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We use numerical relativity to study the merger and ringdown stages of “superkick” binary black hole
systems (those with equal mass and antiparallel spins). We find a universal way to describe the mass and
current quadrupole gravitational waves emitted by these systems during the merger and ringdown stage:
(i) The time evolutions of these waves are insensitive to the progenitor’s parameters (spins) after being
normalized by their own peak values. (ii) The peak values, which encode all the spin information of the
progenitor, can be consistently fitted to formulas inspired by post-Newtonian theory. We find that the
universal evolution of the mass quadrupole wave can be accurately modeled by the so-called Backwards
One-Body (BOB) model. However, the BOB model, in its present form, leads to a lower waveform match
and a significant parameter-estimation bias for the current quadrupole wave. We also decompose the
ringdown signal into seven overtones, and study the dependence of mode amplitudes on the progenitor’s
parameters. Such dependence is found to be insensitive to the overtone index (up to a scaling factor).
Finally, we use the Fisher matrix technique to investigate how the ringdown waveform can be at least as
important for parameter estimation as the inspiral stage. Assuming the Cosmic Explorer, we find the
contribution of ringdown portion dominates as the total mass exceeds ∼250 M⊙. For massive
binary black hole (BBH) systems, the accuracy of parameter measurement is improved by incorporating
the information of ringdown—the ringdown sector gives rise to a different parameter correlation from
inspiral stage; hence, the overall parameter correlation is reduced in full signal.
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I. INTRODUCTION

The recently detected gravitational wave (GW) signal,
GW190521, is consistent with the merger of two black
holes (BHs) with masses of 85 M⊙ and 66 M⊙ [1,2]. The
detection of this event, together with its candidate optical
counterpart ZTF19abanrhr [3], indicates the potential
existence of BHs in the mass gap predicted by (pulsational)
pair-instability supernova theory [2,4,5]. A few studies also
suggest that this system could admit an extremely eccentric
[2,6], hyperbolic [7], or a head-on [2,8] merger interpre-
tation, placing possible constraints on the binary’s forma-
tion channel [6,7,9]. For such an event, most of the GW
detected by the Advanced LIGO [10], VIRGO [11], and
KAGRA [12,13] network is dominated by the merger and
ringdown portions. This demonstrates the importance of
understanding ringdowns for detecting more GW190521-
like cases in the near future [14].

The ringdown signal can be treated as a superposition of
damped sinusoids, corresponding to the quasinormal
modes (QNMs) of the final BH [15]. Due to the no-hair
theorem [16], the QNM frequencies and damping time for a
spinning BH in general relativity (GR) are fully determined
by its mass and angular momentum. Therefore, measuring
a QNM from a GW event can allow us to determine the
properties of the final BH. Alternatively, if multiple modes
are observed at the same time, we can use them to test the
no-hair theorem and general relativity [17–28,28–36], and
also constrain modified gravity [32,33,37–39].
In addition to measuring QNM frequencies, extensive

studies have also been carried out to explore the relationship
between progenitor’s parameters and additional ringdown
signatures. For instance, the spin (magnitude and direction)
andmass of the remnant BHwere fitted to progenitor’s spins
ðχ 1;2Þ and mass ratio ðq ¼ mheavy=mlight > 1Þ [40–55], as
well as the peak amplitude of GW strain [56], using
numerical relativity (NR) [36], the effective-one-body
(EOB) approach [57], and also a hybrid way that involves
multitimescale post-Newtonian integrations and numerical-
relativity surrogate models [58]. The gravitational wave
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frequency at peak amplitude [53,59] and the peak GW
luminosity [50,53,60] were both found to have a clean
dependence on the progenitor’s parameters. The above facts
clearly imply that the initial conditions (e.g., at merger) for
the progenitor are encoded in the ringdown portion of GW,
including QNM frequencies and amplitudes. Therefore it is
not surprising that the ringdown can be used to learn about
the component properties.
Apart from conveying the importance of ringdown

studies, the detection of the candidate optical counterpart
of GW190521 has also provided us with a new scheme to
measure the gravitational recoil [3]. General relativity
predicts that a system is kicked after merger due to the
linear momentum carried away by GW [61–63]. By apply-
ing various methods, including NR, post-Newtonian (PN)
theory [64–66], EOB [67], and the close-limit approxima-
tion [68], several studies showed that the kick velocity is a
result of the asymmetry between different GWmodes [69],
or alternatively, the beating between the mass and current
quadrupole waves [70,71], caused by the unequal mass
[72–76] and spins [75–83]. In particular, the superkick
(SK) [78,80,84–86] configurations lead to relatively large
kick velocities. In our paper, we adopt two types of SK
configurations: SKu and SKd, whose sketches are shown in
Fig. 1. Both systems have equal mass, spin magnitude, and
tilt angles. As for SKd, two individual spins are antipar-
allel, whereas, for SKu, only the spin components in the
orbital plane are opposite. SKu and SKd are fully charac-
terized by ðχ init;ϕinit; θinitÞ, where the subscript refers to a
reference time in the inspiral regime: χinit is the magnitude
of the dimensionless spin; θinit is the polar angle of one of
the holes (relative to the orbital angular momentum  L);ϕinit
is the azimuthal angle between the in-(orbital)plane spin
and the separation vector pointing from the lighter to the
heavier BH.
During the evolution, the effect of frame-dragging from

two antiparallel in-plane spins moves the center of mass up
and down in the inertial frame [87]. This process is halted
as the common horizon forms [88–90], and the kick is
imparted. In addition, the SKu system usually emits
more energy and linear angular momentum than SKd
because of the orbital hang-up effect, which arises due
to the need to radiate way additional angular momentum
before the binary can merge [84], and leads to a larger kick.
Recently simulations showed that the kick for the SKu
system could be as large as 5000 km=s (if extrapolated to
the maximal spin) [85,86]. Such a large kick will lead to
important astrophysical consequences [91–94], as well as
Doppler shifts in GWs [95], which could be detected by
current and future detectors [96,97]. Numerous studies
have been implemented to fit kick velocities to progenitor’s
spins and mass ratio [40,49,50,53,79,80,98]. In particular,
the development of numerical relativity surrogate model
[54,55,99–102] has allowed a systematic study to explore
much larger parameter space [103].

Interestingly, GW190521 was found to be consistent
with a large in-plane spin configuration. Its kick posterior is
much broader and is consistent with 0–3500 km=s [2].
Meanwhile, its potential optical counterpart was predicted
to have a kick velocity of ∼200 km [3]. In the future,
it is still likely to detect GW events with non-negligible

FIG. 1. Sketches for a SKu (a) and a SKd (b) system. Two
arrows (in different colors) represent two individual spins. The
letter “u” and “d” refer to the up- and down-state for the red
arrow. Both SKu and SKd systems have equal mass BHs with the
same dimensionless spin magnitude χinit. For SKd, two individual
spins are antiparallel, whereas, for SKu, only the orbital-plane
components are opposite. SKd and SKu are fully characterized by
three parameters: ðχinit; θinit;ϕinitÞ, where θinit stands for the polar
angle of one of the holes (relative to the orbital angular
momentum), and ϕinit the azimuthal angle of the in-plane spin
measured from the line of two BHs. Three parameters are
specified at a reference time in the inspiral regime (labeled by
the subscript “init”).
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gravitational recoils, and even SK-like binaries [104].
Accordingly, in this paper, we aim to explore the features
of ringdown for SKd binaries carefully and relate them to
the phenomenon of gravitational recoil. Specifically, we
shall focus on the amplitudes of QNMs [105–107], as well
as mass and current quadrupole waves [70], and study how
those features depend on the progenitor’s parameters.
Comparing to a generic BBH system, a SKd system has
several advantages that can ease the difficulty of analysis.
(i) The parameter space for a SKd binary is 3D, i.e.,
ðχinit;ϕinit; θinitÞ, instead of generally 7D. (ii) SKd configu-
rations have a high level of symmetry. Subsequently,
the orbital angular momentum is nonprecessing, and the
spin direction of the remnant BH is fixed during the
merger. This allows us to conveniently choose coordinates
in which only the (2, 2) and ð2;−2Þ modes dominate.
(iii) The mass and spin of the remnant BH are not impacted
by varying ðχinit;ϕinit; θinitÞ, nor are the QNM frequencies.
Hence we can study the mode excitation (complex)
amplitudes exclusively while avoiding changes in the mode
frequencies.
In our study, we use waveforms generated by the Spectral

Einstein Code (SpEC) [108], and two NR surrogate models,
also based on SpEC: NRSur7dq4, NRSur7dq4Remnant
[54,55]. In particular, NRSur7dq4 is a waveform model
valid for mass ratio <4 and dimensionless spin magnitudes
<0.8, while NRSur7dq4Remnant is a model that predicts
the mass, spin, and kick velocity of the remnant BH from
the parameter of individual merging BHs. Meanwhile, we
have in total 35 NR simulations where systems are either
in the SKd (Table I) or the SKu (Table V) configuration.
The dimensionless spin of BH ranges from 0.4 to 0.95.
Those runs will be available in the Simulating eXtreme
Spacetimes (SXS) Collaboration catalog [109,110].

We have checked that our NR runs agree with the
predictions of NRSur7dq4, with mismatches
∼10−5 − 10−4. For each simulation, we evolve with three
numerical resolutions. Among those cases, the largest kick
is ∼4050 km (Table V).

This paper is organized as follows. In Sec. II, we
decompose ringdown into QNMs (7 overtones) and explore
the dependence of mode amplitudes on the progenitor’s
parameters. In Sec. III, we study the phenomenon of
radiative mass and current quadrupole waves and relate
them to kick velocity. Then in Sec. IV, we apply the
backward-one-body (BOB) model, conceived recently by
McWilliams [111], to SK binaries. Section V focuses on
parameter estimation, where we use the Fisher information
matrix formalism to discuss the parameter correlations in
the ringdown signal. Finally, in Sec. VI we summarize our
results.
Throughout this paper we use the geometric units with

G ¼ c ¼ 1. We useM to refer to the initial total mass of the
binary system. All GW waveforms are aligned in the time
domain such that t ¼ 0M corresponds to the time of the

peak of the total amplitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

l;m jhlmj2
q

.

II. MULTIPOLE DECOMPOSITION OF THE
WAVEFORM AND QUASINORMAL MODE

EXCITATIONS

In this section, we decompose the ringdown signal into
QNMs and study how each mode is excited.

A. Multipole decomposition of the waveform

In a spherical polar coordinate system, with an observer
located at the ðι; βÞ direction, following the widely used

TABLE I. A summary of 12 of our NR simulations with SpEC. All systems are in the SKd configuration, with the individual
dimensionless spin χinit ¼ 0.4, θinit ¼ π=2, and ϕinit ∈ ½−π; π�. The reference (initial) orbital frequency is chosen to be 0.0175 (in the unit
of total mass). The first and second columns are the name of runs used in this paper, while the third column corresponds to the name in
the Simulating eXtreme Spacetimes Collaboration catalog. The fourth column gives ϕinit. The last three columns correspond to the mass,
kick velocity, and spin of the final BH. A summary of SKu configurations is in Table V.

