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A B S T R A C T   

Naked mole-rats (NMR) and Damaraland mole-rats (DMR) exhibit extraordinary longevity for their body size, 
high tolerance to hypoxia and oxidative stress and high reproductive output; these collectively defy the concept 
that life-history traits should be negatively correlated. However, when life-history traits share similar underlying 
physiological mechanisms, these may be positively associated with each other. We propose that one such po
tential common mechanism might be the bioenergetic properties of mole-rats. Here, we aim to characterize the 
bioenergetic properties of two African mole-rats. We adopted a top-down perspective measuring the bioenergetic 
properties at the organismal, cellular, and molecular level in both species and the biological significance of these 
properties were compared with the same measures in Siberian hamsters and C57BL/6 mice, chosen for their 
similar body size to the mole-rat species. We found mole-rats shared several bioenergetic properties that differed 
from their comparison species, including low basal metabolic rates, a high dependence on glycolysis rather than 
on oxidative phosphorylation for ATP production, and low proton conductance across the mitochondrial inner 
membrane. These shared mole-rat features could be a result of evolutionary adaptation to tolerating variable 
oxygen atmospheres, in particular hypoxia, and may in turn be one of the molecular mechanisms underlying 
their extremely long lifespans.   

1. Introduction 

Energy is the currency of life [1]. As the theoretical biologist Alfred 
Lotka famously stated, “In the struggle for existence, the advantage must 
go to those organisms whose energy-capturing devices are most efficient 
in directing available energies into channels favorable to the preserva
tion of the species” [2]. Life-histories of animals should therefore reflect 
the allocation of metabolic energy to those traits that determine fitness 
[3–6]. Ironically, although metabolic energy is the fundamental cur
rency of fitness, few life-history studies directly focus on bioenergetics 
[7]. 

A key premise of life-history theory posits that certain life-history 

traits are negatively associated with each other and are considered 
“trade-offs” [8]. The two commonly accepted eusocial mammals, the 
naked mole-rats (NMR; Heterocephalus glaber) and the Damaraland mole- 
rats (DMR, Fukomys damarensis) appear to challenge this concept of life- 
history trade-offs [9,10]. Both species exhibit extreme longevity on the 
basis of their body size and a delayed/retarded aging phenotype 
[11,12]. Although less is known about the DMR age-related biology than 
that of the NMR [12,13], breeders of both species show no menopause 
and demonstrate enormous reproductive outputs (60–140 times greater 
than other rodents [14]), yet are often the most long-lived individuals in 
their colonies [15,16]. More impressively, both these species also share 
other characteristics such as hypoxia tolerance [17] and tolerance of 
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oxidative stress [18], features considered evolved traits in response to 
life below ground for millenia [19]. In spite of the similarities of these 
exceptional life-history traits within this monophyletic clade [20], NMR 
and DMR exhibit fundamental differences in their evolutionary history: 
studies suggest they evolved eusociality independently [21,22], and 
have divergent physiological responses to different stressors [22]. 
Consequently, by studying these two similar but evolutionarily distinct 
species, we can better understand the effects of the evolutionary force 
and avoid biased from the life-history of a single species [23]. 

The two mole-rat species, especially the NMR, have been intensively 
studied as model species for aging and cancer research [24,25]. How
ever, the bioenergetic properties of these mole-rats attract less attention. 
Previous studies in mammals found that animals with low metabolic rate 
and energy expenditure tend to have longer lifespan [26,27]. Several 
empirical studies in invertebrates have also found that experimental 
downregulation of metabolism at the mitochondrial level extended 
lifespan of animals [28]. Hence, could the extreme longevity of both 
mole-rat species be explained by their bioenergetic properties at the 
organismal, cellular, and mitochondrial levels? Lovegrove [29] and 
McNab [30] have pioneered the bioenergetic measurements in these 
mole-rats species where they found that the basal metabolic rate (BMR) 
in both NMR and DMR was >40 % lower compared to a size-matched 
rodent. Moreover, BMR also did not show any detectable age-related 
changes in NMR, whereas age-related decline of BMR is often 
observed in laboratory rodents [31]. Recently, using isolated mito
chondria from various tissues, researchers found conflicting results on 
the respiratory rates between NMR and laboratory mouse, Mus musculus. 
The rates of state 4 respiration (uncoupled respiration) of mitochondria 
from various tissues had been shown to be either lower [32–34] or 
higher [35–37], suggesting that NMR mitochondria are either more 
coupled or less coupled when compared to mouse counterparts. At the 
cellular level, Swovick, et al. [38] employed primary dermal fibroblast 
and documented that quiescent fibroblast from NMR had lower basal 
respiration and glycolytic rates, resulted in lower ATP production rate 
than mouse fibroblast at baseline levels. In conclusion, not only are 
studies focusing on the bioenergetic characteristics of mole-rats are very 
limited, inconclusive and biased toward NMR, the comprehensive 
evaluation of bioenergetics of these two mole-rat species also remains 
largely unexplored. 

