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Abstract— Koopman operator theory has served as the basis
to extract dynamics for nonlinear system modeling and control
across settings, including non-holonomic mobile robot control.
There is a growing interest in research to derive robustness
(and/or safety) guarantees for systems the dynamics of which
are extracted via the Koopman operator. In this paper, we
propose a way to quantify the prediction error because of noisy
measurements when the Koopman operator is approximated via
Extended Dynamic Mode Decomposition. We further develop
an enhanced robot control strategy to endow robustness to a
class of data-driven (robotic) systems that rely on Koopman
operator theory, and we show how part of the strategy can
happen offline in an effort to make our algorithm capable of
real-time implementation. We perform a parametric study to
evaluate the (theoretical) performance of the algorithm using
a Van der Pol oscillator, and conduct a series of simulated
experiments in Gazebo using a non-holonomic wheeled robot.

I. INTRODUCTION

Employing models for mobile robot motion planning and
control can be beneficial for integrating motion constraints in
planning [1, 2] and deriving control performance guarantees
(e.g., robustness guarantees [3, 4]). Yet, there exist many
instances in which robots interact physically with their envi-
ronment and that these interactions are uncertain. Examples
include robots operating in partially-known dynamic environ-
ments [5]; legged robots traversing non-smooth terrains [6,
7]; quadrotors flying under the influence of uncertain aerody-
namic effects [8–11]; underwater robots affected by uncertain
ocean currents [12]; and steerable needles interacting with
soft tissue [13]. Thus, employing pre-selected models may
restrict the capability to predict actual robot behaviors when
operating under uncertainty [14–17].

A different way to address uncertainties in robot-
environment interactions is by extracting dynamics from
data. Multiple distinct approaches have been proposed—
including stochastic model extension [17], (deep) reinforce-
ment learning [18], (deep) neural networks [19, 20], and
spectral methods [21], to name a few—and deployed in
robotics (e.g., [11, 17, 22–25]). The advent of data-driven
methods for modeling complex dynamical systems creates a
need for theoretical safety and/or performance guarantees.

Deriving guarantees for methods that rely on extracting
dynamics from data for mobile robots is a rapidly-growing
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focus area [26]. Several efforts focus on cases that in-
volve deep neural networks, e.g., by developing spectrally-
normalized margin bounds [27] or by embedding and/or
extending Lyapunov stability theory in neural network-based
systems for safety (e.g., [28–32]). Despite their high expres-
siveness, neural network-based systems continue to require
large training data sets, and might lead to instability and
unpredictable outputs because of overfitting.

Besides (deep) neural networks, dimensionality reduction
and spectral approaches play an important role in data-
driven algorithms [21]. Methods like Proper Orthogonal
Decomposition [33, 34]), Dynamic Mode Decomposition
(DMD) [35] and Extended DMD (EDMD) [36], and their
various extensions [37–40] have been successfully applied
across areas. Most of the techniques turn out to be strongly
related to the Koopman operator theory [41], which is a
powerful tool to extract complex dynamics from data.

The Koopman operator theory can be used to map a finite-
dimensional nonlinear system to an infinite-dimensional lin-
ear system that evolves by a linear operator. The Koopman
operator has been used for model-based control of dynamical
systems, including feedback stabilization [42], optimal con-
trol [43, 44], and model predictive control [45–47]. Recent
research efforts have also sought to use the Koopman oper-
ator in robotics, such as in robot control [44, 48], modeling
of soft robots [49, 50], and human-machine interaction [51].
There also exist some works to derive guarantees for methods
employing the Koopman operator, including investigation
of convergence of estimation [47, 52, 53] and global error
bounds for the operator [48, 54]. However, investigating the
prediction error of, or providing robustness guarantees for,
the perturbed systems’ performance when the data used for
modeling are noisy remains under-developed. The present
paper addresses this gap.

Contrary to traditional robust control [55], noisy obser-
vations disturb not only the controller itself but also the
data used to estimate a model for the system (and which
is used for control). Hence, there is need for new tools that
can capture the intricacies of concurrent data-driven analysis
and control, and which are fundamentally different from
traditional robust control theory.

