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Abstract— The paper focuses on collision-inclusive motion
planning for impact-resilient mobile robots. We propose a
new deformation recovery and replanning strategy to handle
collisions that may occur at run-time. Contrary to collision
avoidance methods that generate trajectories only in conser-
vative local space or require collision checking that has high
computational cost, our method directly generates (local) tra-
jectories with imposing only waypoint constraints. If a collision
occurs, our method then estimates the post-impact state and
computes from there an intermediate waypoint to recover from
the collision. To achieve so, we develop two novel components:
1) a deformation recovery controller that optimizes the robot’s
states during post-impact recovery phase, and 2) a post-impact
trajectory replanner that adjusts the next waypoint with the
information from the collision for the robot to pass through and
generates a polynomial-based minimum effort trajectory. The
proposed strategy is evaluated experimentally with an omni-
directional impact-resilient wheeled robot. The robot is designed
in house, and it can perceive collisions with the aid of Hall
effect sensors embodied between the robot’s main chassis and
a surrounding deflection ring-like structure.

I. INTRODUCTION

Mobile robot motion planning algorithms can be classified
in terms of the underlying optimization problem [1]. When
there exist obstacles, most algorithms generate collision-free
trajectories. Yet, it may be possible that potential collisions
can in fact be useful [2]-[9], and thus an increasing number
of research efforts aims at developing collision-inclusive
motion planning algorithms [10]-[13]. This paper focuses
on the latter category of collision-inclusive motion planning.

Development of collision-inclusive motion planners re-
quires three core capabilities: 1) collision resilience, 2) colli-
sion identification, and 3) post-impact characterization. Ad-
vances in material science and design have helped introduce
a range of collision-resilient mobile robots (e.g., [14]-[17]).
For instance, passive protection devices can protect the robot
from catastrophic impacts but cannot acquire information on
where a collision occurred [7]; this is important information
in order to predict how the robot will respond following
a collision [5], [18]. Sensor-based collision detection and
characterization methods have mostly focused on utilizing
data from an onboard inertial measurement unit (IMU) [19].
However, IMUs are usually unable to distinguish collisions
during aggressive maneuvers and to detect static contacts,
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Fig. 1: Snapshot of our built-in-house omni-directional robot. The
supplementary video contains detailed instances of our experiments.

resulting in low accuracy in collision detection. Hall effect
sensors have been used in the past to provide more accurate
collision detection based on estimated deformation [20]. In
related yet distinct previous work [21], we have implemented
a passive quadrotor arm design with Hall effect sensors,
making the robot able to detect and characterize collisions.
Herein, we embed a similar design to connect the main robot
chassis and the deflection ring to estimate and characterize
collisions. We design and deploy a distributed system of
collision guards (that form a deflection ‘ring’ as shown in
Fig. 1), where each surface is connected to the main robot
chassis via passive visco-elastic prismatic joints.

Contrary to collision avoidance methods that generate
trajectories only in conservative local space or require colli-
sion checking that has high computational cost and accurate
detection of the obstacle, our method directly generates
local trajectories based on a minimal effort optimization
with only a waypoint constraint. Our method then estimates
the post-impact state if a collision occurs and computes an
intermediate trajectory to recover from the collision. The
refined robot trajectory after collision attains a piece-wise
polynomial form with respect to its flat outputs, and is
computed online. Succinctly, in this work:

« We propose and solve a deformation control problem
based on a dynamic model of wheeled robot visco-
elastic collisions with polygon-shaped obstacles.

« We present a post-impact trajectory replanning algo-
rithm based on constrained quadratic programming (QP)
to locally adjust the trajectory after a collision.

« We develop and evaluate experimentally a deformation
recovery and replanning (DRR) strategy to generate
local trajectories based on any given waypoints.

II. RELATED WORKS

Most motion planning algorithms focus on generating
collision-free trajectories. Collision-free algorithms handle
obstacle avoidance in distinct ways. One way is to include
geometric constraints of collision-free trajectories within the



optimization problem, when a map of the environment is
exactly known [22]. When the map is partially-known, it
is possible to formulate an obstacle-agnostic optimization
problem [23], [24]. However, this approach is limited to
short look-ahead planned trajectories, and may be unable
to perform complex maneuvers around obstacles; when they
do, this usually requires a computationally-expensive search
to be able to generate a trajectory around obstacles. An-
other approach is to include the obstacles directly in the
optimization problem, such as in the form of safe corridor
constraints [25]. This way relies on decomposing the free
(known or sensed) space as a series of P overlapping
polyhedra. However, trajectories generated based on convex
decomposition methods can be conservative since the solver
can only choose to place the two extreme points of each
interval in the overlapping area of two consecutive polyhedra.
To overcome conservative solutions, it is possible to use
binary variables to allow the solver to choose the specific
interval allocation [26], but with increased computation time.