Mode-of-life theory suggests that ecological traits, such as fossor
iality, are positively correlated with lifespan [39]. Fossorial animals are 
protected from predation, airborne contagious agents and unfavorable 
climatic conditions and this affords protection from extrinsic mortality 
and contributes to a longer lifespan [14]. However, it is possible that 
aside from the ecological benefits of subterranean lifestyle, fossoriality 
also led to a suite of evolutionary and physiological adaptations to 
hypoxia. We proposed that these adaptations could provide a causal 
mechanism of extended lifespan not explained by difference in extrinsic 
mortality. Adaptation to hypoxic environment includes decline in BMR 
at the organismal level [40], higher reliance on glycolysis than OXPHOS 
for ATP production at the cellular level [41], and decreased mitochon
drial proton conductance at the organelle level [42]. These bioenergetic 
adaptations that may further contribute to the prolonged lifespans of 
underground dwelling species. 

In the present study, we employed an uprecedented integrative 
approach to concurrently study bioenergetic properties of DMR and 
NMR at the organismal, cellular and organelle level. This integrative 
approach allowed us to investigate compensatory mechanisms and 
synergistic interactions between different physiological levels that 
would otherwise be masked if only one biological level (e.g. whole or
ganism) was explored. We also investigate the significance of these 
properties by comparing these findings with shorter-lived, above- 
ground dwelling laboratory rodents, such as the Siberian hamster 
(Phodopus sungorus) and the C57BL/6 mouse. We used the hamster and 
C57BL/6 mouse as comparisons since these species were housed in the 
same animal facility as DMR and NMR respectively. We believe this 

integrative approach will enable us to obtain synergistic feedback and 
valuable insights to understand the biological mechanisms governing 
the aging process and longevity. 

2. Methods 

2.1. Animals 

The husbandry of DMR and Siberian hamsters and the study pro
cedures were conducted under University of Memphis IACUC permits 
(#0862; #0797). The husbandry of NMR and C57BL/6 mice and the 
study procedures were conducted at Calico Life Sciences [43]. All 
experimental procedures were approved by the Calico IACUC committee 
(B-2-2020). Please see the electronic supplementary material, methods 
for more information on the husbandary of these animals. 

2.2. Whole organism basal metabolic rate measurement 

A total of ten young adult hamsters (4 months old; 5 male and 5 
female), eleven young DMR (4–5 years old; 6 male and 5 female), nine 
middle-aged DMR (9–10 years old; 4 male and 5 female), and eight old 
DMR (16–20 years old; 4 male and 4 female) were used for whole 
organismal BMR measurements. Only non-breeding animals were used 
in the study. All BMR measurements were conducted using a standard 
flow-through respirometry system (Sable Systems International, Las 
Vegas, NV, USA) following that described in Yap et al. [44] (electronic 
supplementary material, methods). BMR was measured between 9: 00 
and 17:00 at 30 ◦C, which is within the thermoneutral zone for both 
DMR and hamster [29,45]. BMR calculations were done based on the 
lowest averaged 3 min of oxygen consumption per measurement 
sequence after 4 h according to Lighton's Eqs. (10.6) and (10.7) [46] 
with ExpeData software, version 1.2.6 (Sable Systems International). 
The measurement of age-related changes in BMR were previously un
dertaken for NMR using the identical methodology [31] and similarly 
considerable data is available for the BMR of mice [47]. 

