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We present numerical waveforms of gravitational-wave echoes from spinning exotic compact objects
(ECOs) that result from binary black hole coalescence. We obtain these echoes by solving the Teukolsky
equation for the ψ4 associated with gravitational waves that propagate toward the horizon of a Kerr
spacetime, and process the subsequent reflections of the horizon-going wave by the surface of the ECO,
which lies right above the Kerr horizon. The trajectories of the infalling objects are modified from Kerr
geodesics, such that the gravitational waves propagating toward future null infinity match those from
merging black holes with comparable masses. In this way, the corresponding echoes can be used to
approximate to those from nonspinning comparable-mass mergers. For boundary conditions at the ECO
surface, we adopt recent work using the membrane paradigm, which relates ψ0 associated with the horizon-
going wave and ψ4 of the wave that leaves the ECO surface. We obtain ψ0 of the horizon-going wave from
ψ4 using the Teukolsky-Starobinsky relation. The echoes we obtain turn out to be significantly weaker than
those from previous studies that generate echo waveforms by modeling the ringdown part of binary black
hole coalescence waveforms as originating from the past horizon.
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I. INTRODUCTION

The detection of binary black hole (BBH) mergers, e.g.,
GW150914 [1], and binary neutron star (BNS) collisions,
e.g., GW170817 [2], has opened the era of gravitational
wave (GW) astronomy. In the third observing run of
Advanced LIGO [3] and Virgo [4], completed in March
2020, the upgraded detectors reached further in space and
observed a significantly increased number of events. The
LIGO-Virgo Collaboration has confirmed 50 GWevents in
total during the first, second, and the first half of the third
observing runs (as of October 1st, 2019) [5,6]. With this
new messenger to observe signals from strong gravity
regime, we are now able to test theories of gravity in ways
that was inaccessible before [7–10].
In general relativity (GR), black holes (BHs) are the

standard models for compact stellar remnants of the gravi-
tational collapse of massive stars at the end of their lives and

for massive objects at centers of galaxies. However, exotic
matter equations of states [11], phase transitions [12,13], or
effects of quantum gravity [14–17] allow the existence of
Exotic Compact Objects (ECOs), whose external spacetime
has the same geometry as a BH—except in a small region
near the horizon (i.e., with size ≪M, where M is the BH
mass) [18–20]. Searching for and detecting ECOs would
push the frontier of fundamental physics. Without detection,
upper limits on ECO properties derived from the search can
be used to quantitatively test “how black are BHs,” thereby
confirming the existence of the event horizon, the boundary
of a region within which signals cannot be sent to distant
observers.
Since the ECOs have nearly the same external spacetime

geometry as BHs, geodesic motions around them are iden-
tical to those around BHs, therefore one way to probe ECOs
is through tidal interactions during a binary inspiral process
[21–24]. An additional approach is via GWechoes [25–27],
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namely the GWs reflected from the near-horizon region
of the final ECO formed during the merger process. One
prominent feature of these echoes is that the lag of
echoes behind the main wave corresponds to the expo-
nentially small distance between the ECO surface and
the location of the horizon. Thus, GW echoes can be
used to probe even Planck-scale structures near the
horizon [25]. Even though there is still no statistically
significant evidence for echoes in existing GW data
[28–37], echo signals would be a promising candidate
for probing physics beyond GR.
Many studies about GWechoes have been carried out for

spherically symmetric, nonspinning ECOs, whose external
spacetime is Schwarzschild. For instance, Mark et al.
studied echo modes of scalar waves in some ECO models
by solving the scalar perturbation equations with reflecting
boundaries [38]. Du et al. solved GWecho modes based on
the SN formalism and studied its contribution to stochastic
background [39]. Huang et al. developed the Fredholm
method and a diagrammatic representation of echo solution
for general wave equations [40]. Maggio et al. studied the
ringdown of nonspinning ECOs [41]. Recently, another
approach called the close limit approximation [42–45] was
adopted by Annulli et al. to compute echoes from the head-
on collision of two equal-mass ECOs [46]. The authors
used the Brill-Lindquist initial data [47] and treated the
merger and ringdown stages as a single, distorted spheri-
cally symmetric ECO.
Astrophysically, we expect that merging BHs are spin-

ning, at least to some extent. Indeed, the LIGO-Virgo
Collaboration has detected mergers of spinning binary BHs
[6]. Inferring these spins has led to better understandings of
these BHs’ formation history and their stellar environments
[48]. More importantly, even nonspinning merging BHs
will generally result in significantly spinning remnants.
For example, an equal-mass, nonspinning BH binary in a
quasicircular merger leads to a final BH with J=M2 ∼ 0.7
(with units G ¼ c ¼ 1), where J is the remnant angular
momentum. This motivates the study of GW echoes
from spinning ECOs, which has been carried out in
Refs. [18,20,49–51].
In this paper, we assume that the external spacetime

geometry of a spinning ECO is Kerr, except in a small
region with distance ≪M near the horizon, and pose
a boundary condition at the boundary of that region.
Here we need to point out that, while in the spherically
symmetric case, one can use the Birkhoff’s theorem to
argue that the exterior spacetime of a spherical ECO should
be Schwarzschild in GR, a similar argument does not exist
for spinning objects. For spinning ECOs, one eventually
needs to consider the composite effects of spacetime
deviation and near-horizon boundary condition. Note that
mapping exterior spacetime geometry of compact objects
(or “bumpy BHs”) has been a subject of extensive
studies [52–54]. Recent studies have further obtained

nonspherically symmetric fuzzball geometries that arise
from spacetime microstates [15,55].

Let us now get to effects of the boundary condition at the
ECO surface. Nakano et al. [50] have constructed a model
for echoes from spinning ECOs, where the asymptotic
behavior of solutions to the Teukolsky equation is used to
analyze the reflectivity and echo modes, but the incident
wave toward the horizon is phenomenological. Micchi and
Chirenti studied effects of the rotation using a scalar charge
falling into a Kerr spacetime [56]. Wang et al. [57], Maggio
et al. [51], and Micchi et al. [58] obtained echo wave-
forms from spinning ECOs by first deducing waves that
propagate toward the horizon from waves that propagate
toward infinity, and then imposing a reflectivity for Sasaki-
Nakamura (SN) [56,57] or Detweiler [51] functions. Sago
et al. [59] studied echoes from a particle radially falling into
a spinning ECO, also imposing boundary conditions in
terms of SN functions.
One caveat when studying echoes from ECOs comes

from the instability of ECOs, either from the structure of
the ECO itself, including ergoregion instability for spin-
ning ECOs [60,61] and the existence of stable photon
orbits [62], or from the energy content of GWs that
propagate toward the ECO, which may induce the ECO to
collapse [63,64]. Despite all such instabilities, we advo-
cate keeping an open mind about echoes. The ergoregion
instability can either be quenched or lead to nonspinning
ECOs. We might also argue that instabilities that cause
gravitational collapse can simply cause the event horizon
to grow, while nonlocal effects of quantum gravity would
keep appearing right outside the new location of the
growing event horizon.
In this article, we construct echoes from spinning ECOs

using the Teukolsky formalism. We evolve a point particle
in quasi-circular, equatorial orbits, until it finally plunges
into a Kerr BH. Our approach improves from previous
work, notably Refs. [51,57,58], by: (i) using gravitational-
wave waveform toward the horizon directly computed in
the Teukolsky formalism, and (ii) using a boundary con-
dition on the ECO surface that is connected to tidal tensors
measured locally by zero-angular-momentum observers
floating right above the horizon (fiducial observers used
in the membrane paradigm). Even though the boundary
conditions we apply here are still phenomenological, by
contrast to the application of conditions directly on
Detweiler and SN functions, they at least have physical
meanings that are connected to tidal deformations. Since
the current focus of GW astronomy is on binaries with
nearly comparable masses, we tune our point-particle
trajectory in such a way that the waveform at infinity
matches the numerical relativity (NR) surrogate waveform
from nonspinning binaries with comparable masses; this is
similar to the approach taken by Ref. [58]. In this way, we
provide approximations for echoes from comparable-mass,
nonspinning binaries.
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The paper is organized as follows. In Sec. II, we briefly
review the Teukolsky formalism and obtain trajectories of
particles in Kerr spacetime whose GWs (in terms of the
Newman-Penrose ψ4 scalar) at infinity match those from
comparable-mass binaries that merge from quasicircular
inspirals. In Sec. III, we discuss how to obtain echoes at
infinity from ψ4 waveforms that go down the horizon, in
particular deducing a conversion factor from the echoes
obtained in the SN formalism to those obtained by
imposing more physical boundary conditions on curvature
perturbations. In Sec. IV, we discuss features of the GW
echoes, demonstrating the effect of the conversion factor
obtained in the previous section, and highlight a subtlety
that leads to discrepancy between ψ4 directly obtained
using the Teukolsky formalism and ψ4 obtained using
approximations imposed by Refs. [51,57,58]. The main
conclusions are summarized in Sec. VI.

II. PARTICLE FALLING INTO A BLACK HOLE

In this section, we briefly review the computation of
waveforms of a particle falling into a Kerr BH, both at
infinity and near the horizon. We note that the Teukolsky
formalism itself only applies to the high-mass-ratio limit.
However, we follow the prescription of the effective one-
body (EOB) and Teukolsky formalism [65] and construct
particle trajectories in the Kerr spacetime that decay due to
radiation reaction, in such a way that the waveforms at
infinity match those from comparable-mass binaries
obtained from NR surrogate models [66]. In this way,
we obtain approximations for echo waveforms even for
comparable-mass binaries. Here the study is restricted
to nonspinning binaries. The mass M and the angular
momentum per unit mass a of the Kerr spacetime corre-
spond to those of the remnant formed by the binary merger,
which can be obtained from the initial total mass and mass
ratio of the binary via NR surrogate models [67,68].

