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ABSTRACT

The fluid Taylor scale is measured in the Bryn Mawr Experiment (BMX) of the Bryn Mawr Plasma Laboratory and examined as a potential
dissipation scale of magnetic turbulence within the plasma. We present the first laboratory measurements of the Taylor scale of a turbulent
magnetized plasma through multi-point correlations of broadband magnetic fluctuations. From spatial and temporal correlations, respec-
tively, the measured Taylor scales are 2 = 1 and 3 = 1 cm. These measurements are on the same order of magnitude as estimated ion dissipa-
tion scales within the BMX plasma with ion inertial scales between 1and 10cm and ion gyroscales between 0.1 and 1.0 cm. From these
measurements, a magnetic Reynolds number can be computed. Since Taylor scale values are determined using multi-point correlations and a
Richardson extrapolation technique, an estimate of the magnetic Reynolds number can be found without the added complication of specify-
ing a model of microscopic diffusivity, a parameter often difficult to obtain experimentally.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0073207

I. INTRODUCTION

Spatial velocity correlation functions have been measured in con-
ventional fluid turbulence for decades,' * but spatial magnetic correla-
tions in turbulent plasmas are less common. Spatial measurements of
the magnetic correlation function in the solar wind plasma were stud-
ied by Matthaeus et al..” They used simultaneous magnetic field data
from several spacecraft, including the four Cluster spacecraft in tetra-
hedral formation. The measurements were performed with separations
ranging from 150 to 2.2 x 10%km (350Rg). From measurements of
the correlation length and the Taylor scale, 2478 = 702 km, they report
an effective magnetic Reynolds number of the solar wind Rt
= 230 000.

In follow-up papers, Weygand et al.” ’ modified and improved
the earlier result. Weygand et al.” introduce a modification to the anal-
ysis by using a Richardson-extrapolation method, which probes the
trends of fits as the separation shrinks from 10° to 100 km to extrapo-
late the Taylor scale at zero-separation. They report a Taylor scale of
2400 = 100 km. This measurement confirms the earlier work,” and
they find a solar wind magnetic Reynolds number of R,,; = 260 000

%+ 20000. In addition, using magnetospheric plasma sheet (tailward of
Earth) data, they measure a Taylor scale of 1900 % 100 km and find a
smaller Reynolds number R,,; = 111 % 12, due mostly to the smaller
correlation length found in the plasma sheet. Anisotropies in the cor-
relation function parallel and perpendicular to the local magnetic field

have also been studied,” ” and Taylor scales parallel to the local field in
the intermediate (600km/s > speed > 450km/s) solar wind are
found to be longer than perpendicular to the field. Weygand ef al. in
2011”7 report a Taylor scale of 3500+ 500km parallel and
1200 = 500 km perpendicular to the local magnetic field in the inter-
mediate solar wind. In the slow (speed < 450km/s) solar wind, they
find a Taylor scale of 1200 = 100 km with no variation between paral-
lel and perpendicular to the local magnetic field.

Recently, Bandyopadhyay et al.'’ explored spatial magnetic cor-
relations with data from the Magnetospheric Multiscale (MMS) mis-
sion. They augment previous work ™* with smaller separations, 25 km
< r <200km, and a bead-like spacecraft alignment (in contrast to
tetrahedral formation). They obtain a Taylor scale of ~7000 km in the
solar wind.

Measurements of such a Taylor scale have not yet been con-
ducted in a laboratory version of a magnetically turbulent plasma, in
part due to the difficulty of recreating similar turbulent conditions in
the lab as can be found in space or astrophysical settings. Work on the
Swarthmore Spheromak Experiment (SSX) has shown that broadband
magnetic fluctuations can be generated using a plasma gun to launch
magnetic structures into a wind tunnel-like flux-conserving col-
umn.'"""* The Bryn Mawr Experiment (BMX) at Bryn Mawr College
has been constructed to expand upon these experiments and continue
exploring heliospheric-relevant magnetic turbulence in the laboratory.
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This paper presents measurements of the spatial and temporal
correlations of fluctuating magnetic fields within the BMX plasma
wind tunnel. These correlation functions allow for an extrapolated
zero-separation Taylor scale measurement following the Richardson-
extrapolation method introduced in Weygand et al.” An estimate of
the correlation scale is also made using these correlation functions.
Finally, with both a correlation scale and a Taylor scale, a prediction of
the magnetic Reynolds number is made. This approach for determin-
ing a magnetic Reynolds number relies only on directly measured data
and avoids the need to specify a model for microscopic diffusivity
(commonly based on Spitzer resistivity, for example), which is difficult
to measure accurately and requires many different diagnostics.