Run label

This paper SXS:BBH ϕinit (rad) mf=M vzf ð×10−3Þ χf

SKd4 “01” 2451 2.25 0.952 2.36 0.686
“02” 2452 −3.04 0.951 −4.73 0.684
“03” 2453 −1.70 0.951 1.71 0.685
“04” 2454 0.66 0.951 −4.45 0.683
“05” 2455 1.30 0.951 −1.68 0.685
“06” 2456 2.88 0.951 4.75 0.684
“07” 2457 −2.58 0.951 4.47 0.683
“08” 2458 −1.07 0.952 −2.11 0.686
“09” 2459 −2.93 0.951 4.94 0.683
“10” 2460 −1.78 0.951 1.24 0.686
“11” 2461 −1.36 0.952 −1.41 0.686
“12” 2462 0.21 0.951 −4.93 0.683
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convention for defining the þ and × polarizations
of the gravitational wave [112], one can define a complex
strain

hðt; ι; βÞ ¼ hþðt; ι; βÞ − ih×ðt; ι; βÞ; ð1Þ

and further decompose it into a sum over a set of spin-
weighted spherical harmonics −2Ylmðι; βÞ:

hðt; ι; βÞ ¼ hþðt; ι; βÞ − ih×ðt; ι; βÞ

¼
X∞
l¼2

Xl
m¼−l

1

D
hlmðtÞ−2Ylmðι; βÞ; ð2Þ

where D is the distance between the source and the
observer. Meanwhile, it is also natural to group hl;m and
hl;−m into mass and current quadrupole waves [71], writing

Ilm ¼ 1ffiffiffi
2

p ½hlm þ ð−1Þmh�l;−m�; ð3aÞ

Slm ¼ iffiffiffi
2

p ½hlm − ð−1Þmh�l;−m�: ð3bÞ

Here Ilm (Slm) is the mass (current) quadrupole wave,
proportional to the l-th order time derivative of the mass
(current) l-pole moment. For the SKd configuration, h2;�2

always dominates over other modes; hence, we shall
primarily focus on these two modes.

B. QNM excitation in multipolar modes

As discussed in Ref. [30], the ringdown portion
of h2;�2 of a nonprecessing system can be modeled as a
sum of QNMs, as early as t ¼ 0M, which is defined as

the moment of time at which
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

l;m jhlmj2
q

peaks. The

expansion reads:

h22 ¼
XN
n¼0

A22neiψ22ne−iω22nt;

h2;−2 ¼
XN
n¼0

A2;−2neiψ2;−2neiω
�
22nt; t ≥ 0M; ð4Þ

where A22neiψ22n and A2;−2neiψ2;−2n are the complex ampli-
tudes of the n-th overtone, while ω22n and −ω�

22n are the
mode frequencies. Note that ω22n and −ω�

22n have opposite
real parts and equal imaginary parts; both correspond to the
prograde l ¼ 2 quasinormal mode. In Eq. (4) we have
adopted the approximation that the angular wave function
of the (2, 2) mode is given by the spin-weighted spherical
harmonics instead of the spin-weighted spheroidal
harmonics—the spheroidal-spherical mixing [113,114]
can be ignored because of the moderate spin of final
BHs (∼0.68) studied in this paper. In this way, both the

prograde, ω22, and the retrograde, ω2;−2, modes share the
same angular wave function. Meanwhile, the retrograde
modes ω2;−2n and −ω�

2;−2n [see Eq. (3.6) of Ref. [107]] are
negligible in our case.
Inserting Eqs. (4) to Eqs. (3) we have

I22 ¼
XN
n¼0

AðIÞ
n eiφ

ðIÞ
n e−iω22nt;

S22 ¼
XN
n¼0

AðSÞ
n eiφ

ðSÞ
n e−iω22nt; t ≥ 0M; ð5Þ

with

AðIÞ
n eiφ

ðIÞ
n ¼ 1ffiffiffi

2
p ðA22neiψ22n þA2;−2ne−iψ2;−2nÞ; ð6aÞ

AðSÞ
n eiφ

ðSÞ
n ¼ iffiffiffi

2
p ðA22neiψ22n −A2;−2ne−iψ2;−2nÞ: ð6bÞ

To give an example, we fit the ringdown portion of SKd4
set of NR simulations (Table I) with 7 overtones, following
the procedure of Ref. [30]. We use unweighted linear least
squares to fit the mode amplitudes and use nonlinear least
squares to fit the final spin and mass. The mode frequency
ω22n is obtained from a Python package qnm [115].

First focusing on I22 and S22, we plot AðIÞ
n (mass) and

AðSÞ
n (current) as functions of ϕinit in Fig. 2. We can see

AðIÞ
n > AðSÞ

n for any n, and both of them peak at n ¼ 4.
Patterns have a rough period π. An interesting feature is
that the dependence on ϕinit is similar for all overtones (up
to a scaling factor). The analogous universal feature for
extreme-mass-ratio inspiral (EMRI) was explored by Lim
et al. [107]. After a proper normalization [see their
Eq. (5.1)], the angular dependence of mode amplitudes
is insensitive to the mode indices [see their Fig. 12].

Similarly, for the phase of mode amplitude φðIÞ
n and φðSÞ

n ,
as shown in Fig. 3, their dependence on ϕinit is also
insensitive to the overtone index n.
The features of An and φn allow us to conclude that the

dependence of QNM amplitudes for I22 and S22 on ϕinit can
be factored out from the temporal sector, i.e.,

I22ðϕinit; tÞ ∼ Im22ðϕinitÞTIðtÞ; ð7aÞ

S22ðϕinit; tÞ ∼ Sm22ðϕinitÞe−iϕinitTSðtÞ; ð7bÞ

where TIðtÞ and TSðtÞ are two complex functions, corre-
sponding to the temporal evolution of the mass and current
quadrupole waves, respectively. Since TIðtÞ and TSðtÞ do
not depend on ϕinit, they represent the common features of
all SKd binaries. We will explore the features of TIðtÞ and
TSðtÞ in Sec. IV.
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On the other hand, the progenitor configuration,
at least ϕinit, is encoded mainly in two functions
Im22ðϕinitÞ and Sm22ðϕinitÞ. Figure 3 exhibits that to

the leading order, φðIÞ
n is insensitive to ϕinit, while

φðSÞ
n ∝ −ϕinit. As a result, Im22ðϕinitÞ and Sm22ðϕinitÞ can

be regarded approximately as two real functions. Thus the
phase difference between I22 and S22, ΔΦIS, is roughly
linear in ϕinit. We will explore Eq. (7) more carefully later

FIG. 3. The dependence of φðIÞ
n , φðSÞ

n , as well as their difference, on ϕinit. It turns out that φ
ðIÞ
n is roughly insensitive to ϕinit, whereas

φðSÞ
n is approximately linear in ϕinit.

(a) mass quadrupole wave (b) current quadrupole wave

FIG. 2. QNM magnitudes versus ϕinit for mass (AðIÞ) and current (AðSÞ) quadrupole waves. Data are from 12 of our NR simulations
listed in Table I. All BBH systems are in the SKd configuration. Fig. 2(a) corresponds toAðIÞ, where the left eight panels are the zoom-in
plot for each overtone. The overtone index n is in descending order. Similarly, Fig. 2(b) corresponds to AðSÞ. The spectra peak at n ¼ 4
(because the n ¼ 4 amplitude is largest), and patterns are roughly periodic with a period 2π. Examining the zoomed in plots, it can be
seen that, approximately, the patterns are the same for all n (up to a scaling factor).
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in Sec. III, as well as extending to the full ðχinit; θinit;ϕinitÞ
parameter space.

C. Full ðθinit;ϕinitÞ dependence and correspondence
with the extreme mass-ratio case

In the case of EMRI, Hughes et al. [105–107] inves-
tigated the ringdown spectra of h2;�2 modes rather than I22
and S22. In order to make a connection to their studies, we
now turn our attention to h2;�2.

1. Mapping between SKd and EMRI system parameters

Hughes et al. [105–107] parametrized EMRIs with two
geometric quantities θfin and I (see Fig. 1 of Ref. [105]),
where I ∈ ½0; π� is the angle between the spin of the
primary BH and the orbital angular momentum, while
θfin is the angle between the spin of primary BH and the
orbital separation vector (at the moment of plunge),
satisfying j cos θfinj ≤ sin I. For SKd systems, we can find
the counterparts of ðI; θfinÞ if we treat one of the BHs as the
“primary” object. Below we still use the same notation,
namely ðI; θfinÞ, to refer to these two angles. As shown in
Fig. 4, we pick the primary BH to be the center of the
coordinates. I is still defined to be the angle between L (the
red arrow) and S (the purple arrow), while θfin remains to be
the angle between the S (the purple arrow) and the orbital
separation vector (the blue dashed line). The relations
between ðI; θfinÞ and our parametrization (namely θinit
and ϕinit, see Fig. 1) read

I ¼ θinit; cos θfin ¼ sin θinit cosϕinit: ð8Þ

Wewant to emphasize there are twomajor differences in the
parametrization of EMRIs and SKds. First, the parameters
for EMRIs are defined at the moment of plunge, whereas, in
our case, it becomes difficult to find well-defined quantities
at the merger, thus we use the initial geometry instead
(at a reference time during the inspiral stage). Second, for
EMRIs, π > I > π=2 represents the retrograde motion of
the small body, and hence the retrograde QNMs dominate in
the ringdown signal. By contrast, only the prograde QNMs
are excited for SKd systems [see Eq. (4)].
With the purpose of exploring full parameter space

of I and θfin, we now use the surrogate model
NRSur7dq4. Comparing against NR ringdowns, even
though NRSur7dq4 has mismatches of order ∼3 × 10−4,
we find that it is not accurate enough to reproduce the
correct final mass and spin, in agreement with Ref. [116].
Mismatches of order 10−6 in the ringdown may be
necessary to achieve this. Therefore we fix the values of
the final mass and spin to the NR values (coming from
NRSur7dq4Remnant) while fitting the mode amplitudes to
NRSur7dq4. In addition, we consider only the fundamental
mode (n ¼ 0).

The results for A220 and ψ220 are shown in the first row
of Fig. 5. Similar to Refs. [105,107], we use two colors to
stand for the sign of _θfin, which was used in the EMRI case
to represent the moving direction at the plunge (_θfin > 0
means that the small particle moves toward the south pole
of the Kerr BH, and vice versa). In our case, _θfin is
determined by the sign of sinϕinit. Comparing to Fig. 3
of Ref. [105], we can see the dependence is similar,
although the absolute value of A220 differs.
In the second and third rows of Fig. 5, we present how

mode amplitudes depend on cos θfin for several I slices
[Eq. (8)]. Those are direct analogs Fig. 4 of Ref. [107]. It is
interesting to note that A2;þ20 and A2;−20 are symmetric
about the axis of cos θfin ¼ 0, so are the patterns for ψ2;þ20

and −ψ2;−20. The other intriguing feature is that the patterns
for I and π − I are similar.
For overtonesA2;þ2nðn > 0Þ, NRSur7dq4 is not accurate

enough to provide any prediction, so we use our SKd4 runs
instead (seeTable I),which corresponds to the I ¼ π=2 slice.
We translate our previous results in Fig. 2 and 3 to the cases
ofh2;�2 based onEq. (6). Results are shown in Fig. 6.We can
see the patterns for high-n are more distorted.

