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An interferometer design that cancels all displacement noises of its test masses and maintains a
gravitational-wave (GW) signal by combining multiple detector signals is called a displacement noise-free
interferometer (DFI). The idea has been considered previously for a laser interferometer. However, a
limitation of a laser DFI is that its sensitive frequency band is too high for astrophysical GW sources,
∼105 Hz even for a kilometer-sized interferometer. To circumvent this limitation, in this paper, we propose
a neutron DFI, in which neutrons are used instead of light. Since neutrons have velocities much lower than
the speed of light, the sensitive frequency band of a neutron DFI can be lowered down to ∼10−1 Hz.
Therefore, a neutron DFI can be utilized for detecting GWs that are inaccessible by an ordinary laser
interferometer on the ground.

DOI: 10.1103/PhysRevD.105.124017

I. INTRODUCTION

A gravitational wave (GW) was detected for the first time
by Laser Gravitational Wave Observatory (LIGO) and
Virgo in 2015 [1], and the number of GW events observed
so far is 90 until the end of the third observing run [2–5].
One type of noise that limits the sensitivity of a ground-
based detector at lower frequencies is displacement noise,
arising from seismic motions, thermal fluctuations of
mirrors and suspensions, radiation pressure fluctuations
of laser light. Displacement noise prevents us from improv-
ing detector sensitivity below ∼1 Hz, e.g., [6–8]. Although
there are rich targets of astrophysical GWs such as the early
inspiral phase of stellar-mass binary black holes (BHs) and
binary neutron stars and the coalescences of intermediate-
mass BHs [9,10], a decihertz frequency band is inaccessible
by ground-based detectors.
An idea to remove all displacement noises by combining

multiple detector signals, while maintaining a GW signal,
that is, a displacement noise-free interferometer (DFI) was
originally proposed in [11,12]. Later, more practical con-
figurations have been considered in [13–15]. The principle
underlying DFIs was experimentally demonstrated with

laser optics in [16,17]. In a series of the studies, it has been
shown that a DFI can eliminate all displacement noises and
improve sensitivity at lower frequencies, reaching Ω2

response to a GW where Ω is the angular frequency of
a GW. However, a limitation of a laser DFI is that its
sensitive frequency band is determined by the characteristic
frequency of a detector, fc ≡ c=ðπLÞ, where L is the size of
a detector and c is the speed of light. Even for a kilometer-
sized interferometer, the characteristic frequency is
∼105 Hz, which is far above the signal frequencies of
standard astrophysical GW sources expected.
To circumvent the limitation, in this paper, we propose to

use matter waves, more specifically neutrons instead of
light, in a DFI. A neutron interferometer [18] was dem-
onstrated on the basis of x-ray interferometer technique
[19]. A silicon single crystal functions as a mirror for
neutron waves according to Bragg’s law. By machining
four mirrors on a single block of a silicon crystal, the
mirrors based on a crystal lattice are precisely aligned.
Some remarkable experiments including studies of gravity
were performed with the interferometer [20], however, the
applications were limited by the block size. In addition,
only monochromatic neutrons with the velocity of the order
of 1 km=s could be applied to the interferometer because of
the Bragg reflection. More recently, neutron interferometry*anishi@resceu.s.u-tokyo.ac.jp
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using multilayer mirrors has been developed. By using two
materials with different refractive indices for neutrons,
mirrors and even beam splitters can be freely designed
and produced. A multilayer mirror with gradually changing
thickness enables us to utilize polychromatic neutrons for
interferometry. The remote positioning of the artificial
multilayers makes it possible to construct a large interfer-
ometer [21,22]. Since neutrons can have velocity much
lower than the speed of light, the characteristic frequency
fc can be lowered down to the frequency band sensitive to
astrophysical GW sources, ∼10−1 Hz, with the detector
size of ∼3 km. We use the unit of c ¼ 1 ¼ ℏ throughout
the paper.

II. ONE-PATH SIGNAL

We first derive a propagation equation for the phase of a
massive particle in the presence of a GW. Then we integrate
the differential equation and obtain a phase shift in a
homogeneous gravitational field, that is, the Earth gravity.