1. TECHNIQUE

The magnetic Reynolds number is a dimensionless quantity relat-
ing the large-scale current flows to the energy dissipated via resistivity
within a magnetofluid."' The magnetic Reynolds number is

_KVL

R ; 1)
n

where V and L are the velocity and length scale associated with energy
injection into the system, while # is the resistivity of the magnetofluid.
The resistivity must be obtained through some model, which typically
requires measurement or knowledge of both density and temperature.
Alternatively, an effective magnetic Reynolds number can be con-
structed by following the dimensional analysis in fluid turbulence."”
An analog of the fluid Reynolds number is formed for the magnetic

Reynolds number,
I3
- (7)

where /. and I, are the correlation scale and the Kolmogorov scale,
respectively. The correlation scale represents the energy-containing
scale, and the Kolmogorov scale is the dissipation scale associated with
critically damped fluctuations."’

Attempting to connect the Kolmogorov scale to a particular dissi-
pation mechanism within plasmas is difficult because these systems
have varying degrees of collisionality, leading to alternative dissipative
mechanisms beyond collisional resistivity. Mirco-magnetic reconnec-
tion'” and ion-cyclotron resonance heating'® are two examples of such
mechanisms'” found in weakly collisional or collisionless plasmas
common in astrophysical settings. Though the plasma found in BMX
is likely more collisional than space or astrophysical plasmas, this
paper remains agnostic as to the mechanism for dissipation, adopting
instead the Taylor scale, 4, as the dissipation scale as it can be deter-
mined directly from the experimentally measured quantities.

In a hydrodynamic ordered plasma,'® 1 > I, the Taylor scale is
the spatial length at which dissipation begins to affect the fluctuations.
The Taylor scale and the Kolmogorov scale are related to the magnetic
Reynolds number'® /i /Iy = R!/%. The accessibility of the Taylor scale,
from spatial magnetic correlations,” motivates its use in defining the
effective magnetic Reynolds number. The effective magnetic Reynolds
number recast in terms of the correlation scale and the Taylor scale is

2 2
eff [ Z<
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A. Spatial magnetic correlations

A spatial magnetic correlation is the cross correlation between
two magnetic data time-series recorded simultaneously, but at separate
locations. The value of the cross correlation at zero-time delay is taken
for different values of separation, , to generate a spatial correlation
function defined as

REF) = b(t) - b(t, ?). @)
Ot0t7
The (---) represents a time average, b represents mean-subtracted
magnetic fluctuations, 7 is the probe-separation vector, and the nor-
malization factor g, 7 is the standard deviation of the mean-subtracted
magnetic fluctuations at position 7.

In well behaved turbulence,” the spatial correlation function van-
ishes at large separations. To quantify the energy-containing scale, the
correlation scale is used,

00
Ae = J R(7)dr. (5)
0
Under the assumption that the turbulence is homogenous and isotro-
pic,”””" the spatial correlation function takes a Gaussian-like form.
Then, given the quadratic small-separation behavior of a Gaussian,
and, thus, the spatial correlation function, a model for the Taylor scale
can be obtained as

o I,
R(F)~1 2/12Tr . (6)
The Taylor scale is associated with the curvature of the spatial correla-
tion function at zero-separation. In plasma turbulence, the Taylor scale
is also associated with the mean square derivatives of the magnetic
fluctuations, i.e., the thickness of a typical current layer,S

},ZT ELQ.
(Vx b))

The normalized spatial correlation at small-separations Eq. (6) has
spherical symmetry. In cylindrically symmetric cases, there is no dif-
ference in the functional form if the separation vector is along the axis
of symmetry,1 i.e., the z-direction,

1
Riz)~1——7" 7
@1 )
This coordinate-invariance supports a linear or bead-like alignment
for the probes in a cylindrically confined plasma, similar to the MMS
alignment studied in Bandyopadhyay et al.."’

