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Stellar-mass binary black holes (BBHs) may merge in the vicinity of a supermassive black hole (SMBH). It
is suggested that the gravitational wave (GW) emitted by a BBH has a high probability to be lensed by the
SMBH if the BBH’s orbit around the SMBH (i.e., the outer orbit) has a period of less than a year and is less
than the duration of observation of the BBH by a space-borne GWobservatory. For such a “BBHþ SMBH”
triple system, the de Sitter precession of the BBH’s orbital plane is also significant. In this work, we thus study
GWwaveforms emitted by the BBH and thenmodulated by the SMBH due to effects including Doppler shift,
de Sitter precession, and gravitational lensing. We show specifically that for an outer orbital period of 0.1 yr
and an SMBH mass of 107 M⊙, there is a 3–10% chance for the standard, strong lensing signatures to be
detectable by space-borne GW detectors such as LISA and/or TianGO. For more massive lenses (≳108 M⊙)
and more compact outer orbits with periods ≲0.1 yr, retrolensing of the SMBH (which is closely related to
the glory scattering) might also have a 1%-level chance of detection. Furthermore, by combining the lensing
effects and the dynamics of the outer orbit, we find that the mass of the central SMBH can be accurately
determined with a fraction error of ∼10−4. This is much better than the case of static lensing because the
degeneracy between the lens’ mass and the source’s angular position is lifted by the outer orbital motion.
Including lensing effects also allows the de Sitter precession to be detectable at a precession period 3 times
longer than the case without lensing. Finally, we demonstrate that one can check the consistency between the
SMBH’s mass determined from the orbital dynamics and the one inferred from gravitational lensing, which
serves as a test on theories behind both phenomena. The statistical error on the deviation between two masses
can be constrained to a 1% level.
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I. INTRODUCTION

Since September 14, 2015 [1], ground-based gravitational-
wave (GW) observatories including LIGO [2], Virgo [3], and
KAGRA [4] have achieved great success with tens of GW
events detected so far [5,6]. A new window for humans to
observe the Universe using GW radiation has been opened.
Looking towards the future, more excitement awaits us as
multiple space-borne GW observatories are proposed to be
launched in the near future, including LISA [7], TianQin [8],
Taiji [9], B-DECIGO [10,11], Decihertz Observatories [12],
and TianGO [13]. Their sensitivity covers the 0.001 to 0.1 Hz
band, allowing them to observe typical, stellar-mass binary
black hole (BBH) systems for years prior to the final merger.
It thus opens the possibility of using the slowly chirping
GW radiation from a stellar-mass BBH as a carrier signal to
search for external modulations induced by environmental
perturbations.
One particularly interesting scenario is if a stellar-mass

BBH is in a galactic nucleus where a supermassive black
hole (SMBH) resides. Such a hierarchical triple system

(“BBHþ SMBH”) is expected because there are theories
predicting that the environment in a galactic nucleus can
facilitate the merger of stellar-mass BBHs. One channel that
has been studied extensively in the literature is due to
gaseous effects [14–19]. If the BBH lives in a gaseous disk
of an active galactic nucleus (AGN), the gas can provide
extra frictional force on the BBH in addition to the force
induced by GW radiation and thus harden its orbit (the inner
orbit). In addition to shrinking the orbit of the BBH itself,
gas can also help the center of mass of the BBH to migrate
in the AGN disk and thus alter its orbit around the SMBH
[20,21]. Even without gas, dynamical interactions of a
variety of flavors may also help the formation of compact
BBHs [22–31], providing yet another channel for the
formation of “BBHþ SMBH” triple systems.
Similar to the formation channels, the environmental

perturbation on the BBH’s GW waveform in such a triple
system can also be divided into two main classes. One is still
due to gaseous friction, and its main effect is to make the
BBH appear to be more massive than it actually is [32–35].
This effect is most prominent when the GW decay time scale
of the BBH is a few kilo-years (comparable to the hardening*hangyu@caltech.edu
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time scale due to the gas), but it is subdominant for more
compact (i.e., “harder”) BBHs that will merge in a few years.
The other type of modulation is directly related to the

gravitational field of the SMBH and is the main focus of our
discussion here. The leading-order effect arises from the
orbital motion of the center of mass of the BBH orbiting
around the SMBH (i.e., the outer orbit), leading to a Doppler
phase shift in the GW waveform emitted by the BBH. It has
been shown that this Doppler phase shift might be detectable
for BBHs as far as 1 pc away from the SMBH [36], and when
the outer orbital period is less than a few years (set by the
duration of the observation) the frequency of the Doppler
phase shift can be measured, which further constrains
the mass density enclosed by the outer orbit [37]. Beyond
the leading-order effect, the Newtonian tidal effect (which
typically manifested as the Lidov-Kozai effect) may also play
a role for a triple system with an inner orbital separation of
∼0.1 AU [38–40]. For more compact BBHs with a separa-
tion of ∼10−3 AU, Ref. [41] showed that the (post-
Newtonian) de Sitter–like precession of the BBH’s orbital
plane [42–44] is the more critical correction to the waveform
and can be detectable by space-borne GW detectors out to a
cosmological distance of ∼1 Gpc. Combining the de Sitter–
like precession and the Doppler shift, Ref. [41] further
demonstrated that the mass of the central SMBH can be
determined, which complements the existing direct methods
of measuring the mass of an SMBH [45].
Recently, Ref. [46] further considered the strong gravi-

tational lensing of the BBH’s GW caused by the SMBH
and showed that there is a high geometrical probability
(∼10%) for lensing to happen if the BBH is in an outer orbit
with a period of less than a year (shorter than the duration
of the observation). Reference [46] referred to this as
“repeated lensing.” Indeed, if the outer period is long (much
longer than the observation duration), then in order for the
BBH to be lensed it needs to have both the right azimuthal
and polar angles such that the angular separation between
the source and the lens is sufficiently small to be compa-
rable with the Einstein ring. However, the short orbital
period in the repeated-lensing regime allows the inner BBH
to scan through the azimuthal angle and there will thus
always be an instant during the observation when the BBH
is behind the SMBH. Therefore, the BBH only needs to
have the right polar angle. Furthermore, because the outer
orbital radius is smaller, it is also more likely for the BBH
to be within the Einstein ring of the SMBH.
Reference [46] focused on the standard strong lensing,

which treats the SMBH as a Newtonian point particle and
lensing happens when the source is behind the lens (i.e., the
source and the observer are on opposite sides of the lens).
Meanwhile, the strong gravity field of the SMBH can
further lead to relativistic lensing signatures [47–51]. One
such example is retrolensing (which is also closely related
to the glory scattering of an SMBH) [52–56]. Retrolensing
happens when the BBH is in front of the SMBH: the GW

emitted by the BBH towards the SMBH gets bent by the
strong gravity potential of the SMBH by an angle of
approximately π and eventually reaches the observer. For
the same reason that repeated strong lensing is likely in
BBHþ SMBH triples, repeated retrolensing also has a
relatively high probability to happen (as it corresponds to
the same geometrical configuration as the standard lensing
but just with the outer orbital phase shifted by π).
Therefore, retrolensing should also be incorporated in
the waveform modeling.
Furthermore, the parameter space where repeated lensing

happens [46] largely overlaps with the parameter space
where the de Sitter (dS) precession is detectable [41]. It is
thus critical to incorporate both effects in the waveform
modeling. More importantly, we note that including the
lensing effects does not introduce any new parameters
compared to the one needed for modeling the orbital
dynamics. As shown in Ref. [57], the lensing effect can
be parametrized in terms of the mass of the lens (i.e., the
SMBH) and the sky projection of the source for point-
source lenses. All of them can also be independently
inferred from the combination of Doppler shift and de
Sitter precession, as illustrated in Ref. [41]. Therefore, the
two effects can be combined to enhance the overall
parameter estimation (PE) accuracy and checked against
each other to test the consistency of theories behind each
effect.
Therefore, in this work our goal is to construct GW

waveforms of a BBH in the vicinity of an SMBH, including
effects of the SMBH on both the orbital dynamics (Doppler
shift and de Sitter precession) and lensing (standard lensing
and retrolensing). We will further use the waveform to
quantify the detectability of the lensing signatures. More
over, we also assess the accuracy of PE of the triple system,
in particular the mass of the central SMBH.

Throughout this study, we will refer to the stellar-mass
BBH (consisting of M1;M2 ∼ a few × 10 M⊙) as the inner
binary and quantities associated with it will often be denoted
with the subscript “i.” The inner orbit decays via gravita-
tional radiation; the GW it emits serves as the signal carrier
in our study. The orbit of the inner binary’s center of mass
around the SMBH (M3 ∼ 105–1010 M⊙) is referred to as the
outer orbit and is denoted with the subscript “o.” The GW
radiation of the outer binary can be safely ignored for
systems of our interest. For simplicity, we ignore the spin of
the SMBH and treat it as a Schwarzschild BH. We further
restrict our discussion here to the simple case where both the
inner and outer orbits are circular. The general case that
allows for orbital eccentricities is deferred to future studies.
Moreover, all values in our study are measured in the
detector frame. In other words, they are redshifted by the
cosmological expansion (zcos ∼ 0.2–0.3 for sources at a
luminosity distance on the order of 1 Gpc) and the gravity
of the SMBH (zgrav ∼ 10−3–0.01 for typical outer orbits we
consider). We use geometrical units G ¼ c ¼ 1.
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The paper is organized as follows. In Sec. II we describe
our construction of the GW waveform including effects due
to both standard strong lensing (Sec. II A) and retrolensing
(Sec. II B). We then examine the detectability of lensing
effects by space-based GW observatories like LISA [7] and
TianGO [13] in Sec. III by considering the mismatches
between waveforms with and without lensing. The PE
analysis including both lensing and orbital dynamics
(Doppler þ de Sitter) is presented in Sec. IV. Specifically,
we consider the enhancement in the PE accuracy of the
SMBH’s mass in Sec. IVA, followed in Sec. IVB by a study
of how well we can test the consistency between the
SMBH’s mass determined from the lensing signal and that
from the orbital dynamics. Last, we conclude in Sec. V
together with a discussion on effects to be further incorpo-
rated by future studies.