2. Understanding the QNM excitation
of h2;�2 in terms of ðI22; S22Þ

It turns out that the features in the amplitudesA2;�2;0 that
we discussed in Sec. II C 1 can be understood based on
what we have learned about ðI22; S22Þ. In order to translate
our previous results about ðI22; S22Þ to h2;�2, we use the
inverse of Eq. (6)

FIG. 4. An illustration for the EMRI-parametrization ðI; θfinÞ
and the SKd-parametrization ðθinit;ϕinitÞ. The origin is chosen to
be one of the BHs. Following the discussion of Hughes et al.
[105–107], I is defined to be the angle between L (the red arrow)
and S (the purple arrow), while θfin is the angle between the S (the
purple arrow) and the orbital separation vector (the blue dashed
line). For the SKd-parametrization, ϕinit is the angle between the
in-plane spin (the red dashed horizontal line) and the orbital
separation vector (the blue dashed line), whereas θinit is the angle
between L (the red arrow) and S (the purple arrow). The
connection between two parametrizations is given by Eq. (8).
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FIG. 5. The fundamental mode amplitude and phase versus initial spin configuration ðI; cos θfinÞ. Those two independent variables are
chosen since they coincide with the variables used in Ref. [105] [see Eq. (8)]. Data are obtained from NRSur7dq4. All BBH systems are
in the SKd configuration with χinit ¼ 0.4. Points are drawn with two colors, where blue stands for sinϕinit < 0while red for sinϕinit > 0.
The second and fourth rows are results of h2;2 for some I-slices, while the third and fifth rows correspond to h2;−2.
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A2;�2ne�iψ2;�2n ¼ 1ffiffiffi
2

p ½AðIÞ
n eiφ

ðIÞ
n ∓ iAðSÞ

n eiφ
ðSÞ
n �; ð9Þ

and hence

A2
2;�2n ¼

1

2
½AðIÞ2

n þAðSÞ2
n ∓ 2AðIÞ

n AðSÞ
n sinðφðIÞ

n −φðSÞ
n Þ�:

ð10Þ

As we shall explore later in Secs. III D and III E [see
Eqs. (33) and (38)], we have two dependencies

AðIÞ
n ðI; θfinÞ ∼ const:þOðv4Þ;

AðSÞ
n ðI; θfinÞ ∼ v2 sin I þOðv4Þ; ð11Þ

where we have omitted specific numerical coefficients that
are independent from I and θfin, and v2 is a parameter to
keep track of the order of approximation (In fact, as we
shall show in Sec. III D, v is the orbital velocity that is
widely used in the post-Newtonian theory.). Furthermore,
we have

φðIÞ
n − φðSÞ

n ∼ ϕinit þ const: ð12Þ

Using the above simple dependences of ½AðIÞ
n ;AðSÞ

n ;φðIÞ
n −

φðSÞ
n � on I and ϕinit, we obtain:

A2;�2n∼ const:�v2 sinI sinðϕinitþ const:ÞþOðv4Þ: ð13Þ

As a result, for each I-slice (i.e., θinit-slice), the A2;�20 −
cos θfin pattern is an approximate Lissajous-like curve
(with identical frequencies), distorted by the higher
order term containing v4. The variation depends on I,
which vanishes when I ¼ 0; π, and is maximal when
I ¼ π=2. Physically speaking, A2;�2n depends sensi-
tively on ϕinit when the spins of two BHs lie entirely
in the orbital plane (see Fig. 1), but does not change
with ϕinit as the spins are (anti)parallel with the orbital
angular momentum.
In addition, Eq. (13) implies that A220 and A2;−20 are

related by a transformation ϕinit → ϕinit þ π, i.e., cos θfin →
− cos θfin [see Eq. (8)]. This transformation represents the
interchange of the in-plane spins for two BHs (see Fig. 1).
In fact, as we shall study in Sec. III B, this conclusion can
be generalized to the entire evolution regime (not only the
ringdown phase). The symmetry of the SKd system results
in [see Eq. (26)]

hlmðπ − I;ϕinitÞ ¼ ð−1ÞmhlmðI;ϕinitÞ;
hlmðI;ϕinit þ πÞ ¼ ð−1Þlh�l;−mðI;ϕinitÞ;

i.e., A2;�2n remains unchanged when I → π − I (two BHs
interchange their z-component spins), andA2;þ2n → A2;−2n
and ψ2;þ20 → −ψ2;−20 when ϕinit → ϕinit þ π (two BHs

FIG. 6. The overtone mode amplitudes A2;þ2nðn ¼ 1–6Þ versus cos θfin, with the same convention as Fig. 5. The data are from our
SKd4 runs listed in Table I, which corresponds to I ¼ π=2.
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interchange their in-plane spins).1 In Fig. 5, we can
clearly see the patterns for A220 and A2;−20, as well as
the patterns for ψ2;þ20 and −ψ2;−20, are symmetric about
the cos θfin ¼ 0 axis. Meanwhile, the patterns forA2�20 are
symmetric about the I ¼ π=2 axis.

III. THE FEATURE OF MASS AND CURRENT
QUADRUPOLE WAVES

In the last section, we explored how QNMs are excited
with different initial parameters ðθinit;ϕinitÞ. We now aim to
study features of ringdown more quantitatively. In particu-
lar, we focus on the mass (I22) and current (S22) quadrupole
waves of SKd systems, and relate their features to
ðχinit; θinit;ϕinitÞ. Moreover, since kick velocity is one of
the important quantities that reflects SKd systems’ proper-
ties, we also include it in our study.

A. A brief review

This subsection briefly reviews some facts about the
gravitational recoil. In particular, we relate the kick velocity
to the radiative mass and current quadrupole waves.
It has been shown that for a SKd system, the kick

magnitude can be estimated with a simple formula [78–80]

vf ∼ χinit sinðϕinit − ϕð0Þ
initÞ sin θinit; ð14Þ

where ϕð0Þ
init is a constant. Equation (14) is based on the

computation of linearmomentumcarried awaybyGW[117]

_Pz ¼ lim
D→∞

1

24π
ð _h22 _h�22 − _h2;−2 _h

�
2;−2Þ; ð15Þ

where � stands for complex conjugate, D is the distance
between the source and the observer, and the z-axis is in the
direction of orbital angular momentum. Here we have
ignored the effects of other modes since they are negligible.
In terms of I22 and S22 [Eq. (3)], Eq. (15) can also be

written as

_Pz ¼ −
1

12π
Im_I22 _S

�
22; ð16Þ

and the final kick velocity is given by

mfvf ¼
1

12π
Im

Z
_I22 _S

�
22dt

¼ 1

12π
Im

Z
j_I22jj _S22jeiΦ_I_Sdt; ð17Þ

with Φ_I_S the phase difference between _I22 and _S22. Note
that the change of sign from Eq. (16) to (17) is a result of
linear momentum conservation. In Fig. 7, we show the time

evolution of the above-mentioned integrand for SKd4-“06”
(cf. Table I). We can see that most of the kick velocity is
accumulated around t ∼ 0M.

During the inspiral stage, it was shown that I22 and S22
are related to the source quadrupole moments.2 At the
leading order, from Refs. [70,118], we write

I22ðtÞ ¼ −
M
2

ffiffiffiffiffiffi
2π

5

r
d2

dt2
rðtÞ2e−2iϕðtÞ; ð18aÞ

S22ðtÞ ¼
ffiffiffiffiffiffi
2π

5

r
χ sin θðtÞ d

2

dt2
rðtÞe−iϕðtÞ−iϕpreðtÞ; ð18bÞ

where M is the total mass of the BBH system; χ is the
dimensionless spin of an individual BH; ϕðtÞ and rðtÞ are
the orbital phase and separation, respectively; θðtÞ is the
polar angle of the spin; and ϕpreðtÞ is the precession angle
(the azimuthal angle of the in-plane spin component). Note
that at the initial time tinit

θinit ≔ θðtinitÞ; ϕinit ≔ ϕðtinitÞ:

For instance, we choose SKd4-“03” (see Table I) and
compare its radiative multipolar waves I22 and S22 to PN
formulas in Eq. (18). We read off the values of rðtÞ, θðtÞ,
and ϕðtÞ directly from the outputs of NR simulation. The
results are shown in Fig. 8. For comparison, we also fit the
ringdown signal with QNMs (7 overtones), starting from
t ¼ 0M. We can see the Newtonian formulas can accurately
model the phase evolution up to t ∼ −250M. Meanwhile,
both I22 and S22 are described by 7 overtones accurately
from t ¼ 0M.

FIG. 7. The integrand of Eq. (17) for the SKd4-“06” system.
The majority kick velocity is accumulated around t ∼ 0M, and the
final kick is 4.75 × 10−3.

1Equivalently, cos θfin → − cos θfin.

2Hereafter we shall not distinguish the source quadrupole
moment and the (radiative) quadrupole wave since it will not
cause any confusion.
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In the rest of this section, we shall discuss how I22 and
S22 depend on ðχinit; θinit;ϕinitÞ, and apply our understand-
ing to the gravitational recoil.

B. Symmetry properties of I22 and S22
Before exploring the detailed relations between

ðI22; S22Þ and ðχinit; θinit;ϕinitÞ, we first take advantage
of the symmetry of SKd systems, and study its implication
on ðI22; S22Þ. As shown in Fig. 9, there are three SKd
binaries, where (a) and (b) are related by a parity trans-
formation, i.e., two BHs interchange their locations
while having their spin directions fixed, recalling that
spin is an axial vector, which is not changed by the
parity transformation. On the other hand, we rotate the
whole system in (b) about the orbital angular momentum
by π, and obtain (c). We use wavy lines to stand for
the GW propagating direction, and ðι; βÞ are the coor-
dinates of the observer in (b), as defined in Eq. (2).
The coordinates of observers in (a) and (c) are transformed

accordingly. As discussed in Eq. (2), hðt; ι; βÞ can be
decomposed into the extrinsic part −2Ylmðι; βÞ and the
intrinsic part hlmðθinit;ϕinitÞ.3 Here we omit χinit in the
argument of hlm since it has no impact on the trans-
formation in question.
Figures 9(a) and 9(b) are related by a parity trans-

formation; hence, we have (see the Appendix C for more
details)

hðaÞ ¼ hðbÞ�; ð19Þ

i.e.,

hlmðθinit;ϕinitÞ−2Ylmðι; βÞ
¼ h�lmðπ − θinit;ϕinit þ πÞ−2Ylm

�ðπ − ι; π þ βÞ: ð20Þ

FIG. 8. The time evolution of I22 (upper row) and S22 (bottom row) for the SKd4-“03” system, where t ¼ 0M stands for the peak of
strain amplitude. The mass (I22) and current (S22) quadrupole waves are compared to PN formulas [Eq. (18)] during the inspiral stage,
and to QNMs (7 overtones) in the ringdown regime.