B. Temporal magnetic correlations

The spatial correlation function is limited by the spatial resolu-
tion between measurements. To interpolate between spatial points, an
alternative approach is taken using the temporal correlation function
at a single point and assuming that the Taylor Hypothesis™ is valid—
that temporal changes in the plasma are small compared to the rate
that plasma advects past a measurement point. Through this hypothe-
sis, single-point multi-time measurements are interpreted as multi-
point snapshots. This temporal technique allows for the probing of
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separations smaller than the minimum separation between two
probes, which is currently limited by the vacuum chamber design.

A temporal magnetic correlation is the cross correlation between
a time-series of magnetic data and its time-shifted copy. All portions
of the two signals that do not overlap are zero-padded. For a given
probe position, the temporal correlation function is defined as

(B(1) - b(t + 1)
(a7) ’

where 7 is the time delay and ¢? is the standard deviation of the mean-

subtracted magnetic fluctuation. The (---) is an average in t. R(1) is

converted to R(z’) by assuming z' = 1V, where Vj, is the bulk
plasma speed.

R(z) = (8)

lll. THE BRYN MAWR EXPERIMENT (BMX)

Measurements of the Taylor scale are conducted within the Bryn
Mawr Experiment (BMX). BMX consists of a cylindrical flux-
conserving vacuum chamber with a magnetized plasma gun source
(MPGS) at one end. Using a pulse-forming-network capacitor dis-
charge, hydrogen gas is ionized between coaxial electrodes. The result-
ing magnetized plasma is launched into the chamber by J x B forces
forming a plume of turbulent plasma wind within the tunnel.

A. Chamber and vacuum system

The full chamber is 270 cm in length with an inner diameter of
24 cm. The chamber is set to experimental vacuum pressure using a

scitation.org/journal/php

cryopump located near the midpoint of the length of the chamber.
The base pressure for these experiments is about 1 x 10~7 Torr. The
chamber has three sections: a copper section (the plasma source
region, see Sec. I11 B), an aluminum flux-conserving diagnostic section
(see Sec. I11 D), and a stainless steel flux-dissipating dump section.

B. Plasma source

As illustrated in Figs. 1(a) and 1(b), the MPGS consists of
two concentric copper electrodes: The internal electrode has an
outer diameter of 11 cm, and the external electrode has an inner
diameter of 24 cm. The external electrode is part of the vacuum
chamber. The stuffing threshold of a MPGS is obtained as /g,

= (1/7in)\/2/1In (rou/7in), for the inner and outer radii of the
gun.”” For the gun dimensions on BMX, this yields a stuffing
threshold of Ag,, = 29m™"'.

Within the internal electrode, a 100-turn, L = 329 uH copper
coil generates a stuffing field. A crowbarred SCR-circuit pulses the coil
with a 100 mF, 350 V capacitor bank producing up to 6mWb of mag-
netic flux through the cross section of the internal electrode.

Four Parker puff valves are evenly spaced around the external
electrode. These valves introduce ultra-pure hydrogen gas into
the chamber, are pressurized to 80psi with a flow rate of
2.67 x 1073 cm® /ms, and are electronically opened or closed for a
controllable amount of time. In these experiments, the valves are
simultaneously opened for a duration of 9.5 ms injecting 1.32 x 10"
molecular hydrogen particles per shot. With the number of molecular

— 0000d00000Td0dd000

©eQeQe

24cm

0000000000000 000600

KU ©°6800

L Inner Stuffing Field Coil

Inner Electrode
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270cm

FIG. 1. An image(a) and diagram(b) of BMX.
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hydrogen particles injected, the plasma density can be estimated.
Assuming the injected gas is fully ionized and fills the chamber that
the plasma density is <2.61 x 10" cm .

C. Discharge circuit and plasma generation sequence

A pulse forming network (PFN) consisting of eight 0.5 mF oil-
filled capacitors powers the plasma discharge. The PEN is discharged
through a mercury ignitron switch. In these experiments, the banks
are charged to 2kV providing a total of 8 k] of stored energy per dis-
charge. About 1.5 ms prior to triggering the ignitron switch, the inner
stuffing coil engages, producing a pulse of magnetic flux within the
gun over tens of milliseconds as shown in Fig. 2. The timing between
stuffing coil and discharge sets the approximate background stuffing
field for each shot—for these experiments, a 1.5 ms delay means that
banks are triggered while flux is about 2 mWhb. Similarly, 1 ms prior to
the trigger, hydrogen gas is puffed and given time to fill the annular
space between the electrodes. At ignitron trigger, the bank places the
electrodes at the potential difference of the capacitor bank. The inner
electrode is biased negatively with respect to the outer electrode. Once
initial ionization occurs (within a few nanoseconds of trigger), current
ramps up to a peak of about 70kAmps as shown in Fig. 3(a).
Simultaneously, the voltage across the electrodes settles to about 485V
as shown in Fig. 3(b). High current persists for approximately 180 ms.

