible to single point of failures. Practitioners recom-
mend use of at least two Hashicorp Vault servers, where
one server will be the active server, and the other server
will be standby. Another practitioner recommends to use at
least three Hashicorp Vault servers, where one server will

remain active, and two servers will act as standby servers .

VIII. Secret Rotation (3) : This practice refers to the use
of rotation, where the value of a secret is periodically retired
and replaced with new values. We observe practitioners to
recommend rotation for secrets, such as passwords, tokens, and
private SSH keys. Rotation can prevent secrets to be exposed
to unauthorized users, as mentioned by one practitioner: “In
the case of password reuse or leaks, it is best to regularly re-
key the passwords in use to limit exposure”. A lack of secret
rotation can be consequential, as it happened for Microsoft
Azure, where inadequate secret rotation used for authentication
resulted in a 14-hour outage [23].

IX. Transport Layer Security (2) : This practice refers to the
use of transport layer security (TLS) in an end-to-end fashion
so that all data transmitted between the IaC compiler and the
secret management tool is secured. If a tool, such as Hashicorp
Vault is used to manage secrets then practitioners recommend
use of end-to-end TLS for both production and development
environments .

X. Search (2) : The practice of making the search process
efficient for secrets that are stored on secret management
tools. We observe the search process of secrets to be depen-
dent on the utilities that secret management tools provide.
For example, for Hiera practitioners recommend the use of
confine_to_keys to efficiently search for a secret.

XI. Speedup (2): This category refers to the practice of
increasing the speed while managing secrets. For example,
to speed up the secret management process in Ansible Vault,
use of the cryptography package is recommended instead
of the PyCrypto package that is the default package used
by Ansible [4].

XII. Limiting Authentication (1): This practice refers to lim-
iting authentication attempts and duration while using secret
management tools. We observe practitioners to recommend
limiting the number of attempts to log into a secret manage-
ment tool. Furthermore, limiting the authentication duration
is also recommended so that existing authentication sessions
cannot be used by an unauthorized user. Limited authentication
can help minimize the total impact of an unauthenticated
access.

Ohttps://www.youtube.com/watch?v=fOybhcbuxJO
"https://expel.io/blog/production-readiness-hashicorp-vault-kubernetes/

Rater Verification: Our open coding approach is conducted by
the first author, which makes the practice derivation process
susceptible to bias. We mitigate this bias by allocating another
rater, who is the second author of the paper. The second author
is a graduate student in the department, with one year of
professional experience in software engineering. The second
author is provided the set of 38 Internet artifacts, and asked
to map each Internet artifact to one or multiple practices
identified by the first author. The second author independently
conduct the process. Upon completion, the agreement rate
between the first and second author is computed using Cohen’s
Kappa [7]. For the 38 Internet artifacts the Cohen’s Kappa
between the two raters is 0.8, which is ‘substantial’ according
to Landis and Koch [20].

Mapping of Practices to Tools: We provide a mapping between
each identified practice and applicable tools in Table I. The
‘Practice’ column lists each of the 12 practices, whereas
the ‘Tool’ and ‘Language’ columns respectively, represent
the applicable secret management tool and the applicable
IaC language. For example, the practice access control is
applicable for all tools and all IaC-related languages. Table I
provides a summarized overview of what practices are generic
and what practices are tool-specific.

TABLE I: Mapping of Practices and Secret Management Tools
for IaC. ‘All’ indicates generic practices.

