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Using gravitational wave observations to search for deviations from general relativity (GR) in the strong-
gravity regime has become an important research direction. One aspect of the strong gravity modifications
to GR is parity violation. Chern Simons (CS) gravity is one of the most frequently studied parity-violating
models of strong gravity. CS gravity is indistinguishable from GR for all conformally flat space-times and
for space-times that possess a maximally symmetric two-dimensional subspace. Also, it is known that the
Kerr black hole is not a solution for CS gravity. At the same time, the only rotating solution available in the
literature for dynamical CS (DCS) gravity is the slow-rotating case most accurately known to quadratic
order in spin. In this work, for the slow-rotating case (accurate to first order in spin), we derive the linear
perturbation equations governing the metric and the DCS field accurate to linear order in spin and quadratic
order in the CS coupling parameter (α) and obtain the quasinormal mode (QNM) frequencies. After
confirming the recent results of Wagle et al. arXiv:2103.09913, we find an additional contribution to the
eigenfrequency correction at the leading perturbative order of α2. Unlike Wagle et al., we also find
corrections to frequencies in the polar sector. We compute these extra corrections by evaluating the
expectation values of the perturbative potential on unperturbed QNM wave functions along a contour
deformed into the complex-r plane. For α ¼ 0.1M2, we obtain the ratio of the imaginary parts of the DCS
correction to the GR correction in the first QNM frequency (in the polar sector) to be 0.263 implying
significant change. For the (2, 2) mode, the DCS corrections make imaginary part of the first QNM of the
fundamental mode less negative, thereby decreasing the decay rate. Our results, along with future
gravitational wave observations, can be used as a test for DCS gravity and to further constrain the CS
coupling parameters.

DOI: 10.1103/PhysRevD.104.064034

I. INTRODUCTION

When two compact objects (black holes or neutron stars)
coalesce to form a black hole, the space-time geometry
close to the remnant black hole is highly distorted and
radiates gravitational waves until it settles down to an
equilibrium configuration [1–4]. The gravitational wave
signal has three distinct phases. During the inspiral phase,
the two objects spiral in towards each other in a quasicir-
cular orbit, emitting GWs with increasing frequency with
respect to time. The merger phase is when the two objects
plunge towards each other and form a remnant compact
object. In the ring-down phase, the remnant relaxes towards
a stationary state and radiates all the perturbations away [5].
Gravitational waves (GWs) emitted during the ring-

down phase are quasinormal modes (QNMs) and offer
valuable insight into the nature of the objects emitting them

[5–7]. The frequency and damping of these oscillations
depend only on the parameters characterizing the black hole
and are completely independent of the particular initial
configuration that caused the excitation of such vibrations
[3]. In general relativity (GR), gravitational waves have two
tensor polarization modes [8]. In generic metric theories of
gravity, up to four additional polarizations can appear and
may imply new effects [9].
The spectrum of QNM predicted by GR comprises of

two isospectral towers of modes that are, respectively, even
and odd under parity [4,5]. Besides extra polarization
modes, alternative gravity theories can introduce three
different effects on QNMs [9]: first, to modify the spectrum
of even and odd modes while preserving isospectrality.
Second, to break isospectrality (which do not emit GWs
with equal energy in the two polarization states). Third, to
mix the even and odd modes so that the eigenmodes do not
have definite parity.
Since the first discovery in 2015, a number of compact

binary mergers have been detected from the data collected
by Advanced LIGO and Advanced VIRGO [10–12].
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These detections confirmed GR’s predictions within their
statistical uncertainty and enriched our understanding of the
Universe by providing the first direct evidence of massive
stellar-mass black holes and black holes colliding to form a
single, larger black hole.
Although, the current LIGO-VIRGO detectors have only

achieved signal-to-noise ratio around 5 in the ring-down
phase [13], tests of GR involving QNMs have already been
carried out. In particular, QNM overtones have been shown
to offer initial tests of the “no-hair” theorem [14–16]. The
future GW detectors (e.g., the Cosmic Explorer [17,18])
may detect GW signal-to-noise ratio (SNR) in the quasi-
normal mode regime SNR > 50 [19], hence, will help to
probe theQNMstructure accurately andmight providemore
stringent test of GR in the strong gravity regime [9,20,21].
Naturally, there has been an intense theoretical activity to

obtain unique gravitational wave signatures that distinguish
GR and modified gravity theories. There are many different
ways to modify GR in the strong gravity regime, and each
model has different observational signatures. A universal
feature of any strong-gravity corrections to GR is intro-
ducing higher derivative Ricci scalar, Ricci tensor, and
Riemann tensor terms in action [22–27]. The main physical
motivations for these modifications of gravity consist of a
possibility of a more realistic representation of the gravi-
tational fields near curvature singularities and to create
some first-order approximation for the models of quantum
gravity [28].
Will listed four basic criteria for the viability of a

consistent gravity theory [29,30]: first, it must be complete.
The theory should be able to analyze from first principles
the outcome of any experiment. Second, it must be self-
consistent. Predictions should be unique and independent
of the calculation method. Third, it must be relativistic: the
theory should reduce to special relativity when gravity is
turned off. Fourth, it must have the correct Newtonian limit.
In the weak gravitational fields and slow motion, it should
reproduce Newton’s laws.
Chern-Simons (CS) modification to GR satisfies all the

four criteria listed above [27,31]. Chern-Simons modified
gravity is a four-dimensional extension of GR that captures
leading-order gravitational parity violation arising from the
Pontryagin density �RR. The Pontryagin density is propor-
tional to the wedge product R ∧ R and a pseudoscalar field
ϑ. CS theories are of two types: first is referred to as
canonical CS [31]. In this case, ϑ is a constant and with no
kinetic and potential term. The second is referred to as
dynamical CS (DCS). In this case, ϑ is a fully dynamical
field [32].
For spherically symmetric space-times, the Pontryagin

density vanishes, leading to standard GR with a scalar field
potential. Owing to the no-hair theorem, for a spherically
symmetric background, the only stable solution possible is
that of the Schwarzschild. Hence, Schwarzschild space-
time is a solution of both kinds of CS theories [31]. In the

case of axisymmetric solutions, the Pontryagin density does
not vanish, and hence, axisymmetric solutions are non-
trivial to construct in CS theories [33]. So far in the
literature, no closed form fast-spinning Kerr-like analytic
solution exists in either kind of CS theories. However, it is
possible to construct axisymmetric solutions from spheri-
cally symmetric solutions perturbatively in spin [34–37].
Numerical solutions are obtained in Ref. [33]. More
complex forms of CS coupling has also been considered,
e.g., when the CS field ϑ couples quadratically to the
Pontryagin density [38,39].
In the last few years, there is a lot of interest in studying

the perturbations about Schwarzschild and slowly rotating
black holes in DCS gravity [40–44]. Interest has focused on
two aspects: first, is to confirm/infirm the isospectrality
relation in DCS gravity [9,45]. In Ref. [40], the
authors have shown that the isospectrality between odd
and even parity perturbations is broken for a perturbed
Schwarzschild black hole and slowly rotating in DCS
gravity in a gauge-invariant manner. Second direction of
interest is to obtain the QNM frequencies corresponding to
the odd and even parity perturbations. In a recent work [43],
Wagle et al. computed the QNM frequencies for the slowly
rotating black hole solution of DCS gravity derived in
Ref. [34]. The authors derived the perturbation equations
accurate to linear order in spin and linear-order coupling
parameter α for even, odd, and the pseudoscalar field (ϑ).
They then employed numerical techniques to integrate the
perturbation equations simultaneously to calculate the
QNM frequencies. They found that the axial sector
QNM frequencies were corrected at order α2 when com-
pared to the QNM frequencies for a slowly rotating Kerr
background, while there were no corrections to the polar
sector QNM frequencies from the GR case. The authors
claimed that to get the QNM frequencies accurate toOðα2Þ,
one needs to consider perturbation equations accurate to
OðαÞ only and not to Oðα2Þ.
In this work, we compute the QNM frequencies for the

same slowly rotating solution of DCS gravity [34]. There
are a few key differences between the approach in this work
and in Ref. [43]. Here, we derive the perturbation equations
accurate to quadratic order in α (and linear order in spin).
Unlike what is claimed by the authors in [43], we find that
the Oðα2Þ terms in the perturbation equations bring an
additional correction to the QNM frequency correction at
the leading perturbative order of α2. We get QNM fre-
quency corrections even for the polar sector, unlike the
results of [43]. Another point of difference in our work is
the procedure we use to calculate the QNM frequencies. We
use an analytical technique to compute the QNM frequen-
cies. Specifically, we use a procedure similar to that used in
nondegenerate perturbation theory for Schrödinger equa-
tions. We treat the terms independent of spin (correspond-
ing to the Schwarzschild background) as the zeroth-order
terms in perturbation theory, while the terms proportional to
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spin (which include both GR and DCS terms) are treated as
a perturbing potential. The QNM frequency corrections are
calculated by evaluating the expectation value of this
perturbing potential between unperturbed QNM eigenfunc-
tions (mode functions for Schwarzschild background). We
do so by analytically continuing the unperturbed eigen-
functions to the complex-r plane and computing an integral
along a suitably chosen contour deformed into the com-
plex-r plane. For α ¼ 0.1M2, we find the ratio of the
imaginary parts of the DCS correction to the purely GR
correction in the first QNM frequency (in the polar sector)
to be 0.263 implying significant change. Also, for mχ > 0,
the DCS corrections make the magnitude of the imaginary
part of the first QNM of the fundamental mode smaller,
thereby decreasing the decay rate.
The paper is organized as follows: in Sec. II, we give

some essential details of DCS gravity and introduce the
slowly rotating black hole solution that we will study in
subsequent sections. In Sec. III, we perturb the black hole
background and compute the perturbation equations rel-
evant to calculation of the QNM frequencies. In Sec. IV, we
first do a Fermi estimate analysis to highlight that Oðα2Þ
terms in perturbation equations do contribute to the Oðα2Þ
corrections in QNM frequencies. We then go on to
elaborate on our procedure of calculating the QNM
frequency corrections, describing the perturbative scheme,
defining the relevant inner product and choosing a contour
for integration. We finally display our results, explicitly
tabulating the corrections to QNM frequencies. Section V
contains a brief summary of the entire paper and discusses
some directions of future work. The Appendixes A, B, C,
and D contain details of some of the discussions in
Secs. II–IV.
We use ð−;þ;þ;þÞ signature for the 4D space-time

metric [8]. We use the geometric units G ¼ c ¼ 1 and
κ ¼ 1=ð16πÞ. We use the notations used in [43,46,47] for
convenient comparison. Our convention for the Levi Civita
tensor is ϵ1234 ¼ þ1=

ffiffiffiffiffiffi−gp
. This leads to an overall sign

difference in the Chern-Simons field in our work compared
to Ref. [34].