A. GWs emitted by a particle falling into a Kerr BH

Let us first consider GWs emitted by a particle
falling into a Kerr BH. We use the Newman-Penrose
scalar curvature ψ4, which can be decomposed into
frequency and angular components in the Boyer-Lindquist
coordinates

ψ4ðt; r; θ;ϕÞ ¼ ρ4
Z þ∞

−∞
dω

X
lm

RlmωðrÞ−2SaωlmðθÞeimϕe−iωt;

ð1Þ

with ρ ¼ ðr − ia cos θÞ−1. Here −2S
aω
lm is the spin-weighted

spheroidal harmonic with eigenvalue Elm [69], while Rlmω

is the solution to the radial Teukolsky equation,

Δ2
d
dr

�
1

Δ
dRlmω

dr

�
− VðrÞRlmω ¼ −T lmωðrÞ; ð2Þ

with the potential

VðrÞ ¼ −
K2 þ 4iðr −MÞK

Δ
þ 8iωrþ λ; ð3Þ

where K ¼ ðr2þa2Þω−ma, λ¼Elmþa2ω2− 2amω− 2,
and Δ ¼ r2 − 2Mrþ a2. The source term T lmωðrÞ is
determined by the mass and trajectory of the particle
(discussed in Sec. II B).
Homogeneous solutions for the radial Teukolsky equa-

tion have two types of asymptotic behaviors each, near the
horizon and at infinity, respectively. We are particularly
interested in two combinations of such solutions, namely
the one that is purely ingoing near the horizon,

RH
lmωðrÞ ¼

�
Bhole
lmωΔ2e−ipr� r → rþ

Bout
lmωr

3eiωr� þ r−1Bin
lmωe

−iωr� r → ∞;
ð4Þ

and the one that is purely outgoing at infinity

R∞
lmωðrÞ ¼

�
Dout

lmωe
ipr� þ Δ2Din

lmωe
−ipr� r → rþ

D∞
lmωr

3eiωr� r → ∞:
ð5Þ

Here we define

p ¼ ω −mΩþ; Ωþ ¼ a=ðr2þ þ a2Þ; ð6Þ

with Ωþ being the horizon’s rotation angular frequency,
and the tortoise coordinate r� as

r� ¼ rþ 2Mrþ
rþ − r−

log
r − rþ
2M

−
2Mr−
rþ − r−

log
r − r−
2M

: ð7Þ

The quantities Bin;out;hole;∞ and Din;out;hole;∞ are related to
the transmissivity and reflectivity of the compact object;
their values here are subject to a choice of conventions,
for which we follow the convention of Hughes [71]. We
compute these homogeneous solutions numerically with
the help of the SN formalism based on the codes developed
in Refs. [72,73] (see review in the Appendix A and
Appendix B).
When the central object is a BH, we look for solutions

that are only ingoing at the horizon and only outgoing at
infinity, by imposing

RBH
lmω ¼

�
Z∞BH
lmω r3eiωr� r → ∞

ZHBH
lmω Δ2e−ipr� r → rþ:

ð8Þ

This uniquely determines a solution that can be obtained
from the Green’s function approach,
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RBH
lmωðrÞ ¼

R∞
lmωðrÞ

2iωBin
lmωD

∞
lmω

Z
r

rþ
dr0

RH
lmωðr0ÞT lmωðr0Þ

Δðr0Þ2

þ RH
lmωðrÞ

2iωBin
lmωD

∞
lmω

Z
∞

r
dr0

R∞
lmωðr0ÞT lmωðr0Þ

Δðr0Þ2 ;

ð9Þ

from which we can read off

Z∞BH
lmω ¼ 1

2iωBin
lmω

Z
∞

rþ
dr0

RH
lmωðr0ÞT lmωðr0Þ

Δðr0Þ2 ; ð10Þ

and

ZHBH
lmω ¼ Bhole

lmω

2iωBin
lmωD

∞
lmω

Z
∞

rþ
dr0

R∞
lmωðr0ÞT lmωðr0Þ

Δðr0Þ2 : ð11Þ

In particular, at r → þ∞, ψ4 is related to GW polarizations
hþ and h× by

ψ4ðr → ∞Þ ¼ 1

2
ð  hþ − i  h×Þ: ð12Þ

The GWs we observe at a distance r, latitude angle Θ, and
azimuthal angle Φ, is given by:

hBHþ − ihBH× jðr;Θ;Φ;tÞ

¼ −
2

r

X
lm

Z þ∞

−∞
dω

Z∞
lmω

ω2 −2S
aω
lmðΘ;ΦÞe−iωðt−r�Þ: ð13Þ

Here we note that the spin-weighted spheroidal harmon-
ics differ from the spin-weighted spherical harmonics, and
are frequency dependent. In NR waveform catalogs, as well
as in surrogate models, GW strains at infinity are decom-
posed into spin-weighted spherical harmonics

r½hNRþ − ihNR× �jðΘ;Φ;tÞ ¼
X
lm

hNRlmðtÞ−2YlmðΘ;ΦÞ: ð14Þ

In this paper, we treat the mode-mixing in the spheroidal
harmonics as negligible, writing −2S

aω
lm ≈ −2Ylm. This

allows us to make a simple connections between Z∞
lmω

and hNRlm:

−2
Z∞
lmω

ω2
↔ hNRlmω: ð15Þ

We also focus on the l ¼ 2 contributions, with m ¼ �2.
Note that −2Y22ðΘ;ΦÞ and −2Y2−2ðΘ;ΦÞ predominantly
emit toward the northern hemisphere (Θ < π=2) and
southern hemisphere (Θ > π=2), respectively. Both m ¼
þ2 and −2 contributions are equally important to des-
cribe the “(2,2)” waveform. Furthermore, for nonprecess-
ing binaries with angular momentum along the z axis

(Θ ¼ 0), we have hlmðfÞ ¼ h�l−mð−fÞ. The studies in this
paper are based on this scenario.

B. Trajectory of particles in Kerr
and the Teukolsky source terms

We aim to use Teukolsky waveforms to approximate
those from coalescence of BHs with comparable masses.
First of all, in order for the ringdown frequencies to
match up, we set the mass and spin of the Kerr background
spacetime equal to those of the remnant BH of a
comparable-mass binary merger. We then evolve particle
trajectories by modifying the Kerr geodesic equation,
adding generalized forces that implement the effect of
radiation reaction, in such a way that the late inspiral,
merger, and ringdown parts of the waveforms match those
from comparable-mass binaries, obtained from surrogate
models.
For a trajectory in the Boyer-Lindquist system, para-

metrized as xμðτÞ ¼ ðtðτÞ; rðτÞ; θðτÞ;ϕðτÞÞ, our modified
equations are written as

dxμ

dτ
¼ uμ; ð16Þ

duμ

dτ
¼ −Γμ

ρσuρuσ þ F μ: ð17Þ

The radiation reaction force F μ can be obtained from the
GW energy flux _E, angular momentum flux _Lz, and rate of
change of Carter constant _Q, by solving the following
equations:

_Eut ¼ −gttF t − gtϕFϕ; ð18Þ

_Lzut ¼ gtϕF t þ gϕϕFϕ; ð19Þ

_Qut ¼ 2g2θθu
θF θ þ 2cos2θa2E _Eþ 2cos2θ

Lz
_Lz

sin2θ
; ð20Þ

gμνuμF ν ¼ 0: ð21Þ

In this paper, we focus on nonprecessing binaries. Hence
we consider equatorial circular orbits and impose _Q ¼ 0; _E
and _Lz are determined phenomenologically such that the
Teukolsky waveforms (in the BH case) match those
obtained from NR. We also assume that the ECO does
not modify these forces.
From the numerical trajectory xμðτÞ, or alternatively the

3-dimensional trajectory as a function of time rðtÞ; θðtÞ;
ϕðtÞ, the source term in the Teukolsky equation is given by
(see Appendix A for details)
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T lmωðr0Þ ¼
Z

∞

−∞
dtei½ωt−mϕðtÞ�Δ2ðr0Þ

× f½Ann0 þ Anm̄0 þ Am̄ m̄ 0�δðr0 − rðtÞÞ
þ ∂r0 ð½Anm̄1 þ Am̄ m̄ 1�δðr0 − rðtÞÞÞ
þ ∂2

r0 ½Am̄ m̄ 2δðr0 − rðtÞÞ�g: ð22Þ

Plugging this source term into Eqs. (10) and (11), we obtain
amplitudes of GWs toward infinity,

Z∞
lmω ¼ 1

2iωBin
lmω

Z þ∞

−∞
dt ei½ωt−mϕðtÞ�

×

�
RH
lmωðrðtÞÞ½Ann0 þ Anm̄0 þ Am̄ m̄ 0�

−
dRH

lmω

dr

����
rðtÞ

½Anm̄1 þ Am̄ m̄ 1� þ
d2RH

lmω

dr2

����
rðtÞ

Am̄ m̄ 2

�
;

ð23Þ

and toward the horizon,

ZH
lmω ¼ Bhole

lmω

2iωD∞
lmωB

in
lmω

Z þ∞

−∞
dtei½ωt−mϕðtÞ�

×

�
R∞
lmωðrðtÞÞ½Ann0 þ Anm̄0 þ Am̄ m̄ 0�

−
dR∞

lmω

dr

����
rðtÞ

½Anm̄1 þ Am̄ m̄ 1� þ
d2R∞

lmω

dr2

����
rðtÞ

Am̄ m̄ 2

�
:

ð24Þ
In the above integrals, the integration variable t para-
metrizes locations on the trajectory of the infalling particle,
with t → −∞ corresponding to the beginning of the
infall, and t → þ∞ corresponding to when the particle
approaches rþ. The integrand approaches zero for
t → þ∞. For t → −∞, we apply a window which selects
part of the trajectory within a finite distance from the BH/
ECO. We note that as t → þ∞, although the individual
terms, e.g., Am̄ m̄ 0 in Eq. (24) can diverge, the sum of those

FIG. 1. Comparison between the NR surrogate model NRSur7dq4 and waveforms generated from the Teukolsky code with
phenomenological trajectory described by Eq. (21) (see text for details), for q ¼ 1 (top two panels) and q ¼ 4 (bottom two panels).
The time t is shifted so that the waveform starts at a certain frequency during inspiral, which is consistent with the starting time of the
phenomenological trajectory.
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terms approaches zero due to the cancellation between
the terms.