D. Diagnostics

Single-loop three-axis magnetic wire coils (or b-dot probes) mea-
sure fluctuating magnetic fields. Each loop is wound on a 1/16in.
fiberglass stock and is inserted into a 1/4 in. glass tube. The glass tubes
are inserted through quick disconnect ports spaced along the axis of
the chamber at 2.6 cm intervals. For this experiment, eight probes are
used simultaneously, where the first probe is 10.4 cm from the end of
the inner electrode. The first two probes are removed from the analy-
sis, due to the possibility that they measure a protruding stuffing field;
hence, in this analysis, the third probe, at 15.6 cm from the end of the
inner electrode, is the reference probe. To reduce stray pickup, the

Flux Middle

5F ® 2 mWb at 1.5ms delay

~

Flux (mWb)
(98]

[ 8]

0 10 20 30 40
Delay Time (ms)

FIG. 2. Trace of magnetic flux as a function of delay time on BMX. A 1.5ms delay
time generates 2 mWb of flux at the plasma gun mouth. This flux injects helicity into
the plasma at a rate of 0.97 Wb?/s, given the 0.485KV mean discharge voltage
from Fig. 3(b).
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FIG. 3. The ensemble mean discharge current (a) and mean discharge voltage (b)
with range of variation over all shots shaded. Dashed lines indicate mean current
(47.4 kA) and mean voltage (0.485KkV) over a time interval of 50-150 s.

loop wires are twisted tightly using a wood-lathe for about three inches
beyond the outside of the chamber and then converted to BNC coaxial
cable to connect to the data acquisition units. The transition from
twisted wire to BNC is covered in a copper tape to further reduce stray
inductive and capacitive effects.

A Power Electronics Measurements Rogowski Current
Waveform Transducer placed at the source end of the PFN measures
the discharge current. The discharge voltage is measured using a North
Star High Voltage PVM-12 high frequency floating voltage probe.

E. Data acquisition

The three axes of each magnetic probe are organized in cylindrical
coordinates (7, 0, z) and measure dB(t)/dt using a 14-bit, 100 MHz
Picoscope Model 5443 with 50 Q termination. The measurements are
numerically integrated to construct a B(t) time series, as shown in Fig.
4. This data set is an ensemble of 25 bank discharges or shots. Figure 5
shows the probe-shot average magnetic power spectrum within a time
window of (75 us, 150 us) after the ignitron trigger.

F. Data processing

The dB(t)/dt data are integrated into B(t), outlined in Sec. I E
and filtered through a 30 kHz high-pass filter in software. Spatial and
temporal correlations are then computed for the (75 us, 150 us) time
window. Within the same time window, the average time delay of
prominent structures in the unfiltered magnetic field magnitudes,
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FIG. 4. The (a) r-component, (b) 6-component, and (c) z-component of the mag-
netic field for shot 23 measured z = 15.6¢cm, in red, and z = 18.2cm, in blue,
from the inner electrode. The (75 us, 150 us) epoch during which turbulent scales
are investigated is highlighted.

10°
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FIG. 5. The magnetic power spectrum averaged over all probes and shots at an
injected helicity rate of 0.97 Wb? /s resulting from 2 mWhb of flux at the plasma gun
mouth. The dashed line represents a 30 kHz high pass filter cutoff frequency, and
the dotted line represents a 13 MHz ion cyclotron frequency.
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Buuag(t) = \/B2(t) + B2(t) + B(t), is used to estimate the plasma
bulk speed for each shot.

IV. RESULTS
A. Spatial correlation

Spatial correlations presented here are an accumulation of the
modulus of probe-probe correlations. This approach can obscure
anisotropic effects (such as differences between fluctuations parallel
and perpendicular to the local field). However, this first step is justified
as an initial analysis given the likelihood of a significant compressive
component of the magnetic fluctuations. Work on SSX'* has shown
that magnetic turbulence generated in a similar manner as BMX con-
tains a greater amount of compressive fluctuations compared to solar
wind turbulence.”