2.3. Primary fibroblast isolation and culture 

Primary dermal fibroblasts from NMR and C57BL/6 mice were ob
tained from Buffenstein lab as previous described [48]. NMR cells were 
initially propagated at 32 ◦C with 5 % CO2 and 3 % O2 before accli
mation at 37 ◦C overnight. The measurements of cellular respiration 
were then conducted according to Swovick, et al. [49]. Primary dermal 
fibroblasts of mice were isolated using identical procedures but main
tained at 37 ◦C. Primary lung fibroblasts and primary dermal fibroblasts 
from DMR and hamsters were isolated from two three-year-old DMR and 
two four-month-old hamsters according to Seluanov et al. [50] and 
Zhang and Wong [51]. 

2.4. Cellular respiration measurements 

The rates of respiration in cells were measured using Seahorse XFe96 
Analyzers (Agilent, Santa Clara, CA) according to Wong et al. [52] 
(electronic supplementary material, methods). Rates of oxygen con
sumption and extracellular acidification were simutamously measured 
and expressed relative to the protein contents of the appropriate wells. 
Rates of ATP production during baseline from glycolysis and oxidative 
phosphorylation were calculated according to Mookerjee et al. [53]. 
Glycolytic ATP production comes from two parts. The first is ATP pro
duced by glycolysis to pyruvate and then converted to lactate. This is 
calculated from extracellular acidification rate (ECAR) as PPRglyc (Pro
ton Production Rateglyc) × ATP/lactate. The second part is ATP pro
duced by glycolysis to pyruvate that is subsequently transported into 
mitochondria which eventually converted to CO2 and then bicarbonate. 
This is calculated from the oxygen consumption rate (OCR) by multi
plying the mitochondrial OCR by the P/O ratio when pyruvate is fully 
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oxidized. We used a conversion factor of 2 to account for oxygen atoms 
([O]) in P/O ratio to oxygen molecules (O2) in OCR. As a result, As a 
result, Total ATP production rate from glycolysis is therefore PPRglyc ×

ATP/lactate + OCRmito × 2P/Oglyc. Here, we used P/Oglyc value of 0.167 
when cells were supplied with glucose according to Mookerjee et al. 
[53]. The rate of ATP production from oxidative phosphorylation 
(OXPHOS) is calculated from the mitochondrial oxygen consumption 
rate. Briefly, the ATP production rate attributable to NADH/FADH2 
oxidation is equal to the coupled OCR multiplied by the P/O ratio of 
oxidative phosphorylation: OCRcoupled × 2P/Ooxphos. The rate of ATP 
production from substrate level phosphorylation is determined by 
multiplying the mitochondrial oxygen consumption rate by the P/O 
ratio attributable to tricarboxylic acid cycle flux (OCRmito × 2P/OTCA). 
The total rate of ATP production during OXPHOS = (OCRcoupled × 2P/ 
Ooxphos) + (OCRmito × 2P/OTCA) [53]. 

2.5. Mitochondria isolation 

Lung (DMR and hamsters) and heart (NMR and C57BL/6 mice) tis
sues were immediately excised upon euthanasia. Lung mitochondria 
were isolated from lung tissue of DMR (n = 5; 4 years old) and hamster 
(n = 5; 4 month old) according to Spear and Lumeng [54]. Heart 
mitochondria were isolated from hearts of NMR and C57BL/6J mice in 
ice-cold heart sucrose buffer (electronic supplementary material, 
methods). Regardless of species, tissues were homogenized and sub
jected to differential centrifugations. The resultant supernatant was 
discarded, the final mitochondria pellets were suspended in ice-cold 
Mitochondrial Assay Solution (MAS-1) and were kept at high concen
tration (~20 mg protein/mL) on ice until use according to Mookerjee 
et al. [55]. 