II. SLOW ROTATING BLACK HOLE
SOLUTION IN DCS GRAVITY

CS modified gravity is a parity-violating modification to
Einstein’s gravity and was first postulated by Jackiw, and Pi
[31]. The electromagnetic, strong, and gravitational inter-
actions respect parity. So parity is a good symmetry for
these interactions and is said to be conserved by them.
However, weak interaction does not respect parity. It is still
unknown how parity violation arises from a unified field
theory, including gravity. In principle, the parity violation
in general relativity leads to leptogenesis by transmitting
itself into Baryon-Lepton violation through primordial
gravity waves [27,48]. Thus, CS gravity can potentially
solve a few long-standing problems in particle physics and

cosmology [27]. This section provides a quick review of
DCS gravity and the slowly rotating black hole solution in
this theory [34].

A. DCS gravity

The DCS action is given by

S ≔ SEH þ SCS þ Sϑ þ Smat; ð1Þ

where SEH is the standard Einstein-Hilbert action:

SEH ¼ κ

Z
V
d4x

ffiffiffiffiffiffi
−g

p
R; ð2Þ

Sϑ ¼ −β
2

Z
V
d4x

ffiffiffiffiffiffi
−g

p ½gabð∇aϑÞð∇bϑÞ þ 2VðϑÞ�; ð3Þ

SCS ¼
α

4

Z
V
d4x

ffiffiffiffiffiffi
−g

p
ϑ�RR; ð4Þ

and Smat refers to the contribution from any other matter
present in the space-time: thus, DCS gravity contains an
extra pseudoscalar field ϑ whose action is identical to the
canonical scalar field (3). The parity-violating term in
action (SCS) contains �RR, which is called the Pontryagin
density and is given by

�RR ≔ �Ra
b
cdRb

acd ð5Þ

where the dual Riemann tensor is defined as

�Ra
b
cd ≔

1

2
ϵcdefRa

bef; ð6Þ

with ϵcdef being the Levi Civita tensor and ϑ being a
function of space-time. The above DCS action reduces to
GR for ϑ ¼ constant.
Variation of the total action (1), with respect to the metric

and scalar field, leads to the following equations of motion,
respectively,

Gab þ
α

κ
Cab ¼

1

2κ
Tab; ð7Þ

β□ϑ ¼ β
dV
dϑ

−
α

4
�RR; ð8Þ

where

Tab ¼ Tab
mat þ Tab

ϑ ¼ −
2ffiffiffiffiffiffi−gp

�
δLmat

δgab
þ δLϑ

δgab

�
; ð9Þ

where L are the respective Lagrangian densities and
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Tϑ
ab ¼ β

�
ð∇aϑÞð∇bϑÞ −

1

2
gabð∇aϑÞð∇aϑÞ − gabVðϑÞ

�
:

ð10Þ

In this work, we assume all other matter fields are absent,
and hence, set Tab

mat ¼ 0. We also set the pseudoscalar field
potential to zero (VðϑÞ ¼ 0) [34]. The C tensor in (7) is
defined as

Cab ≔ vcϵcdeða∇eRbÞ
d þ vcd�RdðabÞc: ð11Þ

The braces in (11) imply symmetrization of the indices.
Also

va ≔ ∇aϑ; vab ≔ ∇a∇bϑ ¼ ∇ða∇bÞϑ: ð12Þ

As mentioned earlier, the static spherically symmetric
Schwarzschild solution of GR is also a solution of the CS
theory because the Pontryagin density vanishes for the
Schwarzschild geometry [31]. On the other hand, the
rotating Kerr solution of GR is not a solution of the CS
theory. A rotating black hole solution with arbitrary angular
momentum is unknown for the CS theory. However, Yunes
and Pretorius proposed a slow rotating solution [34]. We
will discuss the salient features of this solution in the
following subsection.

B. Slowly rotating black hole solution

Since the DCS equations of motion (7), (8) are highly
coupled and nonlinear, obtaining exact solutions are hard
and one has to resort to approximations. In Ref. [34], the
authors solved Eqs. (7) and (8) perturbatively to linear order
in the spin parameter a and quadratic order in the CS
coupling parameter α and obtained the following slow-
rotating solution:

ds̄2≃ds2SRþ
5

4

α2

βκ

a
r4

�
1þ12

7

M
r
þ27

10

M2

r2

�
sin2θdtdφ; ð13Þ

where ds2SR is the slow-rotating Kerr line element (up to
linear order in a):

ds2SR¼−fðrÞdt2−4Masin2 θ
r

dtdφþ dr2

fðrÞþ r2dΩ2; ð14Þ

where fðrÞ ¼ 1–2M=r. The background DCS field in the
slow rotating solution is given by

ϑ̄ ≃ −
5

8

aα
βM

cos θ
r2

�
1þ 2M

r
þ 18M2

5r2

�
: ð15Þ

The above black hole solution has two properties that
will be useful for computing QNM frequencies: first, the
horizon of the above solution is the same as that in GR.

Second, since the correction in metric is r−4; at infinity, it is
the same as slowly rotating Kerr. Hence, Arnowitt-Deser-
Misner (ADM) mass and ADM angular momentum are the
same as in GR. Note that the overall negative sign in
Eq. (15) is different from [34] due to the Levi Civita
convention in this paper. As mentioned above, Ref. [34]
used a perturbation approach to obtain the above solution.
As wewill see below, the above expression for ϑ accurate to
OðαÞ is sufficient to obtain the QNM frequencies accurate
to Oðα2Þ. In all the analytical calculations, the DCS
parameter β is arbitrary. However, in obtaining the numeri-
cal result in Sec. IV B, we set β ¼ 1.

In the next section, we set up the formal expressions to
obtain the quasinormal mode frequencies corresponding to
this black hole solution and highlight the differences in our
approach Ref. [43].

III. LINEAR PERTURBATION ABOUT THE
SLOWLY ROTATING BLACK HOLE SOLUTION

In this section, we obtain the linear perturbations about
the slowly rotating background black hole space-time
described in Sec. II B. (For easy comparison, we use the
notations used in Refs. [43,46,47].) The first-order pertur-
bations about the black hole background are given by

gμν ¼ ḡμν þ ϵδgμν; ϑ ¼ ϑ̄þ ϵδϑ: ð16Þ

Based on their transformation under parity—under
the simultaneous transformations of θ → π − θ and
φ → π þ φ—the metric perturbations can be further
divided into odd (axial) and even (polar) parity perturba-
tions as

δgμνðt; r; θ;φÞ ¼ δgoddμν ðt; r; θ;φÞ þ δgevenμν ðt; r; θ;φÞ: ð17Þ

It is easy to see that, under parity, the even and odd
perturbations transform as δgoddμν → ð−1Þlþ1δgoddμν and
δgevenμν → ð−1Þlδgevenμν . We work in the Regge-Wheeler
gauge in which the metric perturbations can be written
as (assuming harmonic time dependence):

δgoddμν ¼

0
BBB@

0 0 hlm0 ðrÞSlmθ ðθ;φÞ hlm0 ðrÞSlmφ ðθ;φÞ
� 0 hlm1 ðrÞSlmθ ðθ;φÞ hlm1 ðrÞSlmφ ðθ;φÞ
� � 0 0

� � � 0

1
CCCAe−iωt

ð18Þ

and
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δgevenμν ¼

0
BBB@

Hlm
0 ðrÞYlmðθ;φÞ Hlm

1 ðrÞYlmðθ;φÞ 0 0

� Hlm
2 ðrÞYlmðθ;φÞ 0 0

� � r2KlmðrÞYlmðθ;φÞ 0

� � � r2 sin2 θKlmðrÞYlmðθ;φÞ

1
CCCAe−iωt; ð19Þ

where Ylmðθ;φÞ are the spherical harmonics:

Slmθ ðθ;φÞ ¼ −
1

sin θ
∂φYlmðθ;φÞ;

Slmφ ðθ;φÞ ¼ sin θ∂θYlmðθ;φÞ; ð20Þ

and � in the matrix elements denote symmetric compo-
nents. Note that in Eqs. (18) and (19), there is an implicit
summation over m and l: l ≥ 0 and jmj ≤ l. The perturba-
tion in the pseudofield is decomposed into spherical
harmonics as

