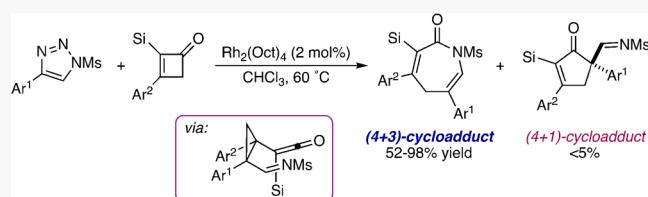


Generation of Functionalized Azepinone Derivatives via a (4 + 3)-Cycloaddition of Vinyl Ketenes and α -Imino Carbenes Derived from N-Sulfonyl-triazoles

Harrison M. Hill, Zachary D. Tucker, Kevin X. Rodriguez, Katelyn A. Wendt, and Brandon L. Ashfeld*

Cite This: *J. Org. Chem.* 2022, 87, 3825–3833

Read Online


ACCESS |

Metrics & More

Article Recommendations

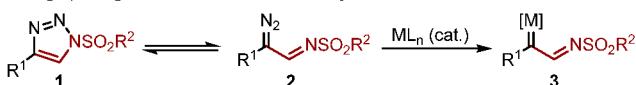
Supporting Information

ABSTRACT: An intermolecular Rh^{II}-catalyzed, formal (4 + 3)-cycloaddition between vinyl ketenes and *N*-sulfonyl-1,2,3-triazoles for the construction of azepinone products is described. Employing vinyl ketenes as a 1,4-dipolar surrogate, instead of the more commonly used dienyl moieties, allows for the intermolecular and selective formation of azepinone products over a potential (3 + 2)-cycloadduct under mild reaction conditions allows for the generation of azepinone products in up to 98% yield.

Discovered in 1909, the Dimroth rearrangement marked the ring-opening tautomerization of select 1,2,3-triazoles to yield the corresponding α -diazo imine.¹ By exploiting this dynamic equilibrium, the ability to access metal-stabilized carbenes by employing masked, benchtop materials has led to the development of exquisite new methods in carbo- and heterocycle construction.^{2–5} Early studies revealed that the triazole *N*-substituent was critical in shifting this equilibrium to the ring-opened diazo congener, highlighting an important structural parameter for the use of these substrates in synthesis.^{1,6} In general, *N*-sulfonyl triazoles **1** proved superior compared to their *N*-alkyl counterparts at enabling adequate generation of the corresponding α -diazo imine **2**, which upon exposure to a transition metal complex (e.g., Rh^{II}, Cu^{II}, etc.) provides the metal-stabilized α -imino carbene **3** (Figure 1a).^{7,8}

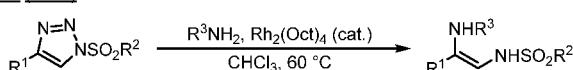
In recent years, α -imino carbenes **3** have played a central role in the development of transannulations,^{8–10} cyclopropanations,^{11,12} C–H functionalizations,¹³ azomethine ylides in (3 + 2)-cycloadditions, and various other transformations leading to high value synthetic building blocks.¹⁴ For example, a report from the Fokin group in 2013 illustrated the capability of Rh-stabilized carbenes derived from sulfonyl triazoles in N–H and O–H insertions to provide Z-dienamines with exceptional control of olefin stereochemistry (Figure 1b).¹⁵ Additionally, Gevorgyan and co-workers demonstrated the utility of Co-stabilized carbenes derived from pyridotriazoles in a transannulation assembly of imino thiazolopyridines with isothiocyanates. Recent efforts have also shown that synthetically challenging medium- and large-membered heterocycles are accessible via (5 + 2)- and (4 + 3)-cycloadditions exploiting metallocarbenes derived from *N*-sulfonyl triazoles.^{4,16}

Recently, *N*-tosyl triazoles were shown to participate in Rh-catalyzed (4 + 3)-cycloadditions to provide access to the

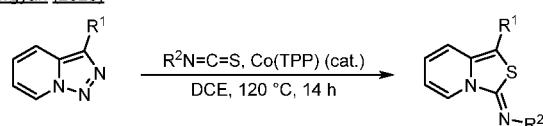

challenging 7-membered heterocycles. However, (4 + 3)-cycloadditions involving triazoles are often complicated by competitive (3 + 2)-cycloadditions leading to 5-membered nitrogen heterocycles. For example, in 2014 Tang and co-workers⁴ reported the Rh^{II}-catalyzed (4 + 3)-cyclization of *N*-tosyl triazole and 1,3-dienes to provide the desired azepines, albeit at relatively high reaction temperatures (Figure 2a). Over the course of their study, they found that the substitution pattern and olefin geometry of the 1,3-diene played a critical role in whether the (4 + 3)-cycloadduct or the dihydropyrrrole resulting from a (3 + 2)-cycloaddition was observed. For example, *trans*-1,3-dienes bearing aryl substituents at C1 or C2 favored azepine formation, whereas *cis*-1,3-dienes with C1-alkyl substituents led to selective formation of the (3 + 2)-cycloadducts. In a related study, Sarpong and co-workers¹⁷ reported a highly diastereoselective and chemoselective, Rh^{II}-catalyzed, intramolecular (4 + 3)-cycloaddition for the formation of fused bicyclic azepines, but under substantially more mild conditions as compared to the study above (Figure 2b). Azepine formation presumably occurs via an initial Rh^{II}-catalyzed cyclopropanation of the 1,3-diene followed by an aza-Cope rearrangement that is commensurate with divinyl cyclopropane rearrangements^{18–21} to give the resulting N-heterocycle. While the work from Tang and Sarpong demonstrated the capabilities of accessing the azepine scaffold, selectivity appeared dependent upon the structural attributes of the 1,3-diene component.

Received: December 9, 2021

Published: February 21, 2022

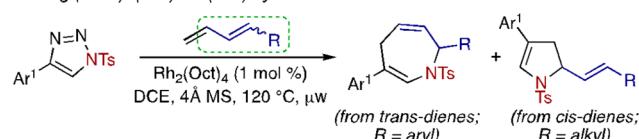


a. ring opening tautomerization of *N*-sulfonyl triazoles:



b. selected examples of triazoles as diazo precursors in methods development:

Eokin (2013)



Gevorgyan (2020)

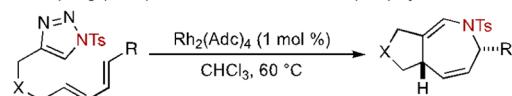
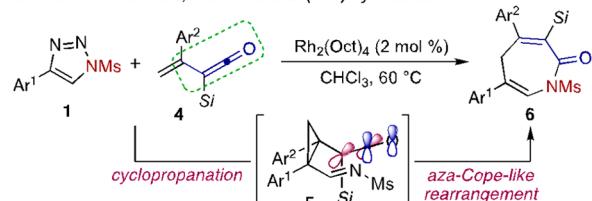


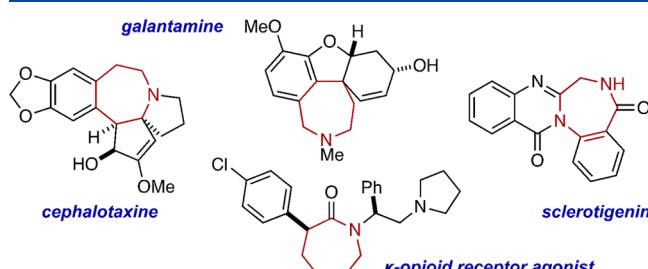
Figure 1. Ring opening of triazole **1** to α -imino diazo compound **2** and subsequent rhodium carbene formation. Select reactions utilizing triazole starting materials. (a) Stereoselective formation of diamine products. (b) Formation of imino-thiazolopyridine products.


a. Tang (2014): (4+3) vs. (3+2)-cycloadditions

b. Sarpong (2014): selective, intramolecular (4+3)-cycloaddition

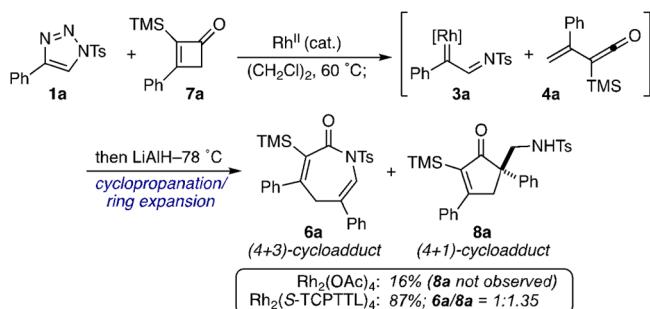
c. This work: selective, intermolecular (4+3)-cycloaddition

Figure 2. (4 + 3)-Cycloadditions employing *N*-sulfonyl-triazoles: (a) Intermolecular (4 + 3)-cycloaddition reaction with substituted dienes; (b) Selective intramolecular (4 + 3)-cycloadditions; (c) This work: employing vinyl ketenes in place of 1,3-dienes.


Inspired by these seminal contributions, we sought to address this challenge of selective azepine formation through the use of an alternative 1,4-dipole surrogate wherein the reliance on olefin geometry is avoided and formation of the 7-membered ring is accelerated so as to avoid often forcing conditions. We speculated that the use of vinyl ketenes as 1,4-dipole surrogates, in place of a 1,3-diene, would yield a selective, intermolecular, Rh^{II} -catalyzed (4 + 3)-cycloaddition under conditions comparable to the intramolecular variant explored above. Over the course of our previous studies on the development of (4 + 1)-cycloadditions employing vinyl ketenes and vinyl isocyanates, we observed a substantial rate enhancement in the penultimate vinyl cyclopropane rearrangement leading to cyclopentenone and pyrrolidinone formation, respectively.^{22,23} Based on our subsequent mechanistic studies²⁴ and related transformations^{25,26} in the literature, we surmised that the observed rate enhancement was due to the highly polarized nature of the ketene/isocyanate and the presence of the orthogonal p-orbitals on the sp-hybridized

central cumulene carbon leading to improved orbital overlap in the transition state. Therefore, we envisioned a similar rate enhancement upon exposure of *N*-methanesulfonyl triazole **1** to a Rh^{II} -catalyst and vinyl ketene **4**, whereupon the polarized ketene functionality present in the intermediate cyclopropyl ketene **5** would promote an aza-[3,3]-rearrangement to yield azepinone **6** (Figure 2c).