A. Wave equation

We start with the Klein-Gordon equation for a massive
particle with mass m,

ð□ −m2ÞΦ ¼ 0; ð1Þ

where □≡ −∂2
t þ∇i∇i. The wave function of a massive

particle at a time t and a position X at the zeroth order is
taken as a plane wave, Φ0ðt;XÞ ¼ Ae−iðωtþk·XÞ. A pertur-
bation for the plane wave in the presence of a GW is in
general written as

Φðt;XÞ ¼ Φ0ðt;XÞ½1þ iϕgwðt;XÞ�: ð2Þ

We assume that the angular frequency of a GW, Ω, is much
smaller than that of a massive particle, namely, Ω ≪ ω and
that a massive particle is nonrelativistic, k ≪ ω. Hereafter
we approximately use m instead of ω.
For a GW propagating in a flat spacetime in the trans-

verse-traceless gauge, we write

ds2 ¼ −dt2 þ ½ηij þ hijðt;XÞ�dxidxj: ð3Þ

In this coordinate system, the wave equation (1) at the
leading order in h is reduced to

∂ϕgw

∂t ¼ −
hijkikj
2ω

≈ −
hijkikj
2m

: ð4Þ

B. One-path signal on the Earth

Suppose that a gravitational field (due to the Earth) is
uniform in the z direction and that a massive particle is
emitted with velocity v0 along the direction of angles ðα; βÞ

at the time t ¼ 0. By denoting XðtÞ ¼ X0 þ xðtÞ, the
trajectory of the particle is

xðtÞ ¼
�
v0t cos α cos β; v0t cos α sin β; v0t sin α −

g
2
t2
�
;

ð5Þ

with the end point given by setting t ¼ T. The wave-
number vector is

kðtÞ ¼ mv0fcos α cos β; cos α sin β; sinα − f0tg; ð6Þ

where f0 ≡ g=v0. Integrating Eq. (4) from the point A at t
to the point B at tþ T gives a phase shift due to the GW

ϕgw
ABðtÞ ≈ −

k20
2m

Z
tþT

t
hij½t0;Xðt0Þ�k̃iðt0Þk̃jðt0Þdt0; ð7Þ

where we defined the dimensionless wave number k̃i ≡
ki=k0 with k0 ≡mv0. We expanded the GW amplitude at
the position XðtÞ as hijðt;XðtÞÞ ≈ hijðt;X0Þ þ xðtÞ ·
∇hijðt;X0Þ, which gives a factor, 1þ ikgw · xðtÞ.
However, the second term can be ignored because the
typical size of interferometers that we consider is x ∼ 3 km
and kgwx ∼ x=λgw is negligibly small for GWs at 1 Hz,
whose wavelength is λgw is 3 × 105 km. For simplicity, we
can set X0 to zero without loss of generality and drop the
position dependence from ϕgw

AB.
In practice, the timing of neutron detection at the points

A and B and the displacement of the detectors introduce
noise in the GW signal. We call these noises clock and
displacement noises of detectors at A and B (more
concretely those of mirrors and beam splitters in the later
section), which are given by

ϕclock
AB ðtÞ ≈mfτBðtþ TÞ − τAðtÞg; ð8Þ

ϕmirror
AB ðtÞ ¼ 2kAB

B · dBðtþ TÞ − 2kAB
A · dAðtÞ; ð9Þ

where τA and τB are the clock noises of the detectors A and
B, and dA and dB are the displacement noise vectors of the
detectors A and B, respectively, and kAB

A is the wave-
number vector at the point A on the path from A to B and
so on.
Defining the Fourier transform of the GW amplitude by

HijðΩÞ≡
Z

∞

−∞
dteiΩthijðtÞ; ð10Þ

and from Eq. (7), we obtain the single-path signal in the
Fourier domain
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ΦABðΩÞ¼−
k20
2m

fP0ðΩÞk̃I k̃JHIJðΩÞ
þðsinαP0ðΩÞþP1ðΩÞÞk̃IHIzðΩÞ
þðsin2αP0ðΩÞþ2sinαP1ðΩÞþP2ðΩÞÞHzzðΩÞg
þmfwðΩÞτBðΩÞ− τAðΩÞg
þ2wðΩÞkAB

B ·dBðΩÞ−2kAB
A ·dAðΩÞ; ð11Þ

where the indices are I; J ¼ x, y. We defined the phase
wðΩÞ ¼ e−iΩT and the phase responses

P0ðΩÞ≡ −
i
Ω
f1 − wðΩÞg; ð12Þ

P1ðΩÞ≡ f0
Ω2

f1 − wðΩÞð1þ iΩTÞg; ð13Þ

P2ðΩÞ≡ 2if20
Ω3

�
1 − wðΩÞ

�
1þ iΩT −

1

2
Ω2T2

��
: ð14Þ

To study the performance of a neutron DFI, it is convenient
to define a GW response function normalized by the GW
amplitude, H, and the parameter combination of a neutron
interferometer, η,