II. GW WAVEFORMS INCLUDING
GRAVITATIONAL LENSING

In this section we describe our modeling of the GW
waveform. We will start by briefly reviewing the waveform
construction without lensing effects, which closely follows
Ref. [41]. This is followed by Sec. II A in which we
consider the standard lensing. In Sec. II B we further
incorporate the retrolensing into the waveform. We con-
clude our waveform modeling in Sec. II C by examining a
few representative waveforms including lensing effects and
sketching out the parameter space for the lensing signatures
to be potentially significant.
Following Ref. [57], we write the lensed waveform

[denoted by the superscript “(l)”] as

h̃ðlÞðfÞ ¼ FðfÞh̃ðfÞ; ð1Þ

where h̃ðfÞ is the frequency-domain waveform without
lensing and the quantity FðfÞ is an amplification factor due
to the gravitational lensing.
To model h̃ðfÞ, we follow Ref. [41] and write (see also

Refs. [58,59])

h̃ðfÞ ¼ ΛðtÞh̃cðfÞ
¼ ½A2þðtÞF2þðtÞ þ A2

×ðtÞF2
×ðtÞ�1=2

× exp f−i½ΦpðtÞ þ 2ΦTðtÞ þΦDðtÞ�gh̃cðfÞ; ð2Þ

where h̃cðfÞ is the antenna-independent carrier waveform,
which we further model using the quadrupole formula as

h̃cðfÞ ¼
�
5

96

�
1=2 M5=6

π2=3D
f−7=6

× exp

�
i

�
2πftc − ϕc −

π

4
þ 3

4
ð8πMfÞ−5=3

��
;

ð3Þ

where M, D, tc, and ϕc are the chirp mass (in the detector
frame), luminosity distance, and time and phase of coa-
lescence, respectively.
The antenna response is incorporated under the leading-

order stationary phase approximation (SPA), which first
evaluates each quantity as a function of time t, and then
expresses the time as a function of frequency, t ¼ tðfÞ,
following

tðfÞ ¼ tc − 5ð8πfÞ−8=3M−5=3: ð4Þ

Furthermore, in Eq. (2) we have defined Aþ ¼ 1þ ðL̂i · N̂Þ2
and A× ¼ −2L̂i · N̂, where L̂i is the orientation of the inner
orbital angular momentum and N̂ is the line of sight. The
quantities Fþ and F× are the “detector beam pattern,” Φp ¼
arctan ½−A×F×=AþFþ� is the polarization phase, and ΦT is
the Thomas precession phase. Their expressions can be
found in, e.g., Refs. [41,58,59]. Note that they are time
dependent because of motions of both the detector in the
solar frame and the inner binary in the SMBH frame.
Specifically, we assume that the detector follows an orbit
as described in Ref. [60] and its explicit orientation can be
found in, e.g., Ref. [41] for a 90° detector like TianGO [13],
and Ref. [59] for a 60° detector like LISA [7]. For the inner
binary’s orientation, we include the de Sitter–like precession
[42,43], which can be expressed as [41]

dL̂i

dt
¼ ΩdSL̂o × L̂i ¼

3

2

M3

ao
ΩoL̂o × L̂i ð5Þ

for a circular outer orbit. Here Ωo ¼ 2π=Po ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M3=a3o

p
is

the orbital period, where M3 is the mass of the SMBH and
ao is the semimajor axis of the outer orbit. We denote the
outer orbital angular momentum as Lo and the total angular
momentum of the triple as J ¼ Lo þ Li ≃ Lo. We will
further define λL ≡ arccos ðL̂i · L̂oÞ as the opening angle
between the inner and outer orbital angular momenta.
Last, the center-of-mass motion of the inner binary

around the SMBH and the detector around the Sun are
included via a Doppler phase, ΦD, as [59]

ΦD ¼ 2πf

�
ro;k cos ðΩotþ ϕð0ÞÞ

þ r⊕;k cos
�
2πt
yr

− ϕ̄S

��
; ð6Þ

where ro;k ¼ ao sin ιJ and r⊕;k ¼ AU sin θ̄S. Here ιJ ¼
arccos ðL̂o · N̂Þ is the inclination of the outer orbit, ϕð0Þ is
an initial phase, and θ̄S and ϕ̄S are the polar and azimuthal
angles of N̂ in the solar frame (following the notations used in
Ref. [41], we use a bar to denote angular coordinates in the
solar frame). Consistent with the treatment in Ref. [59], we
include only the phase term of the Doppler shiftΦD but drop
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the amplitude boosts like ∼ð1 − _ro;kÞ for simplicity. Indeed,
when we consider each term’s contribution to parameter
estimation by computing ð∂h̃=∂ro;kÞ, the magnitude of the
phase term’s contribution is ∝ 2πf, while the amplitude
term’s contribution is ∝ Ωo ∼ 10−5 × 2πf. For similar rea-
sons, we ignore the time shifts (due to the propagation of the
wave from the inner binary to the SMBH ∼ ro;k ≲ 0.5 day
and from the Sun to the detector∼r⊕;k ∼ 500 s, as well as the
extra time delay induced by the SMBH ∼M3 ≲ 500 s) in
other non-Doppler terms in ΛðtÞ because their variation rate
is much smaller compared to the GW frequency f.
Before we proceed to discuss the lensing amplification

factor FðfÞ in Secs. II A (for standard lensing) and II B (for
retrolensing), we would like to emphasize that the various
effects entering our waveform modeling are typically
computed using the lowest-order approximations. This is
because our goal is to examine the detectability of various
lensing effects and to estimate their effects on the PE
accuracy. The construction of sufficiently precise templates
that can be used for, e.g., signal detection via matched
filtering are deferred to future studies. Nonetheless, in the
Appendix A we derive a general expression that improves
the accuracy of the waveform under the SPA when the
antenna response has a fast temporal variation. The wave-
form in Appendix A, while not used in this work for
simplicity, can be readily adopted by future studies when
more accurate waveforms are desired.

A. Standard lensing in the weak-deflection limit

We start the discussion of lensing effects by considering
the standard lensing scenario, illustrated in the top part in
Fig. 1. This corresponds to the well-known strong lensing by
the SMBH. In this scenario, the GW emitted by the source
(S, which is the inner binary consisting of M1 and M2) is
bent by the lens (L, which is the SMBHM3) and then arrives
at the observer O. We use β and θ to indicate the angular
location of the source and the image, respectively. The
deflection angle is indicated by α. Geometrically, we have

β ¼ θ −
DLS

DOS
α: ð7Þ

Note that in this case α ≪ π, and therefore the weak-
deflection limit applies (which is to be contrasted with
the retrolensing scenario in Sec. II B).
For future convenience, we construct a reference frame

ðxo; yo; zoÞ centered on the SMBH M3 and x̂o is aligned
with the line of sight N̂ (i.e., along the line OL). The xo-yo
plane is defined by the plane formed by the line of sight N̂
and the total angular momentum of the system Ĵ ≃ L̂o (as
the spin of the SMBH is ignored). The inclination of the
outer orbit is defined as ιJ, with cos ιJ ¼ N̂ · L̂o.

In this frame, we can write the source location as

8><
>:

xoðtÞ ¼ ao sin ιJ cosϕoðtÞ;
yoðtÞ ¼ ao cos ιJ cosϕoðtÞ;
zoðtÞ ¼ −ao sinϕoðtÞ;

ð8Þ

where ϕoðtÞ ¼ Ωotþ ϕð0Þ
o is the orbital phase of the outer

orbit with Ωo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M3=a3o

p
. Using these coordinates, we

further have

DLSðtÞ ¼ xoðtÞ; ð9Þ

βðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2oðtÞ þ z2oðtÞ

p
DOL

: ð10Þ

Approximating the lens as a point mass (as we typically
have ao ∼ 100–1000M3 ≫ M3 for systems of interest), we
then have a time-dependent Fðt; fÞ as [57] (see also
Refs. [46,61]; note that this is applied only when xo > 0
or the source is behind the lens)

Fðt; fÞ ¼ exp

�
πw
4

þ i
w
2

�
ln

�
w
2

�
− 2ϕmðηÞ

��

× Γ
�
1 − i

w
2

�
1F1

�
i
w
2
; 1; i

wη2

2

�
; ð11Þ

where wðfÞ ¼ 8πM3f, ϕm½ηðtÞ� ¼ ½ηmðtÞ − ηðtÞ�2=2−
ln ηðtÞ, and ηmðtÞ ¼ fηðtÞ þ ½η2ðtÞ þ 4�1=2g=2. The quantity

FIG. 1. Cartoon illustrating the lensing geometry. The top
part corresponds to the standard lensing scenario (i.e., the strong
lensing) where the source is behind the lens and the deflection
angle α ≪ π (and here we specifically draw the instant when
zo ¼ ϕo ¼ 0). The bottom illustrates the geometry of retrolensing
(also known as the glory). Note that in the repeated lensing
scenario, we have DOL ≃DOS ≃D ∼ 1 Gpc and DLS ≲
100 AU ≪ DOL;DOS.
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ηðtÞ is defined as ηðtÞ ¼ βðtÞ=θEinðtÞ, where θEinðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M3DLSðtÞ=ðDOSDOLÞ

p
is the angular Einstein radius.

Under the SPA, the time t can be further treated as a function
of f via Eq. (4). Note that both βðtÞ andDLSðtÞ vary with the
outer orbital phase. When the outer orbital period is shorter
than the duration of the observation Pobs ∼ 5 yr, we can see
multiple lensing-induced peaks (as we will see shortly in,
e.g., Fig. 3), and therefore the system is repeatedly
lensed [46].
When w ≫ 1 or f ≫ 1 mHz ðM3=107 M⊙Þ−1 (which is

a condition typically well satisfied for that systems we are
interested in), the full expression (11) reduces to the
geometrical limit as a sum over images j [57,62],

Fðt; fÞ ¼
X
j

jμjj1=2 expð2πiftl;j − iπnjÞ; ð12Þ

where μj is the magnification of the jth image, tl;j is the
time delay of each image (we use the subscript “l” to
indicate that it is a quantity associated with lensing effects),
and nj ¼ 0; 1=2; or 1 when the image’s traveling time is a
minimum, saddle point, or maximum. For the standard-
lensing configuration and treating M3 as a point mass, two
images form and

Fðt; fÞ ¼ jμ1ðtÞj1=2 − ijμ2ðtÞj1=2e2πifΔtlðtÞ; ð13Þ

where

μ1;2ðtÞ ¼
1

2
� η2ðtÞ þ 2

2ηðtÞ½η2ðtÞ þ 4�1=2 ; ð14Þ

ΔtlðtÞ ¼ 4M3

�
ηðtÞ½η2ðtÞ þ 4�1=2

2

þ ln

�½η2ðtÞ þ 4�1=2 þ ηðtÞ
½η2ðtÞ þ 4�1=2 − ηðtÞ

��
: ð15Þ

B. Retrolensing

When the BBH is in front of the SMBH, its GW can still
experience a retrolensing with the wave bent by the SMBH
by an angle of ≃π. This is also known as the “glory” and is
caused by the short-range attractive force of the SMBH.
The geometry is illustrated in the bottom of Fig. 1.
We define Δϕ ¼ ϕO − ϕS þ 2π such that Δϕ ∈ ½0; 2πÞ,

where ϕOðSÞ is the azimuthal angle of the observer (source)
in the projected plot shown in the bottom of Fig. 1. As we
prove in Appendix B, we have the following geometrical
relations when the observer, source, and lens are nearly
aligned:

π − Δϕ ≃
DOL

DLS
θ − α; ð16Þ

tan β ¼ tan θ −
DLS

DOS
tan α: ð17Þ

For a Schwarzschild lens, the closest impact a photon
can make is bps ¼ 3

ffiffiffi
3

p
M3 for it to not be absorbed by the

lens (see, e.g., Ref. [52]). Light rays having an impact
parameter b slightly greater than bps may eventually reach
the observer after making one or more turns around the
SMBH. Infinitely many images thus form at [56]

θm ¼ θ0m ∓ ζmΔα; ð18Þ

with

α ¼ �Δα�mπ; ð19Þ

θ0m ¼ θps½1þ eðc2−mπÞ=c1 �; ð20Þ

ζm ¼ θps
c1

eðc2−mπÞ=c1 ; ð21Þ

where θps ¼ bps=DOL,m ∈ Nþ, and c1 and c2 are constants
determined by the metric. For the Schwarzschild metric,
c1 ¼ 1 and c2 ¼ ln ½216ð7 − 4

ffiffiffi
3

p Þ� − π ≃ −0.40, leading
to θps ¼ 5.35M=DOL and ζm ¼ 0.15M=DOL exp
½−ðm − 1Þπ� [56]. For high alignment, the amplification
of each image is given by [55,56]

