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ABSTRACT

Computing technology has enabled massive digital traces of our
personal lives to be collected and stored. These datasets play an im-
portant role in numerous real-life applications and research analysis,
such as contact tracing for COVID 19, but they contain sensitive
information about individuals. When managing these datasets, pri-
vacy is usually addressed as an afterthought, engineered on top of
a database system optimized for performance and usability. This
has led to a plethora of unexpected privacy attacks in the news.
Specialized privacy-preserving solutions usually require a group
of privacy experts and they are not directly transferable to other
domains. There is an urgent need for a general trustworthy data-
base system that offers end-to-end security and privacy guarantees.
In this tutorial, we will first describe the security and privacy re-
quirements for database systems in different settings and cover
the state-of-the-art tools that achieve these requirements. We will
also show challenges in integrating these techniques together and
demonstrate the design principles and optimization opportunities
for these security and privacy-aware database systems. This is
designed to be a three hour tutorial.

CCS CONCEPTS

« Security and privacy — Data anonymization and sanitiza-
tion; Management and querying of encrypted data; « Infor-
mation systems — Federated databases.
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1 TUTORIAL OVERVIEW

Databases are everywhere and their role is increasing in almost
every facet of life. Moreover, an enormous amount of sensitive
personal data is kept in the cloud or accessed by untrusted third
parties, e.g., smart home devices, location data from smartphones.
The current approach to protecting sensitive data in these systems
has not kept pace with this new reality. New regulations, such
as GDPR and proposed laws in the US (CITE), are demonstrating
the need to address this challenge in large-scale data management
systems, especially those in the cloud. At the same time, in the wake
of a parade of scandals like the Facebook-Cambridge Analytica leak
in 2018, users are seeking ever-greater assurances that their data
will only be used in ways they authorized.

Next generation database systems will need to treat security and
privacy as first class citizens in their design. This paradigm shift
impacts virtually every aspect of a DBMS from how we access data
to how we prepare query results for the user. It will have a profound
impact on many core database challenges such as query optimiza-
tion, storage management, and database operator algorithms.

Right now security and privacy is mostly treated as an add-on in
production database systems and they offer simple mechanisms, like
access control lists, to protect their data. The security and privacy
community has developed a myriad of techniques [22, 37, 50, 77],
but they do not address the end-to-end workflow of a DBMS query
execution in different environment settings. The deployments of
these techniques in a particular environment requires multiple PhD-
level specialists and cannot be easily transferred to other settings as
they are usually hard-coded. There has been limited work on build-
ing end-to-end systems with security and privacy guarantees from
the database community [11, 42, 45, 55, 78], but each has its own
focus of assurance. However, composing these assurances is a non-
monotonic cost model for query optimization. Naive integration of
these techniques may even lead to new privacy attacks [40].

In this tutorial, we will present common architectures in this
emerging landscape and identify when and where each will need to
incorporate security and privacy techniques to satisfy this emerging
demand for more rigorous protection of sensitive data in relational-
style DBMSs. We will also highlight the challenges of the trade-offs
associated with competing solutions in the large-scale database
systems and the challenges in composing security and privacy tech-
niques to provide end-to-end guarantees in trustworthy DBMSs.
Thus, the tutorial is targeted to general DB researchers and practi-
tioners who would like to learn about privacy and security state-of-
the-arts, as well as security and privacy experts who are looking for
new research problems in database settings. Our tutorial will cover
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the theoretical foundations of the key security and privacy building
blocks (secure computation, differential privacy, and trusted execu-
tion environments) and case studies that integrate these techniques
for trustworthy DBMSs.

2 TUTORIAL OUTLINE

Our tutorial will consist of 3 modules (3 hours). The modular organi-
zation will allow attendees to choose which parts of the tutorial they
might be most interested in. The first module covers ‘defining secu-
rity and privacy requirements’ for database systems. This focuses
on the background, problem setting and definition. The second
module on ‘building blocks and toolboxes’ presents the state-of-
the-art in security and privacy techniques. These first two modules
are intended to give general database researchers an overview of
the security and privacy landscape in database systems. The second
module also provides essential toolboxes for researchers to inte-
grate security and privacy into their own systems. The third module
on ‘system integration and optimization’ provides case studies to
show the opportunities and challenges in building practical trust-
worthy database systems. This module also provides an overview
of cutting edge research that may be of interest even to experts.