δϑðt; r; θ;φÞ ¼ RlmðrÞ
r

Ylmðθ;φÞe−iωt: ð21Þ

A. Angular decomposition in Regge-Wheeler gauge

The angular decomposition of the 10 metric perturbation
equations in the Regge-Wheeler gauge for a Schwarzschild
background in GR was first shown by Kojima [46]. The
analysis has been extended to slowly rotating black hole

solutions in GR [47]. In this subsection, we show a similar
decomposition can be carried out for the 11 (ten metric δgμν
and one scalar field ϑ) perturbation equations for the slow
rotating black hole background up to α2. These 11
equations can be divided into three groups.
Group 1: From Eq. (8) and the tt, tr, rr, and sum of θθ

and φφ components of (7), we get

X
l;m

fðAðIÞ
lm þ ÃðIÞ

lm cos θÞYlm þ BðIÞ
lm sin θ∂θYlm þ CðIÞ

lm∂φYlmg

¼ 0ðI ¼ 0 to 4Þ; ð22Þ

where As, Ãs, Bs, and Cs are the linear combinations ofH0,
H1,H2,K, h0, h1, R and depend only on r andω. (Note that
t dependence goes away because of the harmonic time
dependence.)
Group 2: From the tθ, rθ, tφ, rφ components of (7),

we have

X
l;m

�
½αðJÞlm þ α̃ðJÞlm cos θ�∂θYlm − ½βðJÞlm þ β̃ðJÞlm cos θ� ∂φYlm

sin θ
þ ηðJÞlm ðsin θYlmÞ þ ξðJÞlm Xlm þ χðJÞlm ðsin θWlmÞ

�
¼ 0; ð23Þ

X
l;m

�
½βðJÞlm þ β̃ðJÞlm cos θ�∂θYlm þ ½αðJÞlm þ α̃ðJÞlm cos θ� ∂φYlm

sin θ
þ ζðJÞlm ðsin θYlmÞ þ χðJÞlm Xlm − ξðJÞlm ðsin θWlmÞ

�
¼ 0; ð24Þ

where Xlm ¼ 2∂φð∂θ − cot θÞYlm; Wlm ¼
�
∂2
θ − cot θ∂θ −

1

sin2θ
∂2
φ

�
Ylm: ð25Þ

In both Eqs. (23), and (24), J can be 0 or 1. Note that αs, α̃s, βs, β̃s, ηs, χs, ζs, and ξs are linear combinations of H0, H1,
H2, K, h0, h1, R and depend only on r and ω. (Here again, t dependence goes away because of the harmonic time
dependence.)
Group 3: From the θφ and the subtraction of θθ and φφ components of (7), we get

X
l;m

�
flm∂θYlm þ glmð∂φYlm= sin θÞ þ slm

�
Xlm

sin2θ

�
þ s̃lm

�
Xlm cos θ
sin2θ

�
þ tlm

�
Wlm

sin θ

�
þ t̃lm

�
Wlm cos θ

sin θ

��
¼ 0; ð26Þ

X
l;m

�
glm∂θYlm − flmð∂φYlm= sin θÞ − tlm

�
Xlm

sin2θ

�
− t̃lm

�
Xlm cos θ
sin2θ

�
þ slm

�
Wlm

sin θ

�
þ s̃lm

�
Wlm cos θ

sin θ

��
¼ 0: ð27Þ

Here again, ss, s̃s, ts, t̃s, fs, and gs are some linear combinations of H0, H1, H2, K, h0, h1, R and depend only
on r and ω.
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Before we proceed with the rest of the calculations, we
want to highlight the differences between GR and DCS
gravity for the above angular decomposition. For DCS
gravity, the structure of Eqs. (22), (23), and (24) are the
same as in GR. The first difference is the appearance of the
s̃lm and t̃lm terms in Eqs. (26) and (27). These terms do not
occur for a slowly rotating Kerr background. The second
difference is that in DCS gravity, we have an extra
pseudoscalar field equation that is not present in GR.
The structure of the scalar field equation is such that it can
be grouped with the first set of metric equations (22).
Note that the above angular decomposition leads to

equations in terms of fH0; H1; H2; K; h0; h1; Rg and the
angular functions summed over all values of l and m. To
eliminate the angular dependencies, we need to use the
orthogonality properties of spherical harmonics to get
equations purely in terms of the radial functions
fH0; H1; H2; K; h0; h1; Rg for individual (lm) modes. For
instance, we can multiply the perturbation equations (22)
by Y�

lm and integrate over the solid angle to eliminate the
angular functions. Detailed procedure to eliminate the
angular dependencies for GR case involves a series of
steps which is discussed in Ref. [47]. Appendix B contains
the detailed procedure to account for the extra terms s̃lm and
t̃lm terms in Eqs. (26) and (27) for the DCS gravity case.
Following the elimination procedures in [47] and
Appendix B leads to 11 equations of the form

Mlm þmaM̃lm þ aðqlM̌l−1;m þ qlþ1M̌lþ1;mÞ ¼ 0; ð28Þ

where theMs, M̃s, and M̌s are some linear combinations of
H0, H1, H2, K, h0, h1, R (with the same lm indices) and
depend only on r and ω. Note that the prefactors of αi

(i ¼ 0, 1, 2) have been suppressed in Eq. (28).

B. Decoupled perturbation equations

To obtain the QNM frequencies, we need to further
simplify Eqs. (28). This simplification is possible by
looking at the symmetry properties of the axial and polar
perturbation variables in Eqs. (28). In Ref. [43], the authors
argued that under simultaneous transformations

xl;m → ∓xl;−m; yl;m → �yl;−m;

m → −m; a → −a; ð29Þ

Eq. (28) remains invariant. Note that xlm and ylm represent
the axial and polar perturbation variables, respectively, with
indices ðl; mÞ. Under the above transformations, the boun-
dary conditions for QNMs of slowly rotating BHs in DCS
are also invariant. The QNM frequencies in the slow
rotation limit must also remain invariant and hence should
be of the form

ω ¼ ω0 þmaω1 þ aω2 þOða2Þ with ω2 ¼ 0: ð30Þ

This argument holds irrespective of the order of α.
The immediate consequence of the above symmetry

argument is that the quasinormal mode (QNM) frequencies
are not affected by mode couplings (of l to l� 1) at leading
order in spin (see Ref. [43] for details). The crux of the
argument is that the coupling terms in (28) can only
contribute to ω2 part of the frequency correction in (30).
And since ω2 should be zero because equations in (28) and
its boundary conditions don’t change under the simulta-
neous transformations (29), there is no effect of the
coupling terms on QNM frequencies. The coupling terms
cannot source ω1 correction because the coupling terms in
(28) are just the Schwarzschild functions and therefore are
independent of m, considering terms only to linear order in
spin in Eq. (28). Hence, we neglect the mode coupling
terms of M̌ in Eq. (28) in the rest of our analysis. If we do
not have the M̌ terms, and if we explicitly write the α
dependence of the terms, then (28) leads to seven equations
of the form

PðIÞ
lm þ α2P̂ðIÞ

lm ¼ 0; ðI ¼ 1 to 7Þ; ð31Þ

three equations of the form

AðJÞ
lm þ αS̃ðJÞlm þ α2ÂðJÞ

lm ¼ 0; ðJ ¼ 1 to 3Þ; ð32Þ

and one equation of the form

Slm þ αÃlm þ α2Ŝlm ¼ 0; ð33Þ

where the Ps are linear combinations of the polar functions
H0, H1, H2, K, and their derivatives. The As are linear
combinations of the axial functions h0, h1 and their
derivatives, and the Ss are linear combinations of the scalar
field function R and its derivatives. In the above equations,
we have suppressed the spin (a) dependence of terms. From
the above expressions, we find that the polar sector (31) is
independent of the pseudoscalar field, whereas the axial
sector (32) is coupled to the pseudoscalar field (33). This is
also a feature for spherically symmetric space-times [40].
While the above Eqs. (31), (32), and (33) do not have

mode-coupling terms, they are not in a form that can be
related to the two polarization modes of the gravitational
waves and scalar field. In other words, we need to combine
the seven equations in (31) to a single differential equation
that is analogous to Zerilli equation [2] in the case of
Schwarzschild space-time. Similarly, we need to combine
the three equations in (32) to a single differential equation
that is analogous to Regge-Wheeler equation [1] in the
case of Schwarzschild space-time. However, unlike
Schwarzschild background in GR, the axial modes here
are coupled to the scalar field. Since the Regge-Wheeler
and Zerilli equations are of Schrödinger form, we will refer
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to the final polar, axial, and scalar equations for the slowly
rotating case as Schrödinger-like equations [4].
The procedure to get the Schrödinger-like equations

starting from (31), (32), and (33) is a tedious one involving
several steps. The flowchart (Fig. 1) describes the entire
procedure. In the rest of this subsection, we give a bird’s
eye view of the procedure without going into the
details.
We start with the simplest of the three—Schrödinger-like

equation for the pseudoscalar field. Equation (33) is the
equation for the scalar field which also contains the axial
perturbations variables that are governed by Eq. (32). Note
that, to get an equation accurate to Oðα2Þ in Eq. (33), we
can neglect the Oðα2Þ terms in (32). This is because any
term at Oðα2Þ in Eq. (32), when substituted back in
Eq. (33), will contribute at Oðα3Þ. Therefore we solve
the system of Eqs. (32) for some relations between h0, h1,
and R accurate to linear order in α and substitute them in
(33). This leads to Schrödinger-like equation for the
pseudoscalar field perturbation Rlm [cf. Eq. (35) in
Sec. III C].

