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The literature on stochastic programming typically restricts attention to problems
that fulfill constraint qualifications. The literature on estimation and inference under
partial identification frequently restricts the geometry of identified sets with diverse
high-level assumptions. These superficially appear to be different approaches to
closely related problems. We extensively analyze their relation. Among other things,
we show that for partial identification through pure moment inequalities, numer-
ous assumptions from the literature essentially coincide with the Mangasarian—
Fromowitz constraint qualification. This clarifies the relation between well-known
contributions, including within econometrics, and elucidates stringency, as well as
ease of verification, of some high-level assumptions in seminal papers.

1. INTRODUCTION

This paper connects two related but largely separate literatures, namely statistical
analysis of stochastic programs and estimation and inference for (functions of)
partially identified parameters. The bounds that are pervasive in the latter literature
are often expressed as values of constrained optimization problems. As such, some
similarity to stochastic programming is rather apparent and has been observed
before. However, we uncover much deeper connections between these literatures.

Our discussion starts from the econometrics literature. In a seminal paper,
Chernozhukov, Hong, and Tamer (2007, CHT henceforth) provide a compre-
hensive analysis of consistency of criterion function-based set estimators and
their convergence rates in partially identified models. Their work highlights the
challenges a researcher faces in this context and puts forward possible solutions
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F1GURE 1. Two examples of irregular support points. Each curve represents an inequality constraint
that excludes everything above it, so that ®y is the shaded region. Estimation of ®; or its support func-
tion in direction (0, 1) (“up”) will be difficult. Note that individual constraints may be well-behaved.
The right panel differs from the left one by the addition of a constraint which ensures that a polynomial
minorant condition holds. This illustrates that such a condition does not rule out the problem.

in the form of assumptions under which specific rates of convergence attain.
While these assumptions can be dispensed with when the researcher’s goal is
to obtain a confidence set for the partially identified parameter vector that is—
pointwise or uniformly—consistent in level (e.g., Andrews and Soares, 2010),
related assumptions reappear when the aim is to obtain a confidence interval for a
smooth function of the partially identified parameter vector that is—pointwise or
uniformly—consistent in level (e.g., Pakes et al., 2011, PPHI henceforth Bugni,
Canay, and Shi, 2017, BCS henceforth).! Some more recent contributions (Cho
and Russell, 2019; Gafarov, 2019) observe a connection to stochastic programming
and show that inference becomes much more tractable under the so-called Linear
Independence constraint qualification. Some obvious questions arise: How do all
these assumptions relate? What is the trade-off between them and possibly other
assumptions from the statistics literature?

For a sense of why consistent estimation of identified sets or their projections
can be hard even in otherwise well-behaved moment inequality settings, consider
Figure 1. Both panels illustrate a detail of an identified set ®; defined as the
collection of parameter values satisfying a finite number of moment inequalities
(as in (2.1) below, but without equality constraints). Each restriction is represented
by a curve and excludes everything above that curve. The resulting ®; is shaded.”

I'We cite PPHI because the published version (Pakes et al., 2015) does not contain the inference procedure. However,
this procedure has been used in influential papers (Eizenberg, 2014; Ho and Pakes, 2014; Holmes, 2011).

2 An exact algebraic description of the example in Figure 1 is as follows. Let © = R? with typical element 6 = (6;,65)
andlet @y ={6: (6, — 1)3 +01E(X1) <0,(60— 13— 01 E(X1) < 0} for the left panel; for the right panel, additionally
require 6 < E(X3), where E(X;) = E(X2) = E(X3) = 1. Looking ahead, the right panel of Figure 2 and both panels
of Figure 4 are qualitative representations.
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Suppose now that a researcher wants to find either (i) a set estimator of ®; that
is consistent in Hausdorff distance (defined later) or (ii) an estimator of a linear
projection of ®; (e.g., the identified set for a component of 8), represented through
the support function

s(p,©)) =max{p'0 : 0 € Q) 1.1)

in predetermined direction p. (In the figure, p = (0, 1), i.e., we maximize 6,.)
Even if all constraints’ graphs can be estimated at a specific—e.g., parametric—
rate, it does not follow that their intersection estimates either object of interest at
the same or indeed at any rate. For example, if estimators approximate the true
constraints from below, the support function may be underestimated including in
the limit.