3We use ðθinit;ϕinitÞ to stand for the spin of BH on the left. The
other spin is determined uniquely by the SKd condition.
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Using the fact that

−2Ylm
�ðπ − ι; π þ βÞ ¼ ð−1Þlþm−2Ylmðι; βÞ; ð21Þ

we obtain

hlmðθinit;ϕinitÞ ¼ ð−1Þlþmh�l;−mðπ − θinit;ϕinit þ πÞ: ð22Þ

On the other hand, Figs. 9(b) and 9(c) are related by a
global rotation. Therefore, the observable hðt; ι; βÞ should
not be affected

hðbÞ ¼ hðcÞ; ð23Þ

i.e.,

hlmðθinit;ϕinitÞ−2Ylmðι; βÞ
¼ hlmðπ − θinit;ϕinitÞ−2Ylmðι; π þ βÞ: ð24Þ

Recalling that

−2Ylmðι; π þ βÞ ¼ ð−1Þm−2Ylmðι; βÞ; ð25Þ

we then have

hlmðπ − θinit;ϕinitÞ ¼ ð−1Þmhlmðθinit;ϕinitÞ; ð26aÞ

hlmðθinit;ϕinit þ πÞ ¼ ð−1Þlh�l;−mðθinit;ϕinitÞ; ð26bÞ

where the first line is the result of Eqs. (24) and (25), and
the second line comes from the combination of Eqs. (22)
and (26a). Equations (26) give the transformation of
hlm under θinit → π − θinit (two BHs interchange their
z-component spins) and ϕinit → ϕinit þ π (two BHs

interchange their in-plane spins). As we discussed in
Sec. II C, Eqs. (26) directly lead to several features revealed
in Fig. 5: the patterns for A2�20, as well as ψ2;þ20 and
−ψ2;−20, have a reflective symmetry about the cos θfin ¼ 0

axis; and the patterns for A2�20 are symmetric about the
I ¼ π=2 axis.

We then apply Eqs. (26) to the case of Ilm and Slm, [see
Eqs. (3)]

Ilmðπ − θinit;ϕinitÞ ¼ ð−1ÞmIlmðθinit;ϕinitÞ; ð27aÞ

Slmðπ − θinit;ϕinitÞ ¼ ð−1ÞmSlmðθinit;ϕinitÞ; ð27bÞ

Ilmðθinit;ϕinit þ πÞ ¼ ð−1ÞlþmIlmðθinit;ϕinitÞ; ð27cÞ

Slmðθinit;ϕinit þ πÞ ¼ ð−1Þlþmþ1Slmðθinit;ϕinitÞ: ð27dÞ

One can find the counterpart of Eqs. (27) for EMRIs in
Eq. (4.6) of Ref. [107]. Those relations imply that the
dependence of I22 and S22 on θinit is symmetric about
θinit ¼ π=2 axis, whereas the dependence of jI22j and jS22j
on ϕinit have a period π.

4 We shall see these features shortly
from numerical results.

C. Time dependence of I22 and S22
After the study of ðI22; S22Þ − ðχinit; θinit;ϕinitÞ depend-

ence enforced by the symmetry, we are in a position to carry
out more detailed analyses. Based on the discussion around
Eq. (7), for the postmerger evolution of I22 and S22, their
ϕinit dependence can be factored out. In particular, the spin
sector of I22 is described by a function Im22ðϕinitÞ, and that of
S22 is given by Sm22ðϕinitÞe−iϕinit. In fact, those features are

FIG. 9. Parity inversion of a SKd BBH system. We use arrows to represent the spin direction of BHs, and wavy lines to stand for the
GW propagating direction. The complex strain of a SKd system is totally determined by two extrinsic parameters ðι; βÞ, and three
intrinsic parameters ðχinit; θinit;ϕinitÞ. Here the intrinsic parameters are the spin of the left BH. The properties of the right BH are
determined based on the SKd condition. Figs. 9(a) and 9(b) are related by a parity inversion: two BHs exchange their locations while
having their own spins fixed. As a result, the GW propagation direction and both spins change sign, i.e., ðι; βÞ ↔ ðπ − ι; π þ βÞ and
ðθinit;ϕinitÞ ↔ ðπ − θinit; π þ ϕinitÞ. Figs. 9(b) and 9(c) are related by a π-rotation about the orbital angular momentum. Thus we have
ðι; βÞ ↔ ðι; π þ βÞ and ðθinit;ϕinitÞ ↔ ðπ − θinit;ϕinitÞ.

4Here we use the absolute value for future convenience.
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also consistent with PN predictions, as shown in Eqs. (18):
To the leading PN order, I22 is independent of
ðχinit; θinit;ϕinitÞ, whereas S22 ∼ χinit sin θinite−iϕinit . In light
of the facts, it is reasonable to conjecture that the sepa-
rability between the spin sector (including χinit; θinit;ϕinit)
and the temporal sector is preserved throughout the entire
process, i.e.,

I22ðt; χinit; θinit;ϕinitÞ ¼ Im22ðχinit; θinit;ϕinitÞTIðtÞ; ð28aÞ
S22ðt; χinit; θinit;ϕinitÞ ¼ Sm22ðχinit; θinit;ϕinitÞe−iϕinitTSðtÞ;

ð28bÞ

where TIðtÞ and TSðtÞ are two complex functions of time,
which are normalized such that they each is equal to 1 at

FIG. 10. The time evolution of the real part of the normalized S22 (upper row), the real part of the normalized I22 (middle row), as well
as ΔΦIS − ϕinit (bottom row), using the SKd BBH configuration from NRSur7dq4. The imaginary part is similar. We sample in total 180
cases with different θinit ∈ ½0; π� (left column), χinit ∈ ½0; 0.8� (middle column), and ϕinit ∈ ½0; 2π� (right column), and plot them on top of
each other. “Max Residual” is defined to be the maximum difference of all cases at each time step. The normalized I22 and S22 are
insensitive to ðχinit; θinit;ϕinitÞ, to the level of ∼0.1% − 30%.
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the moment when its magnitude is at maximum. As a result,
Im22 and Sm22 are in fact the peak values of I22 and S22,
respectively, i.e.,

Im22ðχinit; θinit;ϕinitÞ ¼ max
t
jI22ðt; χinit; θinit;ϕinitÞj; ð29aÞ

Sm22ðχinit; θinit;ϕinitÞ ¼ max
t
jS22ðt; χinit; θinit;ϕinitÞj: ð29bÞ

We want to emphasize that Eq. (29) is an approximation
based on the observation we made in Fig. 3, namely to the
leading order φðIÞ

n is insensitive to ϕinit, while φ
ðSÞ
n ∝ −ϕinit.

This fact allows us to treat Im22 and S
m
22 as two real functions

[see the context below Eq. (7)]. The higher order correc-
tions will lead to additional phase factors for both Im22 and
Sm22. This is beyond the scope of this work.
To test the accuracy of Eqs. (28) and (29), we use

NRSur7dq4 to obtain I22 and S22 with different initial spin
configurations. They are normalized by Im22 and Sm22e

−iϕinit ,
respectively. The results are shown in the first two rows of
Fig. 10. To avoid redundancy, we present only the real part
since the imaginary part is similar. As we can see, the
normalized I22 with different ðχinit; θinit;ϕinitÞ evolves
in a similar way, so does the normalized S22. The
residuals imply that Eqs. (28) are accurate to ∼0.1% −
30% throughout the entire evolution. We remark that the
accuracy is limited by the approximation adopted in
Eq. (29), where Im22 and S

m
22 are treated as two real functions

and their phases (higher order effects) are not included. If
we omit these additional phase terms that are functions of
ðχinit; θinit;ϕinitÞ, there will be a non-negligible increase in
the residual. In fact, if we consider only the absolute value
of the normalized I22 and S22, the residual can be decreased
by a factor of 1.6 ∼ 100.
Nevertheless, the progenitor’s information is primarily

described by the peak value of mass and current quadrupole
waves, Im22 and Sm22. On the other hand, the temporal
evolution, TIðtÞ and TSðtÞ, encode the common feature
of SKd systems. In particular, as we discussed in Sec. III A,
the phase difference between TIðtÞ and TSðtÞe−iϕinit ,
denoted by ΔΦIS

ΔΦIS ≡ argðTIÞ − argðTSe−iϕinitÞ
≡ argðI22Þ − argðS22Þ; ð30Þ

is closely related to the gravitational recoil.
We have introduced three quantities, Im22, S

m
22 and ΔΦIS,

which are important characteristics of SKd systems. In the
rest of this section, we aim to study Im22, S

m
22, andΔΦIS more

carefully and more quantitatively. In particular, we will
show that Im22 and Sm22 are subject to the periodic condition
in both θinit− and ϕinit− directions, as enforced by the
symmetry in Eqs. (27).

D. The peak of mass quadrupole wave Im22
We saw that Im22 is an important characteristic quantity for

SKd systems. In fact, it was shown that the remnant BH
spin is already encoded in the peak amplitude of the
gravitational wave strain [56]. Therefore, it is instructive
to study how Im22 depends on ðχinit; θinit;ϕinitÞ.
We first look at our SKd4 NR runs listed in Table I.

Figure 11 shows Im22 as a function of ϕinit. We can see that
Im22 does depend weakly on ϕinit for all three numerical
resolutions, which verifies that the dependence is not a
numerical artifact. For comparison purposes, we also show
the prediction of NRSur7dq4 with the same BBH system
but varying ϕini. Two results are close. With different ϕinit,
Im22 varies on the level of ∼0.36%, around a base value
∼0.557. As discussed earlier, Im22 − ϕinit relation is expected
to have a period of π [Eq. (27)]. However, the black curve is
slightly asymmetric. We attribute this to the numerical error
of NRSur7dq4. Furthermore, the change of Im22 is much
smaller than the base value, which is qualitatively con-
sistent with PN predictions, because the variation caused by
spin is 2PN [118] smaller than the leading contribution
from the orbital mass quadrupole moment [Eq. (18)].
To explore a larger parameter space, we use NRSur7dq4

and plot Im22 as a function of ðθinit;ϕinitÞ in Fig. 12, with
χinit ¼ 0.8. The pattern exhibits quadrupolar structure, i.e.,
symmetric about θinit ¼ π=2, and has a period π in the ϕinit-
direction. This is consistent with what we obtained
in Eq. (27).
To have a better understanding of Im22, we use PN

prediction of mass quadrupole wave during the inspiral
stage [118]