2.6. Mitochondria respiration measurement 

Body temperature varies for the various species used in this study: 
NMR (32–34 ◦C), DMR (~35.2 ◦C), mouse (36.2–38 ◦C) and hamster 
(36.1–38 ◦C) [56]. In order to have a fair comparison of the intrinsic 
functionality of mitochondria, respiration chamber temperature was 
standardized to avoid the influence of temperature on mitochondrial 
respiration. Munro et al. [34] previously showed the respiration of 
isolated mitochondria did not vary significantly between 30 ◦C and 
37 ◦C for NMR but differed significantly for mouse. As a result, we used 
37 ◦C as respiratory chamber temperature for all four species. Lung 
mitochondria (0.35 mg/ml) respiration was measured in MAS-1 at 37 ◦C 
using high resolution respirometry (Oroboros O2k, Innsbruck, Austria). 
The rates of respiration of heart mitochondria isolated from NMR and 
C56BL/6J mice were assessed according to Rogers et al. [57] by Sea
horse XFe96 extracellular flux analyzer (electronic supplementary ma
terial, methods). 

2.7. Statistical analyses 

All statistical tests were carried out using IBM SPSS, version 26.0. 
BMR and body mass were log10 transformed prior to analyses to conform 
to normality. We first used general linear models (GLM) including the 
factor sex to compare BMR between DMR and hamster. However, adding 
or removing sex as covariate yielded similar results, so it was removed 
from statistical analyses. We tested the effect of species on BMR using 
GLM with BMR as dependent variable, species as main effect, and body 
mass as covariate [58]. To investigate if BMR differed between DMR 
from different age groups, we tested the effect of age group on BMR of 
DMR using GLM with BMR as dependent variable, age group as main 
effect, and body mass as covariate. F- and t-statistics and P values were 
reported. Student t-test was used for comparison in cellular and mito
chondrial levels between NMR and DMR with their counterparts. We 
considered P < 0.05 as statistically significant. 

3. Results 

3.1. Whole body BMR 

Our results of BMR in captive DMR are consistent with the reported 
BMR of this species captured in the wild [29] and in captivity [59]. The 
measured BMR of hamsters was also consistent with previous studies 
[45] (Supplementary Table 1). Both DMR (P = 0.029) and hamsters (P =
0.046) demonstrated a statistically significant positive correlation be
tween their body mass and BMR. We therefore included body mass as a 
covariate when performing comparisons of metabolic rates. Based on the 
comparison, DMR demonstrated a 50 % lower BMR than hamsters (F1,18 
= 4.55, P = 0.047; Fig. 1A,C), which aligned with predictions by 
Lovegrove [29]. We detected no significant differences between young, 
middle-aged and old DMR (F2,24 = 2.15, P = 0.138; Fig. 1B,D). Body 
mass also stayed constant between age groups in DMR (F2,25 = 0.99, P =
0.386; Supplementary Table 1). This is consistent with previous reports 
on NMR, where no age-related changes in body mass and BMR were 
found [31]. 

3.2. Primary fibroblasts respiration 

To better understand our observations, we moved on to explore 
cellular bioenergetics of both species. We did so by measuring the rates 
of cellular respiration and the rates of glycolysis, the two main pathways 
to generate energy, using an extracellular flux analyzer. Primary lung 
fibroblasts of DMR showed significantly lower rates of basal (t4 = 5.47, 
P = 0.005; Fig. 2A, B) and FCCP-induced maximal (t4 = 7.61, P = 0.002; 
Fig. 2A, B) respiration when compared with hamster lung fibroblasts. 
Oligomycin-induced state 4O respiration was not different between DMR 
and hamsters (P = 0.60), which indicated proton leak across mito
chondrial inner membrane might not be different. However, proton 
motive force was not controlled in these measurements. Interestingly, 
basal extracellular acidification rates, which reflect basal glycolytic 
rates, were significantly higher in lung fibroblasts of DMR than of 
hamsters' (t4 = 8.06, P = 0.001; Fig. 2C, D). The maximal capacity of 
glycolysis of these cells showed no differences between DMR and 
hamsters (P = 0.15). We also calculated the rates of ATP production 
based on the rates of respiration and glycolysis and observed no statis
tically significant differences of ATP production rates in lung fibroblasts 
of DMR and hamsters under basal condition (P = 0.230; Fig. 3A). 