Each probe-probe correlation is the cross correlation of the mag-
nitude of the magnetic field fluctuations measured by each probe, i.e.,
|Binag (0)brnag (z = 2.61)|. The integer n corresponds to the n'™ probe
away from the reference probe. For a single shot, the correlations are
normalized by their respective zero-separated correlation, R(0). The
normalization scheme is chosen to isolate the turbulent fluctuations
from that of any shot-to-shot variance in the plasma generation
process.

Correlation
I S
~ =y

I
o

o
=)

0.0 2.6 52 7.8 10.4 13.0
Probe Separation (cm)

(b

Correlation
S i
~ o

I
o

0050 2.6 52 78 104 13.0

Probe Separation (cm)

FIG. 6. The spatial correlation of b-field magnitude for shot 23 with, (a), the
Gaussian fit of the shot used to compute the correlation scale and with, (b), the par-
abolic fits for the extraction of the Taylor scale through a Richardson extrapolation
method.
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Figure 6(a) shows the spatial correlation of shot 23. The spatial
correlations show a Gaussian-like structure. A Gaussian, e~%"/27", s fit
to the correlation function. The fit results in a Gaussian of width
3.7 %= 0.1cm, which is then integrated using Eq. (5) from 0 to
18.2 cm—the space spanned by the probes—to compute a correlation
scale of 4.6 £ 0.2 cm.

The spatial correlation is fit using Eq. (7) to determine the Taylor
scale. However, this estimated Taylor scale is known to be affected by
the maximum separation used.”® Any Taylor scale computed directly
from a correlation function is called a biased Taylor scale in this work.
Following a similar procedure as in Weygand 2007, the Taylor scale
at zero separation, A7(0), is extracted using a Richardson extrapolation
method on the spatial correlation, minimizing the biasing effect. The
method is a two-step procedure. First, an ordered-sequence of biased
Taylor scales is generated, each element corresponding to fitting Eq.
(7) to a subset of spatial correlation points, see Fig. 6(b). The sequence
is ordered by the number of points included in the fit. Figure 6(b)
shows the fits, and Fig. 7(a) shows the biased Taylor scales for each fit.

T [@ °
83
.L; °
Q
w2 6
8 .
>
<
= I
B4
3
M
0 1 P 3 4 5 6
Number of points in fit
e —— 225+0.15cm
24} ®)
g
L
«23
o
3
8 °
E22
>
2.1
2.0 25 3.0 35 4.0

Number of points in fit

FIG. 7. The two-step Richardson extrapolation method first generates biased Taylor
scales by fitting parabolas to the spatial correlation. The second step exploits the
linear trends of the biased Taylor scales and extrapolates the y-intercepts. (a)
Biased Taylor scales as a function of number of points used to fit the spatial correla-
tion function. A linear fit is performed on all the biased Taylor scales. The line
shown here corresponds to the linear fit using all possible measured biased Taylor
scales. (b) Y-intercepts obtained through the linear trends of the biased Taylor
scales as a function of number of biased Taylor scales used in the fit from (a). The
horizontal line represents the average y-intercept, 2.2 == 0.2 cm. The orange point
corresponds the y-intercept of the line in (a).

ARTICLE scitation.org/journal/php

The subsets are ordered starting with correlations corresponding to
the two smallest separations and ending with the entire correlation set.
As shown in Fig. 7(a), the biased Taylor scale increases linearly with
maximum separation between correlated probes, and it is this trend
that will be exploited in the next step.

The second step of the Richardson extrapolation method produ-
ces multiple y-intercept values using increasing numbers of points in
Fig. 7(a). Each linear fit produces a slightly different y-intercept, plot-
ted in Fig. 7(b). The average of the three points gives a final Taylor
scale estimate for these data—2.2 = 0.2 cm. The error in this estimate
is the standard deviation of the three points.

This procedure of obtaining a correlation scale and the Taylor
scale is repeated for all shots. The correlation scales are shown in Fig.
8, and Fig. 9 shows the spread of Taylor scales. The average correlation
scale is 4.3 = 1.0 cm, and the average Taylor scaleis 2 = 1 cm.

B. Temporal correlation

Temporal correlations under the Taylor hypothesis are used to
estimate the Taylor scale for distances less than the minimum probe
separation distance of 2.6 cm. The transformation needs the bulk
plasma speed, which is determined experimentally by dividing the
probe separation by the average time-delay of prominent features in
the unfiltered magnetic field magnitudes. A bulk plasma speed of the
plasma plume is determined for each shot. The values range between
19 and 87 km/s.