RABðΩÞ≡Φgw
ABðΩÞ
ηH

; η≡ k20T
2m

: ð15Þ

Let us first look at a GW response in a simple case, that
is, a parabolic trajectory of a neutron on the x − z plane
(β ¼ 0). For a GW propagating in the z direction (θ ¼ 0,
ϕ ¼ 0) with ψ ¼ 0, the GW response function from
Eq. (15) is

RABðΩÞ ¼ cos2α

���� sinðΩT=2ÞΩT=2

����: ð16Þ

For a GW propagating in the x direction (θ ¼ π=2, ϕ ¼ 0)
with ψ ¼ 0, the GW response function is

RABðΩÞ ¼
1

T
jsin2αP0ðΩÞ þ 2 sin αP1ðΩÞ þ P2ðΩÞj: ð17Þ

In Fig. 1, the response functions to a GW propagating in
specific directions are plotted for neutron trajectories with
different α by fixing the flight time to T ¼ 1 s. When a GW
comes from an arbitrary direction, ðθ;ϕÞ, with the polari-
zation angle ψ , the GW components are computed by

h0ij ¼ RiaRjbhab ¼ ðRhRTÞij; ð18Þ

with the rotation matrixR ¼ Rzð−ϕÞRyðθÞRzð−ψÞ where
RyðθÞ rotates the propagating direction of a GWabout the y
axis by θ and so on.

III. DFI SIGNAL COMBINATION

The DFI configuration we consider is shown in Fig. 2.
The mirrors C1, C2, D1, and D2 and the beam splitters A
and B are arranged on the x-y plane, but the DFI
configuration is three dimensional, including the z direction
because neutrons propagate along parabolic paths. For the
two different paths 1 and 2 in Fig. 2, we inject neutrons
with the same velocity, v0. They are bounced at C1, C2,D1,
and D2 without losing speeds. In the Fourier domain, the

0.01 0.1 1 10
0.01

0.1

1

fgw[Hz]

R
A
B

0.01 0.1 1 10

0.01

0.1

fgw[Hz]

R
A
B

FIG. 1. GW responses for one-way paths with neutron initial
angles, α ¼ π=24 (blue), π=12 (orange), and π=6 (green). The
initial velocities are chosen as v0 ¼ 75.1, 37.9, and 19.6 m=s,
respectively, fixing the flight time of neutrons to 2 s. Upper and
lower panels are the responses to a GW propagating in the z and x
directions, respectively. The diagonal dashed lines are propor-
tional to f−1gw.

FIG. 2. Neutron-DFI configuration. The signs near the beam
splitters, A and B, represent the sign convention for reflectivities.
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DFI signal combination that cancels all displacement
noises is

ΦDFIðΩÞ ¼
1

2ΩT̄
½c1ðΩÞfΦA1BðΩÞ −ΦB1AðΩÞg

− c2ðΩÞfΦA2BðΩÞ −ΦB2AðΩÞg�; ð19Þ

ΦAiBðΩÞ≡ΦACi
ðΩÞ þ wiðΩÞΦCiBðΩÞ

−ΦADi
ðΩÞ − wiðΩÞΦDiBðΩÞ; ð20Þ

with the coefficients

c1ðΩÞ ¼
1 − w2

2ðΩÞ
cos α1 sin β1

; c2ðΩÞ ¼
1 − w2

1ðΩÞ
cos α2 sin β2

; ð21Þ

where i ¼ 1, 2, Ti is the flight time of each individual
parabolic trajectory, wiðΩÞ ¼ e−iΩTi is the phase shift
corresponding to Ti, and the average of the flight time
is T̄ ≡ ðT1 þ T2Þ=2. The combinations, ϕA1B − ϕB1A and
ϕA2B − ϕB2A, cancel the displacement noises of mirrors C1,
C2, D1, and D2. The clock and displacement noises at the
beam splitters remain in ϕA1B − ϕB1A and ϕA2B − ϕB2A, but
they can be eliminated by taking a linear combination with
the appropriate coefficients. The coefficients, c1 and c2, are
divided by a factor of 2ΩT̄ so that the coefficients give
frequency-independent constants at low frequencies and
the original frequency dependence of the DFI response is
preserved. Therefore, in the DFI signal, all displacement
noises are canceled out but a GW signal remains.
Given the parameters, L, β1, β2, and v0, the other