The examples may appear “knife-edge.” However, note that: (i) While we will,
in this paper, take a pointwise perspective to simplify the analysis, the literature
on partial identification is usually concerned with inference that is uniformly valid
near such irregular cases because asymptotic approximations may otherwise be
misleading. Indeed, this is emphasized in the abstract of Canay and Shaikh (2017).
(i) Inference methods that are uniformly valid typically use “Generalized Moment
Selection” methods (see again Canay and Shaikh, 2017 for details) that account for
statistical uncertainty not only of moment conditions that are violated in sample,
but also of ones that are local-to-binding. In these methods, the “overidentified”
feature of the right-hand panel, i.e., the intersection of more than d constraints at
one point in R, becomes typical of bootstrap d.g.p.’s. In addition, this feature
characterizes the boundary case of overidentifying moment conditions, though
some assumptions discussed below will exclude that case anyway.

A reader familiar with constraint qualifications in optimization problems will
recognize that both panels of Figure 1 violate some of these qualifications.
Conversely, a reader who is very familiar with the partial identification literature
might recognize that they violate assumptions in CHT, PPHI, and elsewhere. We
ask if this reflects deeper relations between these bodies of literature. The answer
will be affirmative: Under a background assumption of continuous differentiability
of moment conditions and abstracting from details of “how uniformly” the assump-
tions are stated, the literature on partial identification already invokes constraint
qualifications; for examples, we show that both papers just cited rely on the
Mangasarian—Fromowitz constraint qualification. This implies some previously
unrecognized (to the best of our knowledge) logical relations between assumptions
made in econometrics.

Some references to the literatures that we connect are as follows. Molinari
(2020) gives a current overview over the field of partial identification. Canay
and Shaikh (2017) provide a definitive treatment of the literature on moment
inequalities. We will define constraint qualifications below but refer to Bazaraa,
Sherali, and Shetty (2006) for a textbook treatment and to Bonnans and Shapiro
(2000) for a textbook on perturbation analysis of stochastic programs.
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TABLE 1. Assumptions and their relation as established in Lemma 3.1. The
term “criterion” refers to max{O, max;—,.. j, E(mj(X,0))/0;(0), maxj—j, 11,....J

|E(m;(X,0))/0;(0)]}.

Assumption Intuition

1 Background assumption.

2 All moments strictly negative at some 6 close to 6*.

363 Criterion increases with distance from ©;.

44 Criterion increases with distance from support set on support plane.
55 ©y is locally contained in a pointy cone.

656 There exists a direction from 6* in which every constraint becomes slack.
17T Criterion increases outside a pointy cone locally containing ®;.

8 Linear Independence Constraint Qualification (LICQ).

9 Mangasarian—Fromowitz Constraint Qualification (MFCQ).

10 Abadie Constraint Qualification (ACQ).

2. ASSUMPTIONS

This section clarifies the general setup and introduces a broad array of assumptions
from the literature. For the reader’s convenience, these assumptions, and some
results that we will explain later, are summarized in Table 1.

We assume throughout that the model is correctly specified and that individual
moment conditions are well-behaved. Specifically, the identified set ®; is char-
acterized by J constraints, namely J; < J moment inequalities and J, = J — J;
moment equalities:

©={0€0: Emi(X.0) <0, j=1,... J;EmX.0)=0,j=Ji+1,....1J},
@2.1)

where the functions (m,(-), ...,m;(-)) are known up to 6 € ®. Then we impose:

Assumption 1. (a) ® C R? is compact convex with nonempty interior.

(b) ®; # @ and O; C int(®).

(c) af(e) = Var(m;(X,0)) € (0,00) forj=1,...,J.

(d) The gradients D;(-) = Vp{E[m;(X,)]/oj(-)},j = 1,...,J exist and are con-
tinuous.