We now focus on the polar (31) and axial sectors (32).
The many-step procedure of computing the Schrödinger-
like equations for the polar and the axial sectors for the
slowly rotating Kerr case is discussed in Ref. [47]. In this
work, we refer to this procedure as standard GR procedure.
While Wagle et al. [43] considered perturbation equations
accurate to the first order in α, in this work, we derive the
equations accurate to Oðα2Þ. Oðα2Þ correction terms in the
perturbation equations, have higher-order derivative terms
that are absent in the equations accurate to first order in α.
Hence, we cannot directly use the standard GR procedure
in this case. The modification to the procedure is explained
as step 2 in the flowchart (Fig. 1).

C. Schrödinger-like equations for the pseudoscalar
field and axial and polar sectors

Following the procedure discussed in the flowchart
(Fig. 1), we obtain the Schrödinger-like equations for
the pseudoscalar field perturbation, the axial sector, and
the polar sector. We rewrite the equations in dimensionless
variables χ; α̃:

FIG. 1. Flow chart provides detailed procedure to obtain the Schrödinger-like equations.

ANALYTICAL COMPUTATION OF QUASINORMAL MODES OF … PHYS. REV. D 104, 064034 (2021)

064034-7



χ ¼ a
M

; α̃ ¼ α

M2
: ð34Þ

The linear-order perturbation equation for the pseudoscalar field, accurate up to Oðα̃2Þ, is

fðrÞ2∂rrRlm þ 2M
r2

fðrÞ∂rRlm þ α̃2χmT1ðrÞ∂rRlm þ ½ω2 − VSmod
eff ðr; χ; α̃2Þ�Rlm

¼ −α̃fðrÞf½gðrÞ þ χmhðrÞ�ΨRW
lm þ χmjðrÞ∂rΨRW

lm g: ð35Þ

The linear-order perturbation equation, accurate up to Oðα̃2Þ, for the axial sector is

fðrÞ2∂rrΨRW
lm þ 2M

r2
fðrÞ∂rΨRW

lm þ α̃2χmA1ðrÞ∂rΨRW
lm þ ½ω2 − VAmod

eff ðr; χ; α̃2Þ�ΨRW
lm

¼ −α̃fðrÞf½vðrÞ þ χmnðrÞ�Rlm þ χmpðrÞ∂rRlmg: ð36Þ

The linear-order perturbation equation, accurate up to Oðα̃2Þ, for the polar sector is

fðrÞ2∂rrΨZ
lm þ 2M

r2
fðrÞ∂rΨZ

lm þ α̃2χmP1ðrÞ∂rΨZ
lm þ ½ω2 − VPmod

eff ðr; χ; α̃2Þ�ΨZ
lm ¼ 0; ð37Þ

where the Regge-Wheeler function (ΨRW
lm ) describing axial perturbations and Zerilli-Moncrief function (ΨZ

lm) describing the
polar perturbation are

ΨRW
lm ¼ fðrÞ

r

�
1þ 2mMχ

r3ω

�
hlm1 ; ΨZ

lm ¼ 2r2ωKlmðrÞ þ 2ið2M − rÞHlm
1 ðrÞ

ωððl2 þ l − 2Þrþ 6MÞ ð1þ χCðrÞÞ; ð38Þ

with

CðrÞ ¼ 2mM2ð−2ðl2 þ l − 2Þ2Mr2 þ ðl2 þ l − 2Þr3ðl2 þ lþ 2r2ω2 − 2Þ − 24M2rþ 48M3 þ 12Mr4ω2Þ
lðlþ 1Þr4ωððl2 þ l − 2Þrþ 6MÞ2 ; ð39Þ

and the potentials are

VSmod
eff ðr; χ; α2Þ ¼ VS

effðr; χÞ þ α̃2T2ðr; χÞ; ð40Þ

VAmod
eff ðr; χ; α2Þ ¼ VA

effðr; χÞ þ α̃2χmA2ðrÞ; ð41Þ

VPmod
eff ðr; χ; α2Þ ¼ VP

effðr; χÞ þ α̃2χmP2ðrÞ: ð42Þ

The exact form of the above potential functions and all
the coefficient functions that occur in (35), (36), and (37)
are given in Appendix A. Equations (35)–(37) and (40)–
(42) are accurate to quadratic order in α and contain Oðα2Þ
terms that were not included in Ref. [43]. The Schrödinger-
like form of the equations becomes apparent only if we
express them in terms of the tortoise coordinate (r�):
r� ¼ rþ 2M logðr=2M − 1Þ.

IV. EVALUATING THE QNM FREQUENCIES

In this section, we evaluate the QNM frequencies for the
three sectors analytically. Specifically, we use a procedure
similar to that used in nondegenerate perturbation theory in
quantum mechanics. It is important to highlight that only
the technique is similar while the calculation is purely

classical. We treat the terms independent of spin (corre-
sponding to the Schwarzschild background) as the zeroth-
order terms in perturbation theory. In contrast, the terms
proportional to spin (including GR and DCS terms) are
treated as a perturbing potential.
Wagle et al. [43] performed a Fermi estimation analysis

to determine the dependence of the QNM frequency on the
CS coupling parameter. To compare and contrast the results
and highlight that some relevant perturbative terms are not
present in Ref. [43], we repeat the Fermi estimate analysis
for the equations derived in Sec. III C in Appendix D.
From Appendix D we see that the results are different

from those in Ref. [43]. Our analysis reveals an additional
contribution [ðA2 −GAÞ term] to the frequency correction
compared to that in Ref. [43]. Thus, even using Fermi
estimate, it is clear that the analysis in Ref. [43] has not
included certain terms that contribute to the correction in ω
at Oðα̃2Þ.

A. Perturbation scheme, inner product, and contour

In the rest of this section, we discuss the analytical
procedure we use to compute the corrections to the QNM
frequencies. We employ a perturbation scheme in the spin
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parameter χ with the Schwarzschild case being the zeroth-
order solution. We compute the Schwarzschild QNM
eigenmodes and frequencies using the well-known con-
tinued fractions analysis by Leaver [49].
Since the polar sector is uncoupled, we first discuss the

polar sector (37). Setting ρ ¼ −iω, Eq. (37) can be
rewritten as

ÔPΨþ χV̂PΨ ¼ ρ2Ψ; ð43Þ

where

ÔP ¼ d2

dr2�
− VP

Sch; ð44Þ

V̂P ¼ −ðVPmod
eff − VP

SchÞ þ α̃2mP1ðrÞ
d
dr

; ð45Þ

and VP
Sch is the Zerilli potential which is obtained by setting

χ ¼ 0 in VPmod
eff .

As mentioned above, our aim is to solve (43) perturba-
tively and χ keeps track of the higher and higher-order
corrections to the Schwarzschild case. Following the
standard nondegenerate perturbation theory, we expand
Ψ and ρ in powers of χ:

Ψ ¼ Ψð0Þ þ χΨð1Þ þ χ2Ψð2Þ þ � � � ;
ρ ¼ ρð0Þ þ χρð1Þ þ χ2ρð2Þ þ � � � : ð46Þ

We now substitute these expansions back in (43), expand
and collect terms at each order of χ, and set coefficients at
each order of χ to zero. We get at zeroth order:

ÔPΨð0Þ ¼ ðρð0ÞÞ2Ψð0Þ ð47Þ

and at the first order:

ÔPΨð1Þ þ V̂PΨð0Þ ¼ 2ρð0Þρð1ÞΨð0Þ þ ðρð0ÞÞ2Ψð1Þ ð48Þ

To proceed further, we need to define an inner product
I∶F → C such that the operator ÔP is self-adjoint with
respect to it (F being the space of wave functions), i.e.:

I ðψ ; ÔPϕÞ ¼ I ðÔPψ ;ϕÞ: ð49Þ

The inner product is defined as

I ðψ ;ϕÞ ¼
Z
C
ψϕdr�: ð50Þ

The contour (C ) for integration is illustrated in Fig. 2.
The details about the inner product definition and the
choice of the contour are provided in Appendix C. The
contour integral technique to compute corrections to QNM
frequencies has been earlier for the Kerr-Newman black

hole case [50]. However, to our knowledge, this is the first
time this technique is used to compute the DCS corrections
and the GR corrections in QNM frequencies for slow-
rotating black holes. Taking the inner product of the right-
hand side and the left-hand side of (48) withΨð0Þ, and using
the above inner product definition, the first order (in χ)
correction to the QNM frequencies are

ρð1Þ ¼ I ðΨð0Þ; V̂PΨð0ÞÞ
2ρð0ÞI ðΨð0Þ;Ψð0ÞÞ

⇒ ωð1Þ ¼ −
I ðΨð0Þ; V̂PΨð0ÞÞ
2ωð0ÞI ðΨð0Þ;Ψð0ÞÞ : ð51Þ

We want to make the following remarks regarding the
above result: first, even in the polar sector, we obtain DCS
corrections (proportional to α̃2) to the QNM frequencies.
This is the first significant difference compared to the
results in Ref. [43]. Second, using Leaver’s continued
fractions method [49], Ψð0Þ and ρð0Þ are known for the axial
sector in the Schwarzschild background. Due to the
isospectrality relation in GR, the zeroth-order frequencies
ρð0Þ for the polar sector are the same as the axial sector.
Third, the zeroth-order eigenfunctions for the polar sector
Ψð0ÞZ can be obtained from the eigenfunctions of the axial
sector Ψð0ÞRW using the well-known Chandrasekhar trans-
formation [51]. The expression for the polar wave function
in terms of the axial wave function is given by

Ψð0ÞZ
lmω ðrÞ ¼

1
4
9
λ2ðλþ 1Þ2 þ 4M2ω2

×

��
2

3
λðλþ 1Þ þ 6M2ðr − 2MÞ

r2ðλrþ 3MÞ
�
Ψð0ÞRW

lmω ðrÞ

þ 2M
d
dr�

Ψð0ÞRW
lmω ðrÞ

�
; ð52Þ

FIG. 2. Contour for the integral in inner product definition.
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where λ ¼ ðl − 1Þðlþ 2Þ=2. Thus, with the above inner
product definition (50), we have all the ingredients to
compute the correction in polar sector frequencies at linear
order in spin.
The above perturbation scheme is also useful in the axial

sector. Ignoring the contribution of the pseudoscalar field
terms in the axial equation (36), we can use the same
technique discussed in the previous paragraph for the polar
equation to compute some CS corrections to the QNM
frequencies. Since we compute the corrections to the QNM
frequencies only at the linear order in χ, we can add the
corrections in the QNM frequencies arising from the
pseudoscalar field terms in Eq. (36) to the corrections
due to the α̃2 terms to get the full correction at linear order
in spin. In Ref. [43] the authors calculated the corrections in
QNM frequencies due to the pseudoscalar field terms by
direct integration of equations. But they did not include the
corrections due to the terms proportional to α̃2 in (36). In
this work, we have computed these corrections (that were
not included in Ref. [43]) using the perturbation scheme
discussed in this section.