We extended our investigation to also cover primary dermal fibro
blasts of NMR. Intriguingly, similar patterns were observed between the 
comparisons between NMR and hamster dermal fibroblasts. Dermal fi
broblasts of NMR demonstrated significantly lower rates of basal (t4 =

17.49, P < 0.001; Fig. 2E, F) and maximal respiration (t4 = 4.49, P =
0.011; Fig. 2E, F), whereas the rates of state 4 respiration were not 
different (t4 = 0.31, P = 0.77). While the maximal glycolytic rates were 
similar between dermal fibroblasts of NMR and hamster (P = 0.43), we 
again observed a significantly higher basal glycolytic rates in NMR 
dermal fibroblasts (t4 = 10.44, P < 0.001; Fig. 2G, H). No differences in 
ATP production rates were detected between dermal fibroblasts of NMR 
and hamster (P = 0.904; Fig. 3B). 

3.3. Mitochondrial respiration 

Investigation using isolated mitochondria allows us to better un
derstand the bioenergetic machinery employed during respiration and 
may provide some explanations for their disparate bioenergetic char
acteristics observed at either the cellular or organismal level (Supple
mentary Figs. 1, 2). 

The rates of mitochondrial respiration were examined using both 
complex I-linked and complex II-linked substrates. In general, regardless 
of the tissues of interest (lungs: hamster and DMR; hearts: NMR and 
mice) mitochondria of DMR and NMR showed similar patterns that 
differed from those of hamsters and mice respectively. While the rates of 
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Complex I-driven mitochondrial state 3ADP respiration were found to be 
similar when comparing the mole-rats to their laboratory counterparts 
(DMR vs. hamsters: P > 0.288; Fig. 4A; NMR vs. mice: t14 = 2.06, P =
0.058; Fig. 4B), the rates of state 4o respiration were found to be 
significantly lower for both DMR and NMR than those of hamsters or 
mice (DMR vs. hamsters: t8 = 4.21, P = 0.003; Fig. 4A; NMR vs. mice: t14 
= 2.96, P = 0.010; Fig. 4B). Collectively, this gives rise to the idea that 
mole-rats have significantly higher respiratory control ratios (RCR) (P <
0.01; Supplementary Fig. 3B). Respiratory control ratio, while 
commonly used as an indicator of mitochondrial integrity, is in fact a 
reflection of the ADP-mediated stimulation of mitochondrial respiration. 
The discrepant RCR observed in mitochondria isolated from different 
species may be explained by the availability of ADP [60], which in this 
case was governed by the kinetics of ADP transport by adenine nucle
otide transporter (ANT) as ADP was provided in excess during our 
measurements, or the molecular interaction between ADP/ATP and 
mitochondrial respiratory machineries [61]. The higher RCR values 
observed in mitochondria isolated from DMR and NMR therefore sug
gest the intrinsic differences of mitochondrial energetic machineries 
between mole-rats and hamster or mouse. 

We also observed some degree of species-specific characteristics. 
When comparing DMR and hamsters, no differences were observed for 
Complex II-driven state 3ADP respiration in lung mitochondria. Howev
er, we observed a significant decrease in the rate of Complex II-driven 
state 3ADP respiration in heart mitochondria of NMR when compared 
to that of mice. The slower Complex II-driven state 3ADP respiration 
observed here were consistent with previous findings [32,62]. Such low 
levels of respiration by complex II substrates in NMR mitochondria were 
tied to decreased ROS production rates from complex I [62,63]. 

4. Discussion 

Here we report that both DMR and NMR exhibited significantly 
different bioenergetic properties at the organismal, cellular and organ
elle levels compared to their above-ground dwelling, shorter-lived lab
oratory counterparts. Most notably both species showed lower whole 
body BMR and cellular respiration than above-ground dwelling animals 
while RCR of isolated mitochondria were found to be higher. These 
findings suggest convergent evolutionary processes most likely had 
arisen in response to social living under the variable oxygen atmo
spheres encountered below ground. 