Importantly, as robots venture into more dynamic,
irregularly-shaped and obstacle-cluttered environments,
avoiding collisions becomes a major challenge [27],
[28]. Employing a conservative local collision avoidance
planner in cluttered environments may preclude the robot
from finding a feasible path to the goal even if such
path exists [29]. Further, detecting all obstacles in the
environment can also be a challenging task, especially for
those obstacles that are not opaque [9], such as glass or
reflective surfaces. Developing collision-inclusive motion
planners can help address the aforementioned challenges.

Post-impact characterization in collision-inclusive motion
planning can be challenging to achieve, and it directly affects
the form that post-impact (recovery) trajectories can attain.
Estimating an accurate state of the robot after the collision
is important for generating a reliable recovery trajectory.
Yet, modeling collisions is a challenge and requires con-
sideration of many interacting physical phenomena relating
to the geometric, material, and inertial properties of each
body involved in the collision; many of these properties are
themselves difficult to model accurately. Related work [12]
has introduced an empirical algebraic collision model, by
directly relating pre- and post-impact velocities with no
thrust commanded. This approach can only deal with a
specific pair of objects over a relatively limited range of
conditions. Other works redirecting the robot after a collision
rely on the impulse contact model and feature different stages
to track the recovery trajectory [30]. An impulse contact
model assumes that velocity changes happen instantaneously,
thus resulting in discontinuities in the recovery trajectory.
The robot trajectory after contact with obstacles could be
smoother if passive shock absorption devices were to be
employed, e.g., as in [31], [32] albeit in a different context
of robotic arms. Herein we develop a dynamic model of our
wheeled robot after (visco-elastic) collisions based on the
Voigt model for passive arms [31].

Compared to our previous work [11] that developed a
higher-level waypoint planner that trades-off between risk

and collision exploitation, this paper proposes a new lower-
level planner to generate local trajectories based on given
waypoints and modify them accordingly if collisions occur.

Our proposed method shares similarities with blind navi-
gation techniques (e.g., [20], [33]) in that it requires limited
sensing capabilities (only mechanoception via the passive
compliant deflectors), and that it can be tuned to recover
paths yielded by such methods as well. However, our pro-
posed approach demonstrates features that distinct it from
prior blind navigation methods; namely, its ability to exploit
collisions in a controlled manner to improve overall collision-
inclusive planning performance, its ability to be tuned to
switch between exploration (i.e. explore free space after
collision) and exploitation (i.e. follow obstacle surface after
collision), and its compatibility to work alongside a range
of other motion planners (it requires a list of waypoints that
can be produced in any means).

III. THE DEFORMATION RECOVERY AND
REPLANNING (DRR) STRATEGY

In contrast to collision avoidance algorithms, we do not
impose any obstacle-related constraints in trajectory genera-
tion, nor we run a geometric collision check once a trajectory
is generated. Instead, we directly generate a trajectory based
on given waypoints.! If a collision occurs, the robot receives
a signal that a collision has occurred from any of the
Hall effect sensors embedded between the main chassis
and its deflection surfaces and activates a collision recovery
controller. The controller (described in Sec. IV) makes the
robot detach from the collision surface and determines a
post-collision state for the robot so as to facilitate post-
impact trajectory replanning. The replanner (described in
Sec. V) refines the initial trajectory since collisions change
the continuity of derivatives of the trajectory followed before
collision. To do so, the replanner uses the post-collision state
determined by the recovery controller as the initial state for
refined trajectory generation. The procedure repeats as new
collisions may occur in the future, in a reactive and online
manner. Our proposed deformation recovery and replanning
(DRR) strategy is visualized in Fig. 2.
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Fig. 2: Overview and software architecture of our DRR strategy for
collision-inclusive motion planning and control. The method builds
upon two novel components developed in this work; a deformation
recovery controller and a post-impact trajectory replanner.

IThe list of waypoints can be computed via any path planning method.