The temporal correlation functions are constructed with Eq. (4).
Figure 10 shows a time-delay correlation of shot 23. As the time-delay
increases, the applicability of the Taylor Hypothesis weakens. For this
reason, we use the temporal correlations to estimate a Taylor scale but
not a correlation scale.

Temporal correlations are converted to spatial correlations and
then the Richardson extrapolation method is applied, seen in Sec. IT A.
Figure 11 shows the Richardson extrapolation on a converted tempo-
ral correlation. Figure 11(a) shows the biased Taylor scales based on
parabolic fits. Figure 11(b) shows the y-intercepts extracted from the

— 4.3 +0.98cm
12¢
E 107
K b
< 8
R °
=
)
=
o)
g
S
O

0 5 10 15 20 25
Shot Number

FIG. 8. A scatterplot of correlation scales per shot. The mean is 4.3 = 1.0 cm, the
error is the standard deviation of the points. Shots 2, 14, and 19 are outliers and
are excluded from the spatial analysis. The shaded regions correspond to 1 stan-
dard deviation (dark blue), and 2 standard deviations (light blue) from the mean
value.
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FIG. 9. A scatterplot of Taylor scales from the spatial correlations. The mean is
2 = 1cm, the error is the standard deviation of the points. The same shots from
Fig. 8 are excluded. The shaded regions correspond to 1 standard deviation (dark
blue), and 2 standard deviations (light blue) from the mean value.

biased Taylor scales. There is an inflection point for each shot, occur-
ring near the same transformed spatial point. The cause of this inflec-
tion is not understood. However, Chuychai et al”” suggests the
spectral index of the dissipation range within the magnetic power
spectrum influences the deviation from a flat trend.

In our case, pending a thorough spectral analysis to address the
above point, the best estimate of the Taylor scale is the average value
of the full range of the y-intercepts, which corresponds to 2.6 cm away
from the probe. For shot 23, the extrapolated Taylor scale is
2.9 = 0.6 cm. Following this procedure, a Taylor scale is obtained for
every shot, shown in Fig. 12. The shot averaged Taylor scale is
3+ 1cm.

V. DISCUSSION

The Taylor scale obtained from spatial, 2 = 1 cm, and temporal,
3 = 1 cm, correlations are within one standard deviations from each
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FIG. 10. Temporal correlation of shot 23 of the reference probe. The corresponding
spatial separations, via the Taylor Hypothesis, are shown on the top axis. A bulk
speed of 40 km /s is found for this shot and used as the conversion factor. The ver-
tical dashed line marks the extent of the inset plot, 0.6 s or 2.6 cm.
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FIG. 11. The Richardson extrapolation on the temporal correlation of shot 23. (a)
The biased Taylor scales obtained by fitting Eq. (7) to subsets of the temporal cor-
relation. (b) The y-intercepts of linear fits.

other (Table I). Since the temporal correlation yielded a larger estimate
of the Taylor scale than the spatial correlation, it is likely no smaller
than 2 = 1 cm for this plasma. A smaller Taylor scale indicates a larger
decorrelation; however, the Taylor scale does not distinguish between
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FIG. 12. Taylor scales with respect to shot obtained through the temporal correla-
tions. The mean value is 3 = 1 .cm. The shaded regions correspond to 1 standard
deviation (dark blue), and 2 standard deviations (light blue) from the mean value.
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TABLE |. The Taylor scales from the spatial and temporal correlations, the correla-
tion scale, and the Taylor magnetic Reynolds number.

Ao (cm) Jc (cm) R,
Spatial 2+1 43+ 1.0 4+1
Temporal 3+1

the causes of decorrelation and assumes it to be dissipation of energy.
We hypothesize that the Taylor scale in plasmas is better understood
as an apparent dissipation scale, where non-local energy transfers and
various dissipation mechanisms are averaged.