B. The results

Having discussed the detailed procedure, in this sub-
section, we obtain the QNM frequencies for the first five
fundamental (n ¼ 0) modes for the slowly rotating black
hole solution in the DCS theory. We set β ¼ 1. As
mentioned earlier, since the polar sector is decoupled,
we can obtain the complete QNM frequencies. However,
we need to solve the coupled differential equations for the
axial sector to obtain the complete QNM frequencies.
Hence, we only identify the corrections to the slow rotating
Kerr QNM that were not included in Ref. [43]. Since we are
computing corrections at the linear order in spin, for the
axial sector, we can add these corrections to the corrections
reported in Ref. [43] to get the full correction at linear order
in spin.
Although the procedure is suitable for any value of l, in

this section, we will set l ¼ 2. To compute the corrections
to QNM frequencies, we use Eq. (51) for the axial and polar
sectors. To evaluate the contour integral [cf. Fig. 2] in
Mathematica, we set the radius of the semicircular part of
the contour as δ ¼ 0.2M, continue the contour to ImðrÞ ¼
200M on both sides of the horizon point and approximate
the wave functions by the first 80 terms in Leaver’s
continued fraction analysis [49]. Note that the contour

integral is independent of the choice of the radius of the
semicircular arc of the contour, and the wave functions
decay exponentially at the end points of the contour
[ImðrÞ ¼ 200M]. The analytical results reported in
Table I are robust to variation in δ and the choice of end
points of the contour. More specifically, changing the value
of end point of the contour from ImðrÞ ¼ 200M to ImðrÞ ¼
400M changes the coefficients in Table I only at the 17th
decimal place. Varying δ in the range (0.1M, 0.4M), the
coefficients change only at the 16th decimal place.
Similarly changing the number of terms used to approxi-
mate the wave functions in Leaver’s analysis in the range of
80 to 100 changes the coefficients in Table I only at the
tenth decimal place. Thus, the results reported here are
robust and do not depend on δ or the end points of the
contour.
The polar QNM frequencies can be expressed as

ωP
i ¼ ωGR

i þ α̃2mχ

M
ci; ωGR

i ¼ 1

M
½ai þmχbi�; ð53Þ

where the coefficients ai, bi, and ci are tabulated in Table I.
We want to make the following remarks regarding the
above result: first, the coefficients ai match with the results
in Ref. [6] and the coefficients bi agree with the results in
Ref. [52]. Second, the correction term proportional to only
mχ is the correction due to spin in GR, whereas the
correction term proportional to α̃2mχ is the DCS correction.
To get an estimate of the DCS corrections on the GR QNM
frequencies, we need constraints on the DCS coupling
parameter. In Refs. [53,54], the authors derived weak
constraints on DCS coupling parameters from various
astrophysical observations. A much more stringent con-
straint on DCS coupling parameter obtained using the
measurements of the mass and the equatorial radius of the
isolated neutron star PSR J0030þ 0451 by NICER
(Neutron Star Interior Composition Explorer) [55–57] by
Silva et al. [58] (for β ¼ 1) is

ffiffiffi
α

p
≤ 8.5 km: ð54Þ

This leads to

α̃ ¼ α

M2
≤ 33.11

�
M⊙

M

�
2

: ð55Þ

TABLE I. QNM frequency coefficients for the polar sector ðai; bi; ciÞ and the axial sector ðai; bi; diÞ.
i 1 2 3 4 5

ai 0.373672 − 0.0889623i 0.346711 − 0.273915i 0.301053–0.478277i 0.251505 − 0.705148i 0.207515 − 0.946845i
bi 0.0628831þ0.000997934i 0.07194þ0.00638453i 0.0860352þ0.0224338i 0.0957683þ0.0508029i 0.0971001þ0.0866307i
ci −0.0489391þ 0.026246i 0.259349–0.167831i 0.703233 − 1.09307i 0.969587 − 3.1162i 0.527707 − 6.25558i
di 0.0592739 − 0.189462i −0.377947 − 0.504844i −1.44408 − 0.434958i −3.60286þ 1.11852i −7.98051þ 7.12689i
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α̃ is small for a 50 M⊙ black hole and the corrections to the
imaginary part is less than a percentage. Hence, binary
black hole collisions leading to 50 M⊙ black holes cannot
provide any distinct signature. However, if the residual
mass is around 15 M⊙ or less, like the binary neutron star
(BNS) event [59], then it can lead to a significant change in
the QNM frequencies. For a 15 M⊙ black hole, the above
constraint (55) translates to

α̃ ≤ 0.147 ð56Þ

and is consistent with the small α̃ approximation. For
α̃ ¼ 0.1, the ratio of the imaginary parts of the DCS
correction to the purely GR correction in the first QNM
frequency is

Im

�
α̃2c1
b1

�
∼ 0.263: ð57Þ

Thus, there is a significant correction in QNM frequency
due to the DCS terms when compared to the GR correction
and these corrections may potentially be observable in
future missions [17]. For mχ > 0, the DCS corrections
make the magnitude of the imaginary part of the first
quasinormal mode less negative, hence decreasing the
decay rate.
The third remark that we would like to make about our

results is that although the contour-integration technique
was used to compute corrections for the Kerr Newman
black hole in the past [50], this is the first time the
technique has been used to obtain QNM frequencies for
modified gravity models. Lastly, due to the isospectrality
theorem, GR spin correction is the same for both the axial
and polar sectors [47]. As mentioned above, since the
axial sector is coupled of the pseudoscalar field (ϑ), the
axial QNM frequencies can be represented as

ωA
i ¼ ωGR

i þ α̃2mχ

M
di þ

α̃2

M
dϑi ðm; χÞ; ð58Þ

where di are the corrections that solely arise due to the
corrections to the lhs in the axial equation (36) and dϑi ðm; χÞ
are the corrections that arise due to the coupling to the
pseudoscalar field [rhs of the Eq. (36)]. In Ref. [43], the
authors computed only dϑi terms and did not obtain the di
corrections. Here, we only obtain the corrections to the
slow rotating Kerr QNM that were not included in Ref. [43]
and do not consider the corrections arising from the
pseudoscalar field (ϑ). Table I contains the coefficients
di. We plan to report the analytical evaluation of dϑi in a
future publication.

V. CONCLUSIONS AND DISCUSSIONS

In this work, we have analytically computed the funda-
mental mode (n ¼ 0) QNM frequencies for a slowly

rotating black hole solution in DCS gravity accurate to
linear order in spin (χ) and quadratic order in the CS
coupling parameter (α). The corrections to the QNM
frequencies reported here are at the same level of exactness
as the background black hole solution reported in Ref. [34].
In addition to Ref. [43], we found DCS corrections to the
QNM frequencies in the polar sector.
To obtain the quasinormal modes, we perturbed the

background space-time linearly and computed the pertur-
bation equations. As shown in Ref. [43], the angular
decomposed perturbation equations are invariant under
the simultaneous transformations of axial, polar perturba-
tion variables, m and a. Due to this symmetry, the QNM
frequencies are not affected by mode couplings (of l to
l� 1) at leading order in spin. This enormously simplified
the perturbation equations, which we could combine in a
specific manner. This leads to three Schrödinger-like
equations—one each for the scalar field and axial and
polar sectors. The equations we have derived are again
accurate to linear order in spin and quadratic order in the
DCS coupling parameter. We find coupling between the
DCS field and the axial sector metric perturbations,
whereas the pseudoscalar field does not couple to the polar
sector metric perturbations. Interestingly, this feature was
also found in spherically symmetric space-times [40].
To compute the polar sector QNM frequencies, we

analytically continue our mode functions to the com-
plex-r plane. We defined an inner product using a contour
integral along a contour that ensures the finiteness of the
inner product. We employed a perturbation technique
similar to nondegenerate perturbation theory in quantum
mechanics and calculated the QNM frequencies in the polar
sector. Again, we emphasize that our technique is similar to
the perturbation theory in quantum mechanics, but our
calculations are completely classical. We used the same
technique to compute one part of the DCS corrections to
QNM frequencies in the axial sector. Here, we only
obtained the corrections to the slow rotating Kerr QNM
that were not included in Ref. [43] and did not consider the
corrections arising from the pseudoscalar field (ϑ). The
total DCS correction in the axial sector QNM frequencies is
the sum of the two parts.
Our results shows that the DCS corrections are poten-