IV. DEFORMATION RECOVERY CONTROL DESIGN

The purpose of our proposed deformation controller is to
make the robot recover from a collision and reach a post-
impact state that can facilitate recovery trajectory replanning
(which we discuss in the next section). We first present
important notation and working assumptions, and then move
on to the development of the controller.

A. Problem Setting

Consider a holonomic mobile robot (Fig. 1), modeled as
a point mass m. The robot’s main chassis is connected to
deflection surfaces via four passive visco-elastic prismatic
joints (Fig. 3). Note that the springs inside each passive joint
are pre-tensioned. The robot’s compliant ‘arms’ can both
protect the robot from catastrophic impact, and generate a
external force driving it away from obstacles. External forces
along each arm are caused via passive visco-elastic deforma-
tions assumed to follow the Voigt model; k& and ¢ denote the
spring constant and damping coefficient, respectively. Hall
effect sensors are used to measure the amount of deformation
along each arm, and to signal collision detection when a user-
tuned arm compression threshold is exceeded.’

We consider four key quantities related to spring lengths:
neutral Iy, pre-tensioned !;, maximum-load l., and current [
(also referred to as deformation vector). These quantities play
a significant role in the deformation recovery controller; they
are also summarized in Table I, along with other key notation.
In single-arm collisions, current spring length vector [ is
aligned with the unit vector along the colliding arm, pointing
from the tip of the arm to the center of robot. For clarity
of presentation, we consider in the following single-arm
collisions. In the case of multi-arm collisions, we compute
individual contributions from each colliding arm’s spring and
then consider their vector sum as the compound deformation
vector which is used in lieu of I.

We use three coordinate systems. The world and body
frames (note ;"R denotes the rotation matrix from body
frame to world frame while I denotes the deformation vector
expressed in the body frame), and a (local) collision frame
Fe. This frame is defined at the time instant a collision
occurs, t., remains fixed for the duration of the collision
recovery process, T', and then it is deleted. Its origin coin-
cides with the origin of the robot when a collision is detected.
Basis vector {n, t, k} of F, are defined normal, tangent and
upwards with respect to the deformation vector . Let 6 be
the angle of deformation vector [ in F..

TABLE I: List of key notation used in the paper.

lo neutral length of the spring

ls pre-tensioned spring length (arm not compressed)

le length at maximum spring load following Hooke’s law.
l current spring length (deformation vector)

k spring constant of the arm.

c damping coefficient of the arm.

R Rotation matrix from body frame to world frame
¥R  Rotation matrix from collision frame F. to world frame

2The threshold is tuned based on the sensitivity of the Hall effect sensors.
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Fig. 3: (Left) Model of our wheeled robot equipped with compliant
arms. (Right) Close-up view of the assembly of passive visco-elastic
prismatic joint and Hall effect sensor.

We consider planar collision cases with polygon-shaped
obstacles and assume that during deformation and until the
collided arm recovers its initial length: 1) the tip of the
arm remains in contact with the obstacle’s collision surface
but does not rotate about the z axis, and 2) the wheels
of the robot contact the ground. The (frame-agnostic) robot
collision dynamics is then given by

ml + cl + k(l —lo) = man,
where a;,, is the robot’s body acceleration input.

B. Deformation Controller

The main idea underlying the proposed collision deforma-
tion recovery controller is to steer the post-impact state of
the robot to a desired one within a time period of [t., t.+T].
The time horizon T is an important hyper-parameter tuned
by the user. Typically, longer 1" means the robot will recover
from collision with longer time and smoother motion pattern;
in this paper, we select 7' = 0.5 s.

We solve this problem by generating the state-space model
of this problem first. Then we linearize the nonlinear state-
space model using feedback linearization. We formulate a
fixed-horizon (T') optimal control problem to solve for the
control input of the linearized system. Finally, we discretize
the linearized system fixed-horizon control problem and for-
mulate it as a constrained quadratic programming problem.

The deformation controller operates with respect to the
local, collision frame F,.. Let the state variable be ‘x =
[z y 0 v, v,]". The control input is w = [u; u, ug]’
where u, = (‘@i — %(Cls — lp)) - n, uy = (“aip —
E(ely — cly)) - °t, and up = “w - °k with “w being the
angular velocity of the robot in the collision frame. Note
that position control terms include compensation for the force
caused by the spring being pre-tensioned when the robot’s
arm is at its rest length. Then, the state space model of the
robot recovering from collision can be expressed as

s

T = vy

Y =uy

0= Uug

s k c

Vg = =T — -V + Ug

. k(psi +tan 0)x+ si +tan 6)v,

by = — (umgn(vy)m an)z+fo c(umgn(vyn)l an6)v +Uy
ey

where fo = MkSign(Uy)(cls _ ClO) . n.