These assumptions are standard in the literature. The requirement that ®; C
int(®) may appear stronger than the comparable one in CHT, i.e., their condition
M2. However, the latter imposes continuous differentiability of moment conditions
on a small enlargement of ®, so it does constrain ®; to be interior to the set on
which local linear approximation of moment conditions is valid. This is how we
use the assumption, and we could analogously weaken it.
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We next state numerous assumptions that are inspired by the aforementioned
literature in econometrics. We first state them in a way that maximizes resemblance
to the original formulation, subject to the unification that assumptions are stated
pointwise (not uniformly) over d.g.p.’s and that their local implications near
extreme points of ®; are extracted. Universal constants invoked in assumptions
need not take the same value across appearances.

Define the support set of ®; as

S(p,©) =1{0 €O;:p'0 =s(p,Op),
where the support function s(-) is defined in (1.1), and the supporting hyperplane as
Hp,0)={0e€0:p6=s(p,0)}

Any element of S(p,®;) is also called a support point. We use 6* to denote a
generic support point; to economize on subscripts and because we consider p fixed,
we suppress dependence of 6* on p. Recall also that a constraint is active at 6 if
E@m;(X,0)) =0. Let

Tr@) ={jefl,....J1}: E(mj(X,0)) =0} 2.2)
denote the set of active inequality constraints and
J*0) = {j cEmi(X,0)) = 0} =TJrO) Ui +1,....J} 2.3)

the full active set of (equality or inequality) constraints at 6.

We first adapt two assumptions, “degeneracy” and “polynomial minorant,”
from CHT. These are essential for getting rate results for consistency of analog
estimators of ®y; in particular, Polynomial Minorant ensures rate results for a
relaxed sample analog of ®,, and degeneracy allows one to drop the relaxation. We
weaken the assumptions insofar as they are only imposed at support points. Also,
we do not adapt the high-level Conditions C.2 and C.3 from CHT because, being
about sample objects, they restrict the sampling process and not just population
moments. To keep these issues separate, we focus on the sufficient conditions that
stand in for the assumptions in a moment inequalities setting (i.e., CHT’s displays
4.5 and 4.6).

Assumption 2. For each support point 8* € S(p, ®), there exist constants § > 0,
n>0,M=>0,and C > 0s.t.
rrllaXJE(mj(X,G))/qj(B) < —Ce foralld € ®;,°NB(H*,n) 2.4)

=l

max d(09,0;°) <Me forall e € [0,6], 2.5)
0e®;NB(O*, 1)

where ©;° = {0 € ©;:d(0,0\ ©)) > e} and B(0*,n) = {0 € O : |0 —6*| < n}.

This “degeneracy” assumption ensures that for any support point 6*, there exists
a nearby point where moment inequalities hold with slack and whose membership
in ©y is therefore easy to determine. In particular, we show in the proof of Theorem
3.1 that Assumption 2 precludes the existence of equality constraints.
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In the original version, the equivalent of (2.5) was stated using Hausdorff
distance, ie., dy(©,0;°) < Me, where dy(A,B) = max{max,esd(a,B),
maxpcpd(b,A)} for generic sets A,B with typical elements a,b. However,
maxee(,);s d(0,0;) = 0 because @,‘8 C ©y, so here and in the original, only

the implied restriction on maxgeo, d(6,©;°) is nonvacuous. We localize it by
restricting 6 to a neighborhood of the support point.

Assumption 3. For each support point 8* € S(p, ®;), there exist constants n > 0,
¢ > 0, and C > 0 such that, for all 8 € B(6*,n),

mad&;}f}f«j} E(m;(X.6))/0j(6),_max _ |E(m;(X.6))/0;(6)] }

> Cxmin{d(8, ®)),c}.

This “minorant” assumption ensures that the population criterion increases not
too slowly as one moves away from ®;. Loosely speaking, it prevents “weak
identification” problems. Next, BCS impose a polynomial minorant condition as
well.?

Assumption 4. For each support point 6* € S(p, ®;), there exist constants n > 0,
¢ > 0, and C > 0 such that, for all 8 € B(6*,n) NH(p, ®,),

> C x min{d(0,S(p, O1)),c}.