BMR of the two mole-rat species were estimated to be about 30 % - 
60 % lower than that predicted by body mass [12,29–31,56,64]. The 
comparison between these two mole-rats species and other subterranean 
rodents, other partial fossorial mole-rat species, also shows a reduced 
BMR by >29 % [29]. The observed lower BMR might be explained by 
their fully fossorial lifestyle and eusocial colony organization which 
likely results in repeated exposure to severe hypoxia [17]. Interestingly, 
while age-related declines in BMR due to decreased lean mass in disease- 
free individuals were extensively documented in human and laboratory 
rodent species [65–67], we did not observe significant age-related de
clines in body mass and BMR in both NMR and DMR. This is likely 
indicative of well-maintained body composition, most notably lean 
mass, tissue function, and bioenergetic properties with increasing age 
[68]. 

BMR was calculated based on oxygen consumption measurements. 
To understand the mechanisms underlying lower BMR in mole-rats, we 
extended our investigation to measure cellular respiration using primary 
fibroblasts. We found that fibroblasts from both mole-rat species exhibit 
lower rates of basal and maximal cellular respiration than that of 
hamsters and mice, with associated elevations in basal glycolytic rates. 
We further calculated the rates of total ATP production based on the 
rates of basal cellular respiration and glycolysis. We observed that the 
rates of ATP production of primary fibroblasts isolated from the two 
mole-rat species were comparable to those of hamster in spite of reduced 
basal cellular respiration rates in the two mole-rat species (Fig. 3). This 
intriguing finding may be explained by the compensatory mechanism 
between mitochondrial and glycolytic ATP production during which 
either one of the pathways can be upregulated to compensate for the 
slowdown of the other. Our observations suggest a higher reliance of 
mole-rat fibroblasts on glycolysis instead of oxidative phosphorylation 
(OXPHOS) for ATP production. Although Swovick et al. [38] also 
showed lower basal respiration levels in NMR compared to mice; 
inconsistent with our findings, that study reported lower rates of basal 
glycolysis with concomitant lower total ATP production compared to 
that of mouse cells. The exact reason for this interstudy discrepancy is 
still unclear. However, Swovick et al. [38] conducted their measure
ments in confluent, quiescent cells, whereas our measurements were 
performed using proliferating cells. It is possible that proliferating cells 
may have a higher ATP demand which was met by an increased basal 
glycolysis in mole-rat cells. Despite this discrepancy, our findings are 
consistent with Swovick et al. [38] that a higher percentage of ATP 
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Fig. 3. ATP production rates during baseline from oxidative phosphorylation (OXPHOS) and glycolysis in (A) Damaraland mole-rat (DMR) and hamster lung 
fibroblast, (B) naked mole-rat (NMR) and hamster dermal fibroblast. N = 3 independent experiments, Data are shown as means ± s.e.m., * indicates P < 0.05. 
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production from glycolysis than OXPHOS in NMR compared to mouse 
cells, in keeping with the Warburg effect [69]. Gene expression analyses 
at transcriptional and translational levels demonstrated upregulated 
expressions of glycolytic enzymes, ketohexokinase and glucose trans
porter 5 [41], suggesting an increased glycolytic capacity than other 
laboratory rodents. The significant role of glycolysis in NMR metabolism 
was also supported by cardiac metabolomic profiling in NMR [70]. 
Interestingly, while lactate accumulation and metabolic acidosis due to 
high reliance on glycolysis can be detrimental, previous studies showed 
an improved lactate metabolism, and pH buffering capacity in NMR 
tissues [71]. It has been shown that NMR possesses tissue and/or blood 
buffering capacity that masks typical markers of metabolic acidosis and 
prioritize the synthesis of glucose from lactate during recovery in the 
liver [71]. Overall, multiple lines of evidence demonstrate an upregu
lated reliance on glycolysis for ATP production in mole-rat species. 

This preference for glycolysis over OXPHOS reportedly elicits a 
broad range of beneficial healthspan and/or lifespan consequences [69]. 
For example, pharmacological and genetic manipulations that moder
ately inhibit mitochondrial respiration, such as metformin, TPP- 
thiazole, reportedly extend lifespan [72–74] by shifting ATP produc
tion from mitochondrial OXPHOS to glycolysis. The observed similar 
bioenergetic pattern favoring ATP generation from glycolysis is benefi
cial under hypoxic conditions where oxygen is limited for OXPHOS and 
may indirectly contribute to the extremely long lifespan of these mole 
rats. 