Of the common medium-sized *N*-heterocyclic compounds, the benzodiazepine, azepine, and azepinone scaffolds are of particular interest to synthetic and medicinal chemists due to their prevalence in biologically active small molecules. ^{14,16,17,27-30} A number of biologically relevant natural products and designed small molecules bearing the azepine, azepinone, and benzodiazepine frameworks, such as glantamine, cephalotaxine, and sclerotigenin, have shown promise as treatments for anxiety³¹ and Alzheimer's disease,³² while others have demonstrated antibacterial activity³³⁻³⁶ and insecticidal properties (Figure 3).^{37,38} The prevalence of this motif in small molecules that have exhibited a wide array of translational potential has inspired the continued growth of new and efficient methods for their assembly.


We began our study by examining the Rh^{II} -catalyzed cycloaddition of *N*-tosyl triazole **1a** and vinyl ketene precursor cyclobutene **7a** (Scheme 1). While treatment with $\text{Rh}_2(\text{OAc})_4$ (2 mol %) at 60 °C led to a mere 16% of azepine **6a**, we were encouraged to find that no evidence of the corresponding (4 + 1)-cycloadduct emerged. It is noteworthy that extended reaction times and elevated temperatures led to an increasingly complex mixture of products. Interestingly, when the chiral catalyst $\text{Rh}_2(\text{S-TCPTT})_4$ was employed, we observed substantially improved reactivity, but the combined yield of 87% comprised **6a** and **8a** in a 1:1.35 ratio. It is worth noting that the intermediate imine-bearing (4 + 1) cycloadduct proved unstable to the purification conditions and was therefore characterized as the amine. Encouraged by the selectivity we observed with the vinyl ketene **4a** in the presence of $\text{Rh}_2(\text{OAc})_4$, we embarked on a closer evaluation of the reaction parameters.

A key consideration when employing *N*-sulfonyl triazoles in metallocarbene-mediated transformations is the accessibility of diazo intermediate **2** and the role the *N*-sulfonyl group plays in the position of this equilibrium. Exchanging the *N*-tosyl triazole **1a** for the *N*-mesyl derivative **1b** led to an improved yield in the formation of azepinone **6b** in the presence of $\text{Rh}_2(\text{OAc})_4$ (Table 1, entry 1). While the Rh^{II} complex $\text{Rh}_2(\text{esp})_2$ failed to provide either **6b** or **8**, a slight improvement in the yield of **6b** was observed in the presence of $\text{Rh}_2(\text{Oct})_4$ (entries 2 and 3). Increasing the reaction temperature to either 80 °C or 100 °C failed to significantly improve the yield of **6b**. While alternating the α -silyl group on

Figure 3. Azepine and azepinone natural products and therapeutics.

Scheme 1. Initial Findings

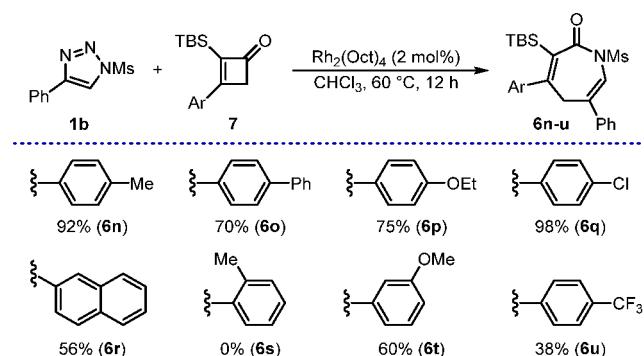
Table 1. Optimization of Reaction Conditions^a

entry	catalyst	solvent	7	yield(%)
1	Rh ₂ (OAc) ₄	(CH ₂ Cl) ₂	TMS (7a)	40 (6b)
2	Rh ₂ (esp) ₂	(CH ₂ Cl) ₂	TMS (7a)	0 (6b)
3	Rh ₂ (Oct) ₄	(CH ₂ Cl) ₂	TMS (7a)	45 (6b) ^b
4	Rh ₂ (Oct) ₄	(CH ₂ Cl) ₂	TES (7b)	31 (6c)
5	Rh ₂ (Oct) ₄	(CH ₂ Cl) ₂	TIPS (7c)	23 (6d)
6	Rh ₂ (Oct) ₄	(CH ₂ Cl) ₂	TBS (7d)	50 (6e)
7	Rh ₂ (Oct) ₄	THF	TBS (7d)	0 (6e)
8	Rh ₂ (Oct) ₄	MeCN	TBS (7d)	0 (6e)
9	Rh ₂ (Oct) ₄	DMF	TBS (7d)	0 (6e)
10	Rh ₂ (Oct) ₄	CH ₂ Cl ₂	TBS (7d)	46 (6e)
11	Rh ₂ (Oct) ₄	PhMe	TBS (7d)	26 (6e)
12	Rh ₂ (Oct) ₄	CHCl ₃	TBS (7d)	83 (6e)
13	Rh ₂ (Oct) ₄	CHCl ₃	TBS (7d)	81 (6e) ^c

^aConditions: 1b (1.0 equiv), 7 (3.0 equiv), and Rh₂L₄ (2 mol %) at 0.1 M. ^bAt 80 °C, 6b was obtained in 36% yield. ^cReaction run on 1 mmol scale. Less than 5% of the (4 + 1)-cycloadduct 8 was observed in each case.

cyclobutene 7 from TMS to either TES or TIPS led to the formation of azepinones 6c and 6d in 31% and 23% yields, respectively, employing the α -TBS cyclobutene 7d resulted in a 50% yield of 6e (entries 4–6). Finally, a survey of different solvents revealed that polar, coordinating solvents, such as THF, MeCN, and DMF, failed to provide the cycloadduct, while nonpolar solvents such as CH₂Cl₂ and PhMe gave 6e in 46% and 26% yields, respectively (entries 7–11). However, performing the reaction in CHCl₃ with cyclobutene 7d in the presence of Rh₂(Oct)₄ led to selective formation of the target azepinone 6e in 83% yield (entry 12). It is noteworthy that the N-nosyl and N-SO₂(2,6-MeOC₆H₄) derivatives were also investigated under these optimized reaction conditions, but failed to provide 6b in greater than trace yield with either triazole. Speculating that perhaps trace amounts of HCl present in the CHCl₃ used was responsible for the improved yield, we replicated the experiment conducted in CH₂Cl₂ with 5% aqueous HCl (entry 10). However, cycloadduct 6b was obtained in a diminished 41% yield compared to what was observed in the absence of HCl (46%), indicating that this potential contaminant of CHCl₃ was not responsible for the

increase in yield. With our optimized conditions in hand, we then turned our attention toward examining the impact of structural variations of the aryl rings in triazole 1 and cyclobutene 7.


In general, the (4 + 3)-cycloaddition of various N-mesyl triazoles 1 with cyclobutene 7d under our optimized conditions led to good to excellent yields of the corresponding azepinones (Table 2). Substitution of the *para*-position of the aryl group was well tolerated, providing cycloadducts 6f–j in 64–91% yields. Although the presence of an electron-withdrawing ester, bromide, or chloride at the 4-position of the aryl ring in 1 gave the corresponding cycloadducts in 81–84% yields, introduction of a nitro group at that position resulted in a slightly diminished yield of 64% for cycloadduct 6h. Similarly, methyl substitution at the more sterically demanding *ortho*-position led to a moderate decrease in yield (6k), as did the presence of a 3-nitro group (6l). In contrast, the electron-donating methoxy group at the 3-position gave cycloadduct 6m in 76% yield. It is worth noting that N-sulfonyl triazoles bearing alkyl ("Bu) and vinyl (isoprenyl) substituents in place of the phenyl ring at the 4-position of the triazole resulted in quantitative recovery of the parent heterocycle. This is likely a consequence of the relative inaccessibility of α -imino diazo compound 2 in the absence of a donor stabilizing aryl substituent at the α -position, thereby leading to the parent triazole as the favored isomer.

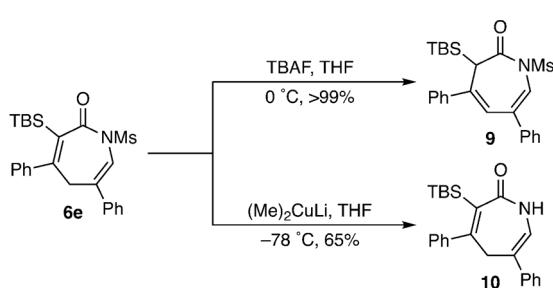
The evaluation of various 3-aryl substituted cyclobutenones 7 in the (4 + 3)-cycloaddition with triazole 1b revealed a general tolerance for both electron-withdrawing and electron-donating substituents to provide the corresponding cycloadducts 6n–u in moderate to excellent yields (Table 3). Substitution at the 4-position of the aryl ring gave cycloadducts 6n–q in 38–98% yield for alkyl, aryl, alkoxy, and chloride substituents. While naphthalene-substituted cyclobutene provided cycloadduct 6r in 56% yield, *ortho*-methyl substitution failed to provide the anticipated cycloadduct. A comparison of cycloadditions to provide azepinones 6k and 6s would seem to indicate that while steric encumbrance at the *ortho*-position hinders cycloadduct formation, the effect is substantially more pronounced in the intermediate vinyl ketene component. Additionally, both methoxy and nitro substitution at the 3-position of the aryl ring led to a reduced yield of the cycloadduct. This result also contrasts with the significant difference in yield observed between the comparable

Table 2. Variations of the N-Sulfonyl Triazole 1^a

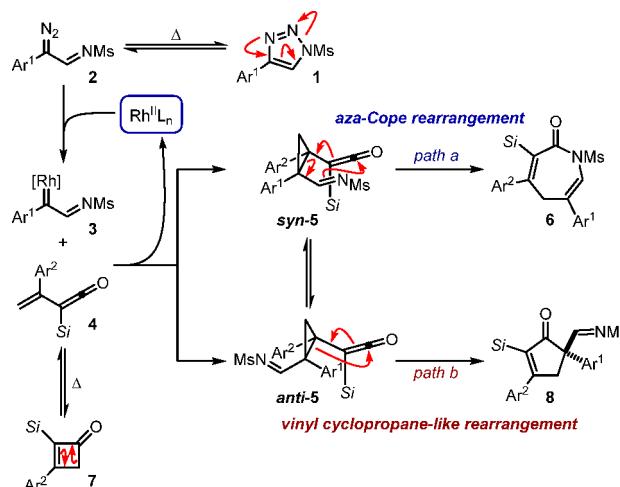
		$\text{Rh}_2(\text{Oct})_4$ (2 mol %) CHCl ₃ , 60 °C, 12 h	
93% (6f)			81% (6g)
			64% (6h)
82% (6j)			52% (6k)
			56% (6l)
			76% (6m)

^aConditions: 1 (1.0 equiv), 7d (3.0 equiv), and Rh₂(Oct)₄ (2 mol %) in CHCl₃ (0.1 M). Less than 5% of the (4 + 1)-cycloadduct 8 was observed in each case.