It bears emphasis that the last two assumptions are logically independent.
Assumption 3 forces the population criterion to increase (to first order) as we
move away from ®;. Assumption 4 enforces an analogous increase as we move
away from the support set S(p, ©) along the supporting hyperplane. This does not
imply Assumption 3 because it only applies as one leaves ©; in selective directions.
But it also is not implied because the directions considered in Assumption 4 may
be tangential to ®,, in which case the increase in d(8, ®;) may be of low order.
Indeed, Assumption 4 may be considered restrictive: By not allowing directions
to be tangential to ®; without also being tangential to S(p, ®;), it excludes smooth
maxima, e.g., any identified set whose entire boundary is a smooth manifold.*

We next adapt (in this order) assumptions 3, 4(a), and 4(b) from PPHI. These
are modified in a few ways: PPHI assume that the support point 8* is unique;
this assumption is removed. Assumptions are also localized by only looking at
6 near 6*; this makes the first of them meaningfully weaker. At the same time,

3In the respective originals, both assumptions raise the r.h.s. to a power y > 0, hence “polynomial minorant.”
However, in both cases, y is restricted in ways that imply y = 1 in the present setting.

4Consider the single moment inequality 012 +(922 —EX) <0,with E(X) =1and p=(0,1). Then S(p, ®;) is a singleton
at0* = (0,1). Letd = (¢, 1), then 912 +922 —EX)= {2, whereas d(0, S(p, ®y)) = ¢, violating Assumption 4 as ¢ — 0;
at the same limit, we have d(0,0;) = /1 +¢2 -1 > {2/4, so that Assumption 3 holds. We note that this and other
easy counterexamples to Assumption 4 do not seem to be counterexamples to the BCS profiling method. We leave
to future research the question whether this illustrates the possibility of relaxing their assumptions.
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PPHI impose assumptions uniformly over d.g.p.’s; to keep this paper focused, such
uniform statements are removed throughout.’

Assumption 5. For each support point 6* € S(p, ®;), there exist §,n > 0 s.t.
SUP,cr g+, P't < —8, where

*

TO"n = {l=—
10 —6~|l

10 € ©;NBO,1),0 7&9*}.

Assumption 6. There are no equality constraints, i.e., J; = J. Furthermore, for
each support point 6* € S(p, ®,), there exist constants §, & > 0 as well as direction
(i.e., unit vector) f € R? s.t.

max D;(0")t < —¢.
J:Em;j(X,0%))/0j(0*)>—8

Assumption 7. For each support point 6* € S(p, ©;), there exist constants § < 0,

g>0s.t.
inf max{ max D;(0*):, max |D;(0")1|} > e.
teR4 ||t||=1,p't=6 JjeT©%) jeti+1,..J}

Brief intuitions for these are as follows. Assumption 5 ensures that ®; is
contained in a cone that has 6* as apex and does not otherwise intersect H(p, ®).
In particular, this implies uniqueness of 6* (although we will not use this feature)
and pointiness of the tangent cone (defined later) at 6*. Assumption 6 ensures
that locally to 6%, there exists a direction in which all moment expectations, hence
their maximum, strictly decrease. Note in particular that this excludes equality
constraints—while this implication is not explicit in PPHI, they treat equalities
as conjunctions of two inequalities, and the assumption cannot possibly hold for
both. PPHI point out that their assumption is inspired by CHT’s degeneracy (i.e.,
our Assumption 2), which also excludes equalities. Indeed, both assumptions force
©®; to have an interior, and we will have more to say about their relation later.
Assumption 7 enforces that the criterion is strictly increasing in many directions
from 6%, including all that have positive inner product, and some that have negative
inner product, with p.°

We finally recall some classic constraint qualifications. This requires some
standard notation that we will also use later. For any 6 € ®;, define the tangent
cone

O — 0 t
TO) = {t eR?:3(0,1°, C ©,6, — 0, lim ——— = —} u {0}
! m—oo [0, — O ||7]|

STo compare the statements of assumptions, also keep in mind notational conventions: PPHI write moment conditions
as E(m;(-)) > 0,setp = (—1,0,..., 0), and use subscripts to denote components of vectors, so that ¢ there would be
—p't here.