Since the robot is holonomic, we can decouple orientation
from position control. In our approach we seek to make
the robot keep the same orientation it has at the instant it
collides throughout the collision recovery process. We follow
this approach because it can simplify the overall deformation
recovery control problem without sacrificing optimality.

The orientation and angular velocity errors during recovery
time ¢t € [t,t. + T] are er(t) = 2(RJR — RTRy)"
and ej;(t) = w — RT Rqwg, respectively.’ Index d denotes
desired quantities; these are Ry = R(t.) and wg = [000] .
(All terms are with respect to collision frame F..) Then,

ug = —Kyep ,(t) — KweR,z(t) . 2)

Note that since this is a planar collision problem, the
collision recovery orientation controller considers only the
z—components of orientation and angular velocity errors.

We now turn our attention to collision recovery position
control. The translation-only motion in (1) is affine. There-
fore, we can apply feedback linearization. The linearized
system matrix F' is

0 0 1 0
0o 0 0 1
F:—%O—io
0O 0 0 0

with state vector s = [z y v, v,] . The control input matrix
is G = Izx2 with control input vector v = [v, v,] given by

c(usign(vy)+tan 6)v,

EN©

We formulate an optimal control problem with fixed time
horizon T based on the linearized system $ = F's + Gv.
Using the change of variable 7 =t — t.,* we seek to solve

_ k(psign(vy)+tan 0)z+fo
m

T

min / (s(1)"T's(r) + v ()Hu(7))dr (4a)
0

subject to s =Fs+ Gu, (4b)
—|[le = ls||cos§ < x < 0. (4¢)
5(0) = [z0 0 v,z vo,y)- (4d)
s(T) = [0 yr vrz vry). (4e)

) Inx2 O )
Matrices I' = ~ and H = hl;x2 penalize
0 O2x2

the displacement during the recovery process and the control
input, respectively. There is a trade-off between the displace-
ment and the control input of the robot. Tuning parameters
~ and h balance this trade-off to select the controller with
minimal control energy and displacement.

Constraint (4¢) dictates that the robot should be in contact
with the collision surface until the colliding arm’s spring

3The vee map V is the inverse of a skew-symmetric mapping.

4We employ this change of variable for clarity. Problem (4) resets every
time a new collision occurs; this gives rise to an LTI system, hence the
change of variable can apply.

has recovered its original, pre-tensioned length [, (i.e. the
arm is no longer compressed) without compressing beyond
its linear region /.. Constraints (4d) and (4e) enforce initial
and terminal position and velocity conditions, respectively. In
detail, xg is determined by the colliding arm’s Hall effector
sensor reading. Since the vector form of the sensor’s reading
(that is, ®I — ®I,) is expressed in the body frame, we need
to transform it to the collision frame . as per

zo=—[10] “R" YR (*1 - "*1,) . 6))

The velocity components at the collision instant vy, and
vp,, are expressed in frame F. and are estimated at run-
time.> Post-impact, the arm needs to be uncompressed (hence
xp is set to 0), but ypr is left as an unconstrained free
variable. Post-impact terminal velocity components v, and
v,y are also expressed in F. and can be set freely. In Alg. 1
lines 1-8, we discuss how to generate vr , and vt , based on
the preplanned trajectory. We discretize the linearized system
(4b) with sampling frequency f = 10 Hz using the Euler
method, and solve the corresponding quadratic program with
CVXOPT. The process is summarized in Alg. 1.

Computed control inputs (4) and (2) make the robot detach
from the collision surface and help bring it to a temporary
post-collision state which can be used as the initial condition
for post-impact trajectory generation. We discuss this next.

Algorithm 1: Collision recovery control algorithm.