FIG. 11. The peak value of mass quadrupole wave Im22 as a
function of ϕinit. We use SKd4 systems listed in Table I. The black
curve is from NRSur7dq4, whereas points are from NR simu-
lations. Colors (labeled by Lev) correspond to numerical reso-
lutions, where “Lev 1” stands for the lowest resolution.
Predictions of NRSur7dq4 are consistent with NR results: Im22
oscillates with ϕinit on the level of ∼0.36%, around a base value
∼0.557.
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I22 ¼ Iorb þ IS1 þ IS2; ð31Þ

where

Iorb ¼ −
M
2

ffiffiffiffiffiffi
2π

5

r
r2eiϕ; ð32aÞ

IS1 ¼
ffiffiffiffiffiffi
2π

5

r
M3

16
χ2init sin

2 θinite−2iϕinit ; ð32bÞ

IS2 ¼ −
ffiffiffiffiffiffi
2π

5

r
M3

16
χ2initv

2; ð32cÞ

with v ∼
ffiffiffiffiffiffiffiffiffi
M=r

p
the velocity of an individual BH. In

Eq. (31), the leading contribution from the orbital sector
Iorb is modified by the spin sector IS1;2. As discussed in
Refs. [119,120], the amplitudes of ringdown waveforms
in different ðl; mÞ modes are related to those of the
corresponding modes during the inspiral stage.
Therefore, we can write down a fitting formula for the
relation Im22 − ðχinit; θinit;ϕinitÞ, inspired by Eq. (31) and the
definition of I22 in Eq. (3),

Im22 ¼ Qorb þQS1χ
2
init sin

2 θinit sin 2ðϕinit þ ϕ0Þ
þQS2χ

2
init; ð33Þ

where Qorb, QS1, QS2 are constants. Their fitted values are
listed in Table II, and the contours of Eq. (33) are plotted
as dashed lines in Fig. 12. We note that Eq. (33) was

applied to understand the features of AðIÞ
n in Sec. II C [see

Eq. (11)], where we used the fact that AðIÞ
n is insensitive to

the overtone index n and we ignored the mixing between
overtones.
Three terms in Eq. (33) correspond to Iorb, IS1, and IS2,

respectively. They imply that

Qorb=QS1 ∼ jIorbjχ2init=jIS1j ∼ 8
r2

M2
∼ 72; ð34aÞ

QS2=QS1 ∼ jI ij
S2j sin2 θinit=jI ij

S1j ∼ v2 ∼ 0.3; ð34bÞ

where the formula is evaluated at r ¼ 3M, i.e., the radius of
the light ring. In fact, values in Eq. (34) are close to the
fitted result listed in Table II. Therefore, the peak of mass
quadrupole momentum Im22, as an important characteristic
of the ringdown phase, is still qualitatively consistent with
the prediction of PN theory.
Although Eq. (33) can predict the major pattern of

Im22 − ðθinit;ϕinitÞ relation, a correction term

∼χ4init sin4 θinitfðsinϕinit; cosϕinitÞ; ð35Þ

is still needed if one wants to further recover subleading
features. Here fðsinϕinit; cosϕinitÞ is a function of ϕinit,
corresponding to higher PN correction.

E. The peak of current quadrupole wave Sm22
We now turn our attention to Sm22. In Fig. 13, we use

NRSur7dq4 and plot Sm22 − ðθinit;ϕinitÞ with χinit ¼ 0.8. The
pattern is still symmetric about θinit ¼ π=2 and has a period
π in the ϕinit-direction, consistent with Eq. (27). We repeat
our previous process and use PN predictions to understand
the pattern. With PN theory, we have [118]

S22 ¼ Sð1Þ
22 þ Sð2Þ

22 ; ð36Þ

where

Sð1Þ
22 ∼ χinit sin θinitre−iϕinit ; ð37aÞ

Sð2Þ
22 ∼ −χinitrv2 sin θinit cosϕinit: ð37bÞ

Equations (37) lead to a fitting formula

Sm2
22 ¼ χ2init sin

2 θinit½Qð1Þ þQð2Þ sin 2ðϕinit þ ϕSÞ�; ð38Þ

FIG. 12. The peak value of mass quadrupole wave Im22 as a
function of ðθinit;ϕinitÞ, with χinit ¼ 0.8 (SKd configuration).
Results are from NRSur7dq4. The pattern is symmetric about
θinit ¼ π=2, and has a period π in the ϕinit-direction, consistent
with Eq. (27). The contours with dashed lines are the prediction
of PN-inspired counterpart in Eq. (33).

TABLE II. The coefficients in Eq. (33) by fitting to the
NRSur7dq4 data. The values of Qorb=QS1 and QS2=QS1 are
close to the PN predictions in Eqs. (34).

Qorb QS2 QS1 tan 2ϕ0 Qorb=QS1 QS2=QS1

0.557 2.72×10−3 12.2×10−3 −0.98 45.7 0.22
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whereQð1Þ andQð1Þ correspond toSð1Þ
22 andSð2Þ

22 , respectively.
The fitted value ofQð2Þ andQð1Þ are 9.43 × 10−3 and 4.28×
10−2. The ratio, Qð2Þ=Qð1Þ ∼ 0.22, is close to v2 at the light
ring (0.33), which is again consistent with the PN prediction
Qð2Þ=Qð1Þ ∼ v2. Therefore, the peak of current quadrupole
wave Sm22 also inherits information from the PN regime.

F. The phase difference ΔΦIS

We finally study the phase difference between the mass
and current quadrupole wavesΔΦIS, which is the key factor
that determines the final kick velocity. Figure 14 is ΔΦIS of
the SKd4-“03” system (Table I). During the inspiral stage,
ΔΦIS accumulates monotonically over time. It then gradu-
ally settles down to a constant after the merger. In fact, one
can use PN theory to understand the evolution of ΔΦIS.
Before the merger, we have [cf. Eqs. (18)]

ΔΦIS ¼ ϕpre − ϕ: ð39Þ

Here ϕpre is the precession phase of the spins, and is
obtained by measuring the spins of each individual BH; ϕ is
the orbital phase. In Fig. 14, we compare Eq. (39) to the NR
result. Two results agree pretty well until t ∼ −50M. Near
the merger, ϕpre is thought to be locked to ϕ [121], in order
for the accumulation of ΔΦIS to be halted. An alternative
way to think of this is based on the QNM decomposition.
For the ringdown portion of I22 and S22, they must both be
decomposed into (2, 2) QNMs. After higher overtones
decay away ðt > 20MÞ, we are left with the fundamental
mode [see Eq. (5) for more details]

I22 ∼AðIÞ
0 eiφ

ðIÞ
0 e−iω220t; S22 ∼AðSÞ

0 eiφ
ðSÞ
0 e−iω220t; ð40Þ

which leads to ΔΦIS ¼ φðIÞ
0 − φðSÞ

0 , i.e., a constant. The fact
that both I22 and S22 have the same QNM frequency is a
consequence of the isospectrality feature of black holes.
Then we study how ΔΦIS depends on the progenitor’s

parameters. We first choose eight NR runs in Table I, whose
ϕinit are different. As shown in Fig. 15, ΔΦIS with different

FIG. 13. The peak value of current quadrupole wave Sm22 as a
function of ðθinit;ϕinitÞ, with χinit ¼ 0.8 (SKd configuration). The
data are from NRSur7dq4, while dashed lines are the prediction
of the PN-inspired counterpart in Eq. (38).

FIG. 14. The time evolution of ΔΦIS for the SKd4-“03” system
(orange curve). It is compared to NRSur7dq4 (blue curve) with
the same initial condition. As expected, their results are close.
Within the inspiral regime, PN theory predicts ΔΦIS ¼ ϕpre − ϕ,
which is shown as the green curve.

FIG. 15. The evolution of ΔΦIS for SKd4 systems (Table I).
Eight runs startwith differentϕinit, and theirΔΦIS are finally locked
to different values. The bottom panel is sinΔΦIS. One can directly
estimate the kick velocity from the final value of sinΔΦIS, since the
kick is roughly proportional to the integration of sinΔΦIS
[Eq. (17)]. As for high-kick cases, their ΔΦIS change slowly
during the late postmerger stage. This is due to the Doppler shift.
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ϕinit are finally locked to different values. The bottom panel
is sinΔΦIS. Recalling that the kick velocity can be roughly
estimated by integrating sinΔΦIS [Eq. (17)], the final value
of sinΔΦIS is a strong signature for the final kick velocity.
For instance, one can directly read that SKd4-“07” leads to
a positive largest kick, consistent with NR results (Table I).
Interestingly, ΔΦIS of several runs (e.g., “03”) do not settle
into a constant. Instead, there are slow changes over time.
This is because the final BHs are boosted with relatively
large kick velocities. As a result, there is a Doppler shift
between the mode frequency of h22 and of h2;−2, recalling
that h22 is dominantly emitted upward, while h2;−2 down-
ward [96]. To test our statement, we pick four of SKu
systems that are listed in Table V. Here we choose SKu
systems since they lead to larger kicks, thus the comparison
is less impacted by numerical noises. The results are
summarized in Table III. We can see relative mass
differences are close to the kick of final BHs. A slight
difference in mass leads to a deviation between the mode
frequency of h22 and h2;−2, i.e., [see Eq. (4)]

h22 ∼A220eiψ220e−iω220ð1þδÞt; ð41aÞ

h�2;−2 ∼A2;−20e−iψ2;−20e−iω220ð1−δÞt; ð41bÞ

where δ is a small parameter, and is proportional to the kick
velocity. In the late time regime, Eq. (41) implies

sinΔΦIS ¼ sin½φðIÞ
0 − φðSÞ

0 �

þ 4ðA2
220 −A2

2;−20ÞA220A2;−20

jA2
220e

−iðψ220þψ2;−20Þ −A2
2;−20e

iðψ220þψ2;−20Þj2
× cosðψ220 þ ψ2;−20Þω220tδþOðδ2Þ: ð42Þ

The new term above gives rise to a linear change in time,
and it is consistent with the feature which we observe
in Fig. 15.
We then use NRSur7dq4 to explore more parameter

space of SKd systems, by varying three free parameters
χinit, θinit and ϕinit, respectively. Results are shown in the
bottom row of Fig. 10. We can see that χinit and θinit do not
affect ΔΦIS, even near and after the merger. Meanwhile,
ϕinit gives rise to only a constant phase shift for ΔΦIS,

consistent with what we obtained in Sec. III C [Eq. (30)].
In fact, if we subtract ϕinit from ΔΦIS, the rest of time
dependence is still insensitive to ϕinit, although not as good
as the cases of χinit and θinit.
Recalling that the final kick velocity is given by

[Eqs. (17) and (28)]

vf ∼ Im
Z

_I22 _S
�
22dt ∼ Im22S

m
22Imeiϕinit

Z
_TIðtÞ _T�

SðtÞdt

∼ χinit sin θinit sinðϕinit − ϕð0Þ
initÞ; ð43Þ

where we have used the leading terms in Eq. (33) and (38).
This result is the same as Eq. (14), as discussed in [78–80].
To offer an illustration, we use NRSur7dq4Remnant to plot
vf as a function of ðθinit;ϕinitÞ in Fig. 16, with χinit ¼ 0.76.
Meanwhile, we use Eq. (43) to fit the vf − ðχinit; θinit;ϕinitÞ
dependence, and the result is shown as dashed lines in
Fig. 16. We can see Eq. (43) works properly.

TABLE III. The mass of remnant BHs inferred from h22 and h2;−2, by fitting with QNMs (7 overtones, see Sec. II for more details).
Four runs below are in the SKu configuration (Table V) with χinit ¼ 0.8 and different ϕinit. Among them, SKu8-“02” and SKu8-“04” are
high-kick cases. The masses inferred from h22 and h2;−2 are quite different, and the relative difference are close to the final kick velocity.