C. Waveform at infinity: Calibration
with surrogate models

In order to obtain the trajectory that leads to a Teukolsky
waveform matching the surrogate waveform, we take the
(2,2) component of the surrogate waveform, evaluate its
instantaneous angular frequency ωð2;2Þ, as well as its rate of
change _ωð2;2Þ, and make sure that, before reaching the
innermost stable circular orbit (ISCO), the orbital fre-
quency of the particle follows the a corresponding evolu-
tion with ωorb ¼ 1=2ωð2;2Þ by adjusting the radiation
reaction forces. We turn off the radiation reaction forces
after the particle reaches ISCO. The amplitude of the final
waveform from this orbit is rescaled so that the normali-
zation is the same as that of the surrogate model. Note that
the time axis of the surrogate model waveform is also
rescaled to units of remnant mass.
To make comparisons, we take ðl; mÞ ¼ ð2; 2Þ, compute

Z∞BH
22ω , obtain the time-domain waveform via an inverse

Fourier transform [see Eq. (13)], and then compare the
waveform with the NR surrogate model. Figure 1 shows the
waveforms for nonspinning binaries with mass ratio q ¼ 1
and q ¼ 4 obtained by “NRSur7dq4” model [74], com-
pared with our approximate Teukolsky-based waveforms.
For the portion of the waveform shown in the figure, using
Advanced LIGO noise spectrum at the design sensitivity,
the match [75] between the Teukolsky and the NR
surrogate waveforms are above 0.99 for all M between
10 M⊙ and 500 M⊙.

III. CONSTRUCTING ECHOES

In this paper, we assume that the ECO spacetime is
identical to a Kerr spacetime except for r�=M≪−1. Since
GW echoes are mainly sourced by the plunge part of the
trajectory, which is not significantly affected by the
radiation reaction, we can neglect the modification to
the trajectory due to the ECO surface. For these reasons,
as a particle falls toward the ECO, we keep the same
Teukolsky equation, with the source term in Eq. (2) given
by Eq. (22). However, we need to change the boundary
condition for ρ−4ψ4 to a more general form

RECO
lmω ¼

�
Z∞ECO
lmω r3eiωr� r → ∞

Zin
lmωΔ2e−ipr� þ Zout

lmωe
ipr� r → rþ;

ð25Þ

where Zout
lmω appears due to the “reflection” from the ECO

surface, while Zin
lmω is modified since additional waves

propagate toward the ECO upon reflection from the inner
side of the Kerr potential barrier near the light ring.
In Sec. III A, we first prescribe reflectivity within the SN

framework, following previous literature. However, it turns
out that for Kerr spacetime, it has a more direct physical

meaning to impose boundary conditions in terms of ψ0 and
ψ4, which are tied to curvature perturbations experienced
by observers near the future and past horizons, respectively.
We obtain echo formulas from such boundary conditions in
Sec. III B. In Sec. III C, we review the reflectivity models
used in subsequent sections.

A. Boundary condition imposed on SN functions

1. SN formalism and boundary condition

The simplest way to describe the ECO’s reflection of
GWs is to use the SN formalism (see Appendix B). We use
fields Xlmω that satisfies the SN equation

d2Xlmω

dr2�
− FðrÞ dXlmω

dr�
−UðrÞXlmω ¼ 0: ð26Þ

The transformation between the SN function and
Teukolsky radial function is given by

Rlmω ¼ 1

η

��
αþ β;r

Δ

�
ΔXlmωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p −
β

Δ
d
dr

ΔXlmωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
	
: ð27Þ

The potentials FðrÞ andUðrÞ in Eq. (26) and functions α, β,
and η in Eq. (27) can be found in Eqs. (3.4)–(3.9) of
Ref. [76] (also see Appendix B). To derive RH and R∞, we
use two homogeneous solutions of the SN equation, which
have purely sinusoidal dependence on r� due to the short-
ranged potential:

XH
lmωðrÞ ¼

�
Ahole
lmωe

−ipr� r → rþ
Aout
lmωe

iωr� þ Ain
lmωe

−iωr� r → ∞;
ð28Þ

X∞
lmωðrÞ ¼

�
Cout
lmωe

ipr� þ Cin
lmωe

−ipr� r → rþ
C∞
lmωe

iωr� r → ∞:
ð29Þ

Because these X’s are directly used to compute the
corresponding R’s, there are relations between the
amplitudes A, C here and B, D in Eqs. (4) and (5),
given in Appendix B. For convenience, we can set
C∞
lmω ¼ Ahole

lmω ¼ 1. Using linearity, we can also write

XECO
lmω ¼ ξinlmωe

−ipr� þ ξoutlmωe
ipr� ; r� → −∞ ð30Þ

with

ξoutlmω ¼ RECO
lmωξ

in
lmω; ð31Þ

where RECO
lmω is the ECO reflectivity. This is the baseline

approach taken by most previous literature [39,51,57,58],
except for [50], where using energy reflectivity is pro-
posed. As discussed in more detail later in this paper,
although jRECO

lmωj2 corresponds to energy reflectivity in the
Schwarzschild case, it is not generally true for Kerr BHs, or
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spinning ECOs. We introduce more physically motivated
reflectivites in Sec. III C and comment on additional
subtleties of the SN formalism. At this stage, by comparing
Eq. (30) with Eq. (25), as well as Eqs. (4), (5), (28), and
(29), we write

ξinlmω

Zin
lmω

¼ Cin
lmω

Din
lmω

¼ Ahole
lmω

Bhole
lmω

¼ 1

Bhole
lmω

;
ξoutlmω

Zout
lmω

¼ Cout
lmω

Dout
lmω

: ð32Þ

Since the conversion relation (27) between SN and
Teukolsky functions involves derivatives, these formulas
are only correct when the source terms vanish rapidly
enough—which is true for sources that are bounded outside
the horizon, but not necessarily true for a particle that
plunges into the horizon. See Sec. III B 1 for more
discussions.

2. Echoes in the SN formalism

In the BH case, we obtain

XBH
lmωðrÞ ¼

�
ξ∞BH
lmω eiωr� r → ∞
ξHBH
lmω e

−ipr� r → rþ;
ð33Þ

in the SN formalism. Then in the ECO case, we need to
superimpose an additional homogeneous solution to form a
new solution,

XECO
lmωðrÞ ¼ XBH

lmωðrÞ þ cX∞
lmωðrÞ: ð34Þ

We assume that the source term does not change for ECOs.
After imposing boundary condition (30) at the ECO sur-
face, we obtain

c ¼ RECO
lmω

Cout
lmω −RECO

lmωC
in
lmω

ξHBH
lmω ≡Klmωξ

HBH
lmω : ð35Þ

Using the asymptotic form of X∞
lmω, we obtain

ξ∞ECO
lmω ¼ Klmωξ

HBH
lmω þ ξ∞BH

lmω : ð36Þ

We can further write

Klmω ¼ RECO
lmωT

BH
lmω

1 −RECO
lmωR

BH
lmω

; ð37Þ

where RBH
lmω and T BH

lmω are amplitude reflectivity and
transmissivity of the BH potential barrier—or the SN
potential in Eq. (26); in terms of asymptotic expressions
of X∞

lmω, they can be written as

T BH
lmω ¼ 1

Cout
lmω

; RBH
lmω ¼ Cin

lmω

Cout
lmω

: ð38Þ

In Eq. (36), the outgoing wave at infinity, in the case of an
ECO, is the outgoing wave in the case of a BH plus echoes,
which are determined by the horizon-going wave in the
BH case.

3. Echoes in Teukolsky functions

Using linearity of the transformation between the SN and
Teukolsky functions, we have

ξ∞lmω

Z∞
lmω

¼ Aout
lmω

Bout
lmω

¼ C∞
lmω

D∞
lmω

¼ 1

D∞
lmω

; ð39Þ

and

ξBHlmω

ZBH
lmω

¼ Cin
lmω

Din
lmω

¼ Ahole
lmω

Bhole
lmω

¼ 1

Bhole
lmω

: ð40Þ

Here we use the conventions C∞
lmω ¼ Ahole

lmω ¼ 1. We can
rewrite Eq. (36) in terms of the Teukolsky functions

Z∞ECO
lmω ¼ Z∞BH

lmω þ RECO
lmωR

BH
lmω

1 −RECO
lmωR

BH
lmω

Z∞eff
lmω; ð41Þ

with

Z∞ eff
lmω ≡D∞

lmω

Din
lmω

ZHBH
lmω : ð42Þ

For very compact ECOs, substantial phase shift exists in
RECO

lmω, causing substantial time delays between neighbor-
ing echoes, which allows

Z∞ECO
lmω ¼ Z∞BH

lmω þ
Xþ∞

n¼1

ðRECO
lmωR

BH
lmωÞnZ∞eff

lmω: ð43Þ

Here the nth item is effectively the nth echo in the full
waveform. The physical understanding of the expansion
above is that the nth echo is reflected n times by the ECO
surface and n − 1 times by the potential barrier (of SN or
Teukolsky equations), propagates for an additional 2n
times the distance between the potential barrier and the
ECO surface (in terms of r�), and finally transmits through
the potential barrier.
We can obtain GW strain h from Z via Eq. (13).