tially observable when the final black hole mass is less than
15 M⊙. Hence, the future BNS events [59] can potentially
distinguish DCS and GR. Specifically, assuming α̃ ¼ 0.1,
we found the ratio of the imaginary parts of the DCS
correction to the purely GR correction in the first QNM
frequency (for the polar sector) to be 0.263. Also for
mχ > 0, the DCS corrections make the magnitude of the
imaginary part of the first QNM of the fundamental mode
smaller, thereby decreasing the decay rate.
Since only axial perturbations couple to the pseudoscalar

field. Our analysis shows that isospectrality between odd
and even parity perturbations are broken for the slowly
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rotating black holes in DCS. Earlier, this was shown for the
spherically symmetric black holes [40]. This leads to the
following question: which term in the equations of motion
(7) breaks the isospectrality relation for DCS? To check this
for the slowly rotating black hole solution (13), we ignored
the C-tensor term in the perturbation of Eq. (7) and �RR
term in perturbation equation (8). [Note that the rotating
black hole solution (13) is not a solution under these
conditions.] In this case, the DCS corrections in QNM
frequencies are isospectral for the axial and polar sectors.
This confirms that the source of isospectrality breaking is
the C-tensor and �RR terms.
It seems that different strong-gravity corrections break the

isospectrality differently. In the case of spherically sym-
metric space-times in fðRÞ gravity, it was shown that the
polar perturbations couple of the extra scalar gravitational
perturbations while axial perturbations do not [60,61]. This
is opposite to what we see in DCS gravity—the axial
perturbations couple of the extra scalar gravitational per-
turbations while polar perturbations do not. The future
gravitational wave detectors like the Cosmic Explorer
[17] are expected to have a very high GW SNR in the
quasinormal mode regime SNR > 50 [19]. Thus, the future
detectors can help probe the QNM structure accurately and
provide whether the strong gravity violates parity or not!
As we have mentioned earlier, we have not computed the

QNM frequencies of the axial sector completely. This is
because the axial perturbations are coupled to the pseu-
doscalar field. The analytic perturbative technique devel-
oped in this work needs to be extended to accommodate the
coupling with the pseudoscalar field by modifying (or
decoupling) the axial and the pseudoscalar field equations
using suitable operators and their commutators. This is
currently under investigation.

We have analytically computed the QNM frequencies of
a particular analytically obtained perturbative (slowly
spinning) solution of the DCS theory. In the literature,
there have also been nonperturbative spinning solutions
computed numerically for the DCS theory [33]. For DCS
black holes with general spins, metric perturbation does not
have explicitly decoupled forms when α ¼ 0, which means
that solving for DCS QNM frequencies using metric
perturbation will not be straightforward. For nonlinear,
scalarization scenarios discussed in Refs. [38,39], it is
plausible that, in a slowly rotating special case, QNM
frequencies can still be computed in the way discussed in
this paper—if a sufficiently simple closed-form analytical
solution for the metric exists.
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APPENDIX A: COEFFICIENT FUNCTIONS IN
PERTURBATION EQUATIONS

In this section we list down all the potentials and the
coefficient functions that occur in the Schrödinger-like
equations in Sec. III C. The coefficient functions are

fðrÞ ¼ 1 −
2M
r

; gðrÞ ¼ 6iðl − 1Þlðlþ 1Þðlþ 2ÞM3

r5ωβ
; vðrÞ ¼ −

6iM3ω

κr5
; ðA1Þ

hðrÞ ¼ −
iM2ðr4ω2ð12ð2lðlþ 1Þ − 1ÞM2 þ 15Mrþ 5r2Þ þ 144M3ð2M − rÞÞ

2βr9ω2
; jðrÞ ¼ 72iM5ðr − 2MÞ

r8ω2β
; ðA2Þ

nðrÞ¼ iM2ð−4224M4þ3306M3rþ48M2r2ðr2ω2−15Þþ5Mr3þ15r4Þ
4κlðlþ1Þr9 ; pðrÞ¼ 12iM4ð12M−5rÞð2M− rÞ

κlðlþ1Þr8 : ðA3Þ

The various GR potentials are

VS
eff ¼

�
1 −

2M
r

��
lðlþ 1Þ

r2
þ 2M

r3

�
þ χmω

4M2

r3
; ðA4Þ

VA
eff ¼

�
1 −

2M
r

��
lðlþ 1Þ

r2
−
6M
r3

þ χm
ω

24M2ð3r − 7MÞ
lðlþ 1Þr6

�
þ χmω

4M2

r3
; ðA5Þ
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VP
eff ¼ χmω

4M2

r3
þ fðrÞ

�
2M
r3

þ ðl − 1Þðlþ 2Þ
3

�
1

r2
þ 2ðl − 1Þðlþ 2Þðlðlþ 1Þ þ 1Þ

ð6M þ rðlðlþ 1Þ − 2ÞÞ2
�

þ 4χmM2

r7lðlþ 1Þð6M þ rðlðlþ 1Þ − 2ÞÞ4ω ð27648M6 þ 2592M5rð6lðlþ 1Þ − 19Þ

þ144M4r2ð230þ lðlþ 1Þð21lðlþ 1Þ − 148Þ þ 6r2ω2Þ
þ12M2r4ðlðlþ 1Þ − 2Þ2ðlðlþ 1Þð−12þ 5lðlþ 1ÞÞ þ 28r2ω2 − 4Þ
þ12M3r3ðlðlþ 1Þ − 2Þð374þ lðlþ 1Þð29lðlþ 1Þ − 200Þ þ 72r2ω2Þ
þr6ðlðlþ 1Þ − 2Þ3ð−3ðlðlþ 1Þ − 2Þðlðlþ 1Þ þ 2Þ þ 2r2ðlðlþ 1Þ − 4Þω2Þ
þMr5ðlðlþ 1Þ − 2Þ2ððlðlþ 1Þ − 2Þðlðlþ 1Þ þ 2Þð7lðlþ 1Þ − 38Þ

þ24r2ð2lðlþ 1Þ − 5Þω2ÞÞ
�
: ðA6Þ

The α̃2 correction functions in the potentials are

T1ðrÞ ¼
3ðr − 2MÞ2ð5M5r2 þ 10M6rþ 18M7Þ

4βκr11ω
; ðA7Þ

T2ðrÞ ¼
1

56βκr12ω
ð2016lðlþ 1ÞM6r3ωðr − 2MÞ −mχð2016l2M7ðr − 2MÞ2 þ 2016lM7ðr − 2MÞ2

−8064M8r3ω2 þ 120M6r5ω2 þ 21M5r4ð201M2ω2 þ 10Þ þ 70M5r6ω2 − 4284M7r2

þ10416M8r − 7056M9ÞÞ; ðA8Þ

A1ðrÞ ¼
1

4βκlðlþ 1Þr12ω ððr − 2MÞ2ð−15M4r4ð5l2 þ 5l − 4ð6M2ω2 þ 5ÞÞ − 40ðl2 þ lþ 7ÞM6r2

−15ð3l2 þ 3lþ 4ÞM5r3 þ 18ð83l2 þ 83l − 640ÞM7rþ 120M5r5ω2 þ 30M4r6ω2 þ 19440M8ÞÞ; ðA9Þ

A2ðrÞ ¼ −
1

56βκlðlþ 1Þr13ω ð1680M6r4ð2l2 þ 2l − 78M2ω2 þ 3Þ þ 21M5r5ðl2ð9M2ω2 − 160Þ þ lð9M2ω2 − 160Þ

þ20ð212M2ω2 − 9ÞÞ þ 70ðl2 þ l − 18ÞM5r7ω2 þ 30M4r6ðl2ð4M2ω2 þ 35Þ
þlð4M2ω2 þ 35Þ − 84M2ω2Þ þ 168ð48l4 þ 96l3 þ 1141l2 þ 1093lþ 1966ÞM8r2

−168ð12l4 þ 24l3 þ 303l2 þ 291lþ 11ÞM7r3 − 1008ð8l4 þ 16l3 þ 185l2 þ 177lþ 1168ÞM9r

−1680M4r8ω2 þ 1088640M10Þ; ðA10Þ

P1ðrÞ ¼−
1

56βκlðlþ 1Þr12ωððl2þ l− 2Þrþ 6MÞ3 ðM
3ðr− 2MÞ2ð−12M4r4ð6479l6þ 19437l5− 17072l4− 66539l3

þ57739l2þ 94248l− 5670M2ω2 − 150992Þ− 6M3r5ð−42l2ð99M2ω2þ 1555Þþ 315l6þ 945l5þ 5635l4þ 9695l3

−14lð297M2ω2þ 5000Þþ 4ð639M2ω2þ 29680ÞÞþ 560ðl2þ l− 2Þ2M2r8ω2− 18M2r6ð−7l4ð18M2ω2þ 355Þ
−7l3ð36M2ω2þ 785Þþ l2ð7140− 342M2ω2Þþ 105l6þ 315l5þ lð9940− 216M2ω2Þþ 96M2ω2− 9520Þ
þ60ðl2þ l− 2ÞMr7ð5l2ð4M2ω2− 21Þþ 35l4þ 70l3þ 20lðM2ω2− 7Þþ 58M2ω2þ 140Þ
þ18ð147273l4þ 294546l3− 960469l2− 1107742lþ 1603992ÞM6r2þ 27ð5439l6þ 16317l5− 68265l4

−163725l3þ 181898l2þ 266480l− 267264ÞM5r3þ 432ð40551l2þ 40551l− 130246ÞM7rþ 39680928M8ÞÞ

þ 15ωð48M8− 32M7rþM4r4Þ
2lðlþ 1Þβκr8 ; ðA11Þ
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P2ðrÞ ¼ −
1