In this paper, we first develop an approach to quantify
the prediction error because of noisy data when approxi-
mating a model for control of a data-driven system via the
Koopman operator. To estimate the Koopman operator we
employ a variant of EDMD with control (EDMDc) [56]
which generalizes EDMD to forced systems. The proposed
formulation relies on studying the sensitivity of components



of the Koopman operator to noisy data. (Table I contains
some key notation used in this paper.) Further, we propose an
algorithm for an enhanced robot control structure that endows
robustness to the data-driven system at hand. The proposed
algorithm is designed to work in unison with an existing data-
driven robot control architecture to add robustness without
replacing parts of the underlying architecture (Fig. 1). We
address practical aspects on how to deploy the proposed
algorithm across nonlinear dynamical systems and mobile
robots, and show how to make (parts of) the algorithm
run online to enable real-time implementation. Lastly yet
importantly, the proposed approach may generalize across
data-driven systems. We show evidence of generalizability
via a parametric simulation study using a Van der Pol oscil-
lator and experimentation in Gazebo with a non-holonomic
wheeled robot (ROSbot2.0) under distinct noise levels.

Succinctly, the main contributions of this work include:

• Quantification of prediction error caused by noisy data
for control of data-driven systems that employ the
Koopman operator to approximate the systems’ model.

• Development of an algorithm to endow robustness to
data-driven systems that employ the Koopman operator.

• Evaluation of the method’s efficacy and generalizability
via testing with a nonlinear dynamical system and with
a non-holonomic wheeled robot.

TABLE I
LIST OF KEY NOTATION USED IN THE PAPER.

Notation Description
Nx Dimension of state x
Nu Dimension of input u
t Index for online system propagation
K Koopman operator
K Approximated Koopman operator
vq q-th Koopman mode
λq q-th Koopman eigenvalue
φq q-th Koopman eigenfunction

Q
Dimension of observables’ dictionary;
Size of estimated Koopman operator

ξq q-th right eigenvector of Koopman operator
wq q-th left eigenvector of Koopman operator
Ψ Vector-valued observation

II. PRELIMINARY TECHNICAL BACKGROUND ON
KOOPMAN OPERATOR THEORY AND EDMD

The Koopman operator is an infinite-dimensional linear
operator that governs the evolution of observables g(xt, ut)
of the original states. The evolving operator f of the original
system can be represented by Koopman modes, eigenvalues,
and eigenfunctions. In this section, we give an overview of
key relevant results on Koopman operator theory and EDMD
on how to extract system dynamics from data.

In its original formulation, Koopman operator theory ap-
plies to unforced systems. There are two ways to generalize
to forced systems. The first is to lift states and inputs into two
spaces separately, and then design controllers for the lifted
system [57]. The other way is to extend the Koopman op-
erator theory with control for systems with nonlinear input-

Fig. 1. Overview of the enhanced robot control structure proposed in this
work.

output characteristics [56]. We adopt the second approach.1

Consider the forced nonlinear dynamical system

xt+1 = f(xt, ut) , (1)

where x ∈ RNx and u ∈ RNu . Define a set of observables
that are functions of both the states and inputs where
g : RNx × RNu → RNx+Nu . The propagation law of
observables g with the Koopman operator is Kg(xt, ut) =
g(f(xt, ut), ut+1). Then, under the full-observability as-
sumption such that g(xt+1, ut+1) = [xt+1;ut+1] and de-
composing with Q Koopman modes vq , eigenvalues λq and
eigenfunctions φq , we obtain as in [36]:

[xt+1;ut+1] = g(f(xt, ut), ut+1) = Kg(xt, ut)

→ [xt+1;ut+1] =

Q∑︂
q=1

vqλqφq(xt, ut) . (2)

The predicted state xt+1 is obtained by taking the first Nx

elements of the vector in the right-hand part of (2).
Consider sets (termed snapshots) of M +1 state measure-

ments and M + 1 associated control inputs, that is X =

[x1, x2, . . . , xM , xM+1], and U = [u1, u2, . . . , uM , uM+1]. A
way to estimate the Koopman operator K from M + 1 state
and control snapshots is via Extended Dynamic Mode De-
composition (EDMD). EDMD generates a finite dimensional
approximation K of K. It does so by employing a dictionary
of functions to lift state variables to a space where dynamics
is approximately linear.

Given a dictionary of observables of size Q, D =
{ψ1, ψ2, . . . , ψQ}, where each dictionary element ψq , q =
1, . . . , Q is a differentiable function containing xm and
um terms, set the vector-valued dictionary as Ψ =
[ψ1, . . . , ψQ]. 2 Then the Koopman operator can be approx-

1We consider the most general formulation in which inputs are generated
from an exogenous forcing term. For details on other formulations the reader
is referred to [56, Section 3.1].