Equations. (41) and (43) reduce to those in Maggio et al.
[51] and Wang et al. [57] (in their “inside” prescription), if
we make the substitution of

“inside” prescription∶ Z∞eff
lmω ← Z∞BHRD

lmω : ð44Þ

Here Z∞BHRD
lmω is the ringdown part of the waveform at

infinity in the BH case.
The quantity Z∞eff

lmω, as defined in Eq. (42), has the
following physical meaning. If we replace the spacetime of
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a particle plunging into Kerr with a linear perturbation of
Kerr, and replicate the waveform at infinity by sending in
a wave from the past horizon, in such a way that the
waveform toward the future horizon agrees with ZHBH,
then the waveform at infinity is given by Z∞eff

lmω.
The situation is illustrated in Fig. 2. As we can see

from the figure, in the region “above” the trajectory
of the particle, we have a vacuum spacetime, and
½ZHBH�v>v0 ¼ ½ðDin=D∞ÞZ∞BH�v>v0 . It is then plausible
that Z∞eff

lmω can be approximated by the ringdown part
of Z∞BH

lmω , or Z∞BHRD
lmω , as Maggio et al. [51] and Wang

et al. [57] have done in the “from inside” prescription
[see Eq. (44)].
However, our results turn out to differ rather significantly

from these prescriptions. More details are given in Sec. IV
C. Here we point out two features, namelyD∞

lmω=D
in
lmω ∼ 0

when ω ∼mΩþ, and D∞
lmω=D

in
lmω diverges quickly when

ω → þ∞. This means that Z∞eff
lmω vanishes when ω ∼mΩþ

(i.e., for radiations that are co-rotating with the horizon),
and tends to infinity as ω → þ∞ [77]. This is clearly
different from Z∞BH

lmω .
Therefore, we write

Z∞ECO
lmω ¼ Z∞BH

lmω þ RECO
lmωT

BH
lmω

1 −RECO
lmωR

BH
lmω

Z̃HBH; ð45Þ

where we define

Z̃HBH ≡D∞
lmω

Bhole
lmω

ZHBH
lmω ; ð46Þ

which remains finite as ω → þ∞. By absorbing the
D∞

lmω=B
hole
lmω factor, we have

Z̃HBH ¼ 1

2iωBin
lmω

Z þ∞

rþ
dr0

R∞ðr0ÞT lmωðr0Þ
Δ2ðr0Þ

¼ 1

2iωBin
lmω

Z þ∞

−∞
dtei½ωt−mϕðtÞ�

×

�
R∞
lmωðrðtÞÞ½Ann0 þ Anm̄0 þ Am̄ m̄ 0�

−
dR∞

lmω

dr
jrðtÞ½Anm̄1 þ Am̄ m̄ 1�

þ d2R∞
lmω

dr2
jrðtÞAm̄ m̄ 2

�
: ð47Þ

This is related to Z̃∞BH by replacing the Green function RH

with R∞ [cf. Eqs. (10)–(11)].

FIG. 2. Spacetime diagrams illustrating generation of echoes when a particle plunges into a massive ECO (left panel), and the
construction of Z∞ eff from ZHBH (right panel), with Z∞ eff being the transmitted wave at future null infinity. In the left panel, we label
v ¼ v0 at which the particle plunges into the future horizon; at this point ZHBH has a local feature. In the upper-right region of the panel,
we also label the approximate locations of ringdown and the first echo in Z∞ECO. In the right panel, we indicate that one needs to supply
the incoming wave from the past horizon, in order for the BH barrier to reflect it and generate ZHBH.
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B. Boundary conditions directly imposed
on Teukolsky functions

In this section, we discuss some subtleties in the SN
formalism, and directly impose boundary conditions on
Teukolsky functions. The SN formalism remains as a
computational tool in obtaining homogeneous solutions
to the Teukolsky equation.

1. Subtleties in the SN formalism

As argued by Nakano et al., from the Wronskian of the
radial equations, the energy reflectivity, in terms of the SN
reflectivity RECO, is given by [50]

_Eout

_Ein

¼ jClmωdlmωj2
16ð2MrþÞ5ðp2 þ 4ϵ2Þðp2 þ 16ϵ2Þjη2ðrþÞj

jRECO
lmωj2;

ð48Þ

with

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
=ð4MrþÞ ð49Þ

equal to half the surface gravity. More specifically, this is
the energy flux that emerges from the past horizon divided
by the energy flux that goes into the future horizon [78].
Note that the modulus of this conversion factor is not unity
for a=M ≠ 0 (see Fig. 3).
As we use the SN formalism to derive echoes, we need to

note two important subtleties: (i) as we convert between X
and R, it is important to keep both the first two leading
orders in r − rþ near the horizon, and keep those in 1=r
near infinity and (ii) the particle plunges toward the
horizon, and therefore the source term for Teukolsky and

SN equations does not vanish as r� → −∞. Such subtleties
affect the evaluation of ingoing energies down the horizon,
as well as the boundary conditions near the ECO surface.
A particular example of such subtleties is as follows.

As one tries to evaluate the SN source terms, there are two
degrees of freedom in the form of the integration constants.
They lead to different leading-order field amplitudes at
infinity (in terms of 1=r) and at the horizon (in terms of
r − r−). Only after accounting for the correction terms up to
the second order, one can obtain the correct Teukolsky
amplitudes. This presents an ambiguity for how to impose
boundary conditions for X.

2. Physical boundary conditions from ψ0 and ψ4

In a companion paper [78], we have determined the
relation between Zout

lmω and Zin
lmω by considering tidal tensor

fields of fiducial observers near the horizon. To summarize
the results, we connect ψ0 and ψ4 to the tidal tensors of
ficucial observers near the horizon:

E ∼ −
Δ
4Σ

ψ0 −
Σ
Δ
ψ�
4; Σ ¼ r2 þ a2cos2θ: ð50Þ

Note that it is the ingoing piece of ψ0 (∼Δ−2e−ipr�) and the
outgoing piece of ψ4 (∼eþipr�) that dominate this expres-
sion, with both contributing to E at the order of 1=Δ since
the effect of GWs is heavily blue-shifted for near-horizon
observers. Since the ingoing piece of ψ0 is externally
applied to the ECO, while the outgoing piece is generated
by the ECO, the ratio of these two terms can then be viewed
as a local tidal Love number of the ECO.
We can find the ingoing ψ0 components via the

Teukolsky-Starobinsky identity

(a) (b)

FIG. 3. The real (blue) and imaginary (green) parts and absolute values (black) of the reflectivity conversion factor [for
ðl; mÞ ¼ ð2; 2Þ] as a function of ω for (a) a=M ¼ 0 and (b) a=M ¼ 0.7. The vertical line at nonzero ω in the right panel indicates
ω ¼ mΩþ. For a nonspining ECO, the SN and Teukolsky reflectivities are related to each other with a pure phase shift; while for a
spinning ECO, the factors have substantial frequency dependence, but remain at the order of unity at frequencies interested for compact
binary mergers.

GRAVITATIONAL-WAVE ECHOES FROM SPINNING EXOTIC … PHYS. REV. D 104, 104005 (2021)

104005-9



Y in
lmω ¼ σlmωZin

lmω; ð51Þ

with

σlmω ¼ 64ð2MrþÞ4ipðp2 þ 4ϵ2Þð−ipþ 4ϵÞ
Clmω

: ð52Þ

Here Clmω is the Starobinsky constant, given by

jClmωj2 ¼ ðQ2 þ 4aωm − 4a2ω2Þ
× ½ðQ − 2Þ2 þ 36aωm − 36a2ω2�
þ ð2Q − 1Þð96a2ω2 − 48aωmÞ
þ 144ω2ðM2 − a2Þ;

ImClmω ¼ 12Mω;

ReClmω ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jClmωj2 − ðImClmωÞ2

q
; ð53Þ

with Q ¼ Elm þ a2ω2 − 2aωm, where Elm is the sphe-
roidal eigenvalue [see discussions below Eq. (1)]. This has
previously been applied to computing energy and angular
momentum carried by GWs into the horizon. However, we
need to be careful here because the Starobinsky-Teukolsky
identity may not work in the presence of source terms—
while here we do have a particle plunging into the horizon.
This remains an unaddressed issue in this paper, but is
addressed in [79].
By considering tidal distortions of zero-angular-momen-

tum fiducial observers very close to the horizon, we obtain

Zout
lmω ¼ ð−1Þmþ1

4
RECOT

lmω Y in
l−m−ω: ð54Þ

Here the Teukolsky reflectivityRECOT
lmω can be related to the

response of the ECO to external driving. Its modulus,
jRECOT

lmω j, corresponds to the energy reflectivity of the
ECO surface. Here we have ignored the mixing between
different l-modes, which is a general feature due to the
distortion of spacetime geometry by the spin of the ECO.
As it turns out, we also need to consider ðZout

lmω; Z
out
l−m−ωÞ

and ðZin
lmω; Z

in
lm−ωÞ, since generically an ECO couples

between these modes. Nevertheless, in the most commonly
considered situation of an equatorial, quasicircular orbit,
we have

Zlmω ¼ Z�
l−m−ω; ð55Þ

as described by Maggio et al. [51]. This indicates that only
one reflectivity needs to be considered. However, when the
particle has an inclined orbit, relation (55) no longer holds,
and thus the echoes have a more complex form.