: Displacement in body frame °I — °I,
via Hall effect sensors readings; collision
time instant 7. € [0, At;_); position in
world frame at collision instant, “p,_;
velocity in world frame at collision
instant, “wv,_; rotation matrix ;' R;
rotation matrix ¥ R; next waypoint
point in world frame, “ppecqt-

output  : Control input u

parameter: Maximum velocity of the robot vqz
w Y Prewst— prC
vr — At; e Te

‘o g]RT Yo
if ‘vr, <0 then

‘ c'UT7z +~0
end
if || “vr|| > Vma. then

‘ CUT.y < Umagnormalize( “vr)
end
Calculate x based on (5) with [,
U,z < C’I)T’QE, U,y < c’UT’y
Calculate u,, u, based on (4) and (3) with given
UT,x> U,y and o
Calculate ug based on (2)
return w < [ug; u, ug) "

input

E-IE- - B Y N L

e
L=}

—
W N

SIn the experiments conducted in this work, velocity measurements are
provided via a motion capture camera system, but the method can apply as
long as velocity estimates are available, e.g., via optical flow.



V. POST-IMPACT TRAJECTORY REPLANNING
We formulate the post-impact trajectory generation prob-
lem as a quadratic program with equality constraints. Letting
I

=3

1=1,

wqiTﬁ wQé(Ati) “q;,3, we seek to solve

At

min vl ‘dt J 6

q Z / H (6a)
1=1c 0

subject to wAg i pics = “pr.g, (6b)
Ag)lz)u,ﬁqirﬁ vr.ﬂv (6¢)
vAR) sars = "dY) (6d)
v Am 0598 = “Pit1,8, (6e)
A(Aat) i+149i,8 = Aéc,yi)+17ﬂq7i+lﬁ~ (6f)

Superscript j denotes the derivative order; for example,
j =1{1,2,3,4} correspond to min-velocity, min-acceleration,
min-jerk and min-snap trajectories, respectively. 5 € {z,y}
indicates the = and y component of the trajectory. At; is the
time duration for i*” polynomial segment. Parameter g; B
is the vector of coefficients of ‘" polynomial. “’Aé‘?ﬁ
maps the coefficients to a'" order derivative of the start
point in segment ¢, while wp (e At .i,p maps the coefficients
to o’ order derivative of the end point in segment ¢, for
a € {0,1, ... j — 1}. Constraints (6b) and (6¢) impose
the initial values for the 0** and the 1% order derivatives
to match the position and velocity values attained via the
collision recovery controller, respectively. Constraint (6d)
imposes that the " order derivatives of the end position
are fixed. Constraint (6e) imposes that the trajectory will pass
through desired waypoints after ¢.. Constraint (6f) is imposed
to ensure o continuity among polynomial segments.

We solve this QP problem given initial (post-collision) and
end states, and intermediate waypoints. Then we perform
time scaling as in [25] to reduce the maximum values
for planned velocities and accelerations, as well as higher-
order derivatives as appropriate, and thus improve dynamic
feasibility of the refined post-impact trajectory.

A. Waypoint Adjustment

In some cases, we need to adjust the waypoints given in
a preplanned trajectory with the information we get from
the collision and then solve (6) with the adjusted waypoints.
Such cases occur when there is no direct line of sight between
the collision state and the waypoint at the end of the immedi-
ately next trajectory segment following collision recovery. By
enabling such waypoint adjustment, the algorithm promotes
exploration and in certain cases prevents the robot from being
trapped in a local minima in which repeated collisions at the
same (or very close-by) place could otherwise occur.

With reference to Alg. 2, we express in the local collision
frame F. the next waypoint *waypoint_list[i. + 1] (lines
1-3). In lines 4-8, we adjust the waypoint at the end of i,
segment if it lies on the same direction of “p, by moving
it so to enable direct line of sight to collision state. In lines
9-17, if the waypoint at the end of 7. segment lies on the

opposite direction of “p,, we insert a new intermediate
waypoint in the waypoint list. The waypoint is generated
by displacing “p, for a fixed (user-defined) ‘exploration
distance’ €czpiore €xpressed in F.. In lines 18-23 we insert
a new waypoint in the list as in lines 13—16 when there is
direct line of sight with the waypoint at the end of 7. segment
but the waypoint lies on the opposite direction of “p,..

Algorithm 2: Waypoint adjustment algorithm

: Displacement °I — I; Position after the
collision recovery in world frame, “p,;
waypoint list of preplanned trajectory;
“waypoint_list; ' R; trajectory
segment 7. where the collision happens.

