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ABSTRACT

Computing technology has enabled massive digital traces of our

personal lives to be collected and stored. These datasets play an im-

portant role in numerous real-life applications and research analysis,

such as contact tracing for COVID 19, but they contain sensitive

information about individuals. When managing these datasets, pri-

vacy is usually addressed as an afterthought, engineered on top of

a database system optimized for performance and usability. This

has led to a plethora of unexpected privacy attacks in the news.

Specialized privacy-preserving solutions usually require a group

of privacy experts and they are not directly transferable to other

domains. There is an urgent need for a general trustworthy data-

base system that o�ers end-to-end security and privacy guarantees.

In this tutorial, we will �rst describe the security and privacy re-

quirements for database systems in di�erent settings and cover

the state-of-the-art tools that achieve these requirements. We will

also show challenges in integrating these techniques together and

demonstrate the design principles and optimization opportunities

for these security and privacy-aware database systems. This is

designed to be a three hour tutorial.

CCS CONCEPTS

• Security and privacy → Data anonymization and sanitiza-

tion; Management and querying of encrypted data; • Infor-

mation systems → Federated databases.
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1 TUTORIAL OVERVIEW

Databases are everywhere and their role is increasing in almost

every facet of life. Moreover, an enormous amount of sensitive

personal data is kept in the cloud or accessed by untrusted third

parties, e.g., smart home devices, location data from smartphones.

The current approach to protecting sensitive data in these systems

has not kept pace with this new reality. New regulations, such

as GDPR and proposed laws in the US (CITE), are demonstrating

the need to address this challenge in large-scale data management

systems, especially those in the cloud. At the same time, in the wake

of a parade of scandals like the Facebook-Cambridge Analytica leak

in 2018, users are seeking ever-greater assurances that their data

will only be used in ways they authorized.

Next generation database systems will need to treat security and

privacy as �rst class citizens in their design. This paradigm shift

impacts virtually every aspect of a DBMS from how we access data

to howwe prepare query results for the user. It will have a profound

impact on many core database challenges such as query optimiza-

tion, storage management, and database operator algorithms.

Right now security and privacy is mostly treated as an add-on in

production database systems and they o�er simplemechanisms, like

access control lists, to protect their data. The security and privacy

community has developed a myriad of techniques [22, 37, 50, 77],

but they do not address the end-to-end work�ow of a DBMS query

execution in di�erent environment settings. The deployments of

these techniques in a particular environment requires multiple PhD-

level specialists and cannot be easily transferred to other settings as

they are usually hard-coded. There has been limited work on build-

ing end-to-end systems with security and privacy guarantees from

the database community [11, 42, 45, 55, 78], but each has its own

focus of assurance. However, composing these assurances is a non-

monotonic cost model for query optimization. Naive integration of

these techniques may even lead to new privacy attacks [40].

In this tutorial, we will present common architectures in this

emerging landscape and identify when and where each will need to

incorporate security and privacy techniques to satisfy this emerging

demand for more rigorous protection of sensitive data in relational-

style DBMSs. We will also highlight the challenges of the trade-o�s

associated with competing solutions in the large-scale database

systems and the challenges in composing security and privacy tech-

niques to provide end-to-end guarantees in trustworthy DBMSs.

Thus, the tutorial is targeted to general DB researchers and practi-

tioners who would like to learn about privacy and security state-of-

the-arts, as well as security and privacy experts who are looking for

new research problems in database settings. Our tutorial will cover



the theoretical foundations of the key security and privacy building

blocks (secure computation, di�erential privacy, and trusted execu-

tion environments) and case studies that integrate these techniques

for trustworthy DBMSs.

2 TUTORIAL OUTLINE

Our tutorial will consist of 3 modules (3 hours). The modular organi-

zation will allow attendees to choose which parts of the tutorial they

might be most interested in. The �rst module covers ‘de�ning secu-

rity and privacy requirements’ for database systems. This focuses

on the background, problem setting and de�nition. The second

module on ‘building blocks and toolboxes’ presents the state-of-

the-art in security and privacy techniques. These �rst two modules

are intended to give general database researchers an overview of

the security and privacy landscape in database systems. The second

module also provides essential toolboxes for researchers to inte-

grate security and privacy into their own systems. The third module

on ‘system integration and optimization’ provides case studies to

show the opportunities and challenges in building practical trust-

worthy database systems. This module also provides an overview

of cutting edge research that may be of interest even to experts.