Assuming Eq. (55) to hold, we have

Zout
lmω ¼ ð−1Þmþ1

4
σlmωRECOT

lmω Zin
lmω: ð56Þ

Assuming a linear relation between the SN and Teukolsky
functions, we can write

RECO
lmω ¼ Xout

lmω

Xin
lmω

¼ Cout
lmω

Dout
lmω

Din
lmω

Cin
lmω

Zout
lmω

Zin
lmω

: ð57Þ

This leads to

RECO
lmω¼

ð−1Þmþ1

4
σlmω

Cout
lmω

Dout
lmω

Din
lmω

Cin
lmω

RECOT
lmω

¼ð−1Þm4ð2MrþÞ5=2ηðrþÞðp−2iϵÞðpþ4iϵÞ
Clmωdlmω

RECOT
lmω :

ð58Þ

In Fig. 3, we plot the real, imaginary parts and modulus
of RECO=RECOT.
At this stage, aside from subtleties of the Teukolsky-

Starobinsky relation, Eq. (58) provides the reflectivity of
the ECO in the SN frame work, RECO

lmω, in terms of the
physically defined ECO reflectivity, RECOT

lmω . We can insert
Eq. (58) into Eqs. (41) and (45) to obtain echoes that arise
from these physical boundary conditions.

3. Echoes in terms of Teukolsky reflectivity

We can now write echo waveforms in terms of the
amplitudes of Teukolsky functions. In terms of reflectivity,
we have

RECO
lmωR

BH
lmω ¼ RECOT

lmω RBHT
lmω ; ð59Þ

where

RBHT
lmω ¼ ð−1Þmþ1

4
σlmω

Din
lmω

Dout
lmω

: ð60Þ

We can also write

Z∞ECO
lmω ¼ Z∞BH

lmω þ
Xþ∞

n¼1

ðRECOT
lmω RBHT

lmω ÞnZ∞eff
lmω: ð61Þ

Here jRBHT
lmω j2 directly gives the energy reflectivity of

the BH potential barrier, including superradiance at
frequencies ω < mΩþ. The condition jRBHT

lmωR
ECOT
lmω j < 1

needs to be satisfied such that the instability does not
happen in the ECO.
We can also express the echo waveform in terms of the

ingoing ψ0 component toward the horizon in the BH case,
YHBH
lmω , as
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Z∞ECO
lmω ¼ Z∞BH

lmω þ RECOT
lmω J lmω

1 −RECOT
lmω RBHT

lmω

YHBH
lmω ; ð62Þ

where we define

J lmω ¼ ð−1Þmþ1

4

D∞
lmω

Dout
lmω

: ð63Þ

Here, the ingoing ψ0 takes the form of curvature perturba-
tions of fiducial observers near the horizon. Response of
structures in the observers’ frame gives rise to a local
reflectivity RECO

lmω, leading to the outgoing ψ4 with a con-
version factor of ð−1Þmþ1RECO

lmω=4. This ψ4 is then trans-
mitted to infinity with a factor ofD∞

lmω=D
out
lmω applied. Since

Eq. (62) does not use the Teukolsky-Starobinsky trans-
formation (which is only valid for homogeneous solutions),
it provides a more straightforward way to compute echoes.

C. Models for ECO reflectivity

We consider two types of reflectivity, namely a para-
metrized Lorentzian reflectivity and a Boltzman-type
reflectivity [57].

1. Lorentzian reflectivity

In the Lorentzian case, we assume the reflection takes
place at a fixed position of r ¼ b, or r� ¼ b� [Eq. (7)].
At position r ¼ b, the proper distance δ along the radial
direction toward the horizon is given by

δ ¼
Z

b

rþ

ffiffiffiffiffiffi
grr

p
dr ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ a2 cos θ2

Mrþκ

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
b − rþ

p
; ð64Þ

for δ≪M. For BHs with a=M not too close to unity, this
leads to

b� ≈ rþ þ 1

2κ
log

b − rþ
2M

−
r−

2κrþ
log

rþ − r−
2M

≈
1

κ
log

δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ a2 cos2 θ

p : ð65Þ

Another way of measuring the closeness to the horizon is
via the redshift of zero-angular-momentum observers at a
constant r ¼ b, with

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Mrþκ
r2þ þ a2 cos2 θ

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
b − rþ

p
: ð66Þ

For a ≠ 0, both δ and α depend on θ. This can be understood
as the deformation of spherical symmetry due to the spin. In
Ref. [78], we choose to set the reflection surface at a constant
red shift α (i.e., the reflectivity has the same phase for all
values of θ when α is a constant), which leads to mixing
between the modes with different l. In this paper, for

simplicity, we assume that the Lorentzian reflectivity is a
constant at r ¼ b (or r� ¼ b�) and can be written as

RL
lmω ¼ ε

�
iΓ

pþ iΓ

�
e−2ib�p: ð67Þ

Here the quantity ε ∈ ð0; 1Þ parametrizes the amplitude
reflectivity of the ECO surface. Note that R depends on ω
only via p ¼ ω −mΩþ, the frequency of oscillations mea-
sured by observers corotating with the horizon of the Kerr
spacetime (even though it is covered by the ECO surface at
r ¼ b). The quantity Γ characterizes a relaxation rate of the
ECO surface, which corresponds to an impulse response
function ∼e−Γt in the time domain and imposes a low-pass
filtering of waves upon reflection in the frequency domain.
For distant observers,GWswith frequencies jω −mΩþj ≲ Γ
have the highest reflectivity. Note in particular, that peak
reflectivity takes place atω ∼ 2Ωþ form ¼ 2 andω ∼ −2Ωþ
for m ¼ −2. As argued by Ref. [60], as long as ε is not too
close to unity, the ECO is stable under the Lorentzian
reflecitivity. Though Ref. [60] imposes reflectivities on
Detweiler’s function instead of SN function, the meaning
of these parameters do not differ much.
The phase factor e−2ib�p in RL

lmω corresponds to a time
delay of −2b�. If we consider that the ringdown wave is
generated roughly at r� ≈ 0, the term −2b� provides an
estimate of the timedelaybetween themainwave and the first
echo, as well as time delays between neighboring echoes.

2. Boltzmann reflectivity

Considering wave reflection by a thermal atmosphere,
Wang et al. [57] and Oshita et al. [80] proposed the
following Boltzmann reflectivity, given by

RB
lmω ¼ exp

�
−

jpj
2TH

�
exp

�
−i

p
πTH

logðγjpjÞ
	
; ð68Þ

with Hawking temperature

TH ¼ κ

2π
¼ rþ − r−

4πðr2þ þ a2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p

4πMð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ
: ð69Þ

Wemay replace TH with a free parameter TQH to generalize
the Boltzmann reflectivity,

RB
lmω ¼ exp

�
−

jpj
2TQH

�
exp

�
−i

p
πTQH

logðγjpjÞ
	
: ð70Þ

We fix the temperature to the Hawking temperature, i.e.,
TQH ¼ TH, until in Sec. V, where we relax this condition
to explore the detectability of echoes that arise from
a broader class of reflectivity models. Similar to the
Lorentzian reflectivity, RB

lmω depends on ω via p ¼
ω −mΩþ, leading to the peak reflectivity (equal to unity)
for modes with zero frequency viewed by observers
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co-rotating with the horizon, or ω ∼mΩþ, and vanishing
reflectivity for jω −mΩþj ≫ TH.
Boltzmann reflection does not take place at a fixed point,

but for waves oscillating near the quasinormal mode
(QNM) frequency, ω ≈ℜ½ωQNM�. The effective distance
traveled by waves at this frequency, in terms of r�, due to
the phase factor in Eq. (68), is given by

2reff B� ¼ logðγjℜ½ωQNM� −mΩþjÞ=πTH: ð71Þ

Similar to the Lorentzian case, here −2reff B� corresponds to
the time lag between echoes.
As shown in Ref. [57], the Boltzmann reflectivity leads

to a stable ECO. Basically, the BH potential barrier has a
reflectivity higher than unity for ω < mΩþ, and the ECO
simply needs to have a reflectivity that decreases fast
enough as p increases from zero.

IV. HORIZON WAVEFORMS AND ECHOES

In this section, we discuss numerical features of GWs
that go down the horizon and echoes generated using
several models of the ECO reflectivity.

A. Prescriptions for computing echoes

We first review existing prescriptions and show how our
prescription is connected to and differs from these previous
studies. In existing literature, in particular Wang et al. [57]
and Maggio et al. [51], echoes are obtained from the

outgoing GWs at infinity and the SN transmissivities and
reflectivities. In the “inside prescription” of [51,57], one has

h∞ECO ¼ h∞BH þ RECORBH

1 −RECORBH ½h∞BH�RD; ð72Þ

where “RD” represents the ringdown part of the binary black
hole coalescence waveform h∞BH.

In this work, following Ref. [78], we propose that it is in
factRECOT that follows the reflectivity models described in
Sec. III C, since RECOT is directly connected to the tidal
fields measured by fiducial observers near the horizon. One
must take a reflectivity from Sec. III C, and convert it into a
SN reflectivity RECO using Eq. (58).
The second difference between this study and previous

work is that we obtain the ingoing ψ4 wave toward the
horizon directly from Teukolsky formulation. This is
equivalent to obtaining it directly from the SN formalism
for ψ4, e.g., done in Ref. [59] for radially infalling particles.
We insert the ingoing Teukolsky amplitude ZHBH, obtained
from Eq. (24), into Eq. (41) to compute echoes. This is
equivalent to using Eqs. (45)–(47).
We would like to mention that instead of computing

ingoing wave via ψ4 (or the SN formalism for ψ4), one can
also compute the ingoing ψ0 directly, and then use Eq. (62)
to compute echoes. As discussed, since the reflection on the
ECO surface is really a relation between the ingoing ψ0

and the outgoing ψ4, this approach is more direct and not

FIG. 4. Advanced-time trajectory and horizon waveform ZHBH, with and without self field, corresponding to a trajectory fitted to the
NR waveform shown in Fig. 1 (Top row: q ¼ 1, bottom row: q ¼ 4). The left panels show the advanced time verses coordinate time. In
the late stage of the particle plunge, advanced time converges to a constant. All the late-time pieces in the integration for ZHBH

accumulate near this epoch, resulting in a dip near t=M ¼ 1047, as shown in the middle panels. The right panels show the frequency
spectrum jZHBHðωÞj, which peaks at the QNM frequency of the final BH.
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subject to uncertainties of whether the ingoing ψ4 can be
converted into the ingoing ψ0 reliably using the Teukolsky-
Starobinsky relation when the point particle plunges into
the horizon. We leave this for future work.