2Examples of dictionaries include polynomial function bases, Fourier
modes, spectral elements or other sets of (differentiable) functions of the
full state observables. The choice of the specific dictionary to employ is
a hyper-parameter inherent to EDMD, and is typically done empirically;
see [36] for a discussion on this topic.



imated by minimizing the total residual between snapshots,
that is

J =
1

2

M∑︂
m=1

(Ψ (xm+1)−Ψ (xm)K)
2
, (3)

Solving the least-square problem (3) with truncated sin-
gular value decomposition yields

K ≜ G†A (4)

where † denotes the pseudoinverse, and G,A are given by{︄
G = 1

M

∑︁M
m=1 Ψ

∗
mΨm ,

A = 1
M

∑︁M
m=1 Ψ

∗
mΨm+1 ,

(5)

with T and ∗ denoting transpose and conjugate transpose
operations, respectively. (For clarity we use Ψm to abbreviate
Ψ(xm, um) = [ψ1(xm, um), . . . , ψQ(xm, um)].)

Given K computed via (4)–(5), the associated Koopman
modes, eigenvalues and eigenfunctions are then computed as⎧⎪⎨⎪⎩

vq = (w∗
qB)T ,

λqξq = Kξq ,

φq = Ψtξq ,

(6)

where ξq is the q-th eigenvector, wq is the q-th left eigen-
vector of K scaled so wT

q ξq = 1, and B is the matrix
of appropriate weighting vectors so that x = (ΨB)T . By
plugging expressions (6) back to (2) we can then describe
the evolution of the system using the estimated Koopman
operator. Note that Ψt = [ψ1(xt, ut), . . . , ψQ(xt, ut)]

T , is
the only term that needs (contains) information of current
states. By using the Koopman operator and EDMD, all other
terms can be computed from M+1 (training) measurements.

III. QUANTIFICATION OF PREDICTION ERROR

The Koopman operator theory can thus be used to estimate
the dynamics of a system directly from data (as described
above). However, when training measurements are noisy, the
prediction will be inaccurate. In this section, we present the
main technical result of the paper which seeks to quantify
the prediction error because of noisy measurements.

We first investigate the sensitivity of the approximated
Koopman operator K to noisy training measurements, fol-
lowed by the sensitivity of the eigendecomposition to dis-
turbed elements of K. Then, we combine them together
to quantify the prediction error caused by noisy data when
Koopman operator theory is employed.

A. Sensitivity Analysis of Koopman Operator

Perturbations on an element xim (i.e. the ith state of
measurement at snapshot m with i ∈ {1, . . . , Nx}), will
cause an error ∆Ki. This can be obtained by chain rule
on (4) and (5) as

∆Ki = [∆kiab]Q×Q =

M+1∑︂
m=1

{( ∂G
†

∂xim
A+G† ∂A

∂xim
)∆xim} ,

(7)

where 3

∂G†

∂xim
= −G† ∂G

∂xim
G† +G†(G†)∗

(︃
∂G∗

∂xim

)︃(︁
I −GG†)︁

+
(︁
I −G†G

)︁(︃ ∂G∗

∂xim

)︃
(G†)∗G†

∂A

∂xim
=

⎧⎪⎨⎪⎩
1
MΨ∗

m+1
∂Ψm

∂xm
ei, if m = 1

1
MΨ∗

m−1
∂Ψm

∂xm
ei, if m =M + 1

1
M (Ψ∗

m+1 +Ψ∗
m−1)

∂Ψm

∂xm
ei, else

and
∂G

∂xim
=

{︄
0, if m =M + 1
2
MΨ∗

m
∂Ψm

∂xm
ei, else .

Here ei represents the ith unit vector in RNx .

B. Sensitivity Analysis of Eigendecomposition

As described in [59], if a generic element kab is perturbed,
the eigenvalues and eigenvectors of the matrix K = [kab] ∈
RQ×Q are affected. The sensitivity of left eigenvectors wq ,
right eigenvectors ξq , and eigenvalues λq can be written as⎧⎪⎪⎨⎪⎪⎩
cabλq

=
∂λq

∂kab
= wa

q ξ
b
q, (a, b, q = 1, 2, . . . , Q) ,

cabξq =
∂ξq
∂kab

=
∑︁Q

j=1
j ̸=q

habjqξj , (a, b, q = 1, 2, . . . , Q) ,

cabwq
=

∂w∗
q

∂kab
= −

∑︁Q
j=1
j ̸=q

habqjw
∗
j , (a, b, q = 1, 2, . . . , Q) ,

(8)
where wa

q denotes the ath element of the qth left-eigenvector
wq , ξbq is the bth element of the qth right-eigenvector ξq ,
and habqj represents the ath row and bth column element of
matrix Hqj (similar for habjq). The matrix Hqj =

[︁
habqj
]︁
Q×Q

is

computed by
wqξ

∗
j

λj−λq
. That is, to get the eigendecomposition

sensitivity of each element kab, we first need to obtain (Q×
Q−Q) H matrices, and then every entry of these matrices
will be used as parameters in (8).