2.1 Module I: Defining S&P Requirements

In this module, we will first introduce three common reference archi-
tectures to describe the relationships between database systems and
their users and between autonomous databases in a federation. In
Figure 1, we see our three reference architectures: (i) a client-server
model [26, 47], (ii) an untrusted cloud service provider [2, 5], and
(iii) a data federation [8, 74]. Here, an untrusted party denotes a
player that intends to do whatever they can - or act maliciously - to
gain unauthorized access to private data within a database. Interact-
ing with an untrusted party requires the use of privacy-preserving
technologies to guarantee the privacy, security, or integrity of a
database’s storage and querying facility. For the data federation
setting, we also introduce a player that is semi-honest or malicious,
shown with a broken padlock. The malicious player acts as before,
but we will also introduce techniques for semi-honest players, or
ones that will follow a set of protocols faithfully to participate in
query processing, but who will try to learn everything they can
about private data by observing a query’s execution. Semi-honest
techniques offer higher performance than full malicious guarantees.
These settings are not meant to be exhaustive. They provide a can-
vas for us to examine the security and privacy challenges associated
with these systems.

We will show the importance of ensuring security, privacy, and
integrity guarantees in these three settings using real world privacy
leakage examples and security attacks on systems [43, 44, 60]. Then
we will define the security, privacy, and integrity requirements
at every stage of the systems in the reference architecture — be-
fore, during, and after the query execution. We will also provide a
high-level overview of the state-of-the-art efforts and techniques in
achieving each requirement (Table 1). Note that each technique has
its own performance, privacy, and utility trade-off. Here, privacy
denotes the strength of their guarantees for data protection, perfor-
mance captures how efficiently the system evaluates queries and
utility describes the accuracy of query results and expressiveness
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of its querying facility. This leads to new decision spaces for trust-
worthy DBMSs. We will highlight the new optimization problems
and challenges ahead.

In this tutorial, we will focus on protecting the security and
privacy of data throughout the query lifecycle. We consider how
to protect the privacy of a query’s private inputs using differen-
tial privacy [45, 55, 68]. After that, we will briefly touch on the
related challenge of running a secret query over public data using
private information retrieval [17, 61]. Lastly, we will examine tech-
niques used to protect query records during query evaluation with
software (secure computation) and hardware (trusted execution
environments). We will examine how these techniques protect the
data from side-channel leakage during query evaluation and from
being read directly by an adversary on the computing machine.
We will not cover private information retrieval and techniques for
integrity in this tutorial in-depth, but we will highlight how they
interact with other techniques at the end of the tutorial.

2.2 Module II: Techniques and Toolboxes

2.2.1 Secure Computation. Secure computation allows a set of mu-
tually distrustful parties to jointly compute a function on their
inputs without revealing anything beyond the output of the func-
tion. Since the invention of secure computation [82], this technol-
ogy has witnessed significant growth in its practicality. Numerous
start-ups based on various secure computation technologies have
been founded to use related cryptographic techniques to protect
financial information [12], for anonymous reporting of sexual mis-
conduct [64], private auctions [13], and more.

Secure computation protects private data during query evalua-
tion in two ways. First, it protects the confidentiality of the data
by encrypting it and the outputs derived from it throughout the
query’s runtime. Second, the query’s evaluation is oblivious, mean-
ing that its instruction traces are independent of its private inputs.
In other words, they leak no information about the underlying data
via early termination. This property result in a high performance
penalty for queries running within secure computation. In practice,
their runtime is typically multiple orders of magnitude slower than
running the same query insecurely.