μmπðtÞ ¼
�
DOS

DLS

�
2 θ0mζm
sinΔϕðtÞ

≃
0.80

sinΔϕðtÞ
�
M3

DLS

�
2

e−ðm−1Þπ

≃
0.80
βðtÞ

�
M2

3

DLSDOL

�
e−ðm−1Þπ; ð22Þ

where in the second line we have plugged in the values for a
Schwarzschild BH and used DOS ≃DOL in our case; in the
third line we have expressed sinΔϕ in terms of β using the
geometrical relations (16) and (17). Although there are
infinitely many images, the amplification decreases expo-
nentially for large m. Thus, for the rest of the work we will
focus only on the pair of m ¼ 1 images whose magnifi-
cations are denoted by μπ.
While we derived retrolensing magnification in the geo-

metric approximation, we can find the same result in the
wave scattering picture. Note that per unit time, the energy
received by a detector with area Adet from a source with an
isotropic luminosity dE=dt is Adet=ð4πD2

OSÞðdE=dtÞ. At the
same time, the source’s emission may first reach the SMBH
(lens) and then scatter towards the observer. The detector
receives energy at a rate 1=ð4πr2SÞðdσ=dΩÞðAdet=D2

OLÞ
ðdE=dtÞ, where rS is the distance from the source to the
lens with rS ≃DLS when the relative alignment is high, and
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dσ=dΩ is the cross section of the SMBH and it is further a
function of γðtÞ, the angle of the outgoing rays with respect
to the incoming ones. Geometrically, sin γ ≃ ðDOS=DLSÞβ.
The magnification is thus

μðtÞ ¼
�

DOS

DOLDLS

�
2
�
dσ
dΩ

½γðtÞ�
�
: ð23Þ

The classical cross section of a Schwarzschild SMBH
is [63] �

dσ
dΩ

½γðtÞ�
�

geo
¼ b½γðtÞ�½db=dγðtÞ�

sin γðtÞ ; ð24Þ

where

bðγÞ=M3 ≃ 3
ffiffiffi
3

p
þ 3.48 exp ð−γÞ; when γ ≃ π: ð25Þ

We immediately see that magnification calculated using
the classical cross section reduces to the one calculated in
Eq. (22) in the geometrical limit.
However, the classical/geometrical cross section assumes

the scattering of a flow of particles and does not include
effects of wave interference nor the spin of the wave.
Reference [63] incorporated the wave effects (interference
and the polarization) in a semiclassical approach and
found that near glory, the cross section for each ray can
be written as

�
dσ
dΩ

½γðtÞ�
�

wave
¼ 2π2

λ
b2g

�
db
dγ

�
J22s

�
2π

λ
bg sin γðtÞ

�
¼ 84.65M2

3ðfM3ÞJ22s½33.62fM3 sin γðtÞ�;
ð26Þ

where λ ¼ 1=f ¼ 2π=ω is the GW wavelength, s is the
spin of the scattered wave (s ¼ 2 for GW), bg is the
impact parameter at the glory point (bg ¼ 3

ffiffiffi
3

p
M for a

Schwarzschild BH), and J2s is the Bessel function of
order 2s. In the second line, we have plugged in numerical
values for a Schwarzschild BH. Note further that for
sufficiently small x and s ¼ 2, the Bessel function can be
expanded as J4ðxÞ ≃ x4=384. This means that the glory
will be dark for a polarized wave, while it has an infinite
magnification in the geometrical limit. On the other hand,
the location of the first peak of J4ðxÞ is at x ≃ 5.32, which
corresponds to

sin γ ≃
DOS

DLS
β ≃ 9.94 × 10−3

�
2πfM3

100

�
−1
: ð27Þ

Therefore, for GWs at higher frequencies and/or for more
massive lenses, the glory is dark for a smaller range of
alignments. In other words, as the value of ð2πfM3Þ

increases (i.e., shorter GW wavelength), the geometrical
limit [Eq. (24)] becomes a better approximation to the
wave result given in Eq. (26). See also Fig. 2 which we
will discuss shortly.
Once we have the magnification of each retrolensed

image μπ, we compute the magnification factor of the GW
waveform Fðt; fÞ as [cf. Eq. (12)]

Fðt; fÞ ¼ 1þ 2jμπðtÞj1=2 exp ½2πiftπðtÞ�; ð28Þ

where we simply approximate the time delay as tπðtÞ ≃
2DLSðtÞ þ πbg [64]. We do not further refine the solution
because it does not affect the detectability of the glory.
Because during the derivation process we have made the
assumption of high alignment in various places, which
would require Δα ≃ jγ − πj ≃ ðDOS=DLSÞβ ≪ 1 (see also
Sec. II.3 in Ref. [56]), we adopt here an ad hoc cut
and only apply the retrolensing amplification when
ðDOS=DLSÞβ < π=12. A more rigorous treatment of the
magnification that is valid at arbitrary angles is deferred
to future studies. Higher-order images are also ignored
because their magnification drops exponentially with
respect to the winding number of the SMBH.

FIG. 2. Top: magnification jμj as a function of the inclination
angle ιJ of the outer orbit. Bottom: upper and lower envelopes of
the amplification factor. Here we assume M3 ¼ 108 M⊙ and
ao ¼ 100 AU. The outer orbital phase is either ϕo ¼ 0 (for
standard lensing) or ϕo ¼ π (for retrolensing). For such
M3 ¼ 108 M⊙, 2πfM3 ¼ 100 corresponds to a GW frequency
of f ≃ 0.03 Hz.
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C. Sample waveforms

In the top panel of Fig. 2 we compare the magnifications of
various images. Here μ1;2 are the magnifications correspond-
ing to the primary and secondary images formed by the
standard strong lensing in the weak-deflection limit
[Eq. (14)]. The cyan curve, denoted by μπ, is the magnifi-
cation of the retrolensing in the geometrical limit [Eq. (22); it
is also equivalent to the combination of Eqs. (23) and (24)].
The glory magnification including wave effects [Eq. (26)] are
shown by the dashed-brown and dotted-purple curves for
two different values of 2πfM3 ¼ 10 and 100, respectively.
To generate the plot, we have assumed a lens with mass
M3 ¼ 108 M⊙ and inclination ιJ ¼ 87°. We further set ϕo ¼
0 for the standard lensing in the weak-deflection limit and
ϕo ¼ π for the retrolensing. Whereas the geometrical glory
has an infinite magnification as ιJ → 90°, the wave calcu-
lations lead to a vanishing glory at perfect alignment. On the
other hand, at larger values of 2πfM3 (or, effectively, shorter
wavelengths) thewave result follows the classical/geometrical
value more closely and the central dark spot has a smaller
angular size [Eq. (27)]. As a result, such systems will be more
favorable for the detection of retrolensing signatures.
We also present the upper and lower envelopes of the

amplification factor jFj in the bottom panel of Fig. 2.
Because we have 2πfΔtl ∼ w ¼ 8πfM3 ≫ 1, the phase
between different images changes rapidly, causing jFj to
oscillate between the envelopes as the inner binary’s
frequency f evolves.
Putting different ingredients together, we show a sample

waveform including various effects in Fig. 3. Here the
dashed-red curve is the waveform for an isolated binary.
When the SMBH is present, it induces a de Sitter–like
precession of the inner binary’s orbital plane [41] and
modifies its antenna response, as shown by the solid-olive
curve. Each time that the inner binary is behind the SMBH
(ϕo ≃ 0), it further experiences the standard strong lensing
by the SMBH [Eq. (11)], leading to the cyan peaks in the
plot. The separation between two adjacent cyan peaks
corresponds to the period of the outer orbit Po and the
duration of each lensing event is approximately given by
0.5PlPo [46], where

Pl ≃
2

π
arcsin

�
DOLθEinðϕo ¼ 0Þ

ao

�

≃ 0.13

�
ao=M3

100

�
−1=2

ð29Þ

is the geometrical probability of the inner binary to be
significantly lensed by the SMBH (i.e., the geometrical
probability of η ¼ β=θEin ≤ 1). When the inner binary is in
front of the SMBH (ϕo ≃ π), it is then retrolensed by the
SMBH, leading to the purple peaks in Fig. 3. We have
used Eq. (26) for the retrolensing calculation to incorporate
wave effects.

To generate Fig. 3, we assume M3 ¼ 108 M⊙ and
ao ¼ 100 AU, leading to an outer orbit period of Po ¼
0.10 yr and a de Sitter precession period of PdS ¼ 6.8 yr.
We randomly choose ðθ̄S; ϕ̄SÞ ¼ ð33°; 147°Þ for the line of
sight in the solar frame. The orientation of the outer orbit L̂o
in the solar frame (following the same notation as in
Ref. [41]) is then set to ðθ̄J; ϕ̄JÞ ¼ ð120°; 147.5°Þ so that
the outer orbit has an inclination ιJ ¼ 87°. We further set the
phase of the outer orbit to be ϕo ¼ −π=2 at the merger of the
inner binary as a conservative demonstration of the lensing
effect, which essentially zeros the lensing signatures when the
inner binary reaches the more sensitive ground-based GW
detectors. The inner binary (signal carrier) has M1 ¼ M2 ¼
50 M⊙ and the initial frequency is set such that the binary
merges in 5 yr. The opening angle between L̂i and L̂o
is λL ¼ π=4.
As a comparison, we also consider the case where a less

massive SMBH acts as the lens in Fig. 4. This time we set
M3 ¼ 107 M⊙ and ao ¼ 50 AU, leading to a similar outer
orbital period of Po ¼ 0.11 yr. The rest of the parameters are
the same as in Fig. 3. The standard lensing (cyan) still has
easily visible features in the waveform, yet the retrolensing
is barely detectable. Indeed, for high alignment and at a
fixed value of Po we have μ1;2 ∝ M2=3

3 , while μπ ∝ M5=3
3

[Eqs. (14) and (22)], and therefore the detection of retro-
lensing favors more massive SMBHs.

FIG. 3. Sample waveforms including the lensing effects. Also
shown by the grey curves are the proposed instrumental sensi-
tivities of LISA [65] and TianGO [13]. Here we assume
M3 ¼ 108 M⊙, ao ¼ 100 AU ≃ 101M3, and ιJ ¼ 87°. The outer
orbit has a period of Po ¼ 0.10 yr and the inner orbit precesses
with a period PdS ¼ 6.8 yr. Each time ϕo½tðfÞ� ≃ 0 (source
behind the lens), the standard lensing happens and is charac-
terized by a sharp cyan peak in the waveform. When ϕo½tðfÞ� ≃ π
(source in front of the lens), we then have retrolensing (glory),
which is calculated including wave interference and polarization
effects [Eq. (26)]. Note that the starting frequency of each
waveform is chosen so that the inner binary will merge in
5 yr, which is also the fiducial duration of observation assumed in
this study.
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D. Parameter space for significant lensing

We can systematically examine the parameter space over
which lensing is likely to be significant, as demonstrated
in Figs. 5 and 6. In Fig. 5, we consider the threshold
ιJ required to make the magnification of the secondary
image in the standard lensing scenario be jμ2j ≥ 0.1
[Eq. (14)]. The upper envelope of the amplification factor
jFj ≃ 1þ jμ2j1=2 ≃ 1.3. Note that this corresponds to
η ≤ 1.27, and thus the angle 90° − ιJ indicated by the
color bar over 90° is broadly consistent with the (repeated)
lensing probability Pl defined in Eq. (29). Also shown by
the dashed-grey (or solid-brown) curve is the line corre-
sponding to the outer orbital period being Po ¼ 0.1 yr

(or the period of the de Sitter–like precession of the inner
orbital plane being PdS ¼ 10 yr). We see that along the line
of Po ¼ 0.1 yr, we might expect to see significant strong
lensing over a range of ∼10° for the outer inclination angle,
meaning that the geometrical probability for the significant
strong lensing to happen (repeatedly) could be ∼10%.