Table 3. Variations of the Cyclobutenone 7^a


^a Conditions: 1b (1.0 equiv), 7 (3.0 equiv), and Rh₂(Oct)₄ (2 mol %) in CHCl₃ (0.1 M). Less than 5% of the (4 + 1)-cycloadduct 8 was observed in each case.

substitution pattern on the triazole, as illustrated in the formation of cycloadducts 6l and 6m.


As we sought to demonstrate the synthetic utility of azepinones 6, we discovered rather intriguing and unanticipated reactivity related to this heterocyclic motif. For example, attempts to proto-desilylate azepinone 6e by employing TBAF did not lead to removal of the α -TBS group, but rather resulted in olefin isomerization to generate the vinyllogous enamine 9 in quantitative yield (Scheme 2). We hypothesize that this unexpected olefin isomerization could possibly result from γ -deprotonation followed by subsequent α -reprotonation. Perhaps even more surprising, the addition of Me₂CuLi to 6e did not provide the anticipated conjugate addition product, but instead yielded desulfonylated lactam 10 in 65% yield. We postulate that this unexpected transformation can be attributed to trace water in our THF in the presence of (Me)₂CuLi resulting in the loss of the mesyl group on 6e via an analogous mechanism observed when deprotecting *N*-tosyl protected sulfonyl triazoles.³⁹ That said, the mechanisms described above are purely speculative. These results provide a template for the development of further transformations starting from the azepinone building block for the construction of more functionally diverse heterocyclic scaffolds.

Based on the composite results of this study, our previous work on the development of cycloadditions with vinyl ketenes and vinyl isocyanates with metallocarbenes, and related studies involving metallocarbenes derived from *N*-sulfonyl triazoles, a possible mechanism for the formation of azepinones 6 is shown in Scheme 3. A heat-driven, electrocyclic ring-opening of cyclobutene 7 generates vinyl ketene 4, and generation of α -imino diazo compound 2 from triazole 1 precedes diazo

Scheme 2. Selected Transformations Involving Azepinone 6e

Scheme 3. Possible Mechanism for Azepinone Formation

decomposition in the presence of Rh₂(Oct)₄ to yield metallocarbene 3. The key cyclopropanation of vinyl ketene 4 may lead to two diastereomeric cyclopropyl ketene intermediates *syn*-5 and *anti*-5. An *aza*-Cope-like rearrangement of *syn*-5 leads to azepinone 6 whereas a vinyl cyclopropane-like ring expansion from *anti*-5 yields cyclopentenone 8. Given the often highly diastereoselective outcomes of cyclopropanations involving donor–acceptor diazo compounds,^{4,17,22–24} it is conceivable that the high degree of selectivity observed for the formation of azepinone 6 results from a similarly diastereoselective cyclopropanation event to provide primarily *syn*-5. However, competing pathways involving isomerization of *anti*-5 to *syn*-5, or a reversion of cyclopentenone 8 to azepinone 6 under the reaction conditions, are not without precedent. Unfortunately, all attempts to isolate or visualize the intermediate cyclopropyl ketene by NMR were unsuccessful owing to the rapid formation of 6 under the reaction conditions. Our previous success in isolating cyclopropyl ketenes derived from diazo oxindoles, combined with the rapid seven-membered ring formation, presumably as a result of the highly polarized nature of the ketene moiety in 5, would seem to suggest that our inability to observe *anti*-5 is a result of a highly diastereoselective cyclopropanation that ultimately minimized competitive formation of cyclopentenone 8. Additionally, the comparatively low level of product selectivity when the chiral catalyst Rh₂(S-TCPTT)₄ was employed is consistent with our earlier discovery that this catalyst favored the corresponding *anti*-diastereomer with diazo oxindoles, thereby implicating the diastereoselectivity of the cyclopropanation in product distribution.

In conclusion, we have developed an intermolecular Rh^{II}-catalyzed formal (4 + 3)-cycloaddition of vinyl ketenes and α -imino carbenes derived from *N*-sulfonyl-1,2,3-triazoles for the synthesis of an azepinone framework that bears a diverse array of translational potential. This intermolecular reaction circumnavigates issues observed in analogous reports investigating (4 + 3)-cycloaddition reactions with *N*-sulfonyl triazoles associated with competitive (3 + 2)-cycloadditions as a result of structural attributes of diene moieties by utilizing vinyl ketenes as a 1,4-dipolar surrogate. The reaction mechanism likely involves an initial diastereoselective cyclopropanation of the vinyl ketene moiety which then generates azepinone products through a rapid *aza*-Cope-like rearrangement under

milder reaction conditions than the previously established protocols. Efforts to develop a protocol for the selective generation of the 5-membered cyclopentenone are currently under investigation and will be reported in due course.

EXPERIMENTAL SECTION

General Information. Unless otherwise noted, solvents and reagents were reagent grade and used without purification. Acetonitrile (MeCN), methylene chloride (CH_2Cl_2), diethyl ether (Et_2O), dimethylformamide (DMF), tetrahydrofuran (THF), and toluene (PhMe) were passed through a column of molecular sieves and stored under argon. Aldehydes, if liquid, were distilled under vacuum and stored under nitrogen. Triazoles **1** and cyclobutenones **7a–d** were synthesized *via* reported methods.^{22,40,41} ^1H nuclear magnetic resonance (NMR) spectra were obtained at 400 or 500 MHz, $^{13}\text{C}\{^1\text{H}\}$ NMR were obtained at 100 or 125 MHz. Chemical shifts are reported in parts per million (ppm, δ) and referenced from the solvent. Coupling constants are reported in hertz (Hz). Spectral splitting patterns are designated as *s*, singlet; *d*, doublet; *t*, triplet; *q*, quartet; *m*, multiplet; *comp*, complex; *app*, apparent; and *br*, broad. High- and low-resolution electrospray ionization (ESI) measurements were made with a micro time-of-flight mass spectrometer (microTOF-MS) JEOL JMS-AX505HA. Analytical thin layer chromatography (TLC) was performed using EMD 250 μm 60 F254 silica gel plates, visualized with UV light, and stained with *p*-anisaldehyde, ceric ammonium nitrate, or potassium permanganate solutions. Flash column chromatography was performed according to Still's procedure (Still, W. C.; Kahn, M.; Mitra, A. *J. Org. Chem.* 1978, 43, 2923) using Silicycle SiliaFlash P60 40–63 μm 60 \AA silica gel.

General Procedure for the Synthesis of Silyl-Protected Alkynes. A solution of $^6\text{BuLi}$ (1.2 equiv) was added dropwise to a solution of phenylacetylene derivative (1.0 equiv) in THF (0.30 M) under an inert atmosphere at -78°C . The resulting solution was allowed to stir for 30 min, and then *tert*-butyldimethylsilyl chloride (1.2 equiv) was added dropwise. The reaction was then allowed to warm to room temperature by removal of the dry ice/acetone bath and stirred for an additional 2 h. The crude mixture was diluted with H_2O (15 mL), the layers were separated, and the aqueous phase was extracted with Et_2O (3 \times 15 mL). The combined organic extracts were washed sequentially with saturated aqueous NaHCO_3 (3 \times 15 mL) and saturated aqueous NaCl (3 \times 15 mL), dried (Na_2SO_4), and concentrated under reduced pressure. The resulting silyl-protected alkynes were carried forward without further purification.

General Procedure for the (2 + 2)-Cyclization and Reductive Dechlorination. A solution of trichloroacetylchloride (1.2 equiv) in Et_2O (0.30 M) was added slowly to a refluxing solution of silyl-protected alkyne (1.0 equiv) and Zn/Cu (3.0 equiv) in Et_2O (0.46 M) over 3 h and then stirred for an additional 15 h. The mixture was cooled to room temperature by removal of the oil bath, and the heterogeneous mixture was filtered through a pad of Celite eluting with Et_2O (30 mL). The filtrate was washed sequentially with saturated aqueous NaHCO_3 , H_2O , and saturated aqueous NaCl (30 mL each). Then the organic extract was dried (Na_2SO_4) and concentrated under reduced pressure. The crude 4,4-dichlorocyclobutene was utilized without further purification.

A solution of crude 4,4-dichlorocyclobutene (1.0 equiv) in ethanol (0.3 M) was added slowly to a mixture of zinc (5.8 equiv), N,N,N',N' -tetramethylethylenediamine (5.8 equiv), and acetic acid (5.8 equiv) in ethanol (0.2 M) at 0°C over 20 min. The reaction mixture was allowed to warm to room temperature by removal of the ice bath, stirred for 3 h, then diluted with 1:1 hexanes/ Et_2O (20 mL), and filtered through a pad of Celite. The filtrate was washed sequentially with saturated aqueous NaHCO_3 , H_2O , and saturated aqueous NaCl , dried (Na_2SO_4), and concentrated under reduced pressure [note: rotary evaporator bath temperature not to exceed 40 $^\circ\text{C}$]. The crude mixture was purified by flash chromatography eluting with hexanes/EtOAc (98:2) to provide the title α -silylcyclobutenes **7**. [Note: cyclobutenes were stored in a 4 $^\circ\text{C}$ refrigerator until needed. Prolonged storage required repurification prior to use.]