Isolated mitochondria from both mole-rat species had lower state 4O 
respiration relative to comparison species. State 4O respiration is used as 
an indirect measure of the proton conductance across the mitochondrial 
inner membrane and serves as an indicator of mitochondrial coupling. 
Increased mitochondrial coupling is suggestive of enhanced efficiency of 
mitochondrial ATP production per unit of oxygen consumed, findings 
consistent with previous reports on isolated mitochondria from liver, 
heart and skeletal muscle of NMR [32–34]. The mitochondria isolated 
from the two mole-rat species in this current study, were much more 
coupled than those of hamsters and mice. 

Lau et al. [32] observed a lower state 4O respiration and a concom
itant increase in mitochondrial membrane potential (ΔΨ) in NMR heart 
mitochondria compared to mouse counterparts, these indicated that 
mitochondria were hyperpolarized during state 4O respiration. The 
observed lower mitochondrial proton conductance may therefore be 
explained by differences in either trans-membrane transporters (such as 
uncoupling proteins (UCPs), adenine nucleotide transport) or inner 
membrane phospholipid composition [75]. Upregulation in NMR 
uncoupling proteins [76] or a lower proportion of the polyunsaturated 
fatty acid docosahexaenoic acid in the mitochondrial inner membrane 
[77] would reduce proton conductance across the inner membrane and 
therefore contribute to the observed lower state 4o respiration measured 
in NMR in both this and Lau's study. It is worth noting that some pre
vious studies had reported contradictory results [35–37]; those studies 
suggest that NMR mitochondria are more uncoupled than other labo
ratory rodents, as indicated by their findings of a lower ΔΨ during state 
4 respiration when compared to mice. Their observations support the 
“Uncoupling to Survive” hypothesis which proposes that mitochondrial 
uncoupling would result in decreased reactive oxygen species produc
tion, reducing oxidative stress with concomitant beneficial effects on 
longevity [78]. Further studies are warranted to explain interstudy 
variability and if this rather reflects disparate acclimation or other 
laboratory-specific experimental conditions. Inevitably, uncoupled 
mitochondria would produce more heat than those that are well- 
coupled, facilitating better maintenance of body temperature. Given 
that NMR are extremely thermolabile, unable to defend body tempera
ture at ambient temperatures even a few degrees below thermoneu
trality [30,79], we believe our observation is more consistent with their 
physiology. 

One of the strengths of the present study is the use of an integrative 
approach to concurrently measure respiration at the organismal, cellular 

and organelle levels. Such an approach enables synergistic feedback of 
insights from observations at multiple levels of organization, and is more 
informative than conducting such studies at a single biological level. In 
this context, we observed a mismatch between results from isolated 
mitochondria and the findings obtained from cellular respiration. Most 
notably, we observed lower rates of state 4 and similar rates of state 3 
respiration in isolated mitochondria, but lower rates of state 3 and 
similar rates of state 4 were seen in cells from mole-rats compared to 
their counterparts. This may be explained by the fact that in isolated 
mitochondria assays, excessive substrates were provided during state 3 
respiration. As a result, the slower state 3 respiration in cells may sug
gest a limitation/slower supply of respiratory substrates between mole- 
rats fibroblasts compared to their counterparts. The activation of UCPs 
and other factors might influence mitochondrial proton conductance in 
cells and could explain the differences between state 4 respiration in 
mitochondria and cells [80]. These results suggest that mitochondria 
could behave differently in cells compared to when they are isolated and 
supplied with unlimited substrates. Consequently, we need to be 
cautious when extrapolating data solely obtained from isolated mito
chondria when attemping to explain physiological phenomena. 

It has also been hypothesized that mitochondria basal proton leak 
(represented by state 4 respiration) significantly contributes to BMR in 
vivo [81]. This is consistent with this study that significantly lowers 
mitochondrial basal proton leak, cellular respiration and BMR. How
ever, it is important to note that other factors may also contribute to the 
magnitude of species differences in BMR; mitochondrial basal proton 
leak was 39 % - 43 % lower depending on both the substrates and spe
cies, basal respiration in isolated primary dermal fibroblast cultures 
were reduced by 45 %–55 % although rates of ATP production were 
similar, and BMR was 50 %–60 % lower for two mole-rat species 
compared to their counterparts [82]. 