C. Sensitivity Analysis of Predicted Output

We are now ready to derive the perturbation in pre-
dicted outputs as a result of measurement noise. Set-
ting [INx×Nx , ONx×Nu ] as R, where INx×Nx denotes the
Nx ×Nx identity matrix and ONx×Nu denotes a Nx ×Nx

zero matrix. For the fully-observable forced nonlinear dis-
crete time system (2), we can describe its deviation as

∆xt+1 = R

M+1∑︂
m=1

(︄
Q∑︂

q=1

Nx∑︂
i=1

∂(vqλqφq(xt, ut))

∂xim
∆xim

)︄
(9)

= R

M+1∑︂
m=1

(︄
Q∑︂

a=1

Q∑︂
b=1

Q∑︂
q=1

Nx∑︂
i=1

∂(vqλqφq(xt, ut))

∂kiab

∂kiab
∂xim

∆xim

)︄

= R
∑︁Q

a

∑︁Q
b

(︃
(
∑︁Q

q

∑︁Nx
i

∂(vqλqφq(xt,ut))

∂ki
ab

)(
∑︁M+1

m
∂ki

ab

∂xi
m

∆xi
m)

)︃
.

Letting

∆kiab =

M+1∑︂
m=1

∂kiab
∂xim

∆xim,

3For details on the proof of the following pseudo-inverse terms see [58].



we deduce

∆xt+1 = R

Q∑︂
a=1

Q∑︂
b=1

(︄
Q∑︂

q=1

Nx∑︂
i=1

∂(vqλqφq(xt, ut))

∂kab
∆kiab

)︄
.

(10)
Note that as illustrated in (8), for a dynamical system

evolving by K, ∂λq

∂kab
= cabλq

, ∂ξq
∂kab

= cabξq , and
∂wT

q

∂kab
= cabwq

are finite (bounded) constants. Then, for every kab we have

∂(vqλqφq(xt, ut))

∂kab
=

∂(vq)λqφq

∂kab
+

vq∂(λq)φq

∂kab
+

vqλq∂(φq)

∂kab

= ((cabwq
)∗B)TλjΨtξq + (w∗

qB)T cabλq
Ψtξq + (w∗

qB)TλqΨtc
ab
ξq
.

(11)
Using matrix format of (11) and ∆Ki = [∆kiab]Q×Q

from (7), we can first compute the dot product of these two
matrices and then obtain the prediction error as the sum of
each element of the dot product, that is

∆xt+1 = ReT {

⎡⎣ Q∑︂
q=1

∂(vqλqφq(xt, ut))

∂kab

⎤⎦
Q×Q

· (
Nx∑︂
i=1

∆Ki)}e ,

(12)
where e = [1, 1, . . . , 1]T .

It is worth noting that in our proposed formulation, ∆Ki

is estimated using only measurements and information about
the noise, so it can be obtained offline. Similarly, the eigende-
composition sensitivity analysis of K is predetermined and
can yield the complex parameters cabwq

, cabλq
, cabξq ahead of

time. These allow part of our approach to be executed during
training, and enable the computation of the prediction error
to take place at run-time, to adjust to measurements errors
and thus endow robustness to the overall data-driven robot
control architecture (Fig. 1). Finally the perturbed prediction
is written as a function of the training measurements on
states and inputs (X , U ) of length M + 1 and current
observation Ψ(xt,ut). For clarity of presentation, we will
use the following abbreviation in the remainder of the paper

∆xt+1 = η(X,U,Ψ(xt,ut)) . (13)

The relation between the offline (at training-time) and online
(at run-time) components of our approach is shown in Fig. 2
and is discussed next.

IV. ALGORITHMIC IMPLEMENTATION

The proposed quantification of prediction error approach
describes analytically how to accommodate for measurement
noise in data-driven control systems that are based on the
Koopman operator. To make the approach amenable to
robot control applications, where real-time implementation
is required, we demonstrate in this section how the most
computationally-intense aspects of the proposed approach
can in fact be precomputed. Then, we present the algorithmic
implementation of our approach in Algorithm 1.