: waypoint list after adjustment
Ywaypoint_list

parameter: Robot radius p
Y Dpert — Uwaypoint_list[i. + 1]

Transfer “pje.+ into F. frame to get “preqt

Transfer “p, into F. frame to get “p,

if -pP < Cpnext,a: < Cpr,a: then
Cpnext,m — Cpr,m

Transfer °pj,e,: into world frame to get
“waypoint_list[i. + 1] + “Dpest

input

output

w
Pnext

end

if —2p < “Prertr < —p then

Cpnert,r — *2P

Transfer °pj,c,: into world frame to get
“waypoint_list[i. + 1] + “Dpest
Cpadd,;v — cpr,x

Cpadd,y — cp'r,y + €eaplore

Transfer “pyqq into world frame to get “pgqq
Insert a waypoint “p,qq between i, and 7. + 1

o L 9 R W N =

—
-

w
Pnext

e
A A W N

end

if Cpnewt,a: < _2p then

Cpadd,;v — cpr,a:

Cpadd,y — Cpr,y + €explore

Transfer °p,qq into world frame to get “Ppyyq
Insert a waypoint “p,qq between i, and 7. + 1

—
Egewq

15
N

end
return ‘waypoint_list

[ S S
= W

If a new waypoint is inserted in the list, we map the path
generated by “p, and waypoints in the list after i, + 1 into
time domain using a trapezoidal velocity profile. If no new
waypoint is inserted, we set the time duration of ¢, segment
in (6) as At;, =t;,+1 —t., where ¢;_ 1 is the time reaching
the next waypoint p;;; per the preplanned trajectory.

VI. EXPERIMENTAL RESULTS
A. Robot and Environment Setup

We test our proposed algorithm with an omni-directional
impact-resilient wheeled robot we built in-house (Fig. 1). The
main chassis is connected to a deflection ‘ring’ via four arms
that feature a passive visco-elastic prismatic joint each. Each
passive arm has embedded Hall effect sensors to measure the
length of the arm and detect collisions along each of their
direction when the deformation exceeds a certain threshold.



Odometry feedback is provided by a 12-camera VICON
motion capture system. The robot operates in an 2.0m x2.0m
area with a rectangular pillar serving as a static polygon-
shaped obstacles. An onboard Intel NUC mini PC (2.3 GHz
i7 CPU; 16 GB RAM) processes odometry data and sends
control commands to the robot at a frequency of 10 Hz.

The robot may flip when colliding with a velocity over
an upper bound. To identify a theoretical collision velocity
bound to avoid flipping, we use an energy conservation ar-
gument. Assume the kinetic energy before collision transfers
into elastic potential energy of the passive arm, and the
gravitational potential energy of the robot with small flipping
angle counters the negative work input from the controller:

Eht* (U'maz ) - Eep (lc)fEep(ls)‘f’Egp (Gmaz )+main,maz (ls 716)

Then,
k[(le = 10)* — (s = 10)?]

2m

Umazx :{ + g(p — s + le) SiN Omaz

+ain,mazt(ls - le)}% .

The robot’s radius is p = 0.3 m. The difference between
the initial and neutral position of each passive arm is Iy =
30.0 mm; the maximum load length is [, = 15.0 mm; and
the neutral length is [y = 41.5 mm. The spring coefficient
k = 2.31 N/mm. We select the largest flip angle ¢4, = 3°.
The maximum acceleration input from the robot is @iy, maz =
5.0 m/s2. The mass of the robot is 6.0 kg. Then, we compute
an upper theoretical velocity bound of v,,4, = 0.7 m/s.

The structure and number of passive arms affect collision
detection. The most accurate detection occurs when the im-
pact is located along the direction of arm. Collision detection
accuracy can thus increase by adding more passive arms.
Here, we use four arms to demonstrate how our proposed al-
gorithm works, but future iterations will consider more arms,
especially as we operate in more cluttered environments.

B. Experimental Testing of the Deformation Controller

To examine the deformation controller’s effect in the
overall trajectory generation method, we command the robot
to collide with an obstacle and then apply the proposed
deformation recovery controller. We perform 10 trials of each
combination of input and output velocities (see Table II;
variables with bars denote averages of observed values). We
note that there are very few cases that collisions were not
detected; only 9 out of 249.

Results suggest that the deformation controller generates a
negative velocity to make the robot detach from the obstacle
after collision. Actual output velocity ¥,,: is determined
by the actual input velocity v;, and the set output value
Vout,set though the latter may not be reached in practice.
That is because feedback linearization is not robust to system
parameter uncertainties that occur in practice. We observe
that the velocity along n is closer to the set velocity than
the velocity along £. This is because most of the uncertainties
in system parameters enter as unmodeled friction dynamics
along the ¢ axis. In future iterations we will upgrade the
controller and the sensor setup to make the robot track
the predefined velocity along ¢ more accurately as well.

| — exploring tree
257 o= RRT* path
—== path after simplification
204 — DRR path

Y [m]

1 0 1 2 3
X [m]

Fig. 4: An example of replanned path in case 2 using proposed
DRR strategy and collision avoidance RRT* algorithm in [34].