Runs (SKu8) “01” “02” “03” “04”

Mass from NR 0.941 0.939 0.941 0.939
Mass from h2;2 0.940 0.945 0.941 0.931
Mass from h2;−2 0.940 0.931 0.940 0.945
Relative mass difference between h2;�2 −7.8 × 10−5 −0.015 3.3 × 10−4 0.015
Final kick −1.6 × 10−3 −0.011 1.3 × 10−3 0.011

FIG. 16. The final kick velocity as a function of ðθinit;ϕinitÞ,
predicted by NRSur7dq4Remnant. The component spin χinit is
chosen to be 0.76. The contours with dashed lines are from
Eq. (43).
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IV. BACKWARDS ONE-BODY MODEL

In this section, we shall focus on the time evolution
of the mass and current quadrupole waves, TIðtÞ and TSðtÞ,
as defined in Eq. (28). In particular, we use an analytic
phenomenological model BOB, conceived by McWilliams
[111], to model the ringdown evolution. We first give a
brief introduction to BOB in Sec. IVA, and then compare it
to NR results in Sec. IV B.

A. A brief review of BOB

The BOB model is an accurate, fully analytical GW
waveform model for the late inspiral, merger and ringdown
of BBH [111], which is able to match the waveform ∼20M
before the peak of strain. This feature enables people to
avoid the extrapolation of inspiral models beyond their
domain of validity. Here we restrict our attention to the
ringdown portion.
As discussed in Refs. [111,122], the amplitude of the

News j _hlmj is related to its frequency Ωlm by

j _hlmj2 ∝
d
dt

Ω2
lm; ð44Þ

where the coefficient remains (approximately) constant
throughout the merger and ringdown phase. It was found5

that either jh2;�2j, j _h2;�2j, or j  h2;�2j can be modeled by

Xsech½γðt − tpÞ�; ð45Þ

with two free variables X and tp, where γ ¼ −Imω220 is the
decay rate of the fundamental mode, determined by the
final mass mf and spin χf. Applying Eq. (45) to j  h2;�2j,
j _h2;�2j, and jh2;�2j leads to three classes of BOB. Below we
shall discuss the model for _h2;�2, and refer the interested
reader to Appendix B for  h2;�2 and h2;�2.
We first write the News _h22 as

_h22 ¼ Xsech½γðt − tpÞ�e−iϕ22ðtÞ; ð46Þ

whereX is essentially the peak value of j _h22j, and tpð> 0MÞ
is its peak time. Using the relation in Eq. (44), we obtain

_ϕ22ðtÞ¼Ω22ðtÞ¼
�
Ω2

0þ
ω2
0−Ω2

0

2
½tanhγðt− tpÞþ1�

�
1=2

;

ð47Þ

where Ω0 is an integration constant and ω0 ¼ Reω220.
Equation (47) indicates that

lim
t→∞

_ϕ22ðtÞ ¼ ω0; ð48Þ

i.e., _h22 oscillates at the fundamentalQNMfrequency during
the late time of postmerger portion. Integrating Eq. (47)
again gives

ϕ22 ¼
1

γ

�
ω0arctanh

_ϕ22

ω0

− Ω0arctanh
Ω0

_ϕ22

�
− ϕ0; ð49Þ

whereϕ0 is another integration constant.We can see that _h22
depends on 6 parameters

X;mf; χf; tp;Ω0;ϕ0: ð50Þ

Similarly, Eqs. (46)–(49) can also be applied to _h�2;−2, _I22,
and _S22.
As t ≫ tp, we obtain an asymptotic expansion for _h22

_h22 ¼ ð2XeγtpÞeiψ0e−iω220t; ð51Þ

where

ψ0 ¼ ω0tp þ ϕ0 þ
Ω0

γ
arctanh

Ω0

ω0

−
ω0

γ

1

2
log

4ω2
0

ω2
0 −Ω2

0

:

ð52Þ

By comparing Eq. (51) with the overtone decomposi-
tion [e.g., Eq. (4)], ð2XeγtpÞ is supposed to be equal
to jω220A220j.

B. Numerical comparisons

In this subsection, we use our NR simulations (Tables I
and V) to study the accuracy of BOB. To begin with, we
take the ringdown portion of SKd4-“03” (Table I), and fit
_h2;�2, _I22, _S22 to Eq. (46), respectively. Similar to the
previous QNM fitting algorithm (Sec. II), we fit X and ϕ0

with unweighted linear least squares, and fit mf, χf, tp, Ω0

with nonlinear least squares. To give a comparison, we also
fit the ringdown sector with QNMs. As shown in Fig. 17,
the BOB can capture the major feature of _h2;�2, _I22, _S22.
Their residuals are all on the order of ∼10−3, an order of
magnitude worse than the fitting of QNMs. Note that
there are fewer free parameters for the fitting of BOB
than the QNM decomposition, a fairer comparison would
be restricting to only 2 QNMs (so that there are 6 free
parameters for both models) and studying the late ringdown
portion.6 This is beyond the scope of this paper, and we
leave the relevant discussions for future study. Table IV is a
summary for the fitting results, where the last row is the
mismatch between BOB and NR, defined by

5In Ref. [111], the author pointed out that this phenomeno-
logical formula works best for j  hlmj. For now, we try to make our
statement general, and make comparisons later.

6Based on Table I of Ref. [30], it corresponds to ∼20M after
the peak of strain.
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Mismatch ¼ 1 −
ðhB; hNRÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhNR; hNRÞðhB; hBÞ

p ; ð53Þ

with

ðhB; hNRÞ ¼ Re
Z

100M

0M
hBh�NRdt; ð54Þ

where hB and hNR are the complex strains of BOB and NR
in the time domain, respectively. The integration limit is
taken to be the ringdown sector. We can see that the BOB
for _I22 and _h22 lead to smaller mismatches than the other
two. Meanwhile, the BOB behaves worst for _S22: even
though the mismatches can reach 2 × 10−3, this is much
higher than those achievable by _I22 and _h22; furthermore,
the recovered estimations for spin and mass of the final
black hole are substantially biased.
We then use Eq. (51) to make a connection between

BOB and QNM decomposition, i.e., expanding BOB for

FIG. 17. The BOB model for _h22, _h2;−2, _I22, and _S22 (the left and middle columns). They are compared to the ringdown portion of
SKd4-“03”. We also fit data with QNMs. The residuals of BOB for four variables are all on order of ∼10−3, an order of magnitude worse
than the fitting of QNMs. The right column corresponds to the distribution of mismatch [top panel, see Eq. (53)], and parameter
deviation [bottom panel, see Eq. (55)] for QNM decomposition and BOB, using our NR simulations listed in Tables I and V. BOB is
always worse than QNM fitting.

TABLE IV. Fitting _h22, _h2;−2, _I22, _S22 to the BOB model,
respectively. The original data is the ringdown portion of SKd4-
“03”. The first four rows are the free parameters of BOB: peak
magnitude X, peak time tp, final spin χf , and final mass mf.
Comparing with the NR prediction of final spin (0.685) and final
mass (0.951), the BOB for _I22 and _h22 are more accurate to
recover the final properties than the other two. The model for _S22
is the worst. Using the BOB’s asymptotic expansion in the late
time limit [Eq. (51)], 2Xeγtp (the sixth row) is expected to be
equal to jω220A220j (the seventh row). The agreement for _S22 is
the worst. The last row is the mismatch between BOB and the
original NR data.

_h22 _h2;−2 _I22 _S22

X 0.153 0.171 0.227 0.035
tp=M 5.13 7.31 6.21 12.53
χf 0.684 0.681 0.686 0.559
mf=M 0.954 0.944 0.951 0.857
2Xeγtp 0.474 0.644 0.771 0.247
jω220A220j 0.470 0.622 0.759 0.175
Mismatch ð×10−5Þ 2.6 9.9 3.1 204.0
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the late-time ringdown ðt ≫ tpÞ. The value of ð2XeγtpÞ is
expected to be close to jω220A220j, so we make such a
comparison in the sixth and seventh rows of Table IV. We
can see that _h22 leads to the best agreement, while _S22
the worst.
As we mentioned earlier, Xsech½γðt − tpÞ� can also be

used to describe the magnitude of  h2;�2 or h22. Each of
them leads to a class of BOB model (see Appendix B for
more details). We study their accuracy by fitting our
simulations (cf. Table I and V) to those three classes of
BOB, and showing the distribution of mismatches (with
NR waveforms) in the third column of Fig. 17. Generally
speaking, the mismatches of BOB are 10−5 − 10−2, which
are worse than those of QNM decomposition. Among the
three classes,  h22 gives the smallest mismatch, while h22 the
largest.
Another way to quantify the accuracy of BOB is to

compare the inferred spin and mass (from the fitting) to NR
predictions. Similar to Ref. [30], we define a parameter
deviation

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδMf=MÞ2 þ ðδχfÞ2

q
; ð55Þ

and plot its distribution in Fig. 17. We can see ϵ for BOB is
also worse than the QNM decomposition. In addition, the
distribution of ϵ show that the BOB works worst for h22,
and best for _h22.

V. PARAMETER-ESTIMATION CONTRIBUTIONS
FROM INSPIRAL AND RINGDOWN STAGES

In this section, we demonstrate, with a few example
sources, the impact of the ringdown portion of the wave-
forms—as well as the correlation between the ringdown and
the inspiral phases—to parameter estimation errors. To do
this, we will apply the Fisher-matrix formalism to the
NRSur7dq4 surrogate waveforms (for BBHs with 1<q< 4
and individual dimensionless spin χ < 0.8) [54,55],
In Sec. VA, we will give a brief review for the Fisher-

matrix formalism. In Sec. V B, we discuss nonprecessing
BBH systems with varying total mass, illustrating how
information contribution from the ringdown stage gains
more importance for more massive systems. Finally, in
Sec. V C, we study parameter estimation errors of precess-
ing systems, illustrating how estimations of individual spin
components will benefit from information from the ring-
down stage.

A. The Fisher-matrix formalism and waveform models

For a gravitational waveform hðθjÞ that depends on a list
of parameters θj, the Fisher matrix is given by

Γij ¼
�∂h
∂θi

���� ∂h∂θj
�
: ð56Þ

Here the inner product between two waveforms ðhjgÞ is
defined as

ðhjgÞ ¼ 4Re
Z

h̃�ðfÞg̃ðfÞ
SnðfÞ

df; ð57Þ

with the superscript � standing for complex conjugation,
and SnðfÞ the spectral density of the noise when detecting
h. In terms of this inner product, the signal-to-noise ratio
(SNR) of a signal h is given by

ffiffiffiffiffiffiffiffiffiffiffiðhjhÞp
.