A. Enabling Real-time Operation

Reformulation of dynamics-extraction expression: Re-
call that only the observation at current time t, Ψt, requires

Fig. 2. Illustration of the proposed approach’s pipeline to adding robustness
to data-driven robot control design (c.f. top system sub-block in Fig. 1). Our
approach can be decomposed into an offline and an online component for
real-time implementation, specific details of which are given in Algorithm 1.

information gathered during run-time for making a predic-
tion. We can thus rewrite (2) to extract the terms that can be
precomputed. Consider the dynamics

xt+1 = [INx×Nx , ONx×Nu ]

Q∑︂
q=1

vqλqφq(xt, ut) .

Combining (6) yields

Q∑︂
q=1

vqλqφq(xt, ut) =

P∑︂
q=1

(w∗
qB)TλqΨtξq

=

(︄
Q∑︂

q=1

(Ψtξq)
T (︁

(w∗
qB)Tλq

)︁T)︄T

=

(︄
Q∑︂

q=1

Ψtξq
(︁
(w∗

qB)Tλq
)︁T)︄T

→ xt+1 = [INx×Nx
, ONx×Nu

] (ΨtF )
T
, (14)

where F =
∑︁Q

q=1 ξqλqw
∗
qB. Thus, we have separated (2)

into offline (F ) and online (Ψt) parts.
Information of noise: In the original formulation (9),

we require the noise in measurements ∆xm at every time
instant. However, in practice we only have access to (or
make assumptions about) noise statistics, for example mean
E(∆x) and standard deviation δ(∆x) in the case of Gaussian
noise. We can thus replace each ∆xm by E(∆x) directly.
Also, we can randomly sample a training dataset ∆X ∼
(E(∆x), δ2(∆x)), applying it to (9), and repeat the process
for several times to get the average values for accuracy. 4

4The case of Gaussian noise herein is used as an example. Our proposed
approach does not depend on the type of noise employed. Rather, noise
statistics is a hyper-parameter that can be manually selected by the user or
approximated via any available training data.



Algorithm 1 Estimation Procedure

Initialization: Collect measurements of states X and
inputs U that might be noisy.
Offline training:
Extracting dynamics:

• Utilize X , U to estimate the Koopman operator K
as well as matrices G, A with (4) and (5).

• Compute parameter matrix F in (14) with estimated K.
Estimation of prediction error:

• Obtain ∆Ki with information of noise in measurements
and the approximated K, G, A using (7).

• Get the parameters for eigendecomposition sensitivity
cabλq

, cabξq and cabwq
through (8) with estimated K.

Online propagation for t do
repeat

Robotic System: Use learned prediction error ∆xt at
last timestep to complement model constraints used
in controller design. Then, drive the robot with this
control signal.
Extracting dynamics:

• Use F to estimate the system dynamics and
do prediction as described in (14).

Estimate prediction error:
• Get eigen-sensitivity matrix (11) with

pretrained
cabλq

, cabξq , cabwq
and current observation Ψt.

• Compute prediction error ∆xt+1 with ∆K
and the eigen-sensitivity matrix by (12).

t← t+ 1
until control task is finished;

V. PARAMETRIC TESTING AND EVALUATION

A. Simulation with a Van der Pol Oscillator

To evaluate the proposed approach outlined in Algo-
rithm 1, we first test it using the Van del Pol oscillator [47],{︄

ẋ1 = 2x2

ẋ2 = −0.8x1 + 2x2 − 10x21x2 + u .
(15)

The system (15) is discretized with period Ts = 0.01 s.
M + 1 pairs of data generated from the system are used to
estimate Koopman operator K, and are further implemented
as dynamic constraint in the controller. A random input
vector is applied to propagate the system.

The whole process is implemented in a parametric study
as follows. We consider four distinct cases for measurement
sets with M = {2 ∗ 103, 1 ∗ 104, 2 ∗ 104, 2 ∗ 105}. We also
consider three distinct noise levels for the disturbance. The
amplitudes of the disturbances are chosen randomly from
uniform distributions over the intervals c1 = [0, 0.1x(0)],
c2 = [0, 0.2x(0)] and c3 = [0, 0.4x(0)] for ‘low (10%),’
‘middle (20%)’ and ‘high (40%)’ noise levels, respectively.