Practice Tool Language
Access control All All
Authentication limits All All
Data organization All All
Environment separation Hashicorp Vault All
Logging All All
Password management for Ansible ansible-vault Ansible
Vault

Prioritized encryption All All
Rotation All All
Secret Search Hiera Puppet
Speedup ansible-vault Ansible
TLS All All
Unsealing Hashicorp Vault All

V. DISCUSSION

We discuss the implications and limitations of our paper in
this section:
Implications for Practitioners: Our derived practices can be
useful for practitioners when managing secrets for IaC scripts.
For example, our derivation shows how secrets should be
organized for Puppet, if Puppet Hiera is used to manage se-
crets for Puppet development. Inadequate application of secret
management can lead undesirable consequences, which can be
mitigated using our derived list of practices. Certain practices
namely, logging, secret rotation, and use of transport layer
security are generic practices, which highlight the applicability
of generic security best practices to be applicable for secret
management tools for TaC as well.
Implications for Toolsmiths: Our findings lay the ground-
work for toolsmiths on how to design and develop tools that
will make secret management easier for practitioners. For

example, as discussed in Section IV, establishing a naming
convention is a recommended practice to manage secrets.
Toolsmiths can develop tools that can automatically rename
variables in IaC scripts that are used to store secrets. Fur-
thermore, with sophisticated program analysis that tracks the
flow of secrets across a Puppet module, toolsmiths can develop
tools that automatically construct a data hierarchy for Hiera
where commonly shared secrets are placed in the low-level.
Implications for Researchers: Our findings can be leveraged
to conduct further research in the domain of IaC security.
Researchers can investigate to what extent the listed practices
in Section IV are adopted in open source and proprietary
IaC scripts. Based on prevalence of secrets in IaC scripts, we
conjecture that systematic use of secret management for IaC is
not commonplace. If empirical research substantiates our con-
jecture, then researchers can investigate factors that contribute
to the lack of use of secret management. Researchers can
investigate to what extent our identified practices for [aC are
also applicable for other related domains, such as automated
container orchestration. Furthermore, empirical research that
substantiates the effectiveness of automated secret manage-
ment tools for secure development of IaC scripts, could also
be of interest.

Limitations: Our findings are susceptible to external validity
as the reported practices are limited to the Internet artifacts that
we used in our paper and may not generalize for another set of
Internet artifacts. We mitigate this limitation by systematically
collecting and filtering Internet artifacts using 6 search strings.
The derivation of practices are also biased by rater knowledge:
the first author may have missed practices listed in the set
of 38 Internet artifacts. We mitigate this limitation by using
assigning another rater who independently inspected the set
of 38 Internet artifacts. We observe ‘substantial’ agreement
between the two raters for the set of 38 Internet artifacts.

VI. CONCLUSION

IaC scripts automates the process of provisioning comput-
ing infrastructure at scale using a dedicated programming
language. Despite yielding benefits for IT organizations, IaC
scripts contain secrets, such as hard-coded passwords. The
prevalence of secrets in IaC scripts underlines the importance
of adequately managing secrets in IaC scripts. A list of
practices related to secret management can aid practitioners
in managing secrets, deterring them from hard-coding secrets
into IaC scripts. We have conducted a grey literature review
with 38 Internet artifacts to identify practices for secret man-
agement in [aC. From our analysis, we have identified 12
practices for secret management related to IaC. Our identified
practices include tool-specific practices, e.g., unsealing for
Hashicorp Vault, as well as, tool-agnostic practices, such as
access control. The most frequently mentioned practice is
data organization. Our findings also reveal that for secret
management in IaC, practitioners can use language-specific
tools, e.g., Hiera for Puppet, as well as tools, such as Hashicorp
Vault that work with all IaC languages. Our findings lay the

groundwork for future research related to secure development
of TaC scripts.

ACKNOWLEDGMENT

We thank the PASER group at Tennessee Tech University
for their valuable feedback. This research was partially funded
by the U.S. National Science Foundation (NSF) award #
2026869.

[1]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
(17]

[18]

[19]

REFERENCES

Raphael Campardou, “Ansible (Real Life) Good Practices,” https://
reinteractive.com/posts/167-ansible-real-life- good-practices, 2014, [On-
line; accessed 09-May-2021].

4hathacker, “Ansible Vault - Lets encrypt sensitive data while
automation,” https://www.4hathacker.in/2018/01/ansible- vault-lets-
encrypt-sensitive.html?m=1, 2018, [Online; accessed 21-April-2021].
Ansible, “Ansible Documentation,” https://docs.ansible.com/, 2021, [On-
line; accessed 28-May-2021].