Our study employed both NMR and DMR to evaluate bioenergetic 
profiles of subterranean species. Although these two species have similar 
life-history traits, they are fundamentally different in their evolutionary 
history. Phenotypic convergence could be the result of similar adapta
tion to shared environments [83]. Consequently, convergent evolution 
can serve as a valuable proxy for repeated evolutionary experiments in 
nature. Moreover, understanding how convergent traits evolve, espe
cially at different biological levels, has the potential to inform general 
rules about adaptation [84]. Mode-of-life theory suggests that ecological 
traits, such as fossoriality, are positively correlated with lifespan [39]. 
Strictly subterranean animals can escape predation and unfavorable 
above-ground conditions, these reductions in extrinsic mortality also 
may contribute to longer lifespan [14]. But in the physiological context, 
it is possible that the adaptations for life below ground where low ox
ygen atmospheres may commonly contribute to the unique bioenergetic 
properties shared by these two mole-rat species and as a byproduct 
thereof also could contribute to their longevity. Adaptation to hypoxic 
environment includes decline in BMR at the organismal level [40], 
higher reliance on glycolysis than OXPHOS for ATP production at the 
cellular level [41], and decreased mitochondrial proton conductance at 
the organelle level [42] traits observed in both mole-rat species. 

Although the exact physiological pathways underlying these bio
energetic adaptations are unknown, a top candidate may be HIF-1. HIF- 
1, or its alpha subunit (HIF-1α), is considered as the master transcrip
tional regulator of cellular response to hypoxia [85]. In most mammals, 
HIF-1α is only activated during hypoxia and is constantly being 
degraded during normoxia. In NMR, genomic analysis indicated several 
mutations can prevent HIF-1α from degradation during normoxia, 
which would chronically upregulate HIF-1α mediated signaling path
ways [76]. In DMR, HIF-1α protein level in lungs was much higher than 
in hamsters (Supplementary Fig. 4), and similarly NMR have higher HIF- 
1a than observed in mice [76]. Interestingly, HIF-1 activation could also 
delay cellular senescence [86], and extend lifespan in many different 
model species [87,88]. It is likely that adaptation to the hypoxic envi
ronment upregulate HIF-1 regulated pathways resulted in these unique 
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bioenergetic properties. The persistent upregulation of HIF-1 pathways 
and the unique bioenergetics may elicit beneficial effects to promote the 
extremely long lifespan of these mole-rat species. Such hypothesis is in 
line with recent studies that indicated that instead of trade-offs, different 
life-history traits could be positively associated with each other, when 
these traits share similar underpinning physiological mechanisms 
[89,90]. 

Admittedly, our study only involved 4 species (two pairs of two- 
species comparisions). However, two- or few-species comparisons are 
still informative and relevant especially in a purely mechanistic context 
[91]. Despite certain degree of discrepancies between findings from 
isolated mitochondria, primary cells, and whole organismal measure
ments, all data come to a general conclusion that NMR and DMR 
exhibited lower levels of basal respiration. However, future study 
directly testing on the bioenergetic properties at these biological levels 
with lifespan is needed. For example, primary fibroblasts, especially 
lung and dermal fibroblasts are widely used in cellular senescence 
research [92,93]. In summary, our study shows similar bioenergetic 
properties shared by NMR and DMR at organismal, cellular, and 
organelle levels. These bioenergetic characteristics, such as lower but 
relatively constant BMR throughout the life, dependence on glycolysis 
rather than mitochondrial OXPHOS for ATP production in cells, lower 
basal proton conductance through mitochondria inner membrane, could 
result from adaptation to hypoxic environments. These metabolic ad
aptations, on the other hand, might be beneficial for other life-history 
traits such as longevity. Future studies directly testing these underly
ing mechanisms, together with studies that involve other fossorial or 
semi-fossorial rodents would provide important insights for changes in 
metabolism in hypoxic environments, and its effects on aging. More 
importantly, these studies can reveal mechanistically how different life- 
history traits interact and influence each other. 
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