parameters of the DFI configuration are uniquely fixed to

Li ¼
L

cosβi
; sin2αi ¼

gLi

v20
; Ti ¼

Li

v0 cosαi
; ð22Þ

where i ¼ 1, 2 and Ti is the flight time of neutrons, that is,
the time when a neutron returns at the height of z ¼ 0. For
L ¼ 3 km, β1 ¼ π=4 rad, β2 ¼ π=3 rad, and v0 ¼ 3 km=s,
the derived parameters are T1 ¼

ffiffiffi
2

p
s, T2 ¼ 2 s,

α1 ¼ 0.132 deg, and α2 ¼ 0.187 deg. This set of param-
eters is not optimal, but we take it as fiducial parameters to
illustrate the DFI response to a GW.
Figure 3 shows the DFI response,

RDFIðΩÞ≡ jΦDFIðΩÞj
η̄H

; η̄ ¼ k20T̄
2m

: ð23Þ

By taking the combinations of a bidirectional Mach-Zender
interferometer (MZI), each corresponding to the first and
second lines in Eq. (19), all the displacement noises of
mirrors C1, C2, D1, and D2 are canceled out, while a GW
response is the same as a single MZI, that is, proportional to
Ω at low frequencies. Further, by taking the linear combi-
nation of two such MZIs with the appropriate coefficients

for the full DFI signal, the displacement noises at the beam
splitters are also canceled out. A GW signal is partially
canceled but still remains, with a frequency dependence of
the GW response proportional to Ω3 at low frequencies.
This is the GW response consistent with that of the
2-dimensional configuration of a laser DFI [13]. However,
a remarkable difference is that the characteristic frequency of
the GW response, fc ¼ v0=ðπLÞ ≈ 0.32 Hz, is significantly
lowered down below ∼1 Hz because of slow velocities of
neutrons. The GW responses of the bidirectional MZIs have
dips at the frequencies of multiples of T−1

1 or T−1
2 , which are

0.71 Hz and 0.50 Hz and at which GW signals vanish. In the
DFI signal, dips aremuch narrower because they appear only
at the frequencies that the GW signals of two bidirectional
MZIs are canceled out exactly.
At the low frequency limit, that is, Ω ≪ Ωc ≡ 2πfc, the

DFI response in Eq. (19) is expanded in powers of Ω and
the leading-order term is

RDFIðΩÞ ¼
64

3

�
Ω
Ωc

�
3

Gsðθ;ϕ;ψÞGdðα1; α2; β1; β2Þ; ð24Þ
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FIG. 3. DFI response function for a GW propagating from þz
direction as a function of GW frequency, fgw ¼ Ω=ð2πÞ. The
polarization angle is set to ψ ¼ π=4. Top: the response of a
bidirectional MZI, R2MZIðΩÞ, for ΦA1B −ΦB1A (orange, dashed)
andΦA2B −ΦB2A (blue, solid). The diagonal dashed lines are just
for reference and are proportional to f−1gw. Bottom: the DFI
response, RDFIðΩÞ, for Eq. (19) The diagonal dashed lines are
proportional to f3gw and f−2gw, respectively.

ATSUSHI NISHIZAWA et al. PHYS. REV. D 105, 124017 (2022)

124017-4



Gs ≡ 1þ cos2θ
2

sin 2ϕ cos 2ψ

þ cos θ cos 2ϕ sin 2ψ ; ð25Þ

Gd ≡ −
1

cos α1 cos α2 cos β1 cos β2

×
cos α1 cos β1 − cos α2 cos β2
cos α1 cos β1 þ cos α2 cos β2

: ð26Þ

The factors, Gs and Gd, are the geometrical factors deter-
mined by the angle parameters for a source direction and a
detector, respectively. In addition to the low-frequency
suppression of the GW response, ðΩ=ΩcÞ3, Eq. (26) can be
expressed in terms of flight times by using Eq. (22) and
gives a suppression factor proportional to the flight time
difference:

Gd ¼
1

2 cos α1 cos α2 cos β1 cos β2

T2 − T1

T̄
: ð27Þ

However, the suppression is modest (jT2 − T1j=T̄ ≈ 0.34)
for the parameter set above. Interestingly, the dependence
on a GW source direction is factored out and is given by the
same expression as that of a Michelson-type GW detector.
The optimal direction of a GW response is the z axis. The
angular average over a GW source direction, ðθ;ϕÞ, and a
polarization angle, ψ , decreases the GW response by a
factor of 2.24 but does not change the spectral shape of the
GW response.