Although this measurement does not prove that dissipation
occurs at the Taylor scale, the measured values do fall within estimates
of potential dissipation scales computed by other means within the
BMX plasma. Based on gas injection and chamber volume, the
expected BMX plasma densities are on the order of 2.63 x 10" to
2.63 x 10 cm™>. Thus, ion inertial scales range between 1 and
14 cm. Electron temperature and density predictions, based primarily
on similar experiments,"” give a range of electron mean free paths
between 0.5-50 cm. With ion temperature estimates of 20eV and
magnetic field measurements ranging between 400-4000 G, the ion
gyroscales range between 0.1-1.0 cm. The Taylor scales measured in
this experiment are on the order of these potential dissipation scales,
see Table 11, but more accurate measurements of plasma parameters
are necessary to make any attempts in distinguishing among them.
Nevertheless, the fact that a dissipation-relevant scale measurement
made with only one diagnostic may be on the right order of magnitude
is a promising result and one that encourages experimental
refinement.

Another system relevant scale is the 4 (0.29 cm™') parameter of
the MPGS. The parameter characterizes the linear dimensions of heli-
cal magnetic states,””” which self-organize in flux conserving long
aspect ratio systems. Normalized to 1/, the spatial and temporal
Taylor scales are 0.58 and 0.87, respectively, and the correlation scale
is 1.2. Although the / parameter does not quantify a dissipation scale,
it quantifies a relative scale natural to the system.””

Measurements of the Taylor scale and the correlation scale pre-
dict a magnetic Reynolds number no smaller than 4 for this plasma,
see Table L. For comparison, a canonical magnetic Reynolds number is
computed, given by Eq. (1), using the average axial bulk speed and the
MPGS gap of 6.5 cm. The Spitzer resistivity, g = 5.2 x 107> Z"(;//\z), is
1.6 x 107> Qm for a Coulomb logarithm and electron temperattire of
10 and 10 eV, where the electron temperature from a similar device is
used as a reference.'” The resulting canonical magnetic Reynolds num-
ber is 400. The largest magnetic Reynolds number predicted in this
experiment (from a single shot), ~10, is significantly lower than the

TABLE II. The Taylor scales from the spatial and temporal correlations with different
possible normalizations: ion inertial scale (d), ion gyro-radius (p;), and the A
(0.29[cm~"]) parameter of the MPGS.

)»T/d,' )»T/p, )Tﬂ
Spatial 0.14-2 2-20 0.58
Temporal 0.21-3 3-30 0.87

ARTICLE scitation.org/journal/php

canonical estimate. Note that the most conservative value for a correla-
tion scale is used, and other potential values, such as the diameter or
length of the chamber itself, give larger predictions.

The determination of a reasonable Taylor scale using a single
diagnostic technique is encouraging for continuing to refine and study
these plasma conditions both experimentally and computationally.

MHD simulations of the BMX plasma using the Pittsburgh
Supercomputing Center Bridges-2 machine are in progress. The simu-
lations run on the Dedalus framework,”” a text-to-code spectral solver.
As simulations become more computational expensive with larger
Reynolds numbers (due to larger scale separation resolution), the
results of this experiment may justify starting with lower magnetic
Reynolds number values than anticipated canonical predictions of R,,
in order to make comparisons between computation and experiment.

Experimentally, the two primary limiting factors are spatial reso-
lution and applicability of the Taylor Hypothesis. Development of
higher spatial resolution measurements is under way. Attaining higher
bulk plasma flows is also sought, primarily through increased dis-
charge voltage as well as novel magnetic configurations at the gun.
Furthermore, larger shot volumes will allow for increased conditional
averaging. Overall, increasing diagnostic variety of the new laboratory
will open further detailed comparisons for dissipation mechanisms.

This study does not examine the anisotropic behavior of the mag-
netic turbulence with respect to fluctuations parallel and perpendicular
to the local magnetic field. Nevertheless, we anticipate exploring the
anisotropic behavior in future studies.

VI. CONCLUSION

The Taylor scale is a length scale associated with dissipation of
energy in turbulent fluid or magnetofluid systems and is used as a
means of determining a dissipation scale without the need for mea-
surements of many local parameters. The Taylor scale is measured in
the Bryn Mawr Experiment using spatial correlation functions and the
Richardson extrapolation procedure. The results yield a Taylor scale of
2 = 1cm when measured using spatially separated magnetic pickup
probes and 3 = 1 cm using a single probe and invoking the Taylor
Hypothesis. A linear array of pickup probes is also used to determine
the correlation scale of this plasma of 4.3 = 1.0 cm. Combining these
metrics, an estimate of the magnetic Reynolds number is made: 4 * 1.
This measured value is smaller than estimates using density and tem-
perature, but if accurate, can significantly help in simulation efforts
where smaller magnetic Reynolds numbers require much less compu-
tational expense.
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