B. Features of horizon waveforms

In Fig. 4, we plot the horizon waveform ZHBH
22 for q ¼ 1

and q ¼ 4. There is a feature in the time-domain horizon
waveform, right at the advanced time when the particle
plunges into the horizon. This differs from the discussion
for scalar fields by Mark et al. [38], and has to do with
curvature perturbations due to a point particle. As shown in
the figure, the feature occurs at a rather early time in the
horizon waveform. Therefore most of the echo does arise
from GWs that hit the ECO after the point particle plunges
into the horizon.
To compute the energy of the GWs going down the

horizon, we need to convert ψ4 to ψ0, using the Teukolsky-
Starobinsy identity and then the Hartle formula of BH area
increase, which leads to Eq. (4.44) in Ref. [81]:

dEhole

dω
¼

X
lm

64ωpðp2 þ 4ϵ2Þðp2 þ 16ϵ2Þð2MrþÞ5
πjClmωj2

× jZHBH
lmω j2: ð73Þ

This leads to diverging energy going down the horizon,
even for each individual l, as indicated in Fig. 5. However,
at least in the Schwarzschild case, this energy should not
diverge for each l, as shown in Ref. [82]. We suspect that
this is due to the fact that the Teukolsky-Starobinsky
identity does not apply to our case, where the particle
plunges into the horizon, but leave the detailed study for
future work. In our current formulation, the divergence of
the energy flux is a direct consequence of the “self-field”
feature of ZHBH near the location where the particle
plunges. We resolve this issue by replacing the part of
the waveform near plunging time by a spline interpolation
using sample points on the waveform away from the

plunging time. Smoothing out this feature in the time
domain (see middle panels of Fig. 4) can fix the energy
divergence (blue curve in Fig. 5) without significantly
affecting echo waveforms, as discussed later in Sec. IV C 3.

C. Features of echoes

In Fig. 6, we plot the GR and echo waveforms for
binaries with q ¼ 1, using Lorentzian (the first and second
rows) and Boltzman reflectivities (the third and fourth
rows), either imposing them on the SN functions (the first
and third rows), or on Teukolsky functions (the second and
fourth rows) using the prescription described in Ref. [78].
We zoom in and show the details of the first echo in each
row on the right panels.

1. Lorentzian reflectivity

For Lorentzian reflectivity RL, ε simply scales the
magnitude of the nth echo by εn, while j2b�j shifts the
time-domain separationbetweenechoes (effects of ε andbon
the first echo are shown in the left panels of the first two
rows in Fig. 6). The bandwidth Γ of the reflectivity acts
as a low-pass filter in the reference frame of the ECO
surface, therefore it filters out frequency components with
jω −mΩþj≲ Γ. By comparing the first and second rows of
Fig. 6, we find that the new boundary condition, imposed on
curvature perturbations (the second row), gives rise to
slightlyweaker echoes than thosewith the condition imposed
on the SN functions (the first row), but does not modify the
qualitative features of the echoes. This is consistent with the
conversion factor in Eq. (58) with an absolute value smaller
than unity in the frequency band of the echoes, i.e., around
ω ∼mΩþ and higher toward ωQNM (as shown in Fig. 3).

2. Boltzmann reflectivity

The Boltzmann reflectivity RB only has one free
parameter γ, which simply shifts the separation between
echoes (as well as between the first echo and the GR wave)
in the time domain by 2reff B� , as given by Eq. (71). Similar
to the Lorentzian case, the new boundary condition on
curvature perturbations leads to slightly weaker echoes, for
the same reason discussed above.

3. Removal of “self field”

In Fig. 7, we investigate the impact of removing the
feature of ZHBH near the location where the particle
plunges into the future horizon. We compare the original
first echo, the one resulted from a smoothed version of
ZHBH, as well as the one obtained by completely removing
the part before the plunge from ZHBH. The “self-field-
removed” waveform is obtained by smoothing out the
feature near plunging time using interpolation based on
sample points away from the plunging time in ZH. [See
solid lines in the middle panels of Fig. 4.] The “early-part-
removed” waveform is obtained by applying a window

FIG. 5. The ingoing energy spectrum of the merger waveform
with q ¼ 1. The dashed curve shows the energy spectrum directly
computed. The solid curve shows the energy spectrum of the
interpolated waveform after removing the self-field part.
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function to ZH in time domain [See dot-dashed lines in
the middle panels of Fig. 4.]. The window is 0 before the
plunging time and gradually increase to 1 after that (the

same Parke-Taylor window as defined in Appendix B 4.
of [38] with width t2 − t1 ¼ 20M and starting time
t1 ¼ 1060M). The differences caused by the removal

FIG. 6. Echoes for an equal-mass binary merger (q ¼ 1) with Lorentzian (top two rows) and Boltzmann (bottom two rows)
reflectivities imposed on SN or Teukolsky radial functions. Top row: Impose Lorentzian reflectivity on SN functions. The left panel
shows how ϵ and b�=M in Lorentzian reflectivity change the magnitude and separation of echoes ðMΓ ¼ 0.5Þ. The right panel shows
how Γ impacts the shape of the first echo (with ε ¼ 0.2, b�=M ¼ −75). Second row: (similar to the top row) Impose Lorentzian
reflectivity on Teukolsky radial functions. Third row: Impose Boltzmann reflectivity on SN functions. The left panel shows how γ in the
Boltzmann reflectivity changes the echoes. The right panel shows how γ impacts the shape of the first echo [time is shifted by 2reff B� , as
defined in Eq. (71), to align with the first echo]. Bottom row: (similar to the third row) Impose Boltzmann reflectivity on Teukolsky
radial functions. Imposing reflectivities on Teukolsky functions (the more physical approach) tends to generate echoes with lower
amplitudes than imposing the same reflectivities on the SN functions; this can be understood from the frequency content of ZHBH and
the conversion factors shown in Fig. 3.
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of these features are shown in Figs. 7 and 15. In Fig. 7, only
one parameter setting is shown for Lorentzian and
Boltzman reflectivity, but the relative shape among the
three kinds of waveforms is similar for several different
parameters that we have tested. The differences are smaller
for Boltzmann reflectivity and for Lorentzian reflectivity
with small Γ; in these cases high-frequency features are
filtered out by the bandwidth of the frequency-dependent
reflectivity. See Fig. 15 in Appendix C.

4. Polarization of the echoes

For the waveforms and reflectivity models considered
here, we have Rl−m−ω ¼ R�

lmω for both ECO and BH
reflecitivites, and hl−mð−ωÞ ¼ h�lmðωÞ for all waveforms,
including the main wave and the echoes. For example,
the fact that RECO

lmωR
BH
lmω ¼ ðRECO

l−m−ωR
BH
l−m−ωÞ� is shown

explicitly in Fig. 8. This means that, for the models
considered here, we do not see the polarization mixing
pointed out by Maggio et al. [51]. Note that the effect of

polarization mixing is absent as long as we consider pairs
of �m simultaneously, while for an individual m, such
polarization mixing can still exist.
In Fig. 9, we plot both the þ and × polarizations, for the

GR wave and the first two echoes, and for inclination angle
Θ ¼ 0 (face on) and Θ ¼ π=2 (edge on)—indeed, the
polarization state of the echoes traces that of the main
wave. The echoes are approximately circularly polarized
for the face-on case, and linearly polarized for the edge-
on case.
We also see that even by accounting for the l − l0

mixing effects due to the ECO rotation, as considered in
Ref. [78], polarization mixing is still absent. This is because
the equatorial symmetry is not broken by the deformation
of the spacetime geometry due to the ECO rotation. To
observe polarization mixing proposed by Maggio et al.
[51], one can consider precessing binaries, whose source
modes can be explicitly decomposed into those with
hl−mð−ωÞ ¼ h�lmðωÞ and hl−mð−ωÞ ¼ −h�lmðωÞ [78].

FIG. 7. Impact of the particle self-field on echoes using the Lorentzian reflectivity for SN functions with ϵ ¼ 0.2;MΓ ¼ 1; b� ¼
−75M (left) and the Boltzman reflectivity for SN functions with γ=M ¼ 0.2 (right). Both panels display the first echo directly computed
using the particle plunging orbit (red dashed curve), after removing self-field region (blue solid curve), and after removing all early-time
waves (yellow solid curve).

(a) (b)

FIG. 8. The real part (left panel) and the imaginary part (right panel) of RECO
lmωR

BH
lmω when l ¼ jmj ¼ 2 using the Lorentzian

reflectivity with ϵ ¼ 1 andMΓ ¼ 0.21. Form ¼ −2, the real part is flipped such that Re½RECOð−ωÞRBHð−ωÞ� is shown instead, and the
imaginary part is also flipped such that −Im½RECOð−ωÞRBHð−ωÞ� is plotted. This shows explicitly that the equatorial symmetry is
preserved such that RECO

lmωR
BH
lmω ¼ ðRECO

l−m−ωR
BH
l−m−ωÞ�.
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D. Comparison between prescriptions

We finally compare our numerical waveforms with the
results from the “inside” formulation [51,57], as outlined in
Eq. (72). The comparison is shown in Fig. 10 using (a) a
Lorentzian reflectivity and (b) a Boltzmann reflectivity. We
can see that the magnitude of echoes are substantially
different. The differences between thesemodels in frequency

domain are shown on the right panels. The echoes obtained
using our model are weaker than those from the “inside”
prescription. This is because ZHBH does not peak at
ω ∼mΩþ in our method (it peaks at ωQNM, as indicated
inFig. 4);while for the “inside”model, it naturally peaksnear
ω ∼mΩþ by using ðDin=D∞ÞZ∞BH (or Z∞BH) to estimate
the ingoing ψ4 toward the horizon. Thus, the echoes from

FIG. 10. Comparison between the echoes generated using the “inside” prescription and the method in this paper. Left panel: the first
echoes in time domain; middle panel: the second echoes in time domain; right panel: the first and second echoes in frequency domain.
Note that Refs. [51,58] both correspond to the “inside” prescription. The echoes in this paper are weaker than those obtained using the
“inside” formulation.