To put this parameter space in an astrophysical context,
we also show by the solid-black line locations where the GW
decay time scale of the outer orbit is ao= _ao;gw ¼ 1 Gyr,
where _ao;gw is the decay rate of the outer orbit due to GW
radiation and we have usedM1 þM2 ¼ 100 M⊙. Along the
line of Po ¼ 0.1 yr, the GW decay time scale of the outer
orbit is typically between 10 Myr and 1 Gyr. This means that
after the formation of the inner binary, it needs to be able
to merge within 10 Myr in order for us to catch such a
triple system. We will discuss this point more in Sec. V.
Furthermore, the locations of migration traps in AGN disks
[20] are shown by the dotted-olive curves as a potential
mechanism to form the inner binaries near the SMBH (see
also the discussion in Ref. [46]).
Similarly, in Fig. 6 we show that the threshold inclination

for the magnification of the retrolensing (in the geometrical/
classical limit) is jμπj ≥ 0.1 [Eq. (22)]. For a massive lens
with M3 ≳ 108, there is a 1%-level chance for the retro-
lensing to be significant (in the geometrical limit). While
rare, such effects are produced by the strong gravity field
near the light ring of the SMBH and thus serve as valuable
probes of gravity in a different regime than that probed by
the standard (strong) lensing (see, e.g., Ref. [66]).
As a brief summary, we note that a waveform including

the Doppler shift, the de Sitter–like precession, and the
gravitational lensing can be fully constructed with 13
parameters: ðM;D;tc;ϕc;θ̄S;ϕ̄S;θ̄J;ϕJ;M3;ao;λL;ϕð0Þ;α0Þ.
This is the same set of parameters as used in Ref. [41]
because lensing does not introduce new unknown
parameters (see the discussion below). Specifically,

FIG. 5. Threshold value of ð90° − ιJÞ such that the secondary
image in the standard-lensing case has a magnification of jμ2j ≥
0.1 [which corresponds to η ≤ 1.27; Eq. (14)]. Also shown by the
grey-dashed and brown-solid curves are lines corresponding to an
outer orbital period of Po ¼ 0.1 yr and a dS precession period
of PdS ¼ 10 yr.

FIG. 6. Threshold value of ð90° − ιJÞ such that the magnifica-
tion of the first retrolensing image has jμπj ≥ 0.1. Note that in this
case the color bar has a logarithmic scale.

FIG. 4. Similar to Fig. 3 but for M3 ¼ 107 M⊙,
ao ¼ 50 AU ≃ 507M3, corresponding to an outer orbital period
of Po ¼ 0.11 yr and a dS precession period of PdS ¼ 38 yr. In
this scenario only the standard lensing has a significant effect on
the waveform.
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ðM; D; tc;ϕcÞ are used to calculate the carrier signal
[Eq. (3)] using the quadrupole formula. Since we are
mostly interested in modeling the long-term modulations
of the carrier happening in the early inspiral stage of the
inner binary, we drop the corrections at higher post-
Newtonian orders which are critical only near the final
merger. The line-of-sight direction N̂ is specified by the
solar-frame coordinates ðθ̄S; ϕ̄SÞ, and the orientation of the
outer orbital angular momentum L̂o is given by ðθ̄J;ϕJÞ. To
determine the location of the inner binary in the outer orbit,
we use ðM3; ao;ϕð0ÞÞ, where ϕð0Þ is a reference phase at
t ¼ 0 [67]. The orientation of the inner orbit can be further
determined with an opening angle λL ¼ arccos ðL̂i · L̂oÞ
and a reference precession angle α0 at t ¼ 0.
Before we proceed to the following sections, we note that

it is particularly interesting to combine gravitational lensing
with the de Sitter–like precession of the inner orbital plane
induced by the SMBH. Not only do the two effects share a
similar parameter space, as shown in Fig. 5 (see also
Refs. [41,46]), but more importantly, combining the pre-
cession with the Doppler shift also determines all of the
parameters entering the lensing calculation. Indeed, by
measuring the frequency of the Doppler shift Ωo ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M3=a3o

p
and the frequency of the de Sitter precession

ΩdS ¼ ð3=2ÞðM3=aoÞΩo [42,43,68], we can determine the
mass of the lens M3 and the lens-source distance ao [41].
The outer orbital phase ϕoðtÞ can be measured from the
Doppler phase shift. Last, as the inner orbital plane
precesses around the outer orbit, we can further infer the
orientation of the outer orbit and hence ιJ from the time
evolution of the inner orbit’s orientation. Consequently,
lensing is a new effect to be incorporated into the study
presented in Ref. [41] without introducing new unknown
parameters. It can thus be used to both enhance the PE
uncertainty of the outer orbital parameters and test our
understanding of strong-field gravity.

III. DETECTABILITY OF
LENSING SIGNATURES

In this section we examine the detectability of the lensing
signatures by considering mismatches (to be defined
below) of waveforms with and without the lensing effects.
For this purpose, we first define the fitting factor (FF)

between two waveforms as [70,71]

FFðh1; h2Þ ¼
hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i

p ; ð30Þ

where

hh1jh2i≡ 2

Z
h̃�1ðfÞh̃2ðfÞ þ h̃1ðfÞh̃�2ðfÞ

SnðfÞ
df: ð31Þ

We can then compute the mismatch ϵ,

ϵ ¼ 1 − FF: ð32Þ

There is a threshold mismatch ϵth given by

ϵth ¼
1

hh1jh1i þ hh2jh2i
≃

1

2ρ2
; ð33Þ

where the second equality applies when h1 ≃ h2 and ρ is the
signal-to-noise ratio (SNR) of the GWevent. It is necessary
to have ϵ > ϵth ≃ 1=2ρ2 in order for the two waveforms to
be distinguishable [70,71]. Note that the condition ϵ > ϵth
is also equivalent to hh1 − h2jh1 − h2i > 1.
In Fig. 7 we compute the mismatch ϵ between different

waveforms. The grey curves correspond to the mismatch
between a waveform without any lensing signature and one
including only the standard (strong) lensing [i.e., the source
is only lensed when it is behind the lens or the SMBH and
the deflection angle α ≪ π; Eq. (11)]. The olive curves
compare the waveforms with and without retrolensing;
wave effects are incorporated by computing the scattering
cross section using Eq. (26). They exhibit oscillatory
features because the cross section of retrolensing is
oscillatory (Fig. 2), yet the varying ϕo effectively allows
different values of the scattering angle to be probed, which
smooths out the oscillation. Last, using the purple curves
we compare the mismatch between waveforms calculated
in the geometrical limit and those including wave effects.
More specifically, the geometrical waveforms are calcu-
lated using Eq. (13) for the standard-lensing part and
Eq. (24) for the retrolensing part. The waveforms including
wave effects are instead calculated using Eqs. (11) and (26).
We note further that the purple curves are in fact dominated
by the contribution from retrolensing [Eq. (24) vs Eq. (26);
see also Fig. 2]. The geometrical limit of the standard
strong lensing typically provides a very good approxima-
tion to the full expression including wave effects as
2πfM3 ≫ 1 in our case.

To generate the plot, we have assumed detection of the
source with TianGO [13]. The parameters we consider here
are similar to the ones used in Fig. 3 except that we vary the
orientation of L̂o by changing θ̄J, which further varies the
inclination ιJ between the line of sight and the outer orbit.
Also shown in the plot as a comparison is the red-dotted
line corresponding to 1=2ρ2 (assuming a waveform without
lensing effects, though the SNR ρ is generally similar with
and without gravitational lensing).
In the three panels of Fig. 7 we consider three different

combinations of ðM3; aoÞ. From top to bottom, we
have ðM3=M⊙; ao=AUÞ ¼ ð107; 50Þ; ð108; 100Þ; ð108; 70Þ,
corresponding to ðPo; PdSÞ ¼ ð0.11; 38Þ; ð0.10; 6.8Þ;
ð0.06; 2.8Þ yr. For the standard lensing, it might be detect-
able for a lens with M3 ¼ 107 M⊙ if jιJ − 90°j ≲ 7.5°,
which is nicely consistent with Fig. 5. Along the line of
fixed Po, the lensing signature becomes more prominent as
the mass of the lens M3 increases. This is also shown in
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Fig. 7 if we compare the middle panel with the top one.
This indicates that for BBHs near a massive SMBH with
M3 ∼ 108 M⊙, repeated strong lensing is indeed a critical
component to be included in the waveform modeling.
As for the retrolensing, there is a small chance for it

to be potentially detectable if the lens is sufficiently
massive M3 ≳ 108 M⊙ and the outer orbit is compact with
Po ≲ 0.1 yr. While a dark glory is expected at high
alignment for GW because it has s ¼ 2 [Eq. (26)], for
anM3 this massive, it is only dark for a very small range of

angles [Eq. (27)] and is further washed out by varying ϕo.
Indeed, for 2πfM3 ≳ 100, the wave cross section
approaches the geometrical/classical value well (Fig. 2)
and thus high alignment favors detectability, as shown in
Fig. 7. On the other hand, distinguishing the GW diffrac-
tion signature from the classical one [Eq. (26) vs Eq. (24)]
would be challenging given the sensitivity of TianGO, and
it would rely on more sensitive detectors such as DECIGO
[11] and/or the Big Bang Observer [72].
Note specifically that we have kept the outer orbital

phase as ϕo ¼ −π=2 at the merger of the inner binary when
we compute the mismatches. The values presented in Fig. 7
are thus conservative estimates (i.e., small mismatches)
because in the frequency band of f ≳ 0.1 Hz where
TianGO is most sensitive (and this band includes the
sensitivity band of ground-based GW observatories) the
inner binary is far away from being affected by both
the standard lensing and the retrolensing. While the
detectability could be enhanced if the inner binary happens
to be lensed when f ≳ 0.1 Hz, the inner binary spends only
a small amount of time at this frequency band (< 1 week
for the BBH we consider), and therefore the probability is
low [lower than the probability of repeated lensing by
another factor of Pl; Eq. (29)]. Consequently, we do not
focus on the more optimistic case here.
The lensing effects could also be detected by detectors

like LISA [7] (whose sensitivity is given by Ref. [65]) that
are more sensitive in the millihertz band. The result is
shown in Fig. 8. The parameters we assume are the same as
in Fig. 7 except for that we move the source’s luminosity
distance toD ¼ 200 Mpc so that the SNR is greater than 8.
The retrolensing is too weak to be detectable with the
sensitivity of LISA, yet the standard lensing may still
have a decent chance to be detectable. For an outer orbital
period of 0.1 yr and a lens mass of 107 M⊙ (108 M⊙), the
probability for the standard lensing signature to be meas-
urable is about 3% (10%).

IV. PE ACCURACY INCLUDING
LENSING EFFECTS

A. Enhancing the PE accuracy of the SMBH properties

As we mentioned briefly at the end of Sec. II C,
including the lensing effects does not introduce new free
parameters to the waveform. Therefore, we naturally expect
that including the lensing effects would enhance the PE
accuracy of the SMBH properties compared to the results
obtained in Ref. [41] using orbital dynamics (Doppler shift
and de Sitter precession) alone, as extra constraints are
placed on the waveform. We examine this point quantita-
tively in this section using the Fisher matrix approach. In
particular, we write the waveform including lensing effects
h̃ðlÞ [Eq. (1)] in terms of 13 parameters as described in
Sec. II C. We construct the Fisher matrix Γ whose elements
are given by

FIG. 7. Mismatch ϵ of the waveform as a function of the
inclination ιJ for three different outer orbital configurations,
assuming a TianGO-like decihertz detector. In each panel, we
use the grey curve to indicate the mismatch between a waveform
without any lensing signatures with the one including the standard
lensing (source behind the lens). The mismatches between wave-
forms with standard lensing only and those including retrolensing
effects are illustrated by the olive curves. The purple curves show
the mismatches between the lensing signatures calculated in the
classical/geometrical limit (for both standard and retrolensing) and
those incorporating wave effects. The top and middle panels both
have outer orbital periods of Po ≃ 0.1 yr and the bottom panel has
Po ¼ 0.06 yr. For a relatively light lens withM3 ≲ 107 M⊙, there
is a decent chance of detecting standard lensing. For more massive
lenses M3 ≃ 108 M⊙, we might further detect glory (retro
lensing). Recall that we have w ¼ 8πM3f ¼ 12ðM3=107 M⊙Þ
ðf=0.01 HzÞ ≫ 1 and therefore the geometrical limit is typically a
good approximation, as indicated by the purple curves.