However, it is sufficient for the recovery velocity to make
the robot detach from the obstacle (which it does). Further,
the sensor is more accurate when the input velocity is along
n; the average value of deformation detected is 29% larger.

C. Experimental Testing of the Overall DRR Strategy

We test our proposed DRR strategy with a trajectory
generated based on solving an unconstrained QP problem and
following time allocation and time scaling as in [25] without
collision checking. We compare our algorithm’s performance
against the trajectory generation strategy in [34] with time
allocation and scaling as in [25]. We compare the strategies
under two cases: 1) when the previous path does not intersect
with the collision surface; and 2) when the previous path
intersects with the collision surface.

Case 1 tests the condition “pyept. > —p, 1.€. N0 waypoint
is added as per Alg. 2. Case 2 tests ‘Ppepta < —ps
i.e. a waypoint is added to the list. In case 2, we run
RRT* to generate a collision free path and perform path
simplification to remove nodes without affecting the path’s
collision safety (Fig. 4). The path simplification technique
removes intermediate waypoints between two waypoints if a
line segment between those two does not intersect with the
obstacle. Then use the trajectory generation strategy in [34].
We perform 10 trials for each case. Instances of DRR and
all experimental trajectories are shown in Fig. 5 and Fig. 6.

Collision point »* Collision point

o | “9 Waypoint 3
Waypoint 2 {ﬁ k-

o

New waypoint

=
A
Waypoint 1, 7™

Fig. 5: Composite images of a sample experiment with our proposed
DRR strategy. The robot must go from start to goal passing through
all waypoints, including intermediate ones created post-collision.
Snapshots shown every 2 s.

Even though we design a collision-free desired trajectory
with the strategy in [34], the robot may still collide with the
environment given for instance unmodeled dynamics such as
drift. In case 1 there are 3 out of 10 trials that the robot in fact
collides with the obstacle applying trajectory generation [34]
that aims to avoid collisions. Table III shows statistics on
mean arrival times, path lengths and control energy.



TABLE II: Deformation controller testing results.

Vin,set Vout,set STD(vin) Vout STD (vout)

(0.0,0.5) (0.0, —0.5) (0 017,0.532)  (0.013,0.028)  (0.005, —0.372)  (0.019,0.189)
(0.0,0.7) (0.0, —0.5) (0.040,0.709)  (0.015,0.055)  (0.005,—0.387)  (0.021,0.223)
(0.0,0.5) (0.0, —0.7) (0.010,0.500)  (0.012,0.027)  (0.005,—0.340)  (0.030,0.155)
(0.0,0.7) (0.0, —0.7) (0.036,0.709)  (0.016,0.055) (—0.016,—0.371)  (0.029,0.223)
(0.0,0.5) (0.345,-0.345)  (0.022,0.509)  (0.012,0.027) (0.017,—0.329)  (0.037,0.213)
(0.0,0.7) (0.345,—0.345)  (0.034,0.691)  (0.020,0.053) (0.010,—0.327)  (0.029,0.201)
(0.0,0.5) (0.495, —0.495)  (0.023,0.511)  (0.022,0.040)  (0.027, —0.259)  (0.066,0.192)
(0.0,0.7) (0.495,—0.495)  (0.027,0.733)  (0.011,0.056)  (0.046,—0.293) (0.082,0.305)
(0.0,0.5) (0.5,0.0) (0.032,0.496)  (0.020,0.047) (0.016,—0.272)  (0.035,0.188)
(0.0,0.7) (0.5,0.0) (0.036,0.697)  (0.011,0.062) (0.033,—0.334)  (0.073,0.248)
(0.0,0.5) (0.7,0.0) (0.017,0.517)  (0.019,0.015)  (0.048,—0.300)  (0.057,0.217)
(0.0,0.7) (0.7,0.0) (0.026,0.722)  (0.009,0.024)  (0.014,—0.261) (0.045,0.219)
(0.345,0.345) (0.0, —0.5) (0.313,0.380)  (0.023,0.025) (—0.007,—-0.113)  (0.043,0.080)
(0.495,0.495) (0.0, —0.5) (0.403,0.485)  (0.048,0.038)  (0.002,—0.126)  (0.027,0.086)
(0.345,0.345) (0.0, -0.7) (0.311,0.372)  (0.020,0.041) (—0.019,—0.114)  (0.046,0.086)
(0.495,0.495) (0.0, —0.7) (0.417,0.497)  (0.047,0.034)  (0.010,—0.107)  (0.045,0.086)
(0.345,0.345)  (0.345,—0.345)  (0.281,0.351)  (0.022,0.014) (—0.006,—0.061)  (0.040,0.055)
(0.495,0.495)  (0.345,-0.345)  (0.346,0.472)  (0.052,0.033)  (0.002, —0.166)  (0.042,0.077)
(0.345,0.345)  (0.495,-0.495)  (0.293,0.367)  (0.036,0.029) (—0.009, —0.099)  (0.047,0.060)
(0.495,0.495)  (0.495,—0.495) (0.353,0.462)  (0.034,0.036)  (0.006,—0.125)  (0.045,0.086)
(0.345,0.345)  (0.5,0.0) (0.261,0.345)  (0.023,0.038)  (0.023,-0.095)  (0.056,0.099)
(0.495,0.495)  (0.5,0.0) (0.394,0.492)  (0.079,0.129)  (0.031,-0.140)  (0.027,0.100)
(0.345,0.345)  (0.7,0.0) (0.309,0.390)  (0.127,0.166)  (0.013,—0.035)  (0.012,0.030)
(0.495,0.495)  (0.7,0.0) (0.351,0.471)  (0.025,0.040)  (0.002, —0.17) (0.038,0.108)