——, “Ansible Vault — Documentation,” https://acozine.github.io/html/
user_guide/vault.html, 2021, [Online; accessed 21-May-2021].
Ansible, “Swisscom Automates IT Management WITH RedHat An-
sible Tower,” https://www.ansible.com/hubfs/pdfs/RH- Ansible- Tower-
swisscom-case-study.pdf?hsLang=en-us, 2021, [Online; accessed 13-
Feb-2021].

Chef, “About Chef Workstation,” https://docs.chef.io/workstation/, 2021,
[Online; accessed 26-May-2021].

J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and Psychological Measurement, vol. 20, no. 1, pp. 37-46, 1960.
[Online]. Available: http://dx.doi.org/10.1177/001316446002000104

V. Garousi, M. Felderer, M. V. Mintyld, and A. Rainer, Benefitting
from the Grey Literature in Software Engineering Research. Cham:

Springer International Publishing, 2020, pp. 385-413. [Online].
Available: https://doi.org/10.1007/978-3-030-32489-6_14
Gary Larizza, “Puppet Workflows 4: Using Hiera in Anger,”

http://garylarizza.com/blog/2014/10/24/puppet- workflows-4-using-
hiera-in-anger/, 2021, [Online; accessed 12-May-2021].

O. Hanappi, W. Hummer, and S. Dustdar, “Asserting reliable
convergence for configuration management scripts,” SIGPLAN Not.,
vol. 51, no. 10, pp. 328-343, Oct. 2016. [Online]. Available:
http://doi.acm.org/10.1145/3022671.2984000

M. M. Hasan, F. A. Bhuiyan, and A. Rahman, “Testing practices
for infrastructure as code,” in Proceedings of the 1st ACM SIGSOFT
International Workshop on Languages and Tools for Next-Generation
Testing, ser. LANGETI 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 7-12. [Online]. Available:
https://doi.org/10.1145/3416504.3424334

Hashicorp Vault, “Hashicorp Vault,” https://www.vaultproject.io/, 2021,
[Online; accessed 23-May-2021].

S. Hopewell, M. Clarke, and S. Mallett, “Grey literature and systematic
reviews,” Publication bias in meta-analysis: Prevention, assessment and
adjustments, pp. 49-72, 2005.

J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation, 1st ed.
Addison-Wesley Professional, 2010.

W. Hummer, F. Rosenberg, F. Oliveira, and T. Eilam, “Automated testing
of chef automation scripts,” in Proceedings Demo & Poster Track of
ACM/IFIP/USENIX International Middleware Conference, 2013, pp. 1—
2.

W. L. Hursch and C. V. Lopes, “Separation of concerns,” 1995.

K. Ikeshita, F. Ishikawa, and S. Honiden, “Test suite reduction in idem-
potence testing of infrastructure as code,” in International Conference
on Tests and Proofs. Springer, 2017, pp. 98-115.

Jon Benson, “5 best practices for secrets management,’
https://www.hashicorp.com/resources/5-best-practices- for-secrets-
management, 2021, [Online; accessed 03-May-2021].

I. Kumara, M. Garriga, A. U. Romeu, D. Di Nucci, F. Palomba,
D. A. Tamburri, and W.-J. van den Heuvel, “The do’s and don’ts of
infrastructure code: A systematic gray literature review,” Information
and Software Technology, vol. 137, p. 106593, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584921000720

[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” Biometrics, vol. 33, no. 1, pp. 159-174, 1977.
[Online]. Available: http://www.jstor.org/stable/2529310

J. Loeliger and M. McCullough, Version Control with Git: Powerful
tools and techniques for collaborative software development. ” O’Reilly
Media, Inc.”, 2012.

R. Mao, H. Zhang, Q. Dai, H. Huang, G. Rong, H. Shen, L. Chen,
and K. Lu, “Preliminary findings about devsecops from grey literature,”
in 2020 IEEE 20th International Conference on Software Quality,
Reliability and Security (QRS). 1EEE, 2020, pp. 450-457.