YU, WANG, SEYMOUR, and CHEN PHYS. REV. D 104, 103011 (2021)

103011-10



Γij ¼
	∂h̃ðlÞ

∂θi




 ∂h̃ðlÞ∂θj

�
; ð34Þ

where θi is one of the 13 parameters. The PE error can then
be obtained by inverting the Fisher matrix,

Σ ¼ ðΓÞ−1: ð35Þ

The diagonal element Σii corresponds to the statistical
variance of the parameter θi, and the off-diagonal element
Σij corresponds to the covariance between θi and θj.
In Fig. 9 we show the PE uncertainties of various

parameters with (solid curves) and without (dotted curves)
the lensing effects. Because retrolensing is weak and the
mismatch it induces is only marginally detectable (Sec. III),
we thus ignore all of the retrolensing effects in the analysis
here (and in Sec. IV B). The source is assumed to be
detected by a TianGO-like decihertz observatory [13]. We
vary the mass of the SMBHM3 and choose the outer orbit’s
semimajor axis ao such that the outer orbital period is fixed
at Po ¼ 0.1 yr. Other parameters are the same as in Fig. 3,
leading to ιJ ¼ 87°. Moreover, the outer orbital phase is
fixed at ϕo ¼ −π=2 at the merger so that the BBH’s signal

is not lensed in TianGO’s most sensitive band, f ≳ 0.1 Hz
(corresponding to the last week of the inner BBH’s
inspiral). On the top x axis, we also show the minimum
value of ηmin reached during the 5-year observation period.
Note that we have restricted our discussion here to systems
with ηmin < 1, and the mismatches between waveforms
with and without lensing satisfy ϵ > ϵth.
The top panel in Fig. 9 shows the fractional error in

mass of the SMBH. Without lensing (dotted curve), it can
be constrained to Δ logM3 ¼ Oð10%Þ from the periods
of the outer orbit and the de Sitter precession, Po and PdS.
If the inner BBH also experiences significant strong
lensing by the SMBH (solid curve), then the PE uncer-
tainty can be reduced by almost 3 orders of magnitude
to Δ logM3 ¼ Oð10−4Þ.
It is worth noting that the error in Δ logM3 is much

smaller than the value obtained in Ref. [57] for static

FIG. 9. PE accuracy for systems with (solid curves) and without
(dotted curves) the (standard) gravitational lensing, assuming
detection by a single, TianGO-like detector. Here we fix ιJ ¼ 87°
and vary the mass of the central SMBH. The semimajor axis is
chosen such that the outer orbital period is Po ¼ 0.1 yr. For this
ιJ , we have ϵ > 1=2ρ2 when M3 ≳ 1.7 × 106 or ηmin ≲ 1. Both
logM3 and θ̄J can be determined better by orders of magnitude.
The determination of the opening angle ΔλL is also improved,
especially when PdS is in the range of 10–45 years.

FIG. 8. Similar to Fig. 7 but for LISA. We also moved the
source’s luminosity distance from 1 Gpc to 200 Mpc so that the
source’s SNR in LISA is greater than 8. For LISA, the standard
lensing could have a decent detectability (a few to 10 percent)
while the retrolensing is typically too weak to be detectable.
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lensing. The reason is detailed in Appendix C. In brief, this
is because the time delay between the primary and
secondary images, Δtl ∼ 8M3η for η ≪ 2 [or 2M3η

2 for
η ≫ 2; Eq. (15)], is the best-measured quantity when
lensing is static (i.e., η stays constant during the observation
period). As a result, M3 and η are highly correlated.
Nonetheless, as η varies due to the outer orbital motion,
the waveform effectively samples different values of Δtl.
This thus breaks the degeneracy between M3 and η and
allows M3 to be determined to a much better accuracy than
in the case of static lensing studied in Ref. [57].
Similarly, because most constraints are from combining

information at different values of Δtl instead of from a
single instance (e.g., at ϕo ¼ 0), the results shown in Fig. 9
do not depend sensitively on the value of ιJ as long as the
lensing is detectable (Fig. 7) so that the Fisher matrix
formalism applies.
Once we have the uncertainty in logM3, the outer

orbit’s semimajor axis typically has an error Δ logao≃
Δ logM3=3, as the outer orbital period can be accurately
determined by the Doppler shift [41]. Thus, the lensing
signatures can also help to constrain ιJ from the instanta-
neous values of η, which further leads to a better determi-
nation of the orientation of the outer orbit’s angular
momentum L̂o (as N̂ can be measured from the motion
of the detector around the Sun; see Refs. [13,59]). This point
is illustrated in the middle panel of Fig. 9 where the error in
θ̄J is shown.
As L̂o is the axis around which the inner orbital plane

(i.e., L̂i) precesses, a better-determined L̂o also enhances
the detectability of the precession signature. We demon-
strate this in the bottom panel of Fig. 9. One may argue
that the result of the Fisher matrix is self-contained only
if ΔλL < λL [41]. Without lensing, this condition is not
satisfied until M3 ≳ 3 × 107 M⊙ or PdS ≲ 15 yr for the
sources we consider here. On the other hand, this condition
can be satisfied for less massive SMBHs with M3 ≳ 6 ×
106 M⊙ (corresponding to PdS ≲ 44 yr) if the inner binary
is also lensed by the SMBH. In other words, lensing effects
help to enhance the detectability of the de Sitter precession
of the inner binary and allow it to be measurable at a PdS
about 3 times greater than the one without lensing.

B. Consistency tests

In principle, the lensing does not introduce any new free
parameter. We can nonetheless introduce an ad hoc param-
eter κ, defined via

Ml ¼ κM3; ð36Þ
where M3 is the mass of the SMBH for evaluating the
orbital dynamics (Doppler phase shift and dS precession)
andMl is the SMBHmass determining the lensing. In other
words, the parameter κ serves as an indicator of the
consistency between the two effects. Nominally, κ ¼ 1

and the mass of the SMBH creating the lensing is the same
as that affecting the orbital dynamics. On the other hand,
deviation may exist due to theoretical approximations made
when constructing the waveform. After more careful wave-
form modeling, κ can be further used to test the general
theory of relativity, as the orbital dynamics and the lensing
effects are induced by gravity in different regions around
the SMBH. This is similar to how one may constrain
deviations from general relativity using the Shapiro time
delay [73,74]. It is thus interesting to ask the question of
how well we can measure the deviation of κ from unity.
In Fig. 10 we show the statistical uncertainty on κ as a

function of M3. The source orientation and sky location is
the same as in Fig. 9. We note that the error in κ decreases
roughly as M−4=3

3 and it can be constrained to a 1%
accuracy for M3 ≳ 107 M⊙.
One might understand the scaling of Δκ as follows.

How well we can measure Δκ depends on how well we can
measure the mass of the SMBH from the precession
frequency ΩdS. Ignoring covariance with different angles,
we approximately haveΔ logM3∝Δ logΩdS∝Ω−2

dS [41,58].
If we hold the outer orbital frequency constant, we thus
have ΩdS ∝ M2=3

3 . Consequently, we approximately have

Δκ ∝ M−4=3
3 , as shown in Fig. 10.

Meanwhile, it is interesting to note that the uncertainty in
κ is smaller than the numerically obtained uncertainty in
M3 when we include only the Doppler shift and the de
Sitter precession in the waveform (the dotted curve in the
upper panel in Fig. 9). This is because the lensing signature
still helps to constrain the orientation of the outer orbit ιJ in
a way that cannot be mimicked by a rescaling of the mass
Ml (this is why we can simultaneously determineMl and η

FIG. 10. PE accuracy for κ, where κ ¼ Ml=M3 [Eq. (36)]. The
source’s orientation and sky location are the same as in Fig. 9.
The error in κ decreases roughly linearly with M3 and it can be
constrained to a 1% accuracy for M3 ≳ 107 M⊙.
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in the static lensing case; see Ref. [57] and Appendix C).
A better-constrained ιJ means a better determination of
parameters such as θ̄J and λL that are partially degenerate
withM3 in the no-lensing case. As a result, the PE accuracy
onM3 can still be improved even though we do not directly
use it to evaluate the lensing.

V. CONCLUSION AND DISCUSSIONS

We studied the GW waveform emitted by a stellar-mass
BBH in the vicinity of an SMBH, including effects such as
the Doppler phase shift due to the outer orbital motion, the
de Sitter-like precession of L̂i around L̂o, and (repeated)
gravitational lensing caused by the SMBH.
For lensing, we considered not only the standard strong

lensing which happens when the source is behind the lens
(Sec. II A), but also retrolensing when the source is in front
of the lens (Sec. II B).
We then examined the detectability of various lensing

effects by considering themismatches they induce (Sec. III).
For a lens with a mass ofM3 ¼ 107 M⊙ and an outer orbital
period ofPo ¼ 0.1 yr, there is a∼3% (∼10%) chance for the
strong lensing to be detectable by LISA [7] (TianGO [13]),
and this probability increases with increasing M3 if Po is
held constant. For a massive lens with M3 ≳ 108 M⊙ and
compact outer orbits with Po ≲ 0.1 yr, there is also a small
probability for the retrolensing to be detectable by TianGO.
The retrolensing calculated with a classical cross section
[Eq. (24)] is typically accurate enough for a source at
≃1 Gpc given the sensitivity of TianGO. Effects of wave
interference and polarization in the glory scattering
[Eq. (26)] might be measurable if the source is at a closer
distance (≲300 Mpc) or the detector is more sensitive (e.g.,
DECIGO [11] and/or the Big Bang Observer [72]). On the
other hand, the geometrical limit of the strong lensing
[Eq. (13)] typically provides a good approximation to the
full expression, Eq. (11). This is because we have
w ¼ 8πfM3 ≫ 1, and wave effects would show up only
if we have η < 1=w ≪ 1. Such an almost exact alignment is
unlikely and therefore is not considered as the main case in
our current study (but see, e.g., Ref. [75] for discussions on
lensing when an exact alignment happens).
Because including the lensing does not introduce any

new free parameters other than what have already been
used to incorporate the outer orbital dynamics, it greatly
reduces the PE uncertainties, especially the statistical errors
of the SMBH properties (Sec. IVA). In fact, the error inM3

can be better than in the case of static lensing, because the
varying outer orbit breaks the degeneracy between M3 and
the source’s angular position on the sky η.Furthermore,
for strongly lensed BBHs, the maximum period of the de
Sitter-like precession that can be resolved is about three
times longer than the case without lensing. Last, we
indicated in Sec. IV B that since the mass of the SMBH
can be separately inferred from the outer orbital dynamics

and the lensing effects, comparing the two inferences can
thus serve as a way to test the consistency of the theoretical
modeling behind each effect and, eventually, a way to test
the general theory of relativity.
We note that as our main goal here was to consider the