Secure computation can be used in the cloud and data federation
settings for query evaluation over private data. In the cloud, data
owners use secure computation to query their private records using
an untrusted service provider [2, 79]. In a data federation, oblivious
query processing was researched in [8, 9, 72, 74]. Almost all se-
cure computation protocols consist of following steps: 1) represent
the computation as a circuit; 2) execute a secure subprotocol that
securely encrypt the input data for evaluation in the circuit; 3) fol-
lowing the topological order of the circuit, evaluate all gates therein.
Usually, the evaluation of each gate incurs some computational and
communication cost, which becomes significant when the function
is complex. Large-scale computation and analysis usually require
billions of gates, leaving a huge space for further optimization.
More recently, customized MPC protocol using for database opera-
tions also started to gain attention where further improvement in
speed was obtained. For example, [48] discussed performing join-
and-compute more efficiently supporting default values and [57]
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Figure 1: Reference architectures for database systems.
Guarantee Client-server Cloud service provider Data federation
Privacy of:
Input data Differential privacy [45, 55] N/A Differential privacy [9, 67]
Queries N/A Private information retrieval [61] | Private function evaluation [75]
Query evaluation N/A Secure computation [8, 74], trusted execution environments [7, 86]
Integrity of:
Storage Authenticated data structures [25] Blockchain [3, 29]
Query evaluation Zero-knowledge proofs Verifiable computation[85], secure [31] computation
trusted execution environments [63]

Table 1: Overview of security and privacy techniques for architectures in Figure 1 with citations of exemplar systems.

supports generic join operations more efficiently using techniques
from private set intersection.

Zero-knowledge proofs (ZKP) can be viewed as a special type
of secure computation, where only one party (i.e., prover) has the
input, and the other party (i.e., verifier) obtains one bit of output in-
dicating if a certain public predicate is true on the prover’s input [32,
33]. ZKP can have a lot of interesting use with databases [84]. For
example, the data owner can first publish a digest of the database,
which does not reveal any information about its contents but binds
the database’s contents. When the data owner receives a query, they
will return the result to the client with a proof of its correctness
that the client verifies by combining it with the initial digest. This
ensure integrity of the query while revealing nothing else about
the database except the query result.

This tutorial will focus on covering the application side of secure
computation, including basic security definition, and a computation
abstraction that incorporates most secure computation protocols.
We will covert some basic techniques on how to use secure compu-
tation efficiently as well as some recent works in this direction. We
will also discuss recent advances in private information retrieval
(PIR) [18, 46] as well as their scalable variations [14, 20]. Finally,
we will talk about practical considerations, include existing secure
computation tools as well as how to incorporate various other
techniques in this tutorial.

2.2.2 Differential Privacy. Unlike secure computation that main-
tains the confidentiality of the input dataset during query execution,
differential privacy (DP) [27, 28] offers a guarantee on whether sen-
sitive values in the dataset can be inferred or “reconstructed" from
the output of a query. This privacy guarantee is considered the gold
standard for ensuring privacy of the input data in most data sharing
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scenarios and has been adopted by several organizations, including
the US Census Bureau [53], and tech companies like Google, Apple,
Microsoft and Uber. This guarantee is often achieved via random-
ization, such as injecting carefully controlled levels of noise into
a query’s results. A private dataset begins with a privacy budget
defining how much information about the data may be revealed
in noisy query results. Each query receives some quantity of the
privacy budget. The composition of multiple differentially private
algorithms still ensures differential privacy. This is useful for prov-
ing the privacy guarantees of complex queries or workloads with
many queries over a single dataset [83].

This tutorial will focus on the definition of DP, the basic DP
mechanisms for answering a single SQL-like query (e.g. the Laplace
mechanism, and the sensitivity analysis of a query plan), and com-
position properties of DP [28]. We will also survey existing DP
frameworks and toolboxes for DP algorithm developments (e.g. ek-
telo [83], Google DP, IBM diffprivlib), and existing DP systems that
support end-to-end private data analysis (e.g. PINQ [55], Flex [42],
PrivateSQL [45], Airavat [66]). Last, we will introduce computa-
tional relaxations of standard DP, known as computational DP [56],
for the cloud setting and the data federation setting, and show the
adaptations of the basic DP mechanisms for these settings [9, 58].