2-(*tert*-Butyldimethylsilyl)-3-(*p*-tolyl)cyclobut-2-en-1-one (7e**).** The synthesis of **7e** began from 1-ethynyl-4-methylbenzene. The (2 + 2)-cyclization and reductive dichlorination were conducted on a 2.5 mmol scale and purified by flash chromatography eluting with hexanes/EtOAc (98:2) to provide 191 mg (28%) of **7e** as a yellow oil. ^1H NMR (500 MHz, CDCl_3) δ 7.56 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.2 Hz, 2H), 3.70 (s, 2H), 2.43 (s, 3H), 0.97 (s, 9H), 0.29 (s, 6H). $^{13}\text{C}\{^1\text{H}\}$ NMR (125 MHz, CDCl_3) δ 191.7, 178.0, 146.6, 142.5, 129.6, 129.5, 112.8, 111.6, 52.4, 26.9, 21.9, 18, -4.7. HRMS (ESI) m/z : [M + H]⁺ Calcd for $\text{C}_{17}\text{H}_{25}\text{OSi}$ 273.1675; Found 273.1669.

3-(*1,1'-Biphenyl*-4-yl)-2-(*tert*-butyldimethylsilyl)cyclobut-2-en-1-one (7f**).** The synthesis of **7f** began from 4-ethynyl-1,1'-biphenyl. The (2 + 2)-cyclization and reductive dichlorination were conducted on a 1.4 mmol scale and purified by flash chromatography eluting with hexanes/EtOAc (98:2) to provide 205 mg (44%) of **7f** as a yellow oil. ^1H NMR (500 MHz CDCl_3) δ 8.09 (d, J = 0.7 Hz, 1H), 7.96–7.84 (m, 4H), 7.80 (dd, J = 8.6, 1.8 Hz, 1H), 7.64–7.53 (m, 2H), 3.85 (s, 7H), 1.01 (s, 9H), 0.35 (s, 6H). $^{13}\text{C}\{^1\text{H}\}$ NMR (125 MHz, CDCl_3) δ 191.7, 177.8, 148.2, 134.7, 133.1, 131.2, 130.5, 129.3, 128.5, 128.4, 128.2, 128.1, 127.2, 125.5, 77.5, 77.2, 77.0, 52.6, 27.0, 26.9, 26.9, 18.2, -4.6. HRMS (ESI) m/z : [M + H]⁺ Calcd for $\text{C}_{22}\text{H}_{27}\text{OSi}$ 335.1831; Found 335.1826.

2-(*tert*-Butyldimethylsilyl)-3-(4-ethoxyphenyl)cyclobut-2-en-1-one (7g**).** The synthesis of **7g** began from 1-ethoxy-4-ethynylbenzene. The (2 + 2)-cyclization and reductive dichlorination were conducted on a 1.1 mmol scale and purified by flash chromatography eluting with hexanes/EtOAc (98:2) to provide 131 mg (39%) **7g** as a yellow oil. ^1H NMR (400 MHz, CDCl_3) δ 7.61 (d, J = 8.9 Hz, 2H), 6.97 (d, J = 8.9 Hz, 2H), 4.11 (q, J = 6.9 Hz, 2H), 3.68 (s, 2H), 1.46 (t, J = 6.9 Hz, 3H), 0.96 (s, 9H), 0.29 (s, 6H). $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl_3) δ 191.5, 177.2, 161.7, 144.2, 131.5, 126.1, 114.5, 63.8, 52.0, 26.7, 18.0, -4.9. HRMS (ESI) m/z : [M + H]⁺ Calcd for $\text{C}_{18}\text{H}_{26}\text{O}_2\text{Si}$ 303.1780; Found 303.1775.

2-(*tert*-Butyldimethylsilyl)-3-(4-chlorophenyl)cyclobut-2-en-1-one (7h**).** The synthesis of **7h** began from 1-chloro-4-ethynylbenzene. The (2 + 2)-cyclization and reductive dichlorination were conducted on a 2.5 mmol scale and purified by flash chromatography eluting with hexanes/EtOAc (98:2) to provide 151 mg (26%) of **7h** as a yellow oil. ^1H NMR (400 MHz, CDCl_3) δ 7.58 (d, J = 8.6 Hz, 2H), 7.45 (d, J = 8.6 Hz, 2H), 3.71 (s, 2H), 0.95 (s, 9H), 0.27 (s, 6H). $^{13}\text{C}\{^1\text{H}\}$ NMR (125 MHz, CDCl_3) δ 181.0, 172.5, 163.7, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 126.4, 120.7, 114.1, 43.4, 40.2, 27.8, 26.9, -2.8. HRMS (ESI) m/z : [M + H]⁺ Calcd for $\text{C}_{16}\text{H}_{22}\text{ClOSi}$ 293.1128; Found 293.1123.

2-(*tert*-Butyldimethylsilyl)-3-(naphthalen-2-yl)cyclobut-2-en-1-one (7i**).** The synthesis of **7i** began from 2-ethynylnaphthalene. The (2 + 2)-cyclization and reductive dichlorination were conducted on a 1.2 mmol scale and purified by flash chromatography eluting with hexanes/EtOAc (98:2) to provide 150 mg (41%) of **7i** as a yellow oil. ^1H NMR (500 MHz, CDCl_3) δ 7.74 (d, J = 2.7 Hz, 3H), 7.68–7.63 (d, J = 2.7 Hz, 2H), 7.49 (t, J = 7.5 Hz, 1H), 7.41 (t, J = 7.5 Hz, 1H), 3.77 (s, 2H), 1.00 (s, 9H), 0.33 (s, 6H). $^{13}\text{C}\{^1\text{H}\}$ NMR (125 MHz, CDCl_3) δ 191.6, 177.4, 147.6, 144.4, 140.0, 132.5, 130.0, 129.2, 129.0, 128.5, 127.7, 127.5, 127.4, 127.3, 127.2, 77.5, 77.3, 77.0, 52.5, 27.0, 26.9, 26.9, 18.2, -4.7. HRMS (ESI) m/z : [M + H]⁺ Calcd for $\text{C}_{20}\text{H}_{25}\text{OSi}$ 309.1675; Found 309.1669.

2-(*tert*-Butyldimethylsilyl)-3-(3-methoxyphenyl)cyclobut-2-en-1-one (7j**).** The synthesis of **7j** began from 1-ethynyl-3-methoxybenzene. The (2 + 2)-cyclization and reductive dichlorination were conducted on a 2 mmol scale and purified by flash chromatography eluting with hexanes/EtOAc (98:2) to provide 191 mg (28%) of **7j** as a yellow oil. ^1H NMR (500 MHz, CDCl_3) δ 7.39 (t, J = 7.9 Hz, 1H), 7.22 (d, J = 7.9 Hz, 1H), 7.18 (s, 1H), 7.03 (ddd, J = 8.3, 2.6, 1.0 Hz, 1H), 3.85 (s, 3H), 3.71 (s, 2H), 0.97 (s, 9H), 0.29 (s, 6H). $^{13}\text{C}\{^1\text{H}\}$ NMR (125 MHz, CDCl_3) δ 191.6, 178.0, 159.9, 134.9, 129.9, 122.1, 117.8, 114.0, 77.5, 77.3, 77.0, 65.6, 55.7, 52.6, 44.5, 41.0, 29.2, 27.0, 26.9, 26.8, 26.1, 18.1, -4.7. HRMS (ESI) m/z : [M + H]⁺ Calcd for $\text{C}_{17}\text{H}_{25}\text{O}_2\text{Si}$ 289.1624; Found 289.1618.

2-(*tert*-Butyldimethylsilyl)-3-(4-(trifluoromethyl)phenyl)cyclobut-2-en-1-one (7k**).** The synthesis of **7k** began from 1-ethynyl-4-

trifluoromethylbenzene. The (2 + 2)-cyclization and reductive dichlorination were conducted on a 0.5 mmol scale and purified by flash chromatography eluting with hexanes/EtOAc (98:2) to provide 51 mg (31%) of **7k** as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.60 (d, *J* = 8.8 Hz, 2H), 7.43 (d, *J* = 8.8 Hz, 2H), 3.55 (s, 2H), 0.91 (s, 9H), 0.14 (d, *J* = 8.3 Hz, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 208.6, 206.1, 149.4, 128.8, 127.1, 126.0, 61.1, 55.4, 31.4, 26.8, -7.1; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₇H₂₂F₃OSi 327.1392; Found 327.1387.

Synthesis of 4,6-Diphenyl-1-tosyl-3-(trimethylsilyl)-1,5-dihydro-2H-azepin-2-one **6a and 4-Methyl-N-((2-oxo-1,4-diphenyl-3-(trimethylsilyl)cyclopent-3-en-1-yl)methyl)benzenesulfonamide **8a**.** To a flame-dried 2-dram vial equipped with a magnetic stir bar were added cyclobuteneone **7a** (59 mg, 0.27 mmol, 2.0 equiv) and triazole **1a** (40 mg, 0.13 mmol, 1 equiv). The vessel was sealed with a rubber septum, evacuated, and refilled with nitrogen three times then was charged with (CH₂Cl)₂ (2.6 mL, 0.05 M). To the stirring solution was added Rh₂(S-TCPTTL)₄ (4.5 mg, 0.003 mmol, 2 mol %), then the vessel was sealed with a screw cap, and the reaction mixture was immediately brought to 75 °C via a preheated mineral oil bath. The reaction was monitored by TLC, and upon consumption of **1** (3 h) the reaction was cooled to room temperature by removal from the oil bath and concentrated under reduced pressure. The crude reaction mixture was then reconstituted in THF (2.6 mL, 0.05 M) and cooled to -78 °C with a dry ice/acetone bath. To the stirring solution was added LiAlH₄ (7.4 mg, 0.20 mmol, 1.5 equiv), which was allowed to come to room temperature over 15 h. The mixture was then cooled to -78 °C with a dry ice/acetone bath, treated with 0.25 mL of MeOH, and allowed to warm to room temperature via removal from the cooling bath. The crude reaction mixture was diluted with H₂O (10 mL) and extracted with EtOAc (3 × 10 mL). The combined organic fractions were washed with saturated aqueous NaCl (2 × 10 mL), dried (MgSO₄), filtered, and concentrated under reduced pressure. The crude mixture was purified by flash chromatography eluting with hexanes/EtOAc (10:1) with 1% NEt₃ to hexanes/EtOAc (4:1) to provide 21.3 mg (34% yield) of **6a** as a yellow oil and 21.4 mg (38% yield) of **8a** as a yellow film (mixture of silylated and desilylated isomers). **6a:** ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.0 Hz, 2H), 7.47–7.37 (m, 5H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.22–7.12 (m, 3H), 6.88 (d, *J* = 8.0 Hz, 2H), 3.31 (s, 2H), 2.44 (s, 3H), -0.24 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.1, 163.6, 145.0, 142.0, 137.7, 136.7, 136.4, 129.4, 128.9, 128.8, 128.3, 128.2, 127.0, 126.4, 121.4, 116.4, 38.7, 21.7; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₈H₃₀NO₃SSi 488.1716; Found 488.1710. **8a:** ¹H NMR (400 MHz, CDCl₃) δ 7.67–7.52 (m, 2H), 7.44–7.27 (m, 7H), 7.25–7.15 (m, 6H), 4.73 (d, *J* = 7.2 Hz, 1H), 3.70 (s, 2H), 3.37–3.26 (d, *J* = 16.7 Hz, 1H), 3.00 (d, *J* = 16.7 Hz, 1H), 2.42 (s, 3H), 0.00 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 143.7, 140.2, 139.4, 130.0, 130.0, 129.6, 129.2, 129.1, 128.9, 128.3, 128.2, 128.0, 128.0, 127.4, 127.2, 127.2, 127.0, 126.7, 85.5, 67.3, 55.9, 51.7, 45.9, 45.9, 21.8; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₈H₃₂NO₃SSi 490.1872; Found 490.1867.