detectability of various lensing effects and estimate their
impacts on the PE, we only adopted the lowest-order
approximation for each effect in our waveform construc-
tion. More careful treatments are needed by future studies if
we want to build waveforms that are accurate enough to
serve as detection templates.
For example, we assumed that both the inner and

outer orbits are circular in our study for simplicity.
However, eccentricities in both orbits may be expected,
especially if the inner binary is formed via dynamical
channels (see, e.g., Refs. [22–31]). The qualitative
effects of eccentricity have been argued in Ref. [41].
An eccentric outer orbit might potentially enhance the
PE accuracy as it reduces the period of precession. On
the other hand, an eccentric inner orbit decreases the
inner binary’s merger time, giving the precession less
time to accumulate its effect. Furthermore, if the inner
binary’s merger time is shorter than the outer orbital
period, it would decrease the probability for lensing to
happen [46]. It would be crucial to properly incorporate
them in future waveform studies to quantitatively under-
stand the role of eccentricity.
The spin of the SMBH is also a critical component to be

incorporated in future studies. Throughout the analysis,
we have assumed that the SMBH is a nonspinning
Schwarzschild BH for simplicity, whereas astrophysical
SMBHs may have significant spin [76]. While the Lense-
Thirring precession has a longer period than the de Sitter
precession for sources we consider here [41], it has none-
theless been shown to have a potentially significant role in
modulating the orientation of the inner BBH [43,71,77].
Besides affecting the orbital dynamics, the spin may also
modify the lensing signatures [78–80] Therefore, similar to
testing the consistency in the SMBH’s mass (Sec. IV B),
one may further check the consistency in the spin of the
SMBH by comparing its value inferred from the Lense-
Thirring effect in the orbital dynamics and that from
gravitational lensing. This may serve as yet another way
of testing general relativity.
Moreover, Ref. [81] recently suggested that fast Doppler

motion can further cause aberration in GW rays and is
another ingredient to be added in the future. For inner
binaries that are even closer to the SMBH than what we
considered here, the quasinormal modes of the SMBH
might be further excited [82]. If the inner binary is observed
at a lower frequency with a GW decay time scale much
longer than the duration of the observation, gaseous effects
might also play a role [32,35], together with Lidov-Kozai
oscillations [38,39].
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The astrophysical formation of such a hierarchical triple
system is another topic that requires further dedicated
studies. Because of complicated environmental effects in
galactic nuclei, there are a few potential limiting require-
ments the triple system needs to satisfy. For example, the
inner binary needs to merge efficiently before the outer
orbit decays due to GW radiation (black curves in Figs. 5
and 6). The inner binary also needs to be able to survive
evaporation due to dynamical interactions with environ-
mental stars on a time scale of typically a fewMyr [23,83].
These conditions could be satisfied by both the gaseous
channel [15] and the dynamical channels [31], though the
inner binary produced by some dynamical channels may
have too high an eccentricity. Such an inner binary may
have too short a GW decay timescale and merge before
it orbits the SMBH by a complete cycle, disfavoring the
detectability of both lensing and precession. In fact, we
note that the discussion on the astrophysical population in
Ref. [46] applies here as well. This suggests that migration
traps in AGN disks [20] would be particularly promising
places to produce sources of interest to our study here (as
also indicated in Fig. 5). Another possibility is the tidal
capture of a binary by the SMBH as suggested in
Ref. [28]. More careful examination of these channels
and other candidates as well as the distributions of the
inner and outer orbital parameters they can produce will
be of great value.
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APPENDIX A: SPA FOR WAVEFORMS WITH
FAST MODULATION

Suppose that we can write the time-domain waveform as

hðtÞ ¼ ΛðtÞhCðtÞ≡ ΛðtÞAðtÞ cosΦðtÞ; ðA1Þ

where AðtÞ and ΦðtÞ are the amplitude and phase of the
carrier waveform, and ΛðtÞ is an external modulation factor
induced by, e.g., the precession of the source/detector plane
and/or the time variation of the lensing configuration. Here
we assume that the external modulation ΛðtÞ may have a
fast temporal variation rate compared to the variation rate
of the intrinsic amplitude of the carrier, jd lnΛðtÞ=dtj >
jd lnAðtÞ=dtj [but ΛðtÞ still varies on a time scale longer

than the typical SPA duration tSPA, which we define below].
We can thus improve the accuracy of the waveform by
including more expansion terms than the lowest-order
SPA does.
Specifically, we have (for f ≥ 0)

h̃ðfÞ ¼
Z

hðt0Þe2πift0dt0 ðA2Þ

≃
1

2

Z
Λðt0ÞAðt0Þe−i½Φðt0Þ−2πft0�dt0

≃
1

2

Z �
ΛAþ

�
dΛ
dt

Aþ Λ
dA
dt

�
ðt0 − tÞ

þ
�
1

2

d2Λ
dt2

Aþ dΛ
dt

dA
dt

þ 1

2
Λ
d2A
dt2

�
ðt0 − tÞ2

�

× exp

�
−i
�
Φ − 2πftþ π

df
dt

ðt0 − tÞ2
��

dt0; ðA3Þ

where in the second line we have dropped the fast-
oscillating term, and in the third line we have expanded
all of the time-dependent quantities around a time t
when ðdΦ=dtÞðtÞ ¼ 2πf. For conciseness, when a time-
dependent quantity is evaluated at t, we drop its argument
by writing Λ≡ ΛðtÞ and similarly for other quantities.
If we ignore all of the time derivatives on the amplitude

terms as jd lnA=dtj < jd lnΛ=dtj ≪ f and jd2 lnA=dt2j
< jd2 lnΛðtÞ=dt2j < f2, then we arrive at the standard
(lowest-order) SPA approximation (f ≥ 0)

h̃ð0ÞðfÞ ¼ 1

2

ΛAffiffiffiffiffiffiffiffiffiffiffiffi
df=dt

p exp ½ið2πft −Φ − π=4Þ�

≡ 1

2
Λh̃CðfÞ: ðA4Þ

Following the convention in Ref. [58], we have defined the
terms excluding Λ=2 as h̃CðfÞ.
The lowest-order SPA is an excellent approximation if

the amplitudes stay constant over the duration when the
wave oscillates at frequency f. The characteristic duration
is given by

tSPA ¼
Z

exp

�
−π

df
dt

ðt − t0Þ2
�
dt0

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1

df=dt

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
Pitgw

r
; ðA5Þ

where Pi is the inner orbital period and tgw ¼ ai=jdai=dtj is
the instantaneous GW decay time scale. In other words, the
wave stays at frequency f for a time given by the duration
of the geometrical mean of the orbital period and the GW
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decay time scale. For an inner binary at Pi ∼ 100s and
tgw ∼ 3 yr, we have tSPA ∼ 0.6day and it decreases as
f−11=6 as the inner binary evolves to higher frequencies.
When the amplitude may change by a non-negligible

amount during tSPA, we can improve the accuracy of the
SPA waveform by including derivatives on the amplitude
variations. Note that the terms ∝ ðt0 − tÞ in Eq. (A2) vanish
because the integrant is odd around t. Including the terms
∝ ðt0 − tÞ2, we have

h̃ð1ÞðfÞ ¼ 1

2
Λh̃CðfÞ þ

1

4πi
h̃CðfÞ
df=dt

×

�
1

2

d2Λ
dt2

þ 1

A
dΛ
dt

dA
dt

þ 1

2

Λ
A
d2A
dt2

�
: ðA6Þ

If we further note that

h̃C
Adf=dt

dA
dt

¼
�
dh̃C
df

− 2πith̃C

�
; ðA7Þ

our expression reduces to Eq. (38) in Ref. [58] when we
ignore the terms involving second-order time derivatives.
Nonetheless, the d2ΛðtÞ=dt2 and the d2A=dt2 terms also
come at the ðt0 − tÞ2 order and are thus left in the
expression. The d2ΛðtÞ=dt2 can be particularly important
because ΛðtÞ can be fast varying. Indeed, Ref. [46] argued
that the duration of a strong-lensing event is approximately
0.5PlPo, where Pl ∼ 0.1 is the geometrical probability for
the strong lensing to happen and Po ∼ 0.1 yr is the period
of the outer orbit.

APPENDIX B: GEOMETRICAL DERIVATION
OF THE LENSING EQUATION

Here we derive the geometrical relations shown in
Eqs. (16) and (17) for the retrolensing scenario (lower
part of Fig. 1).
First, note that all of the angles around O sum to 2π, and

we immediately arrive at the Ohanian lens equation

Δϕ − π ¼ α − θ − θS: ðB1Þ

We further have

DOS tan β ¼ DLS tan ð2π − ΔϕÞ
¼ DLSftan ½ðπ − αÞ þ θ þ θS�g
≃DLS½− tanðαÞ þ tan θ þ tan θS�: ðB2Þ

Note further that the impact parameter can be written as

b ¼ DOSθ ¼ DLSθS: ðB3Þ

Therefore, in our case we have θ ≪ θS ≃DOS=
DLSθð≪ 1Þ. We thus arrive at Eqs. (16) and (17) presented
in the main text.

APPENDIX C: UNDERSTANDING THE
IMPROVEMENT IN Δ logM3 DUE TO

REPEATED LENSING

In this Appendix we explain why our PE uncertainty in
Δ logM3 (top panel of Fig. 9) is better than the results
obtained in Eq. (32) in Ref. [57].
The reason is illustrated in Fig. 11 where we show the

error ellipses between logM3 and η for the static lensing
case at different values of η. For each given η, we note
that logM3 and η are highly correlated. This is because the
best-constrained quantity is the time delay between the
primary and the secondary images, Δtl ∼ 8M3η for η ≪ 2

[or 2M3η
2 for η ≫ 2; Eq. (15)]. Indeed, we see that in

the plot the error ellipses roughly correspond to lines
defined by

Δη ≃ −
Δtl

∂ðΔtlÞ=∂ηΔ logM3

≃
�−ηΔ logM3; for η ≪ 2;

− η
2
Δ logM3; for η ≫ 2:

ðC1Þ

FIG. 11. Error ellipses for the simple static lensing (i.e., η ¼
β=θEin ¼ const for the entire waveform). At each given η, the
PE error Δ logM3 is highly correlated with Δη, and thus the PE
error obtained by inverting the Fisher matrix is much greater
than the inverse of the diagonal elements. On the other
hand, the orientation of the error ellipse varies as η varies
[Eq. (C1)]. Therefore, in the case of repeated lensing where
η ¼ ηðtÞ due to the outer orbit’s motion, different values of η are
sampled and thus break the degeneracy between logM3 and η,
allowing a much better PE than in the static lensing case
[cf. Eq. (32) in Ref. [57]].
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On the other hand, we note that the orientation
of the error ellipse changes as η changes (for a fixed
M3). Thus, if the information at two different values
of η can be combined, the joint uncertainty will be
greatly reduced. This is exactly the situation in the

repeated lensing scenario. As the inner binary orbits
around the SMBH, we sample the lensing signatures
at different values of η, allowing the mass of the
SMBH to be determined much better than in the static
lensing case.

[1] LIGO Scientific Collaboration and Virgo Collaboration,
Observation of Gravitational Waves from a Binary Black
Hole Merger, Phys. Rev. Lett. 116, 061102 (2016).

[2] LIGO Scientific Collaboration, Advanced LIGO, Classical
Quantum Gravity 32, 074001 (2015).

[3] F. Acernese, M. Agathos, K. Agatsuma, D. Aisa, N.
Allemandou, A. Allocca, J. Amarni, P. Astone et al.,
Advanced Virgo: A second-generation interferometric
gravitational wave detector, Classical Quantum Gravity
32, 024001 (2015).