TABLE III: Comparison of trajectory generation strategy in [34]
(Collision-avoidance) and DRR (Collision-inclusive) strategies.

Strategy in [34] DRR (our method)

Case 1 Case2 Case 1l Case 2
Tena (8] 7.7 8.71 6.16 9.17
STD(Tena) 0 2.20 0.22 0.31
5 [m] 3.153  3.448  2.977 4.38
STD(s) 0.117  0.495 0.150  0.451
E.[m?/s?] 56.83 80.62 5842  255.96
STD(E;)  29.34 5438 3292  133.54

In case 1 for DRR, mean arrival times 7,4 and path
lengths s decrease by 25% and 6%, while the control energy
increases by 2.8% on average. However, the error in the end
point increases by 25%. In case 2, mean arrival times and
path lengths increase by 5.2% and 27%, and control energy
increases by 258%. This is because the output velocity of
DRR is not flat since the robot needs to decelerate and then
accelerate during the boundary following process. Moreover,
the path generated by the boundary following is not the
shortest. However, since the path between the collision point
and the new inserted waypoint is close to the obstacle
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Fig. 6: Experimental trajectories generated from DRR and col-
lision avoidance trajectory generation strategy in [34] when the
preplanned path intersects or does not intersect with the obstacle.
(In all cases we conduct 10 trials).

surface, the existence of the obstacle decreases the control
error in free space. The error in the end point decreases by
12%. Overall, these results show the tradeoff between online
reactive execution (whereby collision checking is skipped)
and collision avoidance.



VII. CONCLUSIONS

The paper contributes to collision-inclusive motion plan-
ning, and proposes a new deformation recovery and re-
planning strategy to generate local reactive replanned tra-
jectories following a collision sensed by the robot at run-
time. Two novel components make this strategy possible:
1) a deformation recovery controller that optimizes robot
states during post-impact recovery, and 2) a post-impact
trajectory replanner that adjusts the next waypoint with the
information from the collision for the robot to pass through
and generates a polynomial-based trajectory. Our proposed
strategy runs online, and, given a sequence of waypoints that
can be obtained in any manner, enables algorithmic collision
resilience in a blind navigation paradigm.

Comparisons with a collision-avoidance trajectory genera-
tion method reveal fundamental tradeoffs between collision-
avoidance and collision-inclusive motion planning and con-
trol. A key insight is that a collision-inclusive strategy
may apply better when abrupt changes in robot motion are
required (as in Case 1 testing), whereby collisions can be
exploited to reduce mean arrival times and path lengths.
We anticipate that exploiting collisions as described in this
work can complement sensor-based autonomous navigation
in cluttered environments where finding obstacle-free paths
may be too computationally expensive.
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