56lðlþ 1Þr13ð6M þ ðl2 þ l − 2ÞrÞ4βκω ð952342272M14 þ 10368ð40551l2 þ 40551l − 222100ÞrM13

þ1728ð22344l4 þ 44688l3 − 468949l2 − 491293lþ 1320255Þr2M12 − 216ð38955l6 þ 116865l5 þ 327754l4

þ460733l3 − 2836929l2 − 3047818lþ 5572728Þr3M11 − 36r4ð51324l8 þ 205296l7 − 181881l6 − 1264179l5

−1568026l4 − 789575l3 þ 6658635l2 þ 6808510lþ 984312M2ω2 − 10830664ÞM10 − 6r5ð15351l10 þ 76755l9

−274595l8 − 1558910l7 − 277387l6 þ 4946395l5 þ 4242251l4 − 1731728l3 þ 4ð699678ω2M2 − 2652053Þl2
þ72ð38871ω2M2 − 119932Þl − 9312408ω2M2 þ 17313024ÞM9 þ 3ð29999l10 þ 149995l9 − 81007l8

−1223998l7 − 614347l6 þ 3070931l5 þ ð2263351 − 707616ω2M2Þl4 − 48ð29484M2ω2 þ 48323Þl3
þð5889888ω2M2 − 6264220Þl2 þ 32ð206172ω2M2 − 135739Þlþ 48ð222776 − 212043ω2M2ÞÞr6M8

−4r7ð5108l10 þ 25540l9 − 3659l8 − 167876l7 þ ð4498 − 10962ω2M2Þl6 þ ð708328 − 32886ω2M2Þl5
þð397141 − 407718ω2M2Þl4 − 2ð380313M2ω2 þ 316600Þl3 þ 22ð52965ω2M2 − 68264Þl2
þ2ð770031ω2M2 − 515756Þlþ 180ð12208 − 9477ω2M2ÞÞM7 þ 2ð1505l10 þ 7525l9 þ 35ð243ω2M2 − 1033Þl8
þ70ð486ω2M2 − 2711Þl7 þ ð14118M2ω2 þ 9205Þl6 þ ð723415 − 76716ω2M2Þl5 − 7ð5409ω2M2 − 55015Þl4
þð91824ω2M2 − 671930Þl3 þ 20ð9396ω2M2 − 35875Þl2 þ 8ð15444ω2M2 − 28385Þl − 798960ω2M2

þ715680Þr8M6 þ 3ðl2 þ l − 2Þð7ð9ω2M2 − 190Þl8 þ 28ð9ω2M2 − 190Þl7 þ ð7140 − 1039ω2M2Þl6
þð40040 − 3999ω2M2Þl5 þ ð7446M2ω2 þ 3710Þl4 þ ð21851ω2M2 − 65520Þl3 − 2ð1037M2ω2 þ 8960Þl2
−4ð3427ω2M2 − 5600Þlþ 56ð300 − 2857ω2M2ÞÞr9M5 þ 70ðl2 þ l − 2Þ3ðl4 þ 2l3 − 10l2 − 11lþ 28Þr11ω2M5

þ10ðl2 þ l − 2Þ2ð3ð4M2ω2 þ 35Þl6 þ 9ð4M2ω2 þ 35Þl5 þ 3ð34ω2M2 − 35Þl4 þ 3ð48ω2M2 − 245Þl3
−518ω2M2l2 þ ð420 − 584ω2M2Þl − 5324M2ω2Þr10M4 þ 420ðl2 þ l − 2Þ4r12ω2M4Þ

−
15M4ωð6M2 þ 3ðl2 þ l − 2ÞMr − ðl2 þ l − 2Þr2Þð24M3 − 4M2r − 2Mr2 − r3Þ

2lðlþ 1Þr9ð6M þ ðl2 þ l − 2ÞrÞβκ : ðA12Þ

APPENDIX B: ELIMINATING ANGULAR
FUNCTIONS FROM PERTURBATION
EQUATIONS AND ORTHOGONALITY

PROPERTIES

Kojima-like decomposition highlighted in Sec. III A
gives us equations that contain both angular and radial
functions summed up over all l and m modes. As
mentioned in Sec. III A, to eliminate the angular functions
and to get radial equations in individual l, m modes, we
need to use the perturbation equations along with some
orthogonality properties of spherical harmonics. For exam-
ple, we can multiply the perturbation equation (22) by Y�

lm
and integrate over the solid angle to get rid of the angular
functions. The detailed procedure for getting rid of the
angular functions from all the 11 perturbation equations has
been highlighted in [47] for the GR case. The only point of
difference from the GR analysis for the case of the CS
slowly rotating background are the s̃lm and t̃lm terms in (26)
and (27). These terms vanish for a slowly rotating Kerr
background. In this section, we demonstrate one of the
procedures to deal with these terms.

We first mention some of the important relations,
definitions and orthogonality properties that we will be
needing. The scalar product definition is

hf; gi≡
Z

dΩf�g ¼
Z

dθdφ sin θf�g: ðB1Þ

The scalar spherical harmonics are governed by the
following equation:

Ylm
;θθ þ cot θYlm

;θ þ 1

sin2 θ
Ylm
;φφ þ lðlþ 1ÞYlm ¼ 0 ðB2Þ

and are subject to the orthogonality relation:

hYlm; Yl0m0 i ¼ δll
0
δmm0

: ðB3Þ

Some relevant recursion properties of scalar spherical
harmonics are

cos θYlm ¼ Qlþ1mYlþ1m þQlmYl−1m; ðB4Þ
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sin θYlm
;θ ¼ Qlþ1mlYlþ1m −Qlmðlþ 1mÞYl−1m: ðB5Þ

Some other important integral relations among Ylm,Wlm,
Xlm areZ

dΩ½W�l0m0
Ylm
;φ − X�l0m0

Ylm
;θ � ¼ imðlðlþ 1Þ − 2Þδmm0δll0 ;

ðB6ÞZ
dΩ cos θ

�
W�lmWlm þ X�lmXlm

sin θ2

�
¼ 0: ðB7Þ

Note that the above integral (B7) is zero for same (lm)
indices on all the functions. A more general equation
involves l coupled to l0 � 1, l0 � 3…:. Another important
integral is Z

dΩ
�
W�l0m0

Xlm − X�l0m0
Wlm

sin θ

�
¼ 0: ðB8Þ

Also define the following operator:

L�1
2 Nlm ≡ −ðlþ 1ÞQlmNl−1m þ lQlþ1mNlþ1m; ðB9Þ

where

Qlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 −m2

4l2 − 1

s
: ðB10Þ

The above operator is useful in describing the following
integral:

X
l;m

�
glm

ðlðlþ 1Þ − 2Þ
Z

dΩ
�
sin θW�l0m0

Ylm
;θ þ X�l0m0

Ylm
;φ

sin θ

��

¼ L�1
2 gl0m0 : ðB11Þ

We will also need some properties of the spin-weighted
spherical harmonics. For more details, please refer [62].
Spin weighted spherical harmonics can be obtained from
the usual (s ¼ 0) scalar spherical harmonics Ylm by using
ladder operators:

sYlm ¼

8>>><
>>>:

ffiffiffiffiffiffiffiffiffi
ðl−sÞ!
ðlþsÞ!

q
ðsYlm; 0 ≤ s ≤ lffiffiffiffiffiffiffiffiffi

ðlþsÞ!
ðl−sÞ!

q
ð−1Þsð̄−sYlm; −l ≤ s ≤ 0

0; l < jsj

; ðB12Þ

where single raising and lowering operations are

ððsYlmÞ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − sÞðlþ sþ 1Þ

p
sþ1Ylm; ðB13Þ

ð̄ðsYlmÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞðl − sþ 1Þ

p
s−1Ylm; ðB14Þ

and the ladder operators are defined as

ðη ¼ −ðsin θÞs
� ∂
∂θ þ i csc θ

∂
∂φ

�
ðsin θÞ−sη; ðB15Þ

ð̄η ¼ −ðsin θÞ−s
� ∂
∂θ − i csc θ

∂
∂φ

�
ðsin θÞsη; ðB16Þ

with η being a spin weight s field. The orthogonality of the
spin-weighted spherical harmonics is

h−2Yl0m0 ; −2Ylmi ¼ δll0δmm0 : ðB17Þ

The forms of some of the relevant spin-weighted
spherical harmonics are

−2Ylmðθ;φÞ≡Wlmðθ;φÞ − iXlmðθ;φÞ= sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þðlðlþ 1Þ − 2Þp ; ðB18Þ

−1Ylmðθ;φÞ≡ −1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp �

Ylm;θ − i
Ylm;φ

sin θ

�
: ðB19Þ

Now we highlight the procedure to deal with the s̃lm and
t̃lm terms in (26) and (27). Following [47], let us call
Eq. (26) multiplied by sin θ as δεθφ and (27) multiplied by
sin θ as δεð−Þ. Then we have

0 ¼
Z

dΩ
ðlðlþ 1Þ − 2Þ

�
W�

l0m0δεð−Þ þ
X�
l0m0

sin θ
δεθφ

�

∼ −im0fl0m0 þ l0ðl0 þ 1Þsl0m0 þ L�1
2 gl0m0 þ

X
l;m

�
t̃lm

ðlðlþ 1Þ − 2Þ
Z

dΩ cos θ

�
−W�l0m0

Xlm þ X�l0m0
Wlm

sin θ

��
: ðB20Þ

Similarly

0 ¼
Z

dΩ
ðlðlþ 1Þ − 2Þ

�
W�

l0m0δεθφ −
X�
l0m0

sin θ
δεð−Þ

�

∼ im0gl0m0 þ l0ðl0 þ 1Þtl0m0 þ L�1
2 gl0m0 þ

X
l;m

�
−s̃lm

ðlðlþ 1Þ − 2Þ
Z

dΩ cos θ

�
−W�l0m0

Xlm þ X�l0m0
Wlm

sin θ

��
: ðB21Þ

ANALYTICAL COMPUTATION OF QUASINORMAL MODES OF … PHYS. REV. D 104, 064034 (2021)

064034-15



In the above two equations we have already integrated
the terms which are also present in the GR case, but have
kept the extra integral pieces that arise in the DCS case as it
is. Note that any δl0l�1 and L�1

2 terms are going to lead to
couplings of l-mode terms with (l� 1) modes. As dis-
cussed in Sec. III B of this paper, these terms can be
neglected for the purposes of QNM frequency calculation.