IV. SENSITIVITY

To implement the neutron DFI in reality, experimental
feasibility should be evaluated. Since a displacement noise
of the neutron DFI is already canceled, we estimate a shot
noise arising from the finite number of neutrons in the
output ports.
From Eq. (19), a GW signal in the DFI combination is

given by

Φgw
DFIðΩÞ ¼

1

2ΩT̄
½c1ðΩÞfΦgw

A1BðΩÞ −Φgw
B1AðΩÞg

−c2ðΩÞfΦgw
A2BðΩÞ −Φgw

B2AðΩÞg�
¼ η̄RDFIðΩÞH: ð28Þ

In the GW detection experiments, a GW signal is conven-
tionally given in the unit of Hz−1=2 as

SðΩÞ≡ jΦgw
DFIðΩÞjΩ1=2: ð29Þ

While defining the power spectral density of shot noise by

hΦshot
DFIðΩÞΦshot

DFIðΩ0Þi ¼ 2πδðΩ −Ω0ÞPnðΩÞ; ð30Þ

the shot noise for the DFI combination is

N2ðΩÞ≡ PnðΩÞ

¼ 1

ð2ΩT̄Þ2 ½jc1ðΩÞj
2fPshot

A1BðΩÞ þ Pshot
B1AðΩÞg

þjc2ðΩÞj2fPshot
A2BðΩÞ þ Pshot

B2AðΩÞg�

¼ 1

2Ω2T̄2
fjc1ðΩÞj2 þ jc2ðΩÞj2gPshot

1 ðΩÞ: ð31Þ

At the last line, we assume that four MZIs are identical
and have same shot noise amplitude, that is,
Pshot
1 ¼ Pshot

A1B ¼ Pshot
B1A ¼ Pshot

A2B ¼ Pshot
B2A. Given a neutron

flux F, the shot noise of a single MZI is given by the
Poissonian fluctuation of neutron flux as Pshot

1 ðΩÞ ¼ 1=F.
Substituting this for Eq. (31) and setting S=N ¼ 1, we
obtain the shot-noise-limited sensitivity to GW amplitude
in Hz−1=2

hnðΩÞ≡HnðΩÞΩ1=2

¼ 1

η̄RDFIðΩÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jc1ðΩÞj2 þ jc2ðΩÞj2

2Ω2T̄2F

r
: ð32Þ

The largest flux of currently available neutron beams is
that produced in J-PARC [23] or ESS planned in the near
future [24], F ∼ 1013 neutrons=s at the wavelength
λn ¼ 0.13 nm, corresponding to v0 ¼ 3 km=s. If the flux
is injected in the neutron DFI with L ¼ 3 km,
β1 ¼ π=4 rad, and β2 ¼ π=3 rad, the shot-noise-limited
sensitivity at the characteristic frequency, fc ¼ 0.32 Hz
for the above parameters, is written as

hnðfcÞ ¼ 6.8 × 10−22
�
3 km=s

v0

��
3 km
L

��
1.78

RDFIðfcÞ
�

×

�
1013 s−1

F

�
1=2

Hz−1=2: ð33Þ

In Fig. 4, we plot the noise curves of the neutron DFI and
those of future detectors except for LIGO for reference. It is
explicitly shown that the neutron DFI is sensitive to the
lower frequency band that ground-based detectors are
inaccessible. Furthermore, the neutron DFI bridges the
frequency bands of LISA and ground-based laser interfer-
ometers and plays a crucial role for multiband observations
because the mission life time of the neutron DFI can be
much longer than that of space-based missions.
Next we estimate the horizon redshift zmax and the

corresponding luminosity distance dL for equal-mass
binary BHs as a function of total mass, m1 þm2 (equal
mass), in a source frame, based on the sky-averaged noise
curve of a neutron DFI. The signal-to-noise ratio (SNR) ρ is
computed from

NEUTRON DISPLACEMENT NOISE-FREE INTERFEROMETER … PHYS. REV. D 105, 124017 (2022)