Mary Jo Foley, “Microsoft’s latest cloud authentication outage:
What went wrong,” https://www.zdnet.com/article/microsofts-latest-
cloud-authentication-outage- what-went-wrong/, 2021, [Online; ac-
cessed 13-May-2021].

MITRE, “CWE-Common Weakness Enumeration,” https://cwe.mitre.
org/index.html, 2021, [Online; accessed 02-May-2021].

Puppet, “Product documentation,” https://puppet.com/docs/, 2021, [On-
line; accessed 27-May-2021].

, “Splunk Case Study,” https://puppet.com/resources/customer-
story/splunk-case-study/, 2021, [Online; accessed 14-Feb-2021].

A. Rahman, E. Farhana, C. Parnin, and L. Williams, “Gang of
eight: A defect taxonomy for infrastructure as code scripts,” in
Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, ser. ICSE °20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 752-764. [Online].
Available: https://doi.org/10.1145/3377811.3380409

A. Rahman, E. Farhana, and L. Williams, “The ‘as code’activities:
development anti-patterns for infrastructure as code,” Empirical Software
Engineering, vol. 25, no. 5, pp. 3430-3467, 2020.

A. Rahman, C. Parnin, and L. Williams, “The seven sins: security smells
in infrastructure as code scripts,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). 1EEE, 2019, pp. 164-175.
A. Rahman, A. Partho, P. Morrison, and L. Williams, “What questions
do programmers ask about configuration as code?” in Proceedings of the
4th International Workshop on Rapid Continuous Software Engineering,
ser. RCoSE ’18. New York, NY, USA: ACM, 2018, pp. 16-22.
[Online]. Available: http://doi.acm.org/10.1145/3194760.3194769

A. Rahman, M. R. Rahman, C. Parnin, and L. Williams, “Security
smells in ansible and chef scripts: A replication study,” ACM Trans.
Softw. Eng. Methodol., vol. 30, no. 1, Jan. 2021. [Online]. Available:
https://doi.org/10.1145/3408897

A. A. U. Rahman and L. Williams, “Different kind of smells: Security
smells in infrastructure as code scripts,” IEEE Security Privacy, pp. 2—
10, 2021.

J. Saldafia, The coding manual for qualitative researchers.
J. Schwarz, “Code Smell Detection in Infrastructure as
https://www.swc.rwth-aachen.de/thesis/code-smell-detection-
infrastructure-code/, 2017, [Online; accessed 02-July-2019].
M. I. Shamim, F. A. Bhuiyan, and A. Rahman, “Xi commandments
of kubernetes security: A systematization of knowledge related to
kubernetes security practices,” in 2020 I[EEE Secure Development
(SecDev). Los Alamitos, CA, USA: IEEE Computer Society, sep
2020, pp. 58-64. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1109/SecDev45635.2020.00025

A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
p. 612-613, Nov. 1979. [Online]. Available: https://doi.org/10.1145/
359168.359176

Terraform, “Terraform Language
/Iwww.terraform.io/docs/language/state/index.html,
accessed 25-May-2021].

A. A. Ur Rahman and L. Williams, “Software security in devops:
Synthesizing practitioners’ perceptions and practices,” in Proceedings
of the International Workshop on Continuous Software Evolution and
Delivery, ser. CSED "16. New York, NY, USA: ACM, 2016, pp. 70-76.
[Online]. Available: http://doi.acm.org/10.1145/2896941.2896946

E. van der Bent, J. Hage, J. Visser, and G. Gousios, “How good is your
puppet? an empirically defined and validated quality model for puppet,”
in 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER), March 2018, pp. 164-174.
Vincenzo Pii, “Where to put ansible-vault password,” https://devops.
stackexchange.com/questions/3282/, 2018, [Online; accessed 29-May-
2021].

Sage, 2015.
Code,”

Documentation,”
2021,

https:
[Online;