The covariance matrix for the estimated values of θj, in
presence of noise, is given by the inverse of the Fisher
matrix,

Varðθi; θjÞ ¼ ðΓ−1Þij: ð58Þ

From this, we obtain the individual estimation error for θj,

Δθi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ−1Þii

q
; ð59Þ

and the correlation coefficient between θi and θj,

Corrðθi; θjÞ ¼ ðΓ−1Þijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ−1ÞiiðΓ−1Þjj

q : ð60Þ

Waveforms described by the NRSur7dq4 surrogate
model are parametrized by 13 parameters:

χ1z; χ1p;ϕ1; χ2z; χ2p;ϕ2;M; q; ι; β; tc;ϕc; D:

Correspondingly, we have a 13-dimensional Fisher matrix.
Here, the subscripts “1” and “2” stand for the two
individual black holes in the binary system, χz is the spin
component in the direction of orbital angular momentum,
M is the total mass in the detector frame, q > 1 is the mass
ratio, D is the luminosity distance between the source and
the detector, and ι and β describe the wave emission
direction in the frame of the source. The spin component
in the orbital plane is parametrized by the magnitude χp and
the azimuthal angle ϕ. Finally, tc and ϕc are the coales-
cence time and phase, respectively.
Throughout this paper, we adopt the Ansatz that the two

gravitational-wave polarizations, hþ and h×, can be indi-
vidually measured, both with the noise spectrum Sn. This
simplification allows us not to explicitly include sky
location and orientation of the source; it can be justified
in the situation of a three-detector network that can provide
good source localization. In this way, results given in this
section should be more optimistic than the actual situation.

B. Inspiral versus ringdown: Nonprecessing binaries

In this paper, we will focus mainly on the Cosmic
Explorer (CE) [123], whose SnðfÞ is shown in Fig. 18.
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Using this sensitivity, in Fig. 19, we show the SNR of an
optimally oriented BBH with varying total (detector-frame)
massM and mass ratio q, assuming the system is at redshift
z ¼ 1 (DL ¼ 6.7 Gpc). Note that the intrinsic total massM•

is given by M=ð1þ zÞ. The high SNR shown in this figure
indicates that in the 3G era, we will most frequently be
detecting binaries at cosmological distances of around
1≲ z≲ 3. Correspondingly, we will be observing these
binaries with higher detector-frame masses, with factor
2 to 4. In this way, events like GW150914 can be redshifted
to around ∼130–260 M⊙, while heavy binaries like
GW190521 can be shifted to 302–604 M⊙. In the rest
of this section, we shall study BBH systems with increasing

total mass, in order to observe the increased importance of
information contribution from the ringdown stage.
In order to study the ringdown and the inspiral portions

individually, we separate two sectors (in the frequency
domain) with the instantaneous h22 frequency at t ¼ 0M

(where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

l;m jhlmj2
q

is maximum). For nonprecessing

binaries, we will fix q ¼ 2.3, χ1z ¼ 0.1, χ2z ¼ 0.6,
χ1p ¼ χ2p ¼ 0, ι ¼ 3π=10, β ¼ π=2, and consider
M=M⊙ ¼ 160, 250, 340. For comparison purposes, we
normalize all waveforms so that the SNR of the entire
waveform is 200. We consider joint parameter estimations
errors of ðχ1z; χ2zÞ and ðM; qÞ, with results shown in Fig. 20
(blue for inspiral alone, black for ringdown alone, and red
for combined). As a reference, we also list the SNR of each
sector in the figure (cf. numbers in parentheses).
Regarding the overall size of the error ellipses, for the

BBH system with total mass M ¼ 160 M⊙, constraints
from the ringdown sector are worse than those from the
inspiral portion. As M increases to 250 M⊙, constraints
from the two sectors become comparable. For more

FIG. 18. The noise spectral density of Cosmic Explorer.

FIG. 19. The SNR of an optimally oriented GW event with
varying total (detector-frame) massM and mass ratio q, assuming
the system is at redshift z ¼ 1 (6.7 Gpc) and using SnðfÞ
of the CE.

FIG. 20. The error ellipses of χ1z and χ2z (the left column), as
well as M and q (the right column), using the data from
NRSur7dq4. Two individual spins are both aligned with the
orbital angular momentum, and other parameters are q ¼ 2.3,
χ1z ¼ 0.1, χ2z ¼ 0.6, ι ¼ 3π=10, β ¼ π=2, χ1p ¼ χ2p ¼ 0. The
total mass is chosen to be 160 M⊙ (the upper row), 250 M⊙ (the
middle row) and 340 M⊙ (the bottom row). Three colors stand for
the ringdown (black), inspiral (blue), and full sector (red),
respectively. The numbers in parentheses are SNRs, where we
normalize the total SNR of each event to 200 for comparison.
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massive systems, the ringdown portion begins to dominate.
It is remarkable that substantial parameter estimation
can already be obtained from ringdown alone: this means
not only the quasinormal mode frequency, but also the
excitation amplitudes, are providing the information
[24,119,120,124,125]. We also note that detector-frame
mass of 250 M⊙ corresponds to intrinsic total mass of
∼125 M⊙ at z ¼ 1, which will not be a rare type of event in
third-generation detectors.
For spin measurements, both ringdown and inspiral

sectors lead to somewhat degenerate measurements of
χ1z and χ2z. In particular, the inspiral stage accurately
measures the ∼½qχ1z þ ð1 − qÞχ2z� direction (as can be
argued from PN treatments [126]), while the ringdown has
a less degenerate measurement, although with a most
accurately measured combination similar to that from the
inspiral. As for mass measurements, the ringdown and
inspiral sectors lead to M − q error ellipses with different
directions, but no substantial degeneracy breaking.

C. Precessing BBH systems

We now turn our attention to precessing systems. We set
the total mass of the systems to 300 M⊙, in order to make
the contribution of ringdown sector comparable to the
inspiral portion. Meanwhile, we choose χ1z ¼ 0.05, χ2z ¼
0.606, χ1p¼0.086, χ2p ¼ 0.35, ϕ1 ¼ π=13, ϕ2 ¼ 43π=52.
The observation is made at β ¼ π=2, with varying ι.

We first study a BBH system with q ¼ 3.5. The results
are shown in Fig. 21. We can see the relative size of

ringdown and inspiral ellipses change with ι. This is
because the weights of different GW modes hlm, i.e.,

−2Ylmðι; βÞ, are functions of ι. At different observational
locations, the contributions from different GW modes hlm
are different. Secondly, the χ1z − χ2z error ellipse computed
from the ringdown portion is tilted relative to that of
inspiral sector, which implies that the parameter correlation
of these two sectors are different. After combining the
information of ringdown and inspiral, the measurement
accuracy of χz is around 30%, improved by a factor of∼4–5
compared with using the inspiral signal only. This result
agrees qualitatively with the discussion in Ref. [14]. We
note that SNR is 1.14 times greater after incorporating the
ringdown signal. Hence most of the improvement is
contributed from the correlation between the inspiral
and ringdown, which leads to reduction of parameter
degeneracy. On the other hand, the measurement accuracy
of χp is only improved by a factor of ∼1.4, not as good as
the one of χz. Nevertheless, the fractional error of χp is
smaller than 100%, hence we can still put meaningful
constraints on χp.
We want to remark that values mentioned above depend

heavily on properties of the BBH system in question. For
instance, for a low-mass-ratio BBH system with q ¼ 1.2, as
shown in Fig. 22, the χ1z − χ2z error ellipses computed
from individual inspiral and ringdown sectors point along
more similar directions. This leads to much less degeneracy
breaking between χ1z and χ2z than in the q ¼ 3.5 case
above, in particular making the measurement error Δχ1z

FIG. 21. Similar to Fig. 20, the error ellipses of χ1z and χ2z (the first row), and χ1p and χ2p (the second row), with different ι (each
column). The green dashed lines stand for the original value of each parameter. Thus we have a meaningful measurement (< 100%) on a
parameter if the error ellipse is within the dashed lines. The BBH systems have parameters M ¼ 300 M⊙, q ¼ 3.5, χ1z ¼ 0.05,
χ1p ¼ 0.086, χ2z ¼ 0.606, χ2p ¼ 0.35, ϕ1 ¼ π=13, ϕ2 ¼ 43π=52, β ¼ π=2. The error ellipses of ringdown and inspiral portions are not
in the same direction, which implies different parameter correlations. After including the information of ringdown, the measurement
accuracy of χz is improved by a factor of ∼4–5, whereas χp is improved by a factor of ∼1.4.
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greater than the value of χ1z. Even so, incorporating
ringdown, in addition to inspiral improves Δχz=χz a factor
of 2.8, substantially greater than the SNR improvement
factor of around 1.16.

VI. CONCLUSIONS

In this paper, we studied the gravitational waveforms of
SKd systems, using both NR simulations (SpEC) and
surrogate models (NRSur7dq4, NRSur7dq4Remnant).
We first decomposed the ringdown portion of GW signal
into QNMs, and explored how mode amplitudes of over-
tones depend on the progenitor’s parameters (for I22, S22, as
well as h2�2 contents). We then studied the features of the
mass and current quadrupole waves, focusing on their time
evolutions and peak values. This leads to a qualitative
understanding of kick velocity. Next, we fitted the evolu-
tion of I22ðtÞ and S22ðtÞ to the Backward-One-Body (BOB)
model. Finally, we used Fisher information matrix to study
the role of the ringdown state in parameter correlation. Here
we summarize our main results:

(i) For SKd systems, the dependences of I22 and S22 on
angular parameters ðχinit; θinit;ϕinitÞ can be separated
from their temporal dependences [Eq. (28)].

(ii) (ii) Similar to the case of EMRI [105], the QNM
amplitudes of SKd systems encode the information
of progenitors’ parameters. As an extension to
Ref. [105], we included more overtones to the
QNM decomposition. We found that the spectra
peak at the fourth overtone, and that the dependence
of mode magnitudes on ϕinit is insensitive to the
overtone index n (up to a scaling factor). We found
that the dependence of mode amplitudes on progen-
itor parameters is more easily understood when
decomposed into mass and current quadrupole
waves, instead of (2, 2) and ð2;−2Þ modes.

(iii) Peak values ofmass (Im22) andcurrent (S
m
22) quadrupole

waves encode the information of progenitors’ spin.
Enforced by the parity symmetry, the ðIm22; Sm22Þ−
ðχinit; θinit;ϕinitÞ pattern is symmetric about θinit ¼
π=2 axis and has a period of π in the direction of
ϕinit-axis. Quantitatively speaking, the ðIm22; Sm22Þ −
ðχinit; θinit;ϕinitÞ dependence are consistent with the
PN-inspired formulas.

(iv) The phase difference between mass and current
quadrupole waves ΔΦIS can lead to a qualitative
understanding of kick velocity. Its time evolution
can be anticipated from PN and black-hole pertur-
bation theories: in the inspiral regime, ΔΦIS is equal
to the difference between the orbital and precession
phases; near the merger, the spin precession rate is
gradually locked to the orbital frequency—until well
into the ringdown regime, when ΔΦIS should
become constant since both I22 and S22 oscillate
at the fundamental QNM frequency. However, we
found that ΔΦIS does not always settle down to a
constant value during the postmerger stage, espe-
cially for high-kick cases. Instead, there is a slow
change over time. This is due to the Doppler shift
caused by the kick. The QNM frequency of h22
(emitted upwards) is slightly different from the one
of h2;−2 (emitted downwards), which leads to a slow
time evolution. In fact, the relative frequency differ-
ence is on the same order as the kick velocity.