These to lead to a total of 12 distinct case studies. For each
case study, we train the system according to the selected
measurements and noise settings, then give a random input
vector to propagate the trained system for 50 time steps,
collect the output, and finally measure the true and predicted
errors. To avoid bias and randomness, we evaluate the trained
system under each case study in 5 repeated trials, and
averaged results are reported. For instance, Fig. 3 shows
the average predicted error and the average true error when
M = 2 ∗ 104 and under the c2 noise case (middle).

Fig. 3. Prediction (blue circle) and true (red star) error under middle level
noise (c2) when M = 2 ∗ 104.

To compare overall the cases, we define the Mean Squared
Error (MSE) between the estimated and true prediction error
as

MSE =
1

50

50∑︂
t=1

(∆xprediction2 (t) − (∆xtrue2 (t))2 . (16)

Results (averaged MSE) are depicted and compared in
Fig 4. We observe that 1) low density noise leads to smaller
prediction error for most choices of M . 2) Our method
performs better with a large enough size of training data
set (e.g., greater than 2 ∗ 104 as shown in the simulation).5

3) If we keep increasing the size (e.g., 5 ∗ 104 in this one),
its accuracy may not be improved further.

Fig. 4. Mean Squared Error (MSE) of estimated and true prediction error
under different noise levels.

B. Simulation Experiments with a Wheeled Robot

Simulation experiments are conducted in the Gazebo en-
vironment using a ROSbot 2.0 robot, a differential-drive
wheeled robot (Fig. 5). The ROSbot 2.0 is an autonomous,
open source robot platform and the embedded software
allow us to send motion commands by manipulating the x
component of linear speed vector as ux and the z component

5In practice, good results may be achieved with fewer data, as we show
next in simulation with a wheeled robot. Better understanding the interplay
between training data set size and performance is part of ongoing work.



of the angular speed vector as uz . The state vector contains
the geometric center position {x, y} and orientation θ.

Fig. 5. ROSbot 2.0 and its Gazebo model.

We test the efficiency of our proposed approach by
building on top of an existing Koopman operator based
controller [11],6 which is a data-driven hierarchical structure
that refines the nominal input uo as û = u(K,uo) to
improve the performance of the controller under uncertainty.
We highlight that the relation between inputs u and the
states x is learned using the Koopman operator, and then
the learned model is used to get a predicted (refined) input
signal û. Accurate and noisy data are used to generate the
deterministic Koopman operator K and stochastic one Kn.
Then, these two are worked as model constraints to design
the ‘Nominal’ and ‘Noisy’ controllers separately. To reduce
the effect of noise in the learned model Kn, which is the
contribution of our paper, we try to learn the prediction error
generated by Kn using Algorithm 1. Then, this prediction
error is used to complement the ‘Noisy’ controller to yield
the ‘Proposed’ control signal.

We compute the approximated Koopman operator using
data captured when the robot is operating in open loop
based on a random chattering linear velocity and angular
velocity input signals. We perform 10 such open-loop trials.
The noisy training data set is created by adding disturbance
in the position states x and y. We sample the magnitude
of noise for each state from the uniform distribution over
the interval c1 = [0, 0.25max(ξr)], c2 = [0, 0.50max(ξr)],
c3 = [0, 0.75max(ξr)], c4 = [0, 1.00max(ξr)].

During testing, the robot is required to follow a semicir-
cle trajectory for length T

2 , i.e. [xr, yr] = [sin( 2πT t), 1 −
cos( 2πT t)]. To avoid bias, testing trials are repeated for 10
consecutive times for an average with the same training set.
We compute the Mean Squared Error (MSE) for the direct
prediction error of ux and uz as defined in (16), where the
prediction term is ∆u and the true term is (u(Kn)−u(K)
and the results are illustrated in Fig. 6. We also obtain the
difference among all trials for the output trajectories and
show the results of position x as well as y in Fig. 7. It can
be observed that, 1) our proposed method can approximate
the prediction uncertainty because of noise with a small error
(Fig. 6). 2) When we implement the estimated uncertainty
to a Koopman-based data-driven structure, our ‘Proposed’
controller can drive the ‘Noisy’ one closer to a desired
trajectory. 3) As the noise level increases, our approach
performs worse in terms of the prediction error estimation
while performs better when we use the estimation for control.

6We use EDMD here to approximate the Koopman operator instead of
DMD as in [11].

4) Our algorithm remains bounded to the performance of the
nominal controller (as the ‘25%‘ noise level case in Fig. 7).
Ongoing work focuses on implementation in different types
of Koopman operator-based nominal controllers.