(a) (b)

FIG. 9. The plus and cross polarizations of the first two echoes when viewing the ECO at two different angles, Θ ¼ 0 (left panel)
where the echoes are circularly polarized and Θ ¼ π=2 (right panel) where the echoes are linearly polarized (no cross polarization) using
our prescription and the Lorentzian reflectivity model with ϵ ¼ 1 and MΓ ¼ 0.21.
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our method are suppressed by ω −mΩþ when ω ∼mΩþ,
compared to the inside model.
It seems peculiar that the results from our model and the

inside model have a large discrepancy. As clarified above,
one can see that the spacetime region above the plunge
trajectory in the spacetime diagram (left panel of Fig. 2) is
free of sources, and therefore ψ4 in this region should
be characterized by a homogeneous solution with no
incoming wave from the past null infinity, or R∞ in
Eq. (5). However, since the conversion from ψ4 at infinity
to ψ4 on the future horizon is done in the Fourier domain,
and the homogeneous solution is only valid for part of the
future horizon, additional transient waves may need to be
added to this conversion, e.g., corresponding to the poles of
the frequency-domain conversion factor. Thus, the ZHBH

computed using our method is a more faithful representa-
tion of ψ4 going down the horizon.
However, a more faithful horizon-going ψ4 does not

guarantee a better approximation for curvature perturbations
for the fiducial observers, and hence a better approximation
for the echoes. This is becauseψ0 associatedwith the ingoing
wave is directly responsible for tidal perturbations for the
fiducial observers, and we obtain ingoing ψ0 by applying the
Teukolsky-Starobinsky identity to the ingoing ψ4. However,
strictly speaking, the Teukolsky-Starobinsky identity only
applies to homogeneous solutions. One hint that this
approach may not be sound is the fact that the amount of
energy going down the horizon computed this way diverges
for the (2,2) mode alone; the same behavior is also seen in
Ref. [59] for radially plunging particles. As discussed before
[82], for a plunging point particle, even though the total
ingoing GW energy summed over all l’s are divergent, the
energy corresponding to each individual l does not diverge.
We believe it is necessary to directly compute the ingoingψ0,
in order to completely resolve the above issue.

V. DETECTABILITY

In this section, we discuss the detectability of echoes
with current and future detectors. To quantify the detect-
ability, one can compute the optimal signal-to-noise ratio
(SNR) ρopt, which is defined as [83]

ρ2opt ¼ 4

Z
∞

0

df
jh̃ðfÞj2
SnðfÞ

; ð74Þ

where SnðfÞ is the one-sided noise power spectral density
of a detector, and h̃ðfÞ is the strain measured by the
detector which is given by

h̃ðfÞ ¼ Fþh̃þðfÞ þ F×h̃×ðfÞ; ð75Þ

with Fþ;× being the detector response to the plus and the
cross polarization respectively.
Following Ref. [83], we define a new quantity Hþ;×ðfÞ

that factors out the 1=dL dependence on the luminosity
distance dL [84] for each polarization, where

h̃þ;×ðfÞ ¼
1

dL
Hþ;×ðfÞ: ð76Þ

The direction and orientation averaged optimal SNR hρ2i is
then given by [83]

hρ2i ¼ 4

5

1

d2L

Z
dΩ
4π

Z
∞

0

df
jHþðΘ;Φ; fÞj2þ jH×ðΘ;Φ;fÞj2

SnðfÞ
;

ð77Þ

where the angle bracket h…i denotes average over the sky
location angles of the source with respect to the detector,
the polarization angle and the polar angles of the detector

(a) Inside prescription (b) Our prescription

FIG. 11. SNR and detectability of echoes in the ϵ–Γ parameter space for the Lorentzian reflectivity model assuming the Advanced
LIGO design sensitivity [86] with Necho ¼ 5 at a luminosity distance of dL ¼ 100 Mpc. The solid contour corresponds to the maximal
SNR ρopt ¼ 8 as the detection threshold. Here we set b� ¼ −100M. This choice of b� is not expected to affect the detectability as it
mostly affects the time delay between echoes. We see that echo signals from the inside prescription are only detectable in a small part of
the parameter space, while the echoes obtained using the method in this paper are generally too weak to be detected.
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with respect to the source (with dΩ ¼ sinΘdΘdΦ). If we
only consider the l ¼ jmj ¼ 2 modes, the averaging over
the orientation can also be done analytically. In fact, it is
given by [85]

hρ2i ¼ 16

25

1

d2L

Z
∞

0

df
jHþðΘ ¼ 0;Φ; fÞj2

SnðfÞ
: ð78Þ

Similarly, we can also compute the maximal ρopt by setting
the source to be face-on ðΘ ¼ 0Þ and directly above a
detector ðFþ;× ¼ 1Þ, i.e., both optimally oriented and
optimally located.
We compute both the direction-and-orientation averaged,

as well as the maximal optimal SNR of the first five
echoes in Advanced LIGO at the design sensitivity [86]
and Cosmic Explorer [87] with both the Lorentzian and

Boltzmann reflectivities, using the inside prescription and
the prescription in this paper. However, we only use the
Teukolsky formulation for reflectivity; the corresponding
transformed SN reflectivity becomes weaker (see Fig. 3 for
l ¼ m ¼ 2 where most of the wave contents are concen-
trated in the positive frequencies). These differ from the
treatment in Ref. [58].
Figures 11 and 12 show the SNR and detectability of

echoes in the ϵ–Γ parameter space for the Lorentzian
reflectivity model assuming the Advanced LIGO and
Cosmic Explorer at their design sensitivities, respectively.
For Advanced LIGO, we see that the echoes computed
using the inside prescription are only detectable in a small
part of the parameter space, while the echoes obtained
using the prescription in this paper are too weak to be
detected in the parameter space that we explore here

(a) Inside prescription (b) Our prescription

FIG. 12. Same as Fig. 11 but with Cosmic Explorer at its design sensitivity [87]. The solid contours correspond to the maximal SNR
ρopt ¼ 8 as the detection threshold, while the dash-dotted contours correspond to the location-and-orientation averaged SNR of 8. We
see that the detectable ϵ–Γ parameter space using the inside prescription is much larger, with the threshold of ϵ being detectable reaching
as low as ≈0.2. With Cosmic Explorer, the echoes computed using our prescription are now strong enough to be detected, but with a
smaller detectable parameter space compared with that using the inside prescription.

(a) Inside prescription (b) Our prescription

FIG. 13. SNR and detectability of echoes in the TQH–γ parameter space for the Boltzmann reflectivity model assuming the Advanced
LIGO design sensitivity [86] with Necho ¼ 5 at a luminosity distance of dL ¼ 100 Mpc. The solid contour corresponds to the maximal
optimal SNR ρopt ¼ 8 as the detection threshold. We see that echoes obtained using the inside prescription are louder and detectable in
part of the TQH–γ parameter space, while echoes obtained using our method are too weak to be detected.
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(0 ≤ ϵ ≤ 1, 0 ≤ Γ=κ ≤ 1). This implies that if our pre-
scription is correct, we would not be able to detect echoes
with second-generation terrestrial detectors, and would
require next-generation detectors in order to test the
existance of ECOs via GW echoes. Indeed, Fig. 12
indicates that with Cosmic Explorer, a much larger fraction
of the ϵ–Γ parameter space allows detection for echoes
from both the inside model and our prescription.
Figures 13 and 14 show the SNR and detectability of

echoes in the TQH–γ parameter space for the Boltzmann
reflectivity model assuming the Advanced LIGO and
Cosmic Explorer at their design sensitivities, respectively.
Similar to the Lorentzian reflectivity model, echoes
obtained from the inside prescription are only detectable
in a small part of the parameter space explored (−1 ≤
log10 ðTQH=THÞ ≤ 1, −20 ≤ log10 γ ≤ 0) with Advanced
LIGO, while we would not see any echoes from our model
with second-generation detectors. Detecting echoes would
become more promising with next-generation detectors.
Interesting, from the plots we see that the detectability of
echoes is generally independent of γ.