2.2.3 Trusted Execution Environment. Trusted Execution Environ-
ment (TEE) is a tamper-resistant isolated execution environment [69].
It guarantees the authenticity of all executed code, the integrity of
run-time states (such as CPU registers and memory), and confiden-
tiality for their data data and run-time states. In addition, TEEs offer
remote attestation, wherein a user queries a trusted third party to
verify that an enclave he or she receives is authentic, or has not been
tampered with. In contrast to secure computation, TEEs uphold
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their security guarantees using hardware-based solutions. In the
past few years, a number of TEEs have been proposed, including
Intel SGX [21] and Apple’s "Secure Enclave co-processor” [4]. Most
of these solutions are aimed at protecting the security of program
execution. Recently, there has been a trend to use TEEs to safeguard
database systems, especially to provide secure query processing on
outsourced databases. Notable works under this literature include
StealthDB [34], Opaque [86], ObliDB [30], Obladi [23], and more.

The privacy guarantees offered by TEEs and secure computation
differ in one subtle, but important way: although they protect their
input tuples from prying eyes by encrypting their contents for
the duration of the query, their execution is not oblivious. This
means that branching, loop iteration counts, and other program
behavior are observable by the adversary. This leakage can enable
an adversary to deduce unauthorized information about a secure
program’s input data [35, 73, 76]. A TEE-based DBMS can address
leaking memory access patterns by doing its I/Os using oblvious
memory primitives such as ZeroTrace [70].

In this tutorial, we will review existing TEE-based methods that
safeguard the query processing as well as some end-to-end secure
databases that use TEEs throughout the data lifecycle. We will also
describe the key techniques with which these systems deploy TEEs,
and compare them with software-based approaches. Finally, we will
discuss the available trusted hardware-centric designs for build-
ing secure databases, their limitations and related open research
questions.

2.3 Module III: System Integration and

Optimization

Each security and privacy technique has its own performance, pri-
vacy, and utility trade-off. The integration of these techniques for
a database system leads to new challenges and opportunities in
the decision space. In this module, we will present case studies
to demonstrate the practical challenges in building a trustworthy
database system with one or more than one security and privacy
guarantees for each reference architecture. Note that integration of
various tools is a challenging task. On the one hand, system insight
is needed to ensure high performance and scalability, on the other
hand, to ensure provable security and privacy, it is important to
design the database systems in a principled way. For example, neg-
ligence towards composability can cause attacks [36, 59] to systems
like CryptDB [62].

For the client-server model, we will illustrate how to handle
complex privacy policies for the input data that involves multiple
relations and join queries using PrivateSQL [45]. In this setting, the
main trade-off is between privacy of the input data and the utility
of the query answers. As the true query processing time on the
underlying databases also leaks information to the data analyst [38],
to avoid this side-channel attack, PrivateSQL first generates dif-
ferentially private synopses offline. This allows unlimited number
of queries answered online over these synopses without further
leaking any information about the input data.

For the cloud service provider setting, we will show how to
support oblivious query processing for general query workloads
using TEE-based DBMS solutions, Opaque [86] and ObliDB [30].
Both systems utilize Intel SGX hardware enclaves for the guarantees
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of computation integrity and query processing obliviousness to
the untrusted cloud service provider. The performance overhead
for these guarantees are usually very expensive. To tackle this
challenge, fine-grained oblivious operators are proposed together
with new optimization rules or cost model. Note that in this cloud
service provider setting, when the data owner and the data analyst
are different parties, differential privacy can also be used for the
protection of the input data [1, 24, 67].

For data federations, we will consider case studies including
SMCQL [8], Shrinkwrap [9], and SAQE [10]. These systems aim
to offer both input data privacy and oblivious query evaluation.
These systems consider the end-to-end privacy measure known
as computational differential privacy that composes these privacy
guarantees and demonstrates a three-way trade-off between per-
formance, privacy and utility, unlike the case studies shown in the
first two architectures. In addition, SAQE further expands the trade-
off space using approximate query processing technique from the
database community. As more security and privacy desiderata with
integrity constraints are considered in a DBMS, composing them
becomes non-trivial. We will highlight the challenges and open
questions at the end of this module.

3 INTENDED AUDIENCE

The intended audience for this tutorial includes DB researchers and
practitioners who want to learn more about how to solve S/P chal-
lenges in data management platforms, as well as members of the DB
community who want to learn about the latest achievements in the
field and how these technologies can be used in real-world deploy-
ments. This tutorial will assume some background in databases, data
mining, and the basics of probability with knowledge equivalent of
an introductory undergraduate or graduate class. This tutorial will
not assume prior knowledge of cryptography or differential privacy.