Fig. 6. Mean Squared Error (MSE) of the estimated and true prediction
error for linear velocity (left panel) and angular velocity (right panel) under
different levels of noise.

Fig. 7. MSE of output trajectories’ evolution along the x axis (left panel)
and y axis (right panel) under distinct noise levels.

VI. CONCLUSIONS

In this paper we focus on motion control of data-driven
systems that are based on the Koopman operator theory to ex-
tract system models from data. We investigate the prediction
error of a perturbed systems’ performance when the data used
for training the Koopman operator are noisy. The prediction
error is then used to develop a new enhanced mobile robot
motion control algorithm that endows robustness to data-
driven systems. We show how certain aspects of our approach
can happen offline, thus making the proposed algorithm
amenable to real-time implementation. We test the proposed
approach in a parametric simulated study using a Van der
Pol oscillator to evaluate its performance as the number of
training data and the level of noise corrupting them vary.
We further test in Gazebo simulation with a non-holonomic
wheeled robot tasked to track a reference trajectory. Results
from both types of testing confirm that the proposed approach
can apply across systems, including practical robotics.

In all, our work provides robustness guarantees for systems
using Koopman operator for control, and it can be viewed
as a step toward developing new motion planners and con-
trollers for data-driven mobile robots. Future research direc-
tions include integration with motion planning algorithms,
and porting from Gazebo to hardware implementation.



REFERENCES

[1] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[2] S. Sharma, “Autonomous waypoint generation with safety guarantees:
On-line motion planning in unknown environments,” arXiv preprint
arXiv:1709.00546, 2017.

[3] L. Zheng, J. Pan, R. Yang, H. Cheng, and H. Hu, “Learning-based
safety-stability-driven control for safety-critical systems under model
uncertainties,” arXiv preprint arXiv:2008.03421, 2020.

[4] R. R. Da Silva, S. Silva, G. Dubrovskiy, and H. Lin, “Safeguardpf:
Safety guaranteed reactive potential fields for mobile robots in un-
known and dynamic environments,” arXiv preprint arXiv:1609.07006,
2016.

[5] G. Aoude, B. Luders, J. M. Joseph, N. Roy, and J. P. How, “Proba-
bilistically Safe Motion Planning to Avoid Dynamic Obstacles with
Uncertain Motion Patterns.” Autonomous Robots, vol. 35, pp. 51–76,
2013.

[6] A. Shkolnik, M. Levashov, I. R. Manchester, and R. Tedrake, “Bound-
ing on rough terrain with the LittleDog robot,” The International
Journal of Robotics Research, vol. 30, no. 2, pp. 192–215, 2011.

[7] F. Qian, T. Zhang, C. Li, P. Masarati, A. Hoover, P. Birkmeyer,
A. Pullin, R. Fearing, and D. Goldman, “Walking and runnign on
yielding and fluidizing ground,” in Proceedings of Robotics: Science
and Systems, 2012, pp. 345–352.

[8] S. Zarovy, M. Costello, A. Mehta, G. Gremillion, D. Miller, B. Ran-
ganathan, J. S. Humbert, and P. Samuel, “Experimental study of gust
effects on micro air vehicles,” in AIAA Conference on Atmospheric
Flight Mechanics., 2010, pp. AIAA–2010–7818.

[9] C. Powers, D. Mellinger, A. Kushleyev, B. Kothmann, and V. Kumar,
“Influence of aerodynamics and proximity effects in quadrotor flight,”
in Proceedings of the International Symposium on Experimental
Robotics, ser. Springer Tracts in Advanced Robotics, vol. 88, 2012,
pp. 289–302.

[10] X. Kan, H. Teng, and K. Karydis, “Online exploration and coverage
planning in unknown obstacle-cluttered environments,” IEEE Robotics
and Automation Letters, vol. 5, no. 4, pp. 5969–5976, 2020.

[11] L. Shi, H. Teng, X. Kan, and K. Karydis, “A data-driven hierarchical
control structure for systems with uncertainty,” in 2020 IEEE Confer-
ence on Control Technology and Applications (CCTA). IEEE, 2020,
pp. 57–63.

[12] A. A. Pereira, J. Binney, G. A. Hollinger, and G. S. Sukhatme, “Risk-
aware Path Planning for Autonomous Underwater Vehicles using
Predictive Ocean Models,” Journal of Field Robotics, vol. 30, no. 5,
pp. 741–762, 2013.