VI. CONCLUSIONS

In this paper, we compute GW echoes from merging
ECOs that arise from the waves reflected by the surface of
spinning ECOs. The exterior spacetime of a spinning ECO
is modeled as Kerr spacetime except in a small region
above the horizon where a reflecting boundary exists. We
obtain the echo waveforms by first computing the ψ4 of the
GWs that travel toward the horizon of the final BH in the
case of BBH mergers, and then computing the subsequent
reflection from the ECO surface and the Kerr potential
barrier, in the case of ECO. More specifically, we solve the

Teukolsky equation for ψ4 sourced by an inspiraling
particle that eventually plunges into the horizon of a
Kerr BH. In order to model binaries with comparable
masses, which is the most interesting case with existing
GW events, we have adopted an EOB-like approach: by
modifying the trajectory of the infalling particle and
calibrating the GWs at infinity to match NR surrogate
waveforms, we can obtain the horizon-going GWs that
approximate those of comparable-mass mergers. For com-
parable-mass binaries, our approach is only designed for
echoes reflected by the surface of the final ECO.
Nevertheless, from Fig. 7 (and the associated discussions),
we show that most of the echoes arise from the reflection of
waves that propagate toward the final horizon after the
particle plunges. This justifies our approximation. Our
approach can be straightforwardly generated to nonpre-
cessing spinning binaries.
In the comparison with previous work, we use prescrip-

tions of the ECO reflectivity that are better connected to
spacetime geometry near the ECO surface (obtained from a
companion paper [78]). More specifically, the reflectivity
RECOT in our method is directly related to the tidal
response of the ECO surface to the external curvature
perturbations due to incoming GWs. This reflectivity can
also be converted into an effective reflectivity for SN
functions using Eq. (58). Numerically, this conversion
factor leads to discrepancies in the resulting waveforms,
although it does not qualitatively modify the main features
of the echo waveform.
The echo waveforms we obtain here are significantly

weaker than those obtained by Maggio et al. and from the
“inside” formulation of Wang et al., because the ψ4 we
obtain by directly solving the Teukolsky equation turns out
to be much smaller in magnitude than those obtained in

(a) Inside prescription (b ) Our prescription

FIG. 14. Same as Fig. 13 but with Cosmic Explorer at its design sensitivity [87]. The solid contours correspond to themaximal optimal
SNR ρopt ¼ 8 as the detection threshold, while the dash-dotted contours correspond to the location-and-orientation averaged SNR of 8.
Again, we see that the detectable TQH–γ parameter space with the inside prescription is much larger for Cosmic Explorer, compared with
Fig. 13 for Advanced LIGO. Echoes computed using our prescription are also loud enough to be detected, but again the detectable
parameter space is smaller compared with the inside prescription. The plots also indicate that the detectability of echoes is generally
independent of the value of γ.
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previous studies (see Sec. IV D for details). Nevertheless,
our echo waveforms are comparable to those of the close
limit approximation [46]. As shown in Sec. V, the echoes
obtained in this paper are not expected to be detectable
using the second-generation detectors, and we would need
the next-generation detectors to test ECOs via GW echoes.
One subtlety in our calculation is about obtaining the

reflectivity for ψ4 on the ECO surface. When applying
the RECOT between the ingoing and outgoing ψ4, the
Starobinsky-Teukolsky relation between the ingoing ψ0

and the ingoing ψ4 has been assumed. Strictly speaking,
this relation only applies to homogeneous solutions of the
Teukolsky equation and may not apply to the situation here.
A more direct approach, to be studied in future work, is to
compute the ingoing ψ0, and then obtain the ψ4 of the
echoes by applying reflectivities to the ECO surface.
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APPENDIX A: SOURCE TERM IN
TEUKOLSKY EQUATION

Consider a massive point particle with the trajectory
xμ ¼ ðt; rðtÞ; θðtÞ;ϕðtÞÞ(expressed in Boyer-Lindquist
coordinates) in Kerr spacetime with instantaneous energy
E and angular momentum in z direction Lz. Following
Ref. [88], the source term T lmω induced by this trajectory
is (see Eq. (2.24) of [88]):

T lmωðr0Þ ¼
Z

∞

−∞
dtei½ωt−mϕðtÞ�Δ2ðr0Þ

× f½Ann0 þ Anm̄0 þ Am̄ m̄ 0�δðr0 − rðtÞÞ
þ ∂r0 ð½Anm̄1 þ Am̄ m̄ 1�δðr0 − rðtÞÞÞ
þ ∂2

r0 ½Am̄ m̄ 2δðr0 − rðtÞÞ�g; ðA1Þ

where the coefficients are given by

Ann0 ¼
−2
Δ2

Cnnρ
−2ρ̄−1L†

1fρ−4L†
2ðρ3SÞg;

Am̄n0 ¼
2

ffiffiffi
2

p

Δ
Cm̄nρ

−3

×

��
iK
Δ

þ ρþ ρ̄

�
ðL†

2SÞ − a sin θS
K
Δ
ðρ̄ − ρÞ

	
;

Am̄ m̄ 0 ¼ −ρ−3ρ̄Cm̄ m̄S

�
−i∂r

�
K
Δ

�
−
K2

Δ2
þ 2iρ

K
Δ

	
;

Am̄n1 ¼
2

ffiffiffi
2

p

Δ
ρ−3Cm̄n½L†

2Sþ ia sin θðρ̄ − ρÞS�;

Am̄ m̄ 1 ¼ −2ρ−3ρ̄Cm̄ m̄S
�
i
K
Δ
þ ρ

�
;

Am̄ m̄ 2 ¼ −ρ−3ρ̄Cm̄ m̄S; ðA2Þ

with

Cnn ¼
1

4Σ3dt=dτ

�
Eðr2 þ a2Þ − aLz þ Σ

dr
dτ

	
2

;

Cm̄n ¼
−ρ

2
ffiffiffi
2

p
Σ2dt=dτ

�
Eðr2 þ a2Þ − aLz þ Σ

dr
dτ

	

×

�
i sin θ

�
aE −

Lz

sin2θ

�	
;

Cm̄ m̄ ¼ ρ2

2Σdt=dτ

�
i sin θ

�
aE −

Lz

sin2θ

�	
2

: ðA3Þ

The operators appearing in the coefficients are defined by

L†
s ¼ ∂θ −

m
sin θ

þ aω sin θ þ s cot θ: ðA4Þ

The coefficients are different from [88] by a factor of
1=

ffiffiffiffiffiffi
2π

p
due to normalization. The spin-weighted spheroidal

harmonics functions we use are normalized as (while in
Ref. [88] this expression is normalized to 1):Z

π

0

½−2SaωlmωðθÞ�2 sin θdθ ¼ 1

2π
: ðA5Þ

APPENDIX B: SASAKI-NAKAMURA
FORMALISM

Transformation between Teukolsky function Rlmω and
SN function Xlmω is given by Ref. [71]:
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Rlmω ¼ 1

η

��
αþ β;r

Δ

�
ΔXlmωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p −
β

Δ
d
dr

ΔXlmωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
	
: ðB1Þ

Taking Eq. (B1) into Teukolsky equation, one can find the
equation for SN function Xlmω:

d2Xlmω

ðdr�Þ2 − FðrÞ dXlmω

dr�
−UðrÞXlmω ¼ 0: ðB2Þ

A detailed discussion of the SN formalism can be found in
Ref. [71]. Expressions for functions α, β, η and the
potentials FðrÞ, UðrÞ can be found in Eqs. (3.4)–(3.9) of
Ref. [76]. For completeness, we list η here:

η ¼ c0 þ
c1
r
þ c2

r2
þ c3

r3
þ c4

r4
; ðB3Þ

with

c0 ¼ −12iωM þ λðλþ 2Þ − 12aωðaω −mÞ; ðB4Þ

c1 ¼ 8ia½3aω − λðaω −mÞ�; ðB5Þ

c2 ¼ −24iaMðaω −mÞ þ 12a2½1 − 2ðaω −mÞ2�; ðB6Þ

c3 ¼ 24ia3ðaω −mÞ − 24Ma2; ðB7Þ

c4 ¼ 12a4: ðB8Þ

The SN equation admits two homogeneous solutions
having purely sinusoidal asymptotic behavior since the
potential UðrÞ is short-ranged:

XH
lmω ¼ Ahole

lmωe
−ipr�; r → rþ;

XH
lmω ¼ Aout

lmωe
iωr� þ Ain

lmωe
−iωr�; r → ∞; ðB9Þ

and

X∞
lmω ¼ Cout

lmωe
ipr� þ Cin

lmωe
−ipr�; r → rþ;

X∞
lmω ¼ C∞

lmωe
iωr�; r → ∞: ðB10Þ

The homogeneous equations XH;∞ are related to RH;∞ by
Eq. (B1) and thus the asymptotic amplitudes Ahole; Ain; Aout,
Cin; Cout; C∞, Bhole; Bin; Bout, and Din; Dout; D∞ have fol-
lowing relations [88]:

Bin
lmω ¼ −

1

4ω2
Ain
lmω;

Bout
lmω ¼ −

4ω2

−12iωM þ λðλþ 2Þ − 12aωðaω −mÞA
out
lmω;

Bhole
lmω ¼ d−1lmωA

hole
lmω; ðB11Þ

Din
lmω ¼ d−1lmωC

in
lmω;

Dout
lmω ¼ −

4p
ffiffiffiffiffiffiffiffiffiffiffiffi
2Mrþ

p ð2Mrþpþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
Þ

ηðrþÞ
Cout
lmω;

D∞
lmω ¼ −

4ω2

−12iωM þ λðλþ 2Þ − 12aωðaω −mÞC
∞
lmω:

ðB12Þ

where

dlmω ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2Mrþ

p ½ð8 − 24iMω − 16M2ω2Þr2þ
þ ð12iam − 16M þ 16amMωþ 24iM2ωÞrþ
− 4a2m2 − 12iamM þ 8M2�: ðB13Þ

We note the subtlety that since the transformation between
X and R contains derivatives, in regions where the source
does not vanish, one has to expand the coefficients of X and
R up to the second order in 1=r at infinity and Δ2 near
horizon in order to obtain the correct transformations.

FIG. 15. Same as left panel of Fig. 7, but for Γ ¼ 0.01 (left) and Γ ¼ 0.1 (right).
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APPENDIX C: INFLUENCE
OF SELF-FIELD REMOVAL

In Sec. IV C 3, we discussed the influence of self field
removing on the echo waveforms. Here we show the results
for different Γ parameters using Lorentzian reflectivity in

Fig. 15. As Γ decreases, the echo waveforms that have
the self-field removed are closer to the original ones,
because the with smaller Γ, the Lorentzian reflectivity
filters out a larger part of the high-frequency self-field
contribution.
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