General Procedure for Formal (4 + 3)-Cycloaddition of **3a–3v.** To a flame-dried 2-dram vial equipped with a magnetic stir bar were added **7** (3 equiv) and CHCl₃ (0.2 M) followed by heating to 90 °C via preheated mineral bath for 30 min. To a separate flame-dried 2-dram vial equipped with a magnetic stir bar were added **1** (1 equiv) and Rh₂(Oct)₄ (2.0 mol %) in CHCl₃ (0.2 M), and to this solution was added the solution of **7** via syringe followed by heating at 60 °C for 12 h. The reaction was monitored by TLC, and upon consumption of **1** (~12 h) the reaction was cooled to room temperature by removal from the oil bath. The crude reaction mixture was then concentrated under reduced pressure. The residue was purified by column chromatography with silica gel eluting with hexanes/ethyl acetate (8:2).

3-(tert-Butyldimethylsilyl)-1-(methylsulfonyl)-4,6-diphenyl-1,5-dihydro-2H-azepin-2-one (6e**).** The cycloaddition of **6e** was conducted on a 0.10 mmol scale and purified by flash chromatography eluting with hexanes/EtOAc (8:2) to provide 37.7 mg (83%) of the title compound as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ

7.32 (m, 6H), 7.22 (m, 2H), 7.00–6.94 (d, 2H), 6.92 (s, 1H), 3.54 (s, 3H), 3.41 (s, 2H), 0.85 (s, 9H), -0.22 (s, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 172.5, 165.0, 141.9, 137.2, 137.0, 133.1, 128.8, 128.3, 128.1, 128.1, 127.3, 126.3, 125.2, 120.5, 77.3, 77.0, 76.7, 60.4, 43.1, 40.1, 27.6, 18.4, 14.2, 0.0, -3.1; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₅H₃₂NO₃SSi 454.1872; Found 454.1867.

3-(tert-Butyldimethylsilyl)-1-(methylsulfonyl)-4,6-diphenyl-1,5-dihydro-2H-azepin-2-one (6e**).** The scaled up cycloaddition of **6e** was conducted on a 1 mmol scale and purified by flash chromatography eluting with hexanes/EtOAc (8:2) to provide 0.367 g (81%) of the title compound as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.32 (m, 6H), 7.22 (m, 2H), 7.00–6.94 (d, 2H), 6.92 (s, 1H), 3.54 (s, 3H), 3.41 (s, 2H), 0.85 (s, 9H), -0.22 (s, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 172.5, 165.0, 141.9, 137.2, 137.0, 133.1, 128.8, 128.3, 128.1, 128.1, 127.3, 126.3, 125.2, 120.5, 77.3, 77.0, 76.7, 60.4, 43.1, 40.1, 27.6, 18.4, 14.2, 0.0, -3.1; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₅H₃₂NO₃SSi 454.1872; Found 454.1867

3-(tert-Butyldimethylsilyl)-1-(methylsulfonyl)-4-phenyl-6-(*p*-tolyl)-1,5-dihydro-2H-azepin-2-one (6f**).** The cycloaddition of **6f** was conducted on a 0.10 mmol scale and purified by flash chromatography eluting with hexanes/EtOAc (8:2) to provide 24.4 mg (52%) of the title compound as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.24–7.11 (m, 8H), 6.96 (d, *J* = 7.2, 2H), 6.89 (s, 1H), 3.53 (s, 3H), 3.39 (s, 2H), 2.35 (s, 3H), 0.85 (s, 3H), -0.23 (s, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 177.7, 149.8, 144.6, 138.9, 137.1, 136.6, 134.9, 134.5, 134.0, 133.8, 133.0, 132.6, 132.4, 132.0, 131.8, 131.7, 128.6, 128.4, 124.5, 111.0, 50.8, 35.9, 31.6; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₆H₃₄NO₃SSi 468.2029; Found 468.2023.

4-(*p*-(tert-Butyldimethylsilyl)-1-(methylsulfonyl)-1,5-dihydro-2H-azepin-2-yl)benzoate (6g**).** The cycloaddition of **6g** was conducted on a 0.10 mmol scale and purified by flash chromatography eluting with hexanes/EtOAc (8:2) to provide 41.5 mg (81%) of the title compound as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.6 Hz, 2H), 7.34 (d, *J* = 8.7 Hz), 7.22 (m, 3H), 7.05 (s, 1H), 6.94 (d, *J* = 8.1 Hz, 2H), 3.92 (s, 3H), 3.55 (s, 3H), 3.43 (s, 2H), 0.86 (s, 3H), -0.22 (s, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 172.3, 166.6, 164.5, 141.6, 135.4, 133.3, 130.1, 129.7, 128.2, 128.1, 127.3, 126.0, 122.2, 52.2, 43.3, 39.9, 27.7, 18.4; HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₂₇H₃₃NO₅SSiNa 534.1746; Found 534.1741.

3-(tert-Butyldimethylsilyl)-1-(methylsulfonyl)-4-(3-nitrophenyl)-6-phenyl-1,5-dihydro-2H-azepin-2-one (6h**).** The cycloaddition of **6h** was conducted on a 0.10 mmol scale and purified by flash chromatography eluting with hexanes/EtOAc (8:2) to provide 32 mg (64%) of the title compound as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.37 (ddd, *J* = 8.2, 2.2, 1.0 Hz, 1H), 8.29 (t, *J* = 2.2 Hz, 1H), 7.84 (ddd, *J* = 7.8, 1.9, 1.1 Hz, 1H), 7.73 (t, *J* = 8.0 Hz, 1H), 7.64 (qt, *J* = 7.0, 3.3 Hz, 1H), 7.55–7.49 (m, 2H), 7.47–7.42 (m, 2H), 7.42–7.36 (m, 1H), 7.28 (s, 1H), 7.22–7.13 (m, 2H), 3.78 (s, 3H), 3.65 (s, 2H), 1.08 (s, 9H), -0.04 (s, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 172.0, 164.1, 148.6, 141.4, 139.1, 133.7, 133.6, 131.8, 129.9, 128.4, 128.3, 127.2, 122.9, 122.8, 121.0, 43.3, 40.0, 27.7, 18.4, -3.1; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₅H₃₀N₂NaO₅SSi 521.1542; Found 521.1537

6-(*p*-Bromophenyl)-3-(tert-butyldimethylsilyl)-1-(methylsulfonyl)-4,6-diphenyl-1,5-dihydro-2H-azepin-2-one (6i**).** The cycloaddition of **6i** was conducted on a 0.10 mmol scale and purified by flash chromatography eluting with hexanes/EtOAc (8:2) to provide 45 mg (84%) of the title compound as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.7 Hz, 2H), 7.25 (m, 3H), 7.14 (d, *J* = 8.7 Hz, 2H), 6.94 (m, 3H), 3.54 (s, 3H), 3.37 (s, 2H), 0.84 (s, 9H), -0.23 (s, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 172.3, 164.6, 141.7, 136.2, 135.6, 133.3, 131.9, 128.2, 127.7, 127.3, 122.4, 120.9, 43.2, 39.9, 27.6, 18.4, -3.1; HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₅H₃₁BrNO₃SSi 532.0977; Found 532.0972 and 534.0954.

3-(tert-Butyldimethylsilyl)-6-(4-chlorophenyl)-1-(methylsulfonyl)-4-phenyl-1,5-dihydro-2H-azepin-2-one (6j**).** The cycloaddition of **6j** was conducted on a 0.10 mmol scale and purified by flash chromatography eluting with hexanes/EtOAc (8:2) to provide 40 mg

(82%) of the title compound as a pale yellow oil. ^1H NMR (400 MHz, CDCl_3) δ 7.79 (d, J = 8.0 Hz, 1 H), 7.58 (J = 8.0 Hz, 2 H), 7.32 (m, 6 H), 7.18 (d, J = 8.0, 2 H), 7.05, (td, J = 7.6, 1 H), 6.98 (m, 1 H), 5.18 (m, 1 H), 4.90 (d, J = 4.0, 1 H), 4.79 (m, 2 H), 3.68 (dd, J = 8.0, 4 H), 2.36 (s, 3 H); $^{13}\text{C}\{\text{H}\}$ NMR (125 MHz, CDCl_3) δ 143.9, 143.2, 142.2, 141.6, 138.1, 134.6, 130.4, 129.3, 128.8, 128.6, 128.5, 128.3, 127.6, 125.7, 125.6, 124.3, 115.8, 115.6, 71.0, 55.7, 21.4; HRMS (ESI) m/z : [M + H]⁺ Calcd for $\text{C}_{25}\text{H}_{31}\text{ClNO}_3\text{SSi}$ 488.1482; Found 488.1477.