(v) We verified that the BOB phenomenological model
is accurate for the ringdown evolution of _h2;�2,
 h2;�2, and I22, but much less so for S22 and h2;�2.
This calls for further, qualitative improvements of
the current-quadrupole sector of the BOB model.

(vi) We found that in 3G detectors, the contribution
of the ringdown part dominates over the inspiral

FIG. 22. Same as Fig. 21, except q ¼ 1.2.
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part as the total detector-frame mass exceeds
≳250–300 M⊙. We found that, as we combine both
parts, the improvement in parameter estimation error
is larger than the increase in SNR, indicating that the
reduction of degeneracy due to the additional ring-
down signal is the main reason for such improve-
ment. As for χz, in our examples, incorporating the
information from ringdown signal can lead to ∼4–5
times improvement on the measurement accuracy,
while the accuracy for χp is improved by a factor
of ∼1.4.

Our results indicate that the ringdown sector of a BBH
event encodes plenty of information about the progenitor. It
also plays a complementary role to PN theory in the study
of BBH evolution. In our study, we primarily focused on
the SKd configuration. Future work could include more
generic BBH systems and other GWmodes, which can lead
to more comprehensive understandings of the ringdown
signals. Another possible avenue for future work is to
increase the precision of NR surrogate models for the
ringdown sector, since our work has revealed that the
current NR surrogate models are not accurate enough for
BH spectroscopy. A more accurate ringdown surrogate
model will be beneficial for both data analysis and
theoretical studies.
Meanwhile, as revealed in Fig. 5, as well as Eqs. (7) and

(10), it might also be interesting for future work to
investigate the features of mass and current quadrupole
waves of EMRIs, which may turn out to be simpler than
features found in Refs. [105–107]. Those further explora-
tions could potentially provide us more physical under-
standings of EMRI ringdown spectra.
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APPENDIX A: SpEC RUNS—SKu
CONFIGURATION

We summarize our NR simulations of SKu BBHs in
Table V. We remark that the SKu condition is not well
preserved after the junk-radiation regime. Nevertheless, the

maximum recoil velocity vzf is 4050 km s−1, and it is
roughly proportional to χinit.

APPENDIX B: BOB FOR h22 AND  h22
In this section, we discuss the BOB model for h22

and  h22.

1.  h22
Let us start from  h22. As discussed in Ref. [111]

 h22 ¼
d
dt

_h22 ¼
d
dt

j _h22je−iϕ22ðtÞ ∼ −i _ϕ22j _h22je−iϕ22ðtÞ

¼ −iΩ22j _h22je−iϕ22ðtÞ; ðB1Þ

where we have assumed that j _h22j changes much slower
than ϕ22. The above equation implies that the frequency of
 h22 and _h22 are roughly the same. Therefore, below we do
not distinguish the frequency of  h22 from that of _h22, and
use Ω22 to stand for both frequencies. Combining Eqs. (44)
with (B1), we obtain

j _h22j2 ∼ j  h22j2=Ω2
22 ∝

d
dt

Ω2
22: ðB2Þ

Then applying Eq. (45) to j  h22j,7 i.e.,

j  h22j ¼ Xsech½γðt − tpÞ�; ðB3Þ

which leads to

Ω22 ¼
�
Ω4

0 þ
ω4
0 −Ω4

0

2
½tanh γðt − tpÞ þ 1�

�
1=4

: ðB4Þ

The above equation implies

lim
t→∞

Ωð2Þ
22 ¼ ω0; ðB5Þ

which is the same as the case of _h22 [Eq. (48)]. Integrating
Eq. (B4) again gives the time dependence of ϕ22, i.e., the
phase of  h22

ϕ22 ¼
1

γ

�
ω0

�
arctanh

Ω
ω0

þ arctan
Ω
ω0

�

−Ω0

�
arccoth

Ω0

Ω
þ arccot

Ω0

Ω

��
− ϕ0: ðB6Þ

This is the original form of BOB model [cf. Eq. (10) of
Ref. [111]]. Clearly, Eq. (B6) is different from Eq. (49).

7We use the same notation as Eq. (46) since this will not cause
any confusion.
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2. h22
Following the same line of reasoning, the frequency of

h22 is also approximately equal to Ω22. Therefore

j _h22j2 ∼ jh22j2Ω2
22 ∝

d
dt

Ω2
22: ðB7Þ

Then using the assumption

jh22j ¼ Xsech½γðt − tpÞ�; ðB8Þ

we obtain

Ω22 ¼ Ω0Xγ−1=2½tanh γðt − tpÞ þ 1�1=2: ðB9Þ

Integrating the above equation again can lead to a tedious
expression of ϕ22, we do not show it here.
The BOB model for h22,  h22, together with the one for

_h22 [Eq. (46)], are used to fit NR results, and are compared

to QNMs in Fig. 17. We can see the model works the worst
for h22.

APPENDIX C: THE PARITY TRANSFORMATION
OF A COMPLEX STRAIN

In this section, we show that the complex strain h ¼
hþ − ih× is transformed to the complex conjugate if the
whole system undergoes a parity transformation (including
the BBH system and observer).
According to Fig. 9, under the parity transformation two

BHs exchange their locations, while have their individual
spin fixed, since axial vectors are not changed by the parity
transformation. Meanwhile, within the detector frame,
the orientation of detector arms and the propagation
direction are flipped simultaneously, as shown in
Figs. 23(a) and 23(b). We want to emphasize that the
GW detector is a 2D plane (formed by two arms). Its parity
transformation can be equivalently achieved by a π-rotation
about the axis that is perpendicular to the detector plane.
Therefore, we further rotate the whole system about the

TABLE V. A summary for SKu configurations. The convention is the same as the one used in Table I, except that the fifth and sixth
columns are the components of individual spin in the Cartesian coordinates, where the z-axis is in the direction of orbital angular
momentum; the line of two BHs determines the x-axis; and the right-handed rule determines the y-axis. The dimensionless spin ranges
from 0.6 to 0.95, specified at the orbital frequency Ωorb.

Run label

This
paper

SXS:
BBH

Ωorb

ð×10−2Þ χ1 χ2 jχ1j ¼ jχ2j mf

vzf
ð×10−3Þ χf

SKu6 “01” 2428 1.63 ð0.378;−0.378; 0.273Þ ð−0.413; 0.389; 0.200Þ 0.6 0.944 −1.46 0.754
“02” 2429 1.62 (0.390, 0.359, 0.281) ð−0.402;−0.398; 0.199Þ 0.6 0.942 −8.04 0.749
“03” 2430 1.63 ð−0.374; 0.383; 0.271Þ ð0.406;−0.395; 0.199Þ 0.6 0.944 −0.34 0.754
“04” 2431 1.62 ð−0.386;−0.364; 0.281Þ (0.397, 0.402, 0.201) 0.6 0.942 8.03 0.749
“05” 2432 1.63 (0.254, 0.465, 0.282) ð−0.254;−0.504; 0.202Þ 0.6 0.942 −7.54 0.749
“06” 2448 1.63 ð0.533;−0.0207; 0.275Þ ð−0.568;2.00×10−3;0.193Þ 0.6 0.944 −6.80 0.752
“07” 2449 1.63 ð−4.75×10−3;0.531;0.279Þ ð0.0218;−0.564; 0.203Þ 0.6 0.942 −6.01 0.750
“08” 2450 1.63 ð0.0120;−0.531; 0.280Þ ð−0.0312; 0.564; 0.202Þ 0.6 0.942 5.91 0.750

SKu8 “01” 2433 1.63 (0.666, 0.308, 0.320) ð−0.667;−0.314; 0.311Þ 0.8 0.941 −1.58 0.773
“02” 2434 1.63 ð−0.352; 0.647; 0.312Þ ð0.360;−0.649; 0.300Þ 0.8 0.939 −11.0 0.767
“03” 2435 1.63 ð−0.669;−0.306; 0.316Þ (0.667, 0.309, 0.316) 0.8 0.941 1.31 0.773
“04” 2436 1.63 ð0.382;−0.629; 0.315Þ ð−0.390; 0.630; 0.301Þ 0.8 0.939 11.0 0.766

SKu95 “01” 2437 1.63 ð−0.793;−0.437; 0.284Þ (0.792,0.437,0.290) 0.95 0.942 2.43 0.765
“02” 2438 1.62 ð0.422;−0.803; 0.280Þ ð−0.423; 0.804; 0.279Þ 0.95 0.938 13.5 0.752
“03” 2439 1.63 (0.800, 0.423, 0.288) ð−0.800;−0.426; 0.283Þ 0.95 0.942 −4.29 0.765
“04” 2440 1.63 ð−0.428; 0.802; 0.277Þ ð0.425;−0.801; 0.283Þ 0.95 0.938 −13.5 0.753
“05” 2441 1.63 ð−0.826;−0.377; 0.277Þ (0.824, 0.376, 0.284) 0.95 0.941 10.6 0.760
“06” 2442 1.62 ð0.390;−0.821; 0.275Þ ð−0.390; 0.822; 0.2733Þ 0.95 0.938 13.5 0.750
“07” 2443 1.62 ð−0.358; 0.837; 0.272Þ ð0.355;−0.836; 0.278Þ 0.95 0.938 −13.5 0.751
“08” 2444 1.64 ð0.293;−0.820; 0.380Þ ð−0.301; 0.825; 0.363Þ 0.95 0.936 −2.80 0.785
“09” 2445 1.65 (0.826, 0.279, 0.375) ð−0.829;−0.281; 0.368Þ 0.95 0.933 13.0 0.776
“10” 2446 1.64 ð−0.229; 0.842; 0.376Þ ð0.239;−0.850; 0.351Þ 0.95 0.936 3.35 0.784
“11” 2447 1.65 ð−0.836;−0.252; 0.372Þ (0.837, 0.251 ,0.372) 0.95 0.933 −12.4 0.776
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vertical dashed line by π, as shown in Fig. 23(c). We can see
that the detector configuration changes back to the one of
(a), while the sky location of GW source changes from
ðθS;ϕSÞ (the northern hemisphere) to ðπ − θS;ϕSÞ (the
southern hemisphere).
Since GR preserves the parity, the strain hobs observed by

a detector:

hobs ¼ hþFþ þ h×F×;

is not affected by the above mentioned transformations.
The antenna patterns Fþ;× have forms [127]

Fþ ¼ 1

2
ð1þ cos2 θSÞ cos 2ϕS; F× ¼ cos θS sin 2ϕS;

with ðθS;ϕSÞ the sky location of GW source relative to
the detector. Under the transformation from Figs. 23(a)
to 23(c), i.e., ðθS;ϕSÞ → ðπ − θS;ϕSÞ the antenna patterns
Fþ;× transform as

Fþ → Fþ; F× → −F×:

Recalling that the hobs of Figs. 23(a) and 23(c) are the same,
we then have

hþ → hþ; h× → −h×:

As a result,

h ¼ hþ − ih× → h� ¼ hþ þ ih×: ðC1Þ
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