2.1 Module I: De�ning S&P Requirements

In this module, we will �rst introduce three common reference archi-

tectures to describe the relationships between database systems and

their users and between autonomous databases in a federation. In

Figure 1, we see our three reference architectures: (i) a client-server

model [26, 47], (ii) an untrusted cloud service provider [2, 5], and

(iii) a data federation [8, 74]. Here, an untrusted party denotes a

player that intends to do whatever they can – or act maliciously – to

gain unauthorized access to private data within a database. Interact-

ing with an untrusted party requires the use of privacy-preserving

technologies to guarantee the privacy, security, or integrity of a

database’s storage and querying facility. For the data federation

setting, we also introduce a player that is semi-honest or malicious,

shown with a broken padlock. The malicious player acts as before,

but we will also introduce techniques for semi-honest players, or

ones that will follow a set of protocols faithfully to participate in

query processing, but who will try to learn everything they can

about private data by observing a query’s execution. Semi-honest

techniques o�er higher performance than full malicious guarantees.

These settings are not meant to be exhaustive. They provide a can-

vas for us to examine the security and privacy challenges associated

with these systems.

We will show the importance of ensuring security, privacy, and

integrity guarantees in these three settings using real world privacy

leakage examples and security attacks on systems [43, 44, 60]. Then

we will de�ne the security, privacy, and integrity requirements

at every stage of the systems in the reference architecture — be-

fore, during, and after the query execution. We will also provide a

high-level overview of the state-of-the-art e�orts and techniques in

achieving each requirement (Table 1). Note that each technique has

its own performance, privacy, and utility trade-o�. Here, privacy

denotes the strength of their guarantees for data protection, perfor-

mance captures how e�ciently the system evaluates queries and

utility describes the accuracy of query results and expressiveness

of its querying facility. This leads to new decision spaces for trust-

worthy DBMSs. We will highlight the new optimization problems

and challenges ahead.

In this tutorial, we will focus on protecting the security and

privacy of data throughout the query lifecycle. We consider how

to protect the privacy of a query’s private inputs using di�eren-

tial privacy [45, 55, 68]. After that, we will brie�y touch on the

related challenge of running a secret query over public data using

private information retrieval [17, 61]. Lastly, we will examine tech-

niques used to protect query records during query evaluation with

software (secure computation) and hardware (trusted execution

environments). We will examine how these techniques protect the

data from side-channel leakage during query evaluation and from

being read directly by an adversary on the computing machine.

We will not cover private information retrieval and techniques for

integrity in this tutorial in-depth, but we will highlight how they

interact with other techniques at the end of the tutorial.

2.2 Module II: Techniques and Toolboxes

2.2.1 Secure Computation. Secure computation allows a set of mu-

tually distrustful parties to jointly compute a function on their

inputs without revealing anything beyond the output of the func-

tion. Since the invention of secure computation [82], this technol-

ogy has witnessed signi�cant growth in its practicality. Numerous

start-ups based on various secure computation technologies have

been founded to use related cryptographic techniques to protect

�nancial information [12], for anonymous reporting of sexual mis-

conduct [64], private auctions [13], and more.

Secure computation protects private data during query evalua-

tion in two ways. First, it protects the con�dentiality of the data

by encrypting it and the outputs derived from it throughout the

query’s runtime. Second, the query’s evaluation is oblivious, mean-

ing that its instruction traces are independent of its private inputs.

In other words, they leak no information about the underlying data

via early termination. This property result in a high performance

penalty for queries running within secure computation. In practice,

their runtime is typically multiple orders of magnitude slower than

running the same query insecurely.

Secure computation can be used in the cloud and data federation

settings for query evaluation over private data. In the cloud, data

owners use secure computation to query their private records using

an untrusted service provider [2, 79]. In a data federation, oblivious

query processing was researched in [8, 9, 72, 74]. Almost all se-

cure computation protocols consist of following steps: 1) represent

the computation as a circuit; 2) execute a secure subprotocol that

securely encrypt the input data for evaluation in the circuit; 3) fol-

lowing the topological order of the circuit, evaluate all gates therein.

Usually, the evaluation of each gate incurs some computational and

communication cost, which becomes signi�cant when the function

is complex. Large-scale computation and analysis usually require

billions of gates, leaving a huge space for further optimization.

More recently, customized MPC protocol using for database opera-

tions also started to gain attention where further improvement in

speed was obtained. For example, [48] discussed performing join-

and-compute more e�ciently supporting default values and [57]





their security guarantees using hardware-based solutions. In the

past few years, a number of TEEs have been proposed, including

Intel SGX [21] and Apple’s "Secure Enclave co-processor" [4]. Most

of these solutions are aimed at protecting the security of program

execution. Recently, there has been a trend to use TEEs to safeguard

database systems, especially to provide secure query processing on

outsourced databases. Notable works under this literature include

StealthDB [34], Opaque [86], ObliDB [30], Obladi [23], and more.

The privacy guarantees o�ered by TEEs and secure computation

di�er in one subtle, but important way: although they protect their

input tuples from prying eyes by encrypting their contents for

the duration of the query, their execution is not oblivious. This

means that branching, loop iteration counts, and other program

behavior are observable by the adversary. This leakage can enable

an adversary to deduce unauthorized information about a secure

program’s input data [35, 73, 76]. A TEE-based DBMS can address

leaking memory access patterns by doing its I/Os using oblvious

memory primitives such as ZeroTrace [70].