3-(tert-Butyldimethylsilyl)-1-(methylsulfonyl)-4-phenyl-6-(*o*-tolyl)-1,5-dihydro-2H-azepin-2-one (6k). The cycloaddition of **6k** was conducted on a 0.10 mmol scale and purified by flash chromatography eluting with hexanes/EtOAc (8:2) to provide 43.6 mg (93%) of the title compound as a yellow oil. ^1H NMR (400 MHz, CDCl_3) δ 7.24–7.11 (m, 8 H), 6.96 (d, J = 7.2, 2 H), 6.89 (s, 1 H) 3.53 (s, 3 H), 3.39 (s, 2 H), 2.35 (s, 3 H), 0.85 (s, 3 H), −0.23 (s, 6 H); $^{13}\text{C}\{\text{H}\}$ NMR (125 MHz, CDCl_3) δ 177.7, 149.8, 144.6, 138.9, 137.1, 136.6, 134.9, 134.5, 134.0, 133.8, 133.0, 132.6, 132.4, 132.0, 131.8, 131.7, 128.6, 128.4, 124.5, 111.0, 50.8, 35.9, 31.6; HRMS (ESI) m/z : [M + H]⁺ Calcd for $\text{C}_{26}\text{H}_{34}\text{NO}_3\text{SSi}$ 468.2029; Found 468.2023.

3-(tert-Butyldimethylsilyl)-1-(methylsulfonyl)-6-(3-nitrophenyl)-4-phenyl-1,5-dihydro-2H-azepin-2-one (6l). The cycloaddition of **6l** was conducted on a 0.10 mmol scale and purified by flash chromatography eluting with hexanes/EtOAc (8:2) to provide 28 mg (56%) of the title compound as a pale yellow oil. ^1H NMR (400 MHz, CDCl_3) δ 8.16 (ddd, J = 8.2, 2.3, 1.1 Hz, 1 H), 8.08 (t, J = 2.3 Hz, 1 H), 7.67–7.59 (m, 1 H), 7.52 (t, J = 8.2 Hz, 1 H), 7.33–7.27 (m, 2 H), 7.24 (m, 1 H), 7.07 (s, 1 H), 7.01–6.92 (m, 2 H), 3.57 (s, 3 H), 3.44 (s, 2 H), 0.87 (s, 9 H), −0.21 (s, 6 H); $^{13}\text{C}\{\text{H}\}$ NMR (101 MHz, CDCl_3) δ 172.0, 164.1, 148.6, 141.4, 139.2, 133.7, 133.6, 131.8, 129.9, 128.4, 128.4, 127.2, 122.9, 122.9, 121.0, 43.4, 40.1, 29.7, 27.7, 27.4, 21.1, 18.4, 14.2, −3.1; HRMS (ESI) m/z : [M + Na]⁺ Calcd for $\text{C}_{25}\text{H}_{30}\text{N}_2\text{O}_5\text{SSiNa}$ 521.1542; Found 521.1537.

3-(tert-Butyldimethylsilyl)-6-(3-methoxyphenyl)-1-(methylsulfonyl)-4-phenyl-1,5-dihydro-2H-azepin-2-one (6m). The cycloaddition of **6m** was conducted on a 0.10 mmol scale and purified by flash chromatography eluting with hexanes/EtOAc (8:2) to provide 37 mg (76%) of the title compound as a pale green oil. ^1H NMR (400 MHz, CDCl_3) δ 7.26–7.22 (m, 5 H), 6.99 (dd, J = 7.9, 1.8 Hz, 2 H), 6.90 (d, J = 7.9 Hz, 1 H), 6.85 (dd, J = 8.3, 1.9 Hz, 1 H), 6.76 (t, J = 1.9 Hz, 1 H), 3.72 (s, 3 H), 3.53 (s, 3 H), 3.39 (s, 2 H), 0.85 (s, 9 H), −0.21 (s, 6 H); $^{13}\text{C}\{\text{H}\}$ NMR (125 MHz, CDCl_3) δ 172.5, 164.9, 159.8, 141.9, 138.7, 136.9, 133.1, 129.8, 128.1, 127.5, 120.7, 118.8, 113.9, 111.8, 55.2, 43.1, 40.2, 27.6, 18.4, −3.0; HRMS (ESI) m/z : [M + Na]⁺ Calcd for $\text{C}_{26}\text{H}_{33}\text{NO}_4\text{SSiNa}$ 506.1797; Found 506.1792.

3-(tert-Butyldimethylsilyl)-1-(methylsulfonyl)-6-phenyl-4-(*p*-tolyl)-1,5-dihydro-2H-azepin-2-one (6n). The cycloaddition of **6n** was conducted on a 0.10 mmol scale and purified by flash chromatography eluting with hexanes/EtOAc (8:2) to provide 43 mg (92%) of the title compound as a pale yellow oil. ^1H NMR (400 MHz, CDCl_3) δ 7.36–7.27 (m, 5 H), 7.02 (d, J = 7.7 Hz, 2 H), 6.91 (s, 1 H), 6.84 (d, J = 7.7 Hz, 2 H), 3.53 (s, 3 H), 3.40 (s, 2 H), 2.31 (s, 3 H), 0.85 (s, 9 H), −0.21 (s, 6 H); $^{13}\text{C}\{\text{H}\}$ NMR (101 MHz, CDCl_3) δ 172.6, 165.2, 139.1, 137.9, 137.3, 137.1, 132.9, 128.8, 128.7, 128.3, 127.3, 126.3, 120.4, 43.1, 40.2, 27.7, 21.2, 18.4; HRMS (ESI) m/z : [M + H]⁺ Calcd for $\text{C}_{26}\text{H}_{34}\text{NO}_3\text{SSi}$ 468.2029; Found 468.2023.

4-[(1,1'-Biphenyl]-4-yl)-3-(tert-butyldimethylsilyl)-1-(methylsulfonyl)-6-phenyl-1,5-dihydro-2H-azepin-2-one (6o). The cycloaddition of **6o** was conducted on a 0.10 mmol scale and purified by flash chromatography eluting with hexanes/EtOAc (8:2) to provide 37 mg (70%) of the title compound as a pale yellow oil. ^1H NMR (400 MHz, CDCl_3) δ 7.80 (m, 2 H), 7.68 (m, 2 H), 7.48 (m, 4 H), 7.32 (s, 5 H), 7.01 (dd, J = 8.4, 1.8 Hz, 1 H), 6.96 (s, 1 H), 3.56 (s, 3 H), 3.49 (s, 2 H), 0.86 (s, 9 H), −0.25 (s, 6 H); $^{13}\text{C}\{\text{H}\}$ NMR (101 MHz, CDCl_3) δ 172.6, 164.9, 141.7, 139.2, 137.3, 133.5, 133.1, 132.7, 132.6, 132.5, 128.9, 128.4, 128.2, 128.1, 127.8, 127.6, 126.7, 126.5, 126.3, 126.1, 126.0, 125.4, 125.1, 120.5, 43.2, 40.1, 27.7, 27.4, 19.2, 18.5, −2.94, −3.71; HRMS (ESI) m/z : [M + Na]⁺ Calcd for $\text{C}_{31}\text{H}_{35}\text{NO}_3\text{SSiNa}$ 552.2005; Found 552.1999.

3-(tert-Butyldimethylsilyl)-4-(4-ethoxyphenyl)-1-(methylsulfonyl)-6-phenyl-1,5-dihydro-2H-azepin-2-one (6p). The cycloaddition of **6p** was conducted on a 0.10 mmol scale and purified by flash chromatography eluting with hexanes/EtOAc (8:2) to provide 37 mg (75%) of the title compound as a pale yellow oil. ^1H NMR (400 MHz, CDCl_3) δ 7.36–7.24 (m, 5 H), 6.90 (s, 1 H), 6.87 (d, J = 8.7 Hz, 2 H), 6.73 (d, J = 8.7 Hz, 2 H), 3.99 (q, J = 7.0 Hz, 2 H), 3.53 (s, 3 H), 3.40 (s, 2 H), 1.39 (t, J = 7.0 Hz, 3 H), 0.85 (s, 9 H), −0.19 (s, 6 H); $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CDCl_3) δ 172.6, 165.0, 158.8, 137.3, 137.1, 134.3, 132.8, 128.8, 128.3, 126.2, 120.4, 113.9, 63.4, 43.1, 40.4, 27.7, 18.5, 14.7, −2.9; HRMS (ESI) m/z : [M + Na]⁺ Calcd for $\text{C}_{27}\text{H}_{35}\text{NO}_4\text{SSiNa}$ 520.1954; Found 520.1948.

3-(tert-Butyldimethylsilyl)-4-(4-chlorophenyl)-1-(methylsulfonyl)-6-phenyl-1,5-dihydro-2H-azepin-2-one (6q). The cycloaddition of **6q** was conducted on a 0.10 mmol scale and purified by flash chromatography eluting with hexanes/EtOAc (8:2) to provide 48 mg (98%) of the title compound as a pale yellow oil. ^1H NMR (400 MHz, CDCl_3) δ 7.34 (d, J = 1.9 Hz, 1 H), 7.23–7.16 (m, 1 H), 6.92 (s, 1 H), 6.89 (d, J = 8.3 Hz, 1 H), 3.54 (s, 2 H), 3.38 (s, 1 H), 0.86 (s, 6 H), −0.20 (s, 3 H); $^{13}\text{C}\{\text{H}\}$ NMR (125 MHz, CDCl_3) δ 172.8, 165.6, 143.2, 137.6, 137.5, 129.0, 128.5, 128.3, 127.5, 126.6, 126.5, 120.6, 43.3, 35.5, 33.7, 29.9, 27.9, 22.4, 14.1, −2.9, −2.9; HRMS (ESI) m/z : [M + H]⁺ Calcd for $\text{C}_{25}\text{H}_{31}\text{ClNO}_3\text{SSi}$ 488.1482; Found 488.1477.