124017-5



ρ2 ¼ 4

Z
fmax

fmin

jHðfÞj2
h2nðfÞ

df: ð34Þ

The lower cutoff frequency fmin of the integration is
determined by comparing the low frequency cutoff of
detector sensitivity and the frequency at which the obser-
vational time is equal to the time to merger. In the case of
a neutron DFI, the low frequency cutoff of the detector
sensitivity is always higher in the range of BH mass that we
consider, 10 M⊙ and 106 M⊙, and for the observation time
of 1 year. We set it to fmin ¼ 0.02 Hz. While the higher
frequency cutoff is set to the higher one between the highest
frequency of a GW waveform or the high frequency cutoff
of the detector sensitivity, 10 Hz for a neutron DFI. For the
waveform, we will use the inspiral–merger–ringdown
phenomenological (IMR PhenomD) waveform [30] (com-
piled in Appendix of [31]), which is an waveform for
aligned-spinning (nonprecessing) binary BHs.
In Fig. 5, the horizon redshift zmax and the corresponding

luminosity distance dL, defined by the SNR ρ ¼ 8, for
equal-mass binary BHs are shown as a function of total

mass, m1 þm2, in a source frame. The neutron DFI can
detect binary BHs with the broad range of masses, from
stellar-mass BHs to supermassive BHs. Particularly, the
mass range above ∼102 M⊙ cannot be accessed from the
ground-based laser interferometers such as LIGO, ET, and
CE. While as expected from the low-mass end in Fig. 5,
binary neutron stars and binaries of neutron-star and BH
are difficult to observe because of smaller GW amplitude.
For 30 M⊙ − 30 M⊙ binary BHs, the horizon redshift of a
neutron DFI is zmax ∼ 0.18. Based on the median of the
merger rate of stellar-mass BBHs constrained by LIGO and
Virgo, 23.9 Gpc−3 yr−1 [32], the number of detections
expected with a neutron DFI is ∼37 per year. For binary
BHs with total masses, 103 M⊙, 104 M⊙, and 105 M⊙, the
horizon redshifts are zmax ∼ 2.6, 8.5, and 1.8, respectively.
Since we have not performed an observation sensitive to
astrophysical BHs below 10 Hz, it is difficult to estimate
the event rate of binary BHs. However, due to such high
horizon redshifts, we would be able to detect several to
several tens of the GWs from coalescences of massive BHs
if they exist in the Universe.

V. CONCLUSIONS

We have shown that a neutron DFI has a characteristic
frequency sensitive to GWs around 0.1 Hz with its size of
∼3 km and a GW response of Ω3 at low frequencies,
canceling out all the displacement noises from the mirrors
and beam splitters. In contrast to a kilometer-sized laser
DFI that has a characteristic frequency, ∼105 Hz, a neutron
DFI can be utilized for detecting GWs from astrophysical
sources below 1 Hz that are inaccessible by an ordinary
laser interferometer on the ground. Furthermore, the
neutron DFI bridges the frequency bands of LISA and
ground-based laser interferometers and plays a crucial role
for multiband observations.
In order to implement a neutron DFI in reality, more

studies on experimental aspects and the estimation of
sensitivity to a GW are necessary. A simplified detector
design for a proof-of-principle experiment of a neutron DFI
has been considered in [33]. One of the technical chal-
lenges is a reflection angle at a mirror. With the state-of-the
art technology, the reflection angle measured from the
surface of a mirror is ∼5 degrees at most. However, there is
no fundamental limitation on the reflection angle and a
large-angle reflection (∼45-degree) mirror can be realized
in principle by a one-dimensional artificial crystal.
Additionally, the currently available neutron beams are
not very directional to form the geometrical optics of the
interferometer and to obtain sufficient intensity [18]. A
more intense pulsed neutron source and an efficient beam
transport system have been discussed [34]. Another prac-
tical issue to be considered when one demonstrates a
neutron DFI in an experiment is imperfections of a detector.
The effects on the sensitivity of a neutron DFI from the

FIG. 4. Sky-averaged shot-noise-limited sensitivity to GWs.
The curves plotted are the noise curves of the neutron DFI (this
work, blue), LIGO [25] (orange), Einstein Telescope (ET) [26]
(red), Cosmic Explorer (CE) [27] (cyan), B-DECIGO [28]
(green), and LISA [29] (purple).

FIG. 5. Sky-averaged horizon redshift zmax (luminosity distance
dL) for equal-mass binary BHs as a function of total mass,
m1 þm2, in a source frame.
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imbalance of arm lengths, the splitting ratio of beam
splitters, the reflectivities of mirrors, and any residuals
of displacement-noise cancellation should be evaluated.
Therefore, such technical developments are challenging but
we believe they are feasible in the future. We leave more
detailed investigation on these issues for future work.
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