In this tutorial, we will review existing TEE-based methods that

safeguard the query processing as well as some end-to-end secure

databases that use TEEs throughout the data lifecycle. We will also

describe the key techniques with which these systems deploy TEEs,

and compare them with software-based approaches. Finally, we will

discuss the available trusted hardware-centric designs for build-

ing secure databases, their limitations and related open research

questions.

2.3 Module III: System Integration and

Optimization

Each security and privacy technique has its own performance, pri-

vacy, and utility trade-o�. The integration of these techniques for

a database system leads to new challenges and opportunities in

the decision space. In this module, we will present case studies

to demonstrate the practical challenges in building a trustworthy

database system with one or more than one security and privacy

guarantees for each reference architecture. Note that integration of

various tools is a challenging task. On the one hand, system insight

is needed to ensure high performance and scalability, on the other

hand, to ensure provable security and privacy, it is important to

design the database systems in a principled way. For example, neg-

ligence towards composability can cause attacks [36, 59] to systems

like CryptDB [62].

For the client-server model, we will illustrate how to handle

complex privacy policies for the input data that involves multiple

relations and join queries using PrivateSQL [45]. In this setting, the

main trade-o� is between privacy of the input data and the utility

of the query answers. As the true query processing time on the

underlying databases also leaks information to the data analyst [38],

to avoid this side-channel attack, PrivateSQL �rst generates dif-

ferentially private synopses o�ine. This allows unlimited number

of queries answered online over these synopses without further

leaking any information about the input data.

For the cloud service provider setting, we will show how to

support oblivious query processing for general query workloads

using TEE-based DBMS solutions, Opaque [86] and ObliDB [30].

Both systems utilize Intel SGX hardware enclaves for the guarantees

of computation integrity and query processing obliviousness to

the untrusted cloud service provider. The performance overhead

for these guarantees are usually very expensive. To tackle this

challenge, �ne-grained oblivious operators are proposed together

with new optimization rules or cost model. Note that in this cloud

service provider setting, when the data owner and the data analyst

are di�erent parties, di�erential privacy can also be used for the

protection of the input data [1, 24, 67].

For data federations, we will consider case studies including

SMCQL [8], Shrinkwrap [9], and SAQE [10]. These systems aim

to o�er both input data privacy and oblivious query evaluation.

These systems consider the end-to-end privacy measure known

as computational di�erential privacy that composes these privacy

guarantees and demonstrates a three-way trade-o� between per-

formance, privacy and utility, unlike the case studies shown in the

�rst two architectures. In addition, SAQE further expands the trade-

o� space using approximate query processing technique from the

database community. As more security and privacy desiderata with

integrity constraints are considered in a DBMS, composing them

becomes non-trivial. We will highlight the challenges and open

questions at the end of this module.

3 INTENDED AUDIENCE

The intended audience for this tutorial includes DB researchers and

practitioners who want to learn more about how to solve S/P chal-

lenges in data management platforms, as well as members of the DB

community who want to learn about the latest achievements in the

�eld and how these technologies can be used in real-world deploy-

ments. This tutorial will assume some background in databases, data

mining, and the basics of probability with knowledge equivalent of

an introductory undergraduate or graduate class. This tutorial will

not assume prior knowledge of cryptography or di�erential privacy.

4 INTENDED LENGTH

The tutorial consists of 3 modules (3 hours). The �rst module will

focus primarily on the problem de�nition and overview the secu-

rity and privacy techniques for trustworthy DBMSs (45 mins). The

second module will focus on three building blocks (secure computa-

tion, di�erential privacy, and trusted execution environment), and

each building block will take 30 mins (90 mins in total). The last

module will present several case studies to illustrate the challenges

and open questions in building such trustworthy systems (45 mins).

5 RELATEDWORK

This tutorial describes both security and privacy concerns for a

variety of database settings. We expand upon previous tutorials that

focus purely on security or privacy. For di�erential privacy, previ-

ous tutorials have covered the basics and open challenges [52, 81],

how to incorporate privacy guarantees into specialized settings

like machine learning [16] and information networks [39, 51], as

well as how to design appropriate mechanisms for data release [19].

Regarding secure computation, we identi�ed tutorials that cover

the basics of secure computation [80], their proofs [49], and speci�c

implementations [6, 15, 65, 71]. In contrast to the referenced work,

this tutorial describes how to integrate both privacy and security

into database systems. We show the trade-o�s and synergies that



practitioners must navigate to successfully incorporate di�eren-

tial privacy and secure computation into their systems. Tutorials

on blockchains for database systems [54] and private information

retrieval [41] focus on a single integrity criteria. Our tutorial will

highlight their importance in di�erent settings and focus on the

security and privacy guarantees of database systems.
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