3-(tert-Butyldimethylsilyl)-1-(methylsulfonyl)-4-(naphthalen-2-yl)-6-phenyl-1,5-dihydro-2H-azepin-2-one (6r). The cycloaddition of **6r** was conducted on a 0.10 mmol scale and purified by flash chromatography eluting with hexanes/EtOAc (8:2) to provide 28 mg (56%) of the title compound as a pale yellow oil. ^1H NMR (400 MHz, CDCl_3) δ 7.59 (d, J = 8.3 Hz, 4 H), 7.53 (d, J = 8.3 Hz, 4 H), 7.47–7.42 (t, J = 4 H), 7.05 (d, J = 8.3 Hz, 2 H), 6.97 (s, 1 H), 3.57 (s, 3 H), 3.48 (s, 2 H), 0.91 (s, 9 H), −0.15 (s, 6 H); $^{13}\text{C}\{\text{H}\}$ NMR (101 MHz, CDCl_3) δ 172.58, 164.9, 153.9, 141.7, 139.2, 137.3, 137.2, 133.5, 133.1, 132.7, 132.5, 128.9, 128.4, 128.2, 128.0, 127.8, 127.6, 126.7, 126.5, 126.3, 126.1, 126.0, 125.4, 125.0, 120.5, 43.2, 40.1, 27.7, 27.4, 18.5, −3.7; HRMS (ESI) m/z : [M + H]⁺ Calcd for $\text{C}_{29}\text{H}_{34}\text{NO}_3\text{SSiNa}$ 504.2029; Found 504.2023.

3-(tert-Butyldimethylsilyl)-4-(3-methoxyphenyl)-1-(methylsulfonyl)-6-phenyl-1,5-dihydro-2H-azepin-2-one (6t). The cycloaddition of **6t** was conducted on a 0.10 mmol scale and purified by flash chromatography eluting with hexanes/EtOAc (8:2) to provide 29 mg (60%) of the title compound as a pale yellow oil. ^1H NMR (400 MHz, CDCl_3) δ 7.33 (m, 5 H), 7.12 (t, J = 8.3 Hz, 1 H), 6.91 (s, 1 H), 6.78 (ddd, J = 8.3, 2.6, 1.0 Hz, 1 H), 6.62–6.54 (d, J = 8.3 Hz, 1 H), 6.38 (s, 1 H), 3.54 (s, 3 H), 3.50 (s, 3 H), 3.41 (s, 2 H), 0.87 (s, 9 H), −0.19 (s, 6 H); $^{13}\text{C}\{\text{H}\}$ NMR (101 MHz, CDCl_3) δ 196.16, 172.57, 164.81, 159.13, 143.16, 137.43, 137.40, 132.95, 129.21, 128.89, 128.38, 126.44, 120.44, 119.74, 114.55, 111.82, 54.94, 43.13, 40.13, 27.68, −3.20; HRMS (ESI) m/z : [M + Na]⁺ Calcd for $\text{C}_{26}\text{H}_{33}\text{NO}_4\text{SSiNa}$ 506.1797; Found 506.1792.

3-(tert-Butyldimethylsilyl)-1-(methylsulfonyl)-6-phenyl-4-(trifluoromethyl)phenyl-1,5-dihydro-2H-azepin-2-one (6u). The cycloaddition of **6u** was conducted on a 0.05 mmol scale and purified by flash chromatography eluting with hexanes/EtOAc (8:2) to provide 10 mg (38%) of the title compound as a pale yellow oil. ^1H NMR (400 MHz, CDCl_3) δ 7.90 (s, 1 H), 7.79 (d, J = 8.4 Hz, 2 H), 7.73 (d, J = 8.4 Hz, 2 H), 7.65 (m, 1 H), 7.07 (d, J = 10.9 Hz, 2 H), 7.00 (d, J = 6.8 Hz, 2 H), 3.63 (s, 3 H), 3.52 (s, 2 H), 0.99 (s, 9 H), −0.11 (s, 6 H); $^{13}\text{C}\{\text{H}\}$ NMR (125 MHz, CDCl_3) δ 163.7, 159.2, 136.2, 129.5, 129.3, 129.1, 128.5, 128.1, 127.5, 127.3, 126.8, 52.2, 42.1, 41.9, 26.9, 14.3, −3.6; HRMS (ESI) m/z : [M + H]⁺ Calcd for $\text{C}_{26}\text{H}_{31}\text{F}_3\text{NO}_3\text{SSi}$ 522.1746; Found 522.1741.

3-(tert-Butyldimethylsilyl)-1-(methylsulfonyl)-4,6-diphenyl-1,3-dihydro-2H-azepin-2-one 9. To a flame-dried 2-dram vial equipped with a magnetic stir bar was added **6e** (0.05 mmol, 23 mg). The vessel was sealed with a rubber septum, evacuated, and refilled with nitrogen three times and then was charged with THF (0.13 mL). The solution was cooled to 0 °C via an ice–water bath, and then a solution of TBAF (0.1 mmol, 26 mg) in THF (0.13 mL) was added dropwise. After 3 h, the mixture was allowed to warm to room temperature

overnight via removal from the cooling bath. The crude reaction mixture was diluted with H_2O (10 mL) and extracted with CH_2Cl_2 (3 \times 10 mL). The combined organic fractions were washed with saturated aqueous NaCl (2 \times 10 mL), dried (MgSO_4), filtered, and concentrated under reduced pressure. The reaction provided 23 mg (>99%) of the title compound as a pale yellow oil without the need for purification. ^1H NMR (400 MHz, CDCl_3) δ 7.45 (dd, J = 4.9, 1.9 Hz, 6H), 7.40–7.35 (m, 4H), 6.10 (s, 2H), 4.06 (s, 1H), 2.67 (s, 3H), 0.83 (s, 9H), –0.19 (s, 3H) –0.28 (s, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CDCl_3) δ 206.4, 179.5, 138.8, 135.5, 134.9, 130.1, 129.6, 129.5, 129.3, 128.8, 128.5, 128.4, 128.2, 128.0, 127.9, 127.7, 122.3, 53.2, 41.5, 29.7, 27.4, 25.6, 17.7, –4.90, –4.94; HRMS (ESI) m/z : [M + H]⁺ Calcd for $\text{C}_{25}\text{H}_{32}\text{NO}_3\text{SSi}$ 454.1872; Found 454.1867.

3-(tert-Butyldimethylsilyl)-4,6-diphenyl-1,5-dihydro-2H-azepin-2-one 10. To a flame-dried 2-dram vial equipped with a magnetic stir bar was added 6e (0.05 mmol, 23 mg). The vessel was sealed with a rubber septum, evacuated, and refilled with nitrogen three times and then charged with THF (0.13 mL), followed by cooling to –78 °C via a dry ice/acetone bath. In a separate flame-dried vial, Me_2CuLi was generated by adding MeLi (0.093 mL of a 1.6 M solution in diethyl ether) to CuI (0.15 mmol, 14 mg) in 0.13 mL of THF at –78 °C. Then, the solution of Me_2CuLi was added dropwise. After 3 h, the mixture was allowed to warm to 0 °C by removal of the dry/ice acetone bath and placement into an ice–water bath. After 12 h, the crude reaction mixture was diluted with H_2O (10 mL) and extracted with EtOAc (3 \times 10 mL). The combined organic fractions were washed with saturated aqueous NaCl (2 \times 10 mL), dried (MgSO_4), filtered, and concentrated under reduced pressure. The crude reaction mixture was purified by flash chromatography eluting with 8:2 hexanes/EtOAc, providing 23 mg (65%) of the title compound as a pale yellow oil. ^1H NMR (400 MHz, CDCl_3) δ 7.27 (d, J = 6.1 Hz, 3H), 7.24–7.18 (m, 5H), 7.04–6.97 (m, 2H), 6.50 (s, 1H), 3.36 (s, 2H), 0.88 (s, 9H), –0.28 (s, 6H); $^{13}\text{C}\{\text{H}\}$ NMR (100 MHz, CDCl_3) δ 138.0, 128.7, 127.9, 127.5, 127.4, 127.3, 125.7, 122.0, 40.5, 29.7, 27.9, 18.5, –3.1; HRMS (ESI) m/z : [M + H]⁺ Calcd for $\text{C}_{24}\text{H}_{30}\text{NOSi}$ 376.2097; Found 376.2091.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.joc.1c03002>.

^1H and $^{13}\text{C}\{\text{H}\}$ NMR spectra for all new compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

Brandon L. Ashfeld – Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States; orcid.org/0000-0002-4552-2705; Email: bashfeld@nd.edu

Authors

Harrison M. Hill – Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States

Zachary D. Tucker – Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States

Kevin X. Rodriguez – Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States

Katelyn A. Wendt – Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States

Complete contact information is available at: <https://pubs.acs.org/10.1021/acs.joc.1c03002>

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation (CHE- 1956170).