[4] Kagra Collaboration, KAGRA: 2.5 generation interferomet-
ric gravitational wave detector, Nat. Astron. 3, 35 (2019).

[5] LIGO Scientific Collaboration and Virgo Collaboration,
GWTC-1: A Gravitational-Wave Transient Catalog of
Compact Binary Mergers Observed by LIGO and Virgo
during the First and Second Observing Runs, Phys. Rev. X
9, 031040 (2019).

[6] LIGO Scientific Collaboration and Virgo Collaboration,
GWTC-2: Compact Binary Coalescences Observed by
LIGO and Virgo during the First Half of the Third
Observing Run, Phys. Rev. X 11, 021053 (2021).

[7] P. Amaro-Seoane, H. Audley, S. Babak, J. Baker, E.
Barausse, P. Bender, E. Berti, P. Binetruy et al., Laser
interferometer space antenna, arXiv:1702.00786.

[8] J. Luo, L.-S. Chen, H.-Z. Duan, Y.-G. Gong, S. Hu, J. Ji, Q.
Liu, J. Mei, V. Milyukov, M. Sazhin, C.-G. Shao, V. T. Toth,
H.-B. Tu, Y. Wang, Y. Wang, H.-C. Yeh, M.-S. Zhan, Y.
Zhang, V. Zharov, and Z.-B. Zhou, TianQin: A space-borne
gravitational wave detector, Classical Quantum Gravity 33,
035010 (2016).

[9] W.-R. Hu and Y.-L. Wu, The Taiji program in Space for
gravitational wave physics and the nature of gravity, Natl.
Sci. Rev. 4, 685 (2017).

[10] T. Nakamura, M. Ando, T. Kinugawa, H. Nakano, K. Eda,
S. Sato, M. Musha, T. Akutsu, T. Tanaka, N. Seto, N. Kanda,
and Y. Itoh, Pre-DECIGO can get the smoking gun to decide
the astrophysical or cosmological origin of GW150914-like
binary black holes, Prog. Theor. Exp. Phys. 2016, 093E01
(2016).

[11] S. Kawamura, M. Ando, N. Seto, S. Sato, M. Musha, I.
Kawano, J. Yokoyama, T. Tanaka et al., Current status of
space gravitational wave antenna DECIGO and B-DEC-
IGO, arXiv:2006.13545.

[12] M. A. Sedda, C. P. L. Berry, K. Jani, P. Amaro-Seoane, P.
Auclair, J. Baird, T. Baker, E. Berti et al., The Missing Link
in Gravitational-Wave Astronomy: Discoveries waiting in
the decihertz range, Classical Quantum Gravity 37, 215011
(2020).

[13] K. A. Kuns, H. Yu, Y. Chen, and R. X. Adhikari, Astro-
physics and cosmology with a decihertz gravitational-wave
detector: Tiango, Phys. Rev. D 102, 043001 (2020).

[14] B. McKernan, K. E. S. Ford, W. Lyra, and H. B. Perets,
Intermediate mass black holes in AGN discs—I. Production
and growth, Mon. Not. R. Astron. Soc. 425, 460 (2012).

[15] I. Bartos, B. Kocsis, Z. Haiman, and S. Márka, Rapid and
bright stellar-mass binary black hole mergers in active
galactic nuclei, Astrophys. J. 835, 165 (2017).

[16] N. C. Stone, B. D. Metzger, and Z. Haiman, Assisted
inspirals of stellar mass black holes embedded in AGN
discs: Solving the ‘final au problem’, Mon. Not. R. Astron.
Soc. 464, 946 (2017).

[17] B. McKernan, K. E. S. Ford, J. Bellovary, N.W. C. Leigh,
Z. Haiman, B. Kocsis, W. Lyra, M. M. Mac Low,
B. Metzger, M. O’Dowd, S. Endlich, and D. J. Rosen,
Constraining stellar-mass black hole mergers in AGN disks
detectable with LIGO, Astrophys. J. 866, 66 (2018).

[18] H. Tagawa, Z. Haiman, and B. Kocsis, Formation and
evolution of compact object binaries in AGN disks,
Astrophys. J. 898, 25 (2020).

[19] Y. Yang, I. Bartos, V. Gayathri, K. E. S. Ford, Z. Haiman,
S. Klimenko, B. Kocsis, S. Márka, Z. Márka, B. McKernan,
and R. O’Shaughnessy, Hierarchical Black Hole Mergers
in Active Galactic Nuclei, Phys. Rev. Lett. 123, 181101
(2019).

[20] J. M. Bellovary, M.-M. Mac Low, B. McKernan, and
K. E. S. Ford, Migration traps in disks around supermassive
black holes, Astrophys. J. Lett. 819, L17 (2016).

[21] A. Secunda, J. Bellovary, M.-M. Mac Low, K. E. S. Ford, B.
McKernan, N. W. C. Leigh, W. Lyra, and Z. Sándor, Orbital
migration of interacting stellar mass black holes in disks
around supermassive black holes, Astrophys. J. 878, 85
(2019).

[22] R. M. O’Leary, B. Kocsis, and A. Loeb, Gravitational
waves from scattering of stellar-mass black holes in
galactic nuclei, Mon. Not. R. Astron. Soc. 395, 2127
(2009).

[23] F. Antonini and H. B. Perets, Secular evolution of compact
binaries near massive black holes: Gravitational wave
sources and other exotica, Astrophys. J. 757, 27 (2012).

[24] F. Antonini and F. A. Rasio, Merging black hole binaries in
galactic nuclei: Implications for Advanced-LIGO detec-
tions, Astrophys. J. 831, 187 (2016).

[25] J. H. VanLandingham, M. C. Miller, D. P. Hamilton, and
D. C. Richardson, The role of the Kozai–Lidov mechanism
in black hole binary mergers in galactic centers, Astrophys.
J. 828, 77 (2016).

YU, WANG, SEYMOUR, and CHEN PHYS. REV. D 104, 103011 (2021)

103011-16

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1038/s41550-018-0658-y
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.11.021053
https://arXiv.org/abs/1702.00786
https://doi.org/10.1088/0264-9381/33/3/035010
https://doi.org/10.1088/0264-9381/33/3/035010
https://doi.org/10.1093/nsr/nwx116
https://doi.org/10.1093/nsr/nwx116
https://doi.org/10.1093/ptep/ptw127
https://doi.org/10.1093/ptep/ptw127
https://arXiv.org/abs/2006.13545
https://doi.org/10.1088/1361-6382/abb5c1
https://doi.org/10.1088/1361-6382/abb5c1
https://doi.org/10.1103/PhysRevD.102.043001
https://doi.org/10.1111/j.1365-2966.2012.21486.x
https://doi.org/10.3847/1538-4357/835/2/165
https://doi.org/10.1093/mnras/stw2260
https://doi.org/10.1093/mnras/stw2260
https://doi.org/10.3847/1538-4357/aadae5
https://doi.org/10.3847/1538-4357/ab9b8c
https://doi.org/10.1103/PhysRevLett.123.181101
https://doi.org/10.1103/PhysRevLett.123.181101
https://doi.org/10.3847/2041-8205/819/2/L17
https://doi.org/10.3847/1538-4357/ab20ca
https://doi.org/10.3847/1538-4357/ab20ca
https://doi.org/10.1111/j.1365-2966.2009.14653.x
https://doi.org/10.1111/j.1365-2966.2009.14653.x
https://doi.org/10.1088/0004-637X/757/1/27
https://doi.org/10.3847/0004-637X/831/2/187
https://doi.org/10.3847/0004-637X/828/2/77
https://doi.org/10.3847/0004-637X/828/2/77


[26] C. Petrovich and F. Antonini, Greatly enhanced merger rates
of compact-object binaries in non-spherical nuclear star
clusters, Astrophys. J. 846, 146 (2017).

[27] N.W. C. Leigh, A. M. Geller, B. McKernan, K. E. S. Ford,
M.M. Mac Low, J. Bellovary, Z. Haiman, W. Lyra,
J. Samsing, M. O’Dowd, B. Kocsis, and S. Endlich, On
the rate of black hole binary mergers in galactic nuclei due
to dynamical hardening, Mon. Not. R. Astron. Soc. 474,
5672 (2018).

[28] X. Chen and W.-B. Han, Extreme-mass-ratio inspirals
produced by tidal capture of binary black holes, Commun.
Phys. 1, 53 (2018).

[29] G. Fragione, N. W. C. Leigh, and R. Perna, Black hole and
neutron star mergers in galactic nuclei: The role of triples,
Mon. Not. R. Astron. Soc. 488, 2825 (2019).

[30] W.-B. Han and X. Chen, Testing general relativity using
binary extreme-mass-ratio inspirals, Mon. Not. R. Astron.
Soc. 485, L29 (2019).

[31] J. Samsing, I. Bartos, D. J. D’Orazio, Z. Haiman, B. Kocsis,
N.W. C. Leigh, B. Liu, M. E. Pessah, and H. Tagawa,
Active galactic nuclei as factories for eccentric black hole
mergers, arXiv:2010.09765.

[32] X. Chen, Z.-Y. Xuan, and P. Peng, Fake massive black holes
in the Milli-Hertz gravitational-wave band, Astrophys. J.
896, 171 (2020).

[33] X. Chen, Distortion of gravitational-wave signals by astro-
physical environments, arXiv:2009.07626.

[34] A. Caputo, L. Sberna, A. Toubiana, S. Babak, E. Barausse,
S. Marsat, and P. Pani, Gravitational-wave detection and
parameter estimation for accreting black-hole binaries and
their electromagnetic counterpart, Astrophys. J. 892, 90
(2020).

[35] A. Toubiana, L. Sberna, A. Caputo, G. Cusin, S. Marsat, K.
Jani, S. Babak, E. Barausse, C. Caprini, P. Pani, A. Sesana,
and N. Tamanini, Detectable Environmental Effects in
GW190521-like Black-Hole Binaries with LISA, Phys.
Rev. Lett. 126, 101105 (2021).

[36] K. Inayoshi, N. Tamanini, C. Caprini, and Z. Haiman,
Probing stellar binary black hole formation in galactic nuclei
via the imprint of their center of mass acceleration on their
gravitational wave signal, Phys. Rev. D 96, 063014 (2017).

[37] L. Randall and Z.-Z. Xianyu, A direct probe of mass density
near inspiraling binary black holes, Astrophys. J. 878, 75
(2019).

[38] B.-M. Hoang, S. Naoz, B. Kocsis, W.M. Farr, and J.
McIver, Detecting supermassive black hole-induced binary
eccentricity oscillations with LISA, Astrophys. J. Lett. 875,
L31 (2019).

[39] B. Deme, B.-M. Hoang, S. Naoz, and B. Kocsis, Detecting
Kozai-Lidov imprints on the gravitational waves of inter-
mediate-mass black holes in galactic nuclei, Astrophys. J.
901, 125 (2020).

[40] R. S. Chandramouli and N. Yunes, The trouble with triples:
Ready-to-use analytic model for gravitational waves from a
hierarchical triple with Kozai-Lidov oscillations, arXiv:
2107.00741.

[41] H. Yu and Y. Chen, Direct Determination of Supermassive
Black Hole Properties with Gravitational-Wave Radiation
from Surrounding Stellar-Mass Black Hole Binaries, Phys.
Rev. Lett. 126, 021101 (2021).

[42] C. M. Will, New General Relativistic Contribution to
Mercury’s Perihelion Advance, Phys. Rev. Lett. 120,
191101 (2018).