[13] R. Alterovitz, M. Branicky, and K. Goldberg, “Motion Planning
Under Uncertainty for Image-guided Medical Needle Steering,” The
International Journal of Robotics Research, vol. 27, no. 11-12, pp.
1361–1374, 2008.

[14] A. Timcenko and P. Allen, “Modeling dynamic uncertainty in robot
motions,” in Proceedings of the IEEE International Conference on
Robotics and Automation, 1993, pp. 531–536.

[15] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

[16] G. S. Chirikjian, Stochastic Models, Information Theory, and Lie
Groups, Volume 2: Analytic Methods and Modern Applications.
Birkhauser, 2012.

[17] K. Karydis, I. Poulakakis, J. Sun, and H. G. Tanner, “Probabilistically
valid stochastic extensions of deterministic models for systems with
uncertainty,” The International Journal of Robotics Research, vol. 34,
no. 10, pp. 1278–1295, 2015.

[18] H. Abdulsamad and J. Peters, “Hierarchical decomposition of non-
linear dynamics and control for system identification and policy
distillation,” arXiv preprint arXiv:2005.01432, 2020.

[19] V. Sindhwani, H. Sidahmed, K. Choromanski, and B. Jones, “Unsu-
pervised anomaly detection for self-flying delivery drones,” in IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 186–192.

[20] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[21] E. Kaiser, J. N. Kutz, and S. L. Brunton, “Data-driven approxima-
tions of dynamical systems operators for control,” arXiv preprint
arXiv:1902.10239, 2019.

[22] H. Suprijono and B. Kusumoputro, “Direct inverse control based on
neural network for unmanned small helicopter attitude and altitude

control,” Journal of Telecommunication, Electronic and Computer
Engineering (JTEC), vol. 9, no. 2-2, pp. 99–102, 2017.

[23] G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anand-
kumar, Y. Yue, and S.-J. Chung, “Neural lander: Stable drone landing
control using learned dynamics,” in IEEE International Conference on
Robotics and Automation (ICRA), 2019, pp. 9784–9790.

[24] G. Shi, W. Hönig, Y. Yue, and S.-J. Chung, “Neural-swarm: Decen-
tralized close-proximity multirotor control using learned interactions,”
arXiv preprint arXiv:2003.02992, 2020.

[25] A. J. Taylor, V. D. Dorobantu, H. M. Le, Y. Yue, and A. D. Ames,
“Episodic learning with control lyapunov functions for uncertain
robotic systems,” arXiv preprint arXiv:1903.01577, 2019.

[26] H. Cui, T. Nguyen, F.-C. Chou, T.-H. Lin, J. Schneider, D. Bradley,
and N. Djuric, “Deep kinematic models for kinematically feasible
vehicle trajectory predictions,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2020, pp. 10 563–10 569.

[27] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky, “Spectrally-normalized
margin bounds for neural networks,” in Advances in Neural Informa-
tion Processing Systems, 2017, pp. 6240–6249.

[28] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Provably
safe and robust learning-based model predictive control,” Automatica,
vol. 49, no. 5, pp. 1216–1226, 2013.

[29] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe
model-based reinforcement learning with stability guarantees,” in
Advances in neural information processing systems, 2017, pp. 908–
918.

[30] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula,
and C. J. Tomlin, “A general safety framework for learning-based
control in uncertain robotic systems,” IEEE Transactions on Automatic
Control, vol. 64, no. 7, pp. 2737–2752, 2018.

[31] F. Berkenkamp and A. P. Schoellig, “Safe and robust learning control
with gaussian processes,” in European Control Conference (ECC).
IEEE, 2015, pp. 2496–2501.

[32] A. K. Akametalu, J. F. Fisac, J. H. Gillula, S. Kaynama, M. N.
Zeilinger, and C. J. Tomlin, “Reachability-based safe learning with
gaussian processes,” in 53rd IEEE Conference on Decision and
Control, 2014, pp. 1424–1431.

[33] A. Chatterjee, “An introduction to the proper orthogonal decomposi-
tion,” Current science, pp. 808–817, 2000.

[34] K. Karydis and M. A. Hsieh, “Uncertainty quantification for small
robots using principal orthogonal decomposition,” in International
Symposium on Experimental Robotics. Springer, 2016, pp. 33–42.

[35] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N.
Kutz, “On dynamic mode decomposition: theory and applications,”
arXiv preprint arXiv:1312.0041, 2013.

[36] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A data–driven
approximation of the koopman operator: Extending dynamic mode
decomposition,” Journal of Nonlinear Science, vol. 25, no. 6, pp.
1307–1346, 2015.
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