REFERENCES

- Dimroth, O. Ueber Intramolekulare Umlagerungen. Umlagerungen in Der Reihe Des 1, 2, 3-Triazols. *Justus Liebigs Ann. Chem.* **1909**, 364 (2), 183–226.
- Gulevich, A. V.; Gevorgyan, V. Versatile Reactivity of Rhodium–Iminocarbenes Derived from N-Sulfonyl Triazoles. *Angew. Chem., Int. Ed.* **2013**, 52 (5), 1371–1373.
- Jiang, Y.; Sun, R.; Tang, X.-Y.; Shi, M. Recent Advances in the Synthesis of Heterocycles and Related Substances Based on α -Imino Rhodium Carbene Complexes Derived from N-Sulfonyl-1,2,3-Triazoles. *Chem. – Eur. J.* **2016**, 22 (50), 17910–17924.
- Shang, H.; Wang, Y.; Tian, Y.; Feng, J.; Tang, Y. The Divergent Synthesis of Nitrogen Heterocycles by Rhodium(II)-Catalyzed Cycloadditions of 1-Sulfonyl 1,2,3-Triazoles with 1,3-Dienes. *Angew. Chem.* **2014**, 126 (22), 5768–5772.
- Chattopadhyay, B.; Gevorgyan, V. Transition-Metal-Catalyzed Denitrogenative Transannulation: Converting Triazoles into Other Heterocyclic Systems. *Angew. Chem., Int. Ed.* **2012**, 51 (4), 862–872.
- Gilchrist, T. L.; Gymer, G. E. 1,2,3-Triazoles. In *Advances in Heterocyclic Chemistry*; Katritzky, A. R., Boulton, A. J., Eds.; Academic Press: 1974; Vol. 16, pp 33–85.
- Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noddleman, L.; Sharpless, K. B.; Fokin, V. V. Copper(I)-Catalyzed Synthesis of Azoles. DFT Study Predicts Unprecedented Reactivity and Intermediates. *J. Am. Chem. Soc.* **2005**, 127 (1), 210–216.
- Horneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan, V.; Fokin, V. V. Rhodium-Catalyzed Transannulation of 1,2,3-Triazoles with Nitriles. *J. Am. Chem. Soc.* **2008**, 130 (45), 14972–14974.
- Chattopadhyay, B.; Gevorgyan, V. Rh-Catalyzed Transannulation of N-Tosyl-1,2,3-Triazoles with Terminal Alkynes. *Org. Lett.* **2011**, 13 (14), 3746–3749.
- Chuprakov, S.; Hwang, F. W.; Gevorgyan, V. Rh-Catalyzed Transannulation of Pyridotriazoles with Alkynes and Nitriles. *Angew. Chem.* **2007**, 119 (25), 4841–4843.
- Chuprakov, S.; Kwok, S. W.; Zhang, L.; Lercher, L.; Fokin, V. V. Rhodium-Catalyzed Enantioselective Cyclopropanation of Olefins with N-Sulfonyl 1,2,3-Triazoles. *J. Am. Chem. Soc.* **2009**, 131 (50), 18034–18035.
- Grimster, N.; Zhang, L.; Fokin, V. V. Synthesis and Reactivity of Rhodium(II) N-Triflyl Azavinyl Carbenes. *J. Am. Chem. Soc.* **2010**, 132 (8), 2510–2511.
- Kubiak, R. W.; Mighion, J. D.; Wilkerson-Hill, S. M.; Alford, J. S.; Yoshidomi, T.; Davies, H. M. L. Enantioselective Intermolecular C–H Functionalization of Allylic and Benzylic Sp^3 C–H Bonds Using N-Sulfonyl-1,2,3-Triazoles. *Org. Lett.* **2016**, 18 (13), 3118–3121.
- Ko, Y. O.; Jeon, H. J.; Jung, D. J.; Kim, U. B.; Lee, S. Rh(II)/Mg(OtBu)₂-Catalyzed Tandem One-Pot Synthesis of 1,4-Oxazepines and 1,4-Oxazines from N-Sulfonyl-1,2,3-Triazoles and Glycidols. *Org. Lett.* **2016**, 18 (24), 6432–6435.
- Chuprakov, S.; Worrell, B. T.; Selander, N.; Sit, R. K.; Fokin, V. V. Stereoselective 1,3-Insertions of Rhodium(II) Azavinyl Carbenes. *J. Am. Chem. Soc.* **2014**, 136 (1), 195–202.
- Lee, D. J.; Han, H. S.; Shin, J.; Yoo, E. J. Multicomponent [5 + 2] Cycloaddition Reaction for the Synthesis of 1,4-Diazepines: Isolation and Reactivity of Azomethine Ylides. *J. Am. Chem. Soc.* **2014**, 136 (33), 11606–11609.
- Schultz, E. E.; Lindsay, V. N. G.; Sarpong, R. Expedient Synthesis of Fused Azepine Derivatives Using a Sequential Rhodium(II)-Catalyzed Cyclopropanation/1-Aza-Cope Rearrangement of Dienyltriazoles. *Angew. Chem., Int. Ed.* **2014**, 53 (37), 9904–9908.

(18) Davies, H. M. L.; Doan, B. D. Asymmetric Synthesis of the Tremulane Skeleton by a Tandem Cyclopropanation/Cope Rearrangement. *Tetrahedron Lett.* **1996**, *37* (23), 3967–3970.

(19) Hudlicky, T.; Fan, R.; Reed, J. W.; Gadamasetti, K. G. Divinylcyclopropane–Cycloheptadiene Rearrangement. *Organic Reactions*; American Cancer Society: 2004; pp 1–133.

(20) Krieger, S.; Gaich, T. Recent Applications of the Divinylcyclopropane–Cycloheptadiene Rearrangement in Organic Synthesis. *Beilstein J. Org. Chem.* **2014**, *10* (1), 163–193.

(21) Parr, B. T.; Davies, H. M. L. Rhodium-Catalyzed Tandem Cyclopropanation/Cope Rearrangement of 4-Alkenyl-1-Sulfonyl-1,2,3-Triazoles with Dienes. *Angew. Chem., Int. Ed.* **2013**, *52* (38), 10044–10047.

(22) Rodriguez, K. X.; Kaltwasser, N.; Toni, T. A.; Ashfeld, B. L. Rearrangement of an Intermediate Cyclopropyl Ketene in a RhII-Catalyzed Formal [4 + 1]-Cycloaddition Employing Vinyl Ketenes as 1,4-Dipoles and Donor–Acceptor Metallocarbenes. *Org. Lett.* **2017**, *19* (10), 2482–2485.

(23) Meloche, J. L.; Ashfeld, B. L. A Rhodium(II)-Catalyzed Formal [4 + 1]-Cycloaddition toward Spirooxindole Pyrrolone Construction Employing Vinyl Isocyanates as 1,4-Dipoles. *Angew. Chem., Int. Ed.* **2017**, *56* (23), 6604–6608.

(24) Rodriguez, K. X.; Pilato, T. C.; Ashfeld, B. L. An Unusual Stereoretentive 1,3-Quaternary Carbon Shift Resulting in an Enantioselective RhII-Catalyzed Formal [4 + 1]-Cycloaddition between Diazo Compounds and Vinyl Ketenes. *Chem. Sci.* **2018**, *9* (12), 3221–3226.

(25) Gonda, J. The Belluš–Claisen Rearrangement. *Angew. Chem., Int. Ed.* **2004**, *43* (27), 3516–3524.

(26) Goldberg, A. F. G.; O'Connor, N. R.; Craig, R. A.; Stoltz, B. M. Lewis Acid Mediated (3 + 2) Cycloadditions of Donor–Acceptor Cyclopropanes with Heterocumulenes. *Org. Lett.* **2012**, *14* (20), 5314–5317.

(27) Bosmani, A.; Guarnieri-Ibáñez, A.; Goudedranche, S.; Besnard, C.; Lacour, J. Polycyclic Indoline-Benzodiazepines through Electrophilic Additions of α -Imino Carbenes to Tröger Bases. *Angew. Chem., Int. Ed.* **2018**, *57* (24), 7151–7155.

(28) Cromarty, A.; Proctor, G. R. A New Azepine and Azepinone Synthesis. *Chem. Commun. London* **1968**, No. 15, 842–843.

(29) Liu, H.; Li, X.; Chen, Z.; Hu, W.-X. Azepine Synthesis from Alkyl Azide and Propargylic Ester via Gold Catalysis. *J. Org. Chem.* **2012**, *77* (11), 5184–5190.

(30) Shi, Y.; Yu, X.; Li, C.-Y. Rhodium-Catalyzed Synthesis of 2,5-Epoxybenzo[f][1,4]Oxazepines by Tandem Reaction of 1-Sulfonyl-1,2,3-Triazoles and Salicylaldehydes. *Eur. J. Org. Chem.* **2015**, *2015* (29), 6429–6433.

(31) Calcaterra, N. E.; Barrow, J. C. Classics in Chemical Neuroscience: Diazepam (Valium). *ACS Chem. Neurosci.* **2014**, *5* (4), 253–260.

(32) Marco-Contelles, J.; do Carmo Carreiras, M.; Rodríguez, C.; Villarroya, M.; García, A. G. Synthesis and Pharmacology of Galantamine. *Chem. Rev.* **2006**, *106* (1), 116–133.

(33) Isono, N.; Mori, M. Total Synthesis of (–)-Cephalotaxine. *J. Org. Chem.* **1995**, *60* (1), 115–119.

(34) Singh, A. K.; Raj, V.; Saha, S. Indole-Fused Azepines and Analogues as Anticancer Lead Molecules: Privileged Findings and Future Directions. *Eur. J. Med. Chem.* **2017**, *142*, 244–265.

(35) Tuthill, P. A.; Seida, P. R.; Barker, W.; Cassel, J. A.; Belanger, S.; DeHaven, R. N.; Koblish, M.; Gottshall, S. L.; Little, P. J.; DeHaven-Hudkins, D. L.; Dolle, R. E. Azepinone as a Conformational Constraint in the Design of κ -Opioid Receptor Agonists. *Bioorg. Med. Chem. Lett.* **2004**, *14* (22), 5693–5697.

(36) Koutsandrea, E. G.; Fousteris, M. A.; Nikolaropoulos, S. S. Synthesis of New Tetracyclic Paullone Derivatives as Potential CDK Inhibitors. *Heterocycl. Commun.* **2012**, *18* (4), 169–179.

(37) Joshi, B. K.; Gloer, J. B.; Wicklow, D. T.; Dowd, P. F. Sclerotogenin: A New Antiinsectan Benzodiazepine from the Sclerotia of Penicillium Sclerotogenum. *J. Nat. Prod.* **1999**, *62* (4), 650–652.

(38) Kaltenegger, E.; Brem, B.; Mereiter, K.; Kalchhauser, H.; Kählig, H.; Hofer, O.; Vajrodaya, S.; Greger, H. Insecticidal Pyrido[1,2-a]Azepine Alkaloids and Related Derivatives from Stemonia Species. *Phytochemistry* **2003**, *63* (7), 803–816.

(39) Wang, T.; Tang, Z.; Luo, H.; Tian, Y.; Xu, M.; Lu, Q.; Li, B. Access to (Z)- β -Substituted Enamides from N1-H-1,2,3-Triazoles. *Org. Lett.* **2021**, *23* (16), 6293–6298.

(40) Campbell-Verduyn, L. S.; Mirfeizi, L.; Dierckx, R. A.; Elsinga, P. H.; Feringa, B. L. Phosphoramidite Accelerated Copper(I)-Catalyzed [3 + 2] Cycloadditions of Azides and Alkynes. *Chem. Commun.* **2009**, *16*, 2139–2141.

(41) Raushel, J.; Fokin, V. V. Efficient Synthesis of 1-Sulfonyl-1,2,3-Triazoles. *Org. Lett.* **2010**, *12* (21), 4952–4955.