4 INTENDED LENGTH

The tutorial consists of 3 modules (3 hours). The first module will
focus primarily on the problem definition and overview the secu-
rity and privacy techniques for trustworthy DBMSs (45 mins). The
second module will focus on three building blocks (secure computa-
tion, differential privacy, and trusted execution environment), and
each building block will take 30 mins (90 mins in total). The last
module will present several case studies to illustrate the challenges
and open questions in building such trustworthy systems (45 mins).

5 RELATED WORK

This tutorial describes both security and privacy concerns for a
variety of database settings. We expand upon previous tutorials that
focus purely on security or privacy. For differential privacy, previ-
ous tutorials have covered the basics and open challenges [52, 81],
how to incorporate privacy guarantees into specialized settings
like machine learning [16] and information networks [39, 51], as
well as how to design appropriate mechanisms for data release [19].
Regarding secure computation, we identified tutorials that cover
the basics of secure computation [80], their proofs [49], and specific
implementations [6, 15, 65, 71]. In contrast to the referenced work,
this tutorial describes how to integrate both privacy and security
into database systems. We show the trade-offs and synergies that
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practitioners must navigate to successfully incorporate differen-
tial privacy and secure computation into their systems. Tutorials
on blockchains for database systems [54] and private information
retrieval [41] focus on a single integrity criteria. Our tutorial will
highlight their importance in different settings and focus on the
security and privacy guarantees of database systems.

6 PRESENTERS

Ashwin Machanavajjhala is an associate professor in the De-
partment of Computer Science, Duke University and an associate
director at the Information Initiative@Duke (iiD). Previously, he
was a Senior Research Scientist in the Knowledge Management
group at Yahoo! Research. His primary research interests lie in
algorithms for ensuring privacy in statistical databases and aug-
mented reality applications. He is a recipient of the National Science
Foundation Faculty Early CAREER award in 2013, and the 2008
ACM SIGMOD Jim Gray Dissertation Award Honorable Mention.
Ashwin graduated with a Ph.D. from the Department of Computer
Science, Cornell University and a B.Tech in Computer Science and
Engineering from the Indian Institute of Technology, Madras.

Jennie Rogers is an assistant professor of Computer Science
at Northwestern University. She investigates pragmatic privacy-
preserving data analytics, federating databases over multiple data
models, and new approaches with which individuals can explore
and understand their data. She received the NSF CAREER Award
in 2019. She earned her Ph.D. at Brown University and completed a
post-doc at MIT CSAIL.

Xiao Wang is an assistant professor of Computer Science at
Northwestern University. He was a postdoc researcher at MIT and
Boston University and obtained his Ph.D. at the University of Mary-
land. His research interests include computer security, privacy, and
cryptography. He has recently been working on practical multi-
party computation, zero-knowledge proof, oblivious RAM, and
post-quantum cryptography. He is in a team submitting to NIST
post-quantum cryptography standardization, currently in round 3.
He has received an ACM CCS Best Paper Award in 2017.

Xi He is an assistant professor in the Cheriton School of Com-
puter Science at the University of Waterloo. Her research interests
span the areas of privacy and security for big-data management
and analysis. She obtained her Ph.D. at Duke University. She also
received a double degree in Applied Mathematics and Computer
Science from the University of Singapore. She has given tutorials
on privacy at VLDB 2016 and SIGMOD 2017. She received a best
demo award on differential privacy at VLDB 2016 and was awarded
a 2017 Google Ph.D. Fellowship in Privacy and Security.

Johes Bater is a postdoctoral research associate in computer
science at Duke University. He completed his Ph.D. from North-
western University in 2020 under the direction of Jennie Rogers. His
primary research interests lie in the intersection of security, privacy,
and performance for database systems, with a focus on building
fast, accurate database systems that support privacy-preserving
analytics with provable security guarantees.

Chenghong Wang is a third year Ph.D. student in computer
science at Duke University under the supervision of Dr. Ashwin
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