In this appendix, in some steps some of these δl0l�1 and L�1
2

terms are explicitly mentioned, but they are of no conse-
quence for QNM frequency calculation. Note that we have
neglected the integral with s̃ in (B20) and the integral with t̃
in (B21) because for the relevant case of l0 ¼ l, they vanish
due to Eq. (B7). What we are left with is evaluating the
integral of the form

I ¼
X
l;m

�
Ñlm

ðlðlþ 1Þ − 2Þ
Z

dΩ cos θ

�
−W�l0m0

Xlm þ X�l0m0
Wlm

sin θ

��
: ðB22Þ

To evaluate this integral, we observe that I is related to the scalar product of spin-2 spherical harmonics a

I ¼ −i
X
l;m

Ñlm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þðlðlþ 1Þ − 2Þl0ðl0 þ 1Þðl0ðl0 þ 1Þ − 2Þp

ðlðlþ 1Þ − 2Þ h−2Yl0m0 ; cos θ−2Ylmi: ðB23Þ

Thus the problem reduces to calculating the scalar product of the spin-2 spherical harmonics in the above equation. For
this we operate Eq. (B4) by the lowering operator (ð̄) (B16) for spin weight 0 to get

− sin θYlm þ lðlþ 1Þ cos θ−1Ylm ¼ Qlþ1m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þðlþ 2Þ

p
−1Ylþ1m þQlm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þl

p
−1Yl−1m: ðB24Þ

We then apply the lowering operator for spin weight 1 to the above equation to get

cos θ−2Ylm ¼ −Qlþ1m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 3Þ

ðl − 1Þlðlþ 1Þ

s
−2Ylþ1m −Qlm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ

lðlþ 1Þðlþ 2Þ

s
−2Yl−1m −

2 sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ − 2

p −1Ylm: ðB25Þ

Taking scalar product of the above equation with −2Yl0m0 , we get

h−2Yl0m0 ; cos θ−2Ylmi ¼ −Qlþ1m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 3Þ

ðl − 1Þlðlþ 1Þ

s
δmm0δlþ1l0 −Qlm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 2Þ

lðlþ 1Þðlþ 2Þ

s
δmm0δl−1l0

−
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þ − 2
p h−2Yl0m0 ; sin θ−1Ylmi: ðB26Þ

We have now reduced the problem to evaluating h−2Yl0m0 ; sin θ−1Ylmi. This can be evaluated directly by substituting the
harmonics from Eqs. (B18) and (B19) to get

h−2Yl0m0 ; sin θ−1Ylmi ¼ −
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlðlþ 1Þ − 2Þp
lðlþ 1Þ δmm0δll0

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þl0ðl0 þ 1Þðl0ðl0 þ 1Þ − 2Þp Z
dΩ

�
sin θW�l0m0

Ylm
;θ þ X�l0m0

Ylm
;φ

sin θ

�
: ðB27Þ

The unevaluated integral above is directly related to the operator L�1
2 [see Eq. (B11)].

Thus we now have all the terms required to evaluate the extra integral term I defined in Eq. (B23). Note that all the δl0l�1

andL�1
2 terms are going to lead to couplings of the l-mode terms with (l� 1) modes. As discussed in Sec. III B of the paper,

these terms can be neglected for the purposes of QNM frequency calculations. Therefore, we only require the following
scalar product relation [which we get by using Eq. (B27) in Eq. (B26) and setting l0 ¼ l]:
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h−2Ylm; cos θ−2Ylmi ¼
2m

lðlþ 1Þ for l ≥ 2;

¼ 0 otherwise: ðB28Þ

Ignoring the mode coupling terms in the extra integral I ,
we get

I ¼ −2imÑl0m0 : ðB29Þ

Equation (B20), ripped of all the angular functions and
keeping only the terms relevant for QNM frequency
calculations, finally takes the following form after replac-
ing all the “primed” indices by “unprimed” ones:

−imflm þ lðlþ 1Þslm − 2imt̃lm ¼ 0; ðB30Þ

imglm þ lðlþ 1Þtlm þ 2ims̃lm ¼ 0: ðB31Þ

Note that the extra t̃lm and s̃lm terms will not be present
for l ≤ 1 because the spin-2 spherical harmonics vanish for
such cases.

APPENDIX C: INNER PRODUCT DEFINITION:
ANALYTIC CONTINUATION TO THE

COMPLEX PLANE

We need to define an inner product such that the operator
d2

dr2�
is self-adjoint. This would, in turn, result in any operator

having the same form as ÔP being self-adjoint. QNM wave
functions are not square integrable along the real r axis, since
they diverge close to the horizon and at spatial infinity
(r → ∞). Therefore the usual inner product candidates
defined using integrals of wave functions will not be
convergent. A way around this issue, as highlighted in
Ref. [50], is to analytically continue the QNM wave
functions to the complex plane. In order to get a finite inner
product, we observe that the outgoing boundary condition
implies that the QNM wave functions are purely outgoing
(eiωr�) at spatial infinity. Therefore thewave functions decay
exponentially as r → i∞ [for ReðωÞ > 0—which is true for
the QNM frequencies]. Thus we can get a finite inner
product of two wave functions as

I ðψ ;ϕÞ ¼
Z
C
ψϕdr�; ðC1Þ

where C is a contour (Fig. 2) that begins to the right of the
horizon (r ¼ 2M) position at positive imaginary infinity,
runs down parallel to the imaginary axis, encircles the
horizon point, and goes back to positive infinity, this time on
the left of the horizon point. For ease of calculation, we keep
the contour symmetric about the horizon point (r ¼ 2M).
Note that the contour integral of twowave functions will not
be zero because the wave functions are not analytic in the
region enclosed byC . They blow up at the horizon point and

thus require a branch cut that runs parallel to the imaginary
axis emanating from r ¼ 2M. It can be easily verified that
the operator d2

dr2�
(equivalently ÔP) is self-adjoint with respect

to the inner product (50). Thus, we can calculate the QNM
correctionsmentioned in (51) simply by evaluating integrals
along the contour (C ) in the complex-r plane.

APPENDIX D: FERMI ESTIMATE ANALYSIS

Fermi estimate is a quick way to obtain ω dependence on
the CS coupling parameter (α). It has been described in
[43]. In Fermi estimate, we replace any radial derivative by
a characteristic length scale R, i.e., ∂r → R−1, in the
relevant equations to make them algebraic instead of
differential. We then evaluate the algebraic equation at
the characteristic length scale. Solving the algebraic equa-
tions for ω provides a way to obtain ω dependence on
certain parameters of the theory.
Let us first apply Fermi estimate to the polar equa-

tion (37). Replacing the derivatives in (37) gives

½GðRÞ þ α̃2χmGPðRÞ þ ω2

− ðVP
effðR; χÞ þ α̃2χmP2ðRÞÞ�ΨZ

lm ¼ 0: ðD1Þ

From the equation above, it is clear that, when expanded
perturbatively in powers of α, ωPolar does depend on the CS
coupling parameter. This is different from what is claimed
in Ref. [43]. Taking into account that VP

eff is linear in ω, it is
easy to see that the correction in ω from the GR case will be
at order α̃2 for small α̃.
Let us now apply Fermi estimate to the axial (36) and Θ

(35) sector. This leads to the following equations:

½GðRÞþ α̃2χmGSðRÞþω2−VSmod
eff ðRÞ�Rlm¼ α̃HðRÞΨRW

lm ;

ðD2Þ

½GðRÞþ α̃2χmGAðRÞþω2−VAmod
eff ðRÞ�ΨRW

lm ¼ α̃IðRÞRlm:

ðD3Þ

Multiplying the above two equations and canceling of
the eigenfunctions, we get

½Gþ α̃2χmGS þ ω2 − VSmod
eff �½Gþ α̃2χmGA þ ω2 − VAmod

eff �
¼ α̃2IH: ðD4Þ

This is a quadratic equation in ω2, solving for small α̃,
we get

ω2¼ðVA
eff −GÞþ α̃2

�
χmðA2−GAÞþ

IH
ðVA

eff−VS
effÞ

�
: ðD5Þ
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Thus ω can be expressed as

ω ¼ ωGR þ α̃2δωþOðα̃3Þ; ðD6Þ

where

ωGR ¼ ðVA
eff − GÞ1=2 ðD7Þ

and

δω¼� 1

2½VA
eff−G�1=2

�
χmðA2−GAÞþ

IH
ðVA

eff −VS
effÞ

�
: ðD8Þ

It is important to note that the above Fermi analysis result is
different from that of Ref. [43]. In Ref. [43], the authors did
not include the ðA2 −GAÞ term. Thus, even using Fermi
estimate analysis, their analysis ignores certain terms that
contribute to the correction in ω at Oðα̃2Þ.
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