[43] B. Liu, D. Lai, and Y.-H. Wang, Binary mergers near a
supermassive black hole: Relativistic effects in triples,
Astrophys. J. Lett. 883, L7 (2019).

[44] A. Kuntz, F. Serra, and E. Trincherini, Effective two-body
approach to the hierarchical three-body problem, Phys. Rev.
D 104, 024016 (2021).

[45] B. M. Peterson, Measuring the masses of supermassive
black holes, Space Sci. Rev. 183, 253 (2014).

[46] D. J. D’Orazio and A. Loeb, Repeated gravitational lensing
of gravitational waves in hierarchical black hole triples,
Phys. Rev. D 101, 083031 (2020).

[47] K. S. Virbhadra and G. F. R. Ellis, Schwarzschild black hole
lensing, Phys. Rev. D 62, 084003 (2000).

[48] V. Bozza, Gravitational lensing in the strong field limit,
Phys. Rev. D 66, 103001 (2002).

[49] V. Bozza and G. Scarpetta, Strong deflection limit of black
hole gravitational lensing with arbitrary source distances,
Phys. Rev. D 76, 083008 (2007).

[50] E. F. Eiroa and C. M. Sendra, Gravitational lensing by a
regular black hole, Classical Quantum Gravity 28, 085008
(2011).

[51] K. S. Virbhadra, Relativistic images of Schwarzschild black
hole lensing, Phys. Rev. D 79, 083004 (2009).

[52] J. P. Luminet, Image of a spherical black hole with thin
accretion disk, Astron. Astrophys. 75, 228 (1979).

[53] D. E. Holz and J. A. Wheeler, Retro-MACHOs: π in the
sky?, Astrophys. J. 578, 330 (2002).

[54] E. F. Eiroa and D. F. Torres, Strong field limit analysis
of gravitational retrolensing, Phys. Rev. D 69, 063004
(2004).

[55] V. Bozza, Gravitational lensing by black holes, Gen. Relativ.
Gravit. 42, 2269 (2010).

[56] E. F. Eiroa, Strong deflection gravitational lensing, arXiv:
1212.4535.

[57] R. Takahashi and T. Nakamura, Wave effects in the
gravitational lensing of gravitational waves from chirping
binaries, Astrophys. J. 595, 1039 (2003).

[58] T. A. Apostolatos, C. Cutler, G. J. Sussman, and K. S.
Thorne, Spin-induced orbital precession and its modulation
of the gravitational waveforms from merging binaries, Phys.
Rev. D 49, 6274 (1994).

[59] C. Cutler, Angular resolution of the LISA gravitational
wave detector, Phys. Rev. D 57, 7089 (1998).

[60] S. V. Dhurandhar, K. R. Nayak, S. Koshti, and J. Y. Vinet,
Fundamentals of the LISA stable flight formation, Classical
Quantum Gravity 22, 481 (2005).

[61] D. J. D’Orazio and R. Di Stefano, Periodic self-lensing from
accreting massive black hole binaries, Mon. Not. R. Astron.
Soc. 474, 2975 (2018).

[62] T. T. Nakamura and S. Deguchi, Wave optics in gravitational
lensing, Prog. Theor. Phys. Suppl. 133, 137 (1999).

[63] R. A. Matzner, C. Dewitte-Morette, B. Nelson, and T.-R.
Zhang, Glory scattering by black holes, Phys. Rev. D 31,
1869 (1985).

[64] V. Bozza and L. Mancini, Time delay in black hole
gravitational lensing as a distance estimator, Gen. Relativ.
Gravit. 36, 435 (2004).

DETECTING GRAVITATIONAL LENSING IN HIERARCHICAL … PHYS. REV. D 104, 103011 (2021)

103011-17

https://doi.org/10.3847/1538-4357/aa8628
https://doi.org/10.1093/mnras/stx3134
https://doi.org/10.1093/mnras/stx3134
https://doi.org/10.1038/s42005-018-0053-0
https://doi.org/10.1038/s42005-018-0053-0
https://doi.org/10.1093/mnras/stz1803
https://doi.org/10.1093/mnrasl/slz021
https://doi.org/10.1093/mnrasl/slz021
https://arXiv.org/abs/2010.09765
https://doi.org/10.3847/1538-4357/ab919f
https://doi.org/10.3847/1538-4357/ab919f
https://arXiv.org/abs/2009.07626
https://doi.org/10.3847/1538-4357/ab7b66
https://doi.org/10.3847/1538-4357/ab7b66
https://doi.org/10.1103/PhysRevLett.126.101105
https://doi.org/10.1103/PhysRevLett.126.101105
https://doi.org/10.1103/PhysRevD.96.063014
https://doi.org/10.3847/1538-4357/ab20c6
https://doi.org/10.3847/1538-4357/ab20c6
https://doi.org/10.3847/2041-8213/ab14f7
https://doi.org/10.3847/2041-8213/ab14f7
https://doi.org/10.3847/1538-4357/abafa3
https://doi.org/10.3847/1538-4357/abafa3
https://arXiv.org/abs/2107.00741
https://arXiv.org/abs/2107.00741
https://doi.org/10.1103/PhysRevLett.126.021101
https://doi.org/10.1103/PhysRevLett.126.021101
https://doi.org/10.1103/PhysRevLett.120.191101
https://doi.org/10.1103/PhysRevLett.120.191101
https://doi.org/10.3847/2041-8213/ab40c0
https://doi.org/10.1103/PhysRevD.104.024016
https://doi.org/10.1103/PhysRevD.104.024016
https://doi.org/10.1007/s11214-013-9987-4
https://doi.org/10.1103/PhysRevD.101.083031
https://doi.org/10.1103/PhysRevD.62.084003
https://doi.org/10.1103/PhysRevD.66.103001
https://doi.org/10.1103/PhysRevD.76.083008
https://doi.org/10.1088/0264-9381/28/8/085008
https://doi.org/10.1088/0264-9381/28/8/085008
https://doi.org/10.1103/PhysRevD.79.083004
https://doi.org/10.1086/342463
https://doi.org/10.1103/PhysRevD.69.063004
https://doi.org/10.1103/PhysRevD.69.063004
https://doi.org/10.1007/s10714-010-0988-2
https://doi.org/10.1007/s10714-010-0988-2
https://arXiv.org/abs/1212.4535
https://arXiv.org/abs/1212.4535
https://doi.org/10.1086/377430
https://doi.org/10.1103/PhysRevD.49.6274
https://doi.org/10.1103/PhysRevD.49.6274
https://doi.org/10.1103/PhysRevD.57.7089
https://doi.org/10.1088/0264-9381/22/3/002
https://doi.org/10.1088/0264-9381/22/3/002
https://doi.org/10.1093/mnras/stx2936
https://doi.org/10.1093/mnras/stx2936
https://doi.org/10.1143/PTPS.133.137
https://doi.org/10.1103/PhysRevD.31.1869
https://doi.org/10.1103/PhysRevD.31.1869
https://doi.org/10.1023/B:GERG.0000010486.58026.4f
https://doi.org/10.1023/B:GERG.0000010486.58026.4f


[65] T. Robson, N. J. Cornish, and C. Liu, The construction and
use of LISA sensitivity curves, Classical Quantum Gravity
36, 105011 (2019).

[66] C.-M. Claudel, K. S. Virbhadra, and G. F. R. Ellis, The
geometry of photon surfaces, J. Math. Phys. (N.Y.) 42, 818
(2001).

[67] While using ðM3; aoÞ is conceptually simple, we nonethe-
less use ðM3;ωoÞ when calculating the Fisher matrices in
Sec. IV as it is more numerically accurate.

[68] This expression assumes a circular outer orbit and
M3 ≫ M1;ð2Þ. When the outer orbit is elliptical, the eccen-
tricity can be constrained from the Doppler shift [41]. In this
case, the instantaneous precession rate (see, e.g., Ref. [69])
should be used.

[69] B. M. Barker and R. F. O’Connell, Gravitational two-body
problem with arbitrary masses, spins, and quadrupole mo-
ments, Phys. Rev. D 12, 329 (1975).

[70] L. Lindblom, B. J. Owen, and D. A. Brown, Model wave-
form accuracy standards for gravitational wave data analy-
sis, Phys. Rev. D 78, 124020 (2008).

[71] Y. Fang, X. Chen, and Q.-G. Huang, Impact of a spinning
supermassive black hole on the orbit and gravitational waves
of a nearby compact binary, Astrophys. J. 887, 210 (2019).

[72] G. M. Harry, P. Fritschel, D. A. Shaddock, W. Folkner, and
E. S. Phinney, Laser interferometry for the big bang
observer, Classical Quantum Gravity 23, 4887 (2006).

[73] C. M. Will, Propagation speed of gravity and the relativistic
time delay, Astrophys. J. 590, 683 (2003).

[74] C. M.Will, The confrontation between general relativity and
experiment, Living Rev. Relativity 17, 4 (2014).

[75] Z. Hongsheng and F. Xilong, Poisson-Arago spot for
gravitational waves, arXiv:1809.06511.

[76] C. S. Reynolds, The spin of supermassive black holes,
Classical Quantum Gravity 30, 244004 (2013).

[77] B. Liu and D. Lai, Probing the spins of supermassive black
holes with gravitational waves from surrounding compact
binaries, arXiv:2105.02230.

[78] V. Bozza, Quasiequatorial gravitational lensing by spinning
black holes in the strong field limit, Phys. Rev. D 67,
103006 (2003).

[79] V. Bozza, F. de Luca, G. Scarpetta, and M. Sereno, Analytic
Kerr black hole lensing for equatorial observers in the strong
deflection limit, Phys. Rev. D 72, 083003 (2005).

[80] V. Bozza, F. de Luca, and G. Scarpetta, Kerr black hole
lensing for generic observers in the strong deflection limit,
Phys. Rev. D 74, 063001 (2006).

[81] A. Torres-Orjuela, X. Chen, and P. Amaro-Seoane, Excita-
tion of gravitational wave modes by a center-of-mass
velocity of the source, arXiv:2010.15856.

[82] V. Cardoso, F. Duque, and G. Khanna, Gravitational tuning
forks and hierarchical triple systems, Phys. Rev. D 103,
081501 (2021).

[83] H. Yu, S. Ma, M. Giesler, and Y. Chen, Spin and eccentricity
evolution in triple systems: From the Lidov-Kozai inter-
action to the final merger of the inner binary, Phys. Rev. D
102, 123009 (2020).

YU, WANG, SEYMOUR, and CHEN PHYS. REV. D 104, 103011 (2021)

103011-18

https://doi.org/10.1088/1361-6382/ab1101
https://doi.org/10.1088/1361-6382/ab1101
https://doi.org/10.1063/1.1308507
https://doi.org/10.1063/1.1308507
https://doi.org/10.1103/PhysRevD.12.329
https://doi.org/10.1103/PhysRevD.78.124020
https://doi.org/10.3847/1538-4357/ab510e
https://doi.org/10.1088/0264-9381/23/15/008
https://doi.org/10.1086/375164
https://doi.org/10.12942/lrr-2014-4
https://arXiv.org/abs/1809.06511
https://doi.org/10.1088/0264-9381/30/24/244004
https://arXiv.org/abs/2105.02230
https://doi.org/10.1103/PhysRevD.67.103006
https://doi.org/10.1103/PhysRevD.67.103006
https://doi.org/10.1103/PhysRevD.72.083003
https://doi.org/10.1103/PhysRevD.74.063001
https://arXiv.org/abs/2010.15856
https://doi.org/10.1103/PhysRevD.102.123009
https://doi.org/10.1103/PhysRevD.102.123009