OThe restriction § < 0 in Assumption 7 correctly reflects our source. However, we considered the possibility that (in
our notation) § > 0 was intended. The assumption then becomes weaker. Specifically, along the lines of our main
result below, one can show that it is then equivalent to max;e 7+ g+ D;j(0*)p > 0 and is implied by Assumption 10.
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FIGURE 2. An illustration of linear cone (orange) versus tangent cone (green). Left panel: The two
disagree in the example from Figure 1; note that the linear cone goes both “up” and “down” from
the support point. Right panel: The two agree in a well-behaved setting that cannot be statistically
distinguished from the ill-behaved one.

as well as the linearized cone
L) = {t eR?: Dij(0)t<0,je J(0);Dj(0)t=0,j € {Ji +1, ...,J}}.

We will only invoke these objects for support points 0* € S(p, ®;). Recall that
T (6) C L(0) (Bazaraa et al. 2006, chap. 5).

Both cones are illustrated in Figure 2. They coincide in “nice” examples like
the right panel of Figure 2 (indeed, this “niceness” is the Abadie constraint
qualification defined below) but they may disagree, as in the left panel which
reprises the left panel from Figure 1.

We can then state the following constraint qualifications in decreasing order of
restrictiveness.

Assumption 8 Linear Independence Constraint Qualification (LICQ). For
each support point 6* € S(p, ©;), the active (equality or inequality) constraints have
linearly independent gradients D;(6%).

Of course, the LICQ requires at most d active constraints, making it quite
restrictive.

Assumption 9 Mangasarian—-Fromowitz Constraint Qualification (MFCQ).
At each support point 6% € S(p, ®;), the gradients of the equality constraints are
linearly independent and there exists ¢ € RY s.t. D;j(0*)t < 0 for j € J;"(6*) and
Dj(@*)t=0forje{Ji+1,...,J}.

Assumption 10 Abadie Constraint Qualification (ACQ). For each support
point 6* € S(p, ©;), we have L(0*) = T (6%).

These conditions are frequently invoked in the statistical literature. For example,
Shapiro (1990, 1991, 1993) uses either LICQ or uniqueness of Lagrange multipli-
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ers, and these two assumptions are essentially the same (Wachsmuth, 2013). In
econometrics, Cho and Russell (2019) and Kaido and Santos (2014) use LICQ;
Andrews, Roth, and Pakes (2019) and Gafarov (2019) restrict attention to linear
constraints and thereby impose ACQ.

3. RESULTS
3.1. Restating Some Assumptions, and a First Set of Equivalences

We next restate some of these assumptions, exploiting their localization or using
the language of constraint qualifications. Between our localization of assumptions
and the language of tangent cones, several of the assumptions we just introduced
can be stated more succinctly. In what follows, recall that [7*(0), defined in (2.3),
is the active set of (equality or inequality) constraints at 6. Specifically, define:

Assumption 3°. For each support point 8* € S(p, ®), there exist constants 1 > 0
and C > 0 such that, for all 8 € B(6%,n),

Assumption 4°. For each support point 6* € S(p, ®,), there exist constants > 0
and C > 0 such that, for all 8 € B(0*,n) "H(p, ®y),

max{0, max E(m(X.00)/c;0). _max  [E(m(X.00)/0;0)]}

> Cxd@,5p,0r)).

Assumption 5°. For each support point 6* € S(p, ©;), max{p't/||t]| : t € T (6*)\
{0}} <O.

Assumption 6’. There are no equality constraints. Furthermore, for each sup-
port point 6* € S(p, ©;), min, s Max;e 7+ D;j(@*)t/||t]| < 0.

Assumption 7°. For each support point 8* € S(p, ©;), max{p't/||t|| : t € L(6*)\
{0}} <O.

Then we have:

LEMMA 3.1. Suppose that Assumption I holds. Then the following assumptions
are equivalent: 33, 44, 565, 66, and 77,

Proof. Regarding Assumptions 3 and 3’, <= is obvious and = holds because
in Assumption 3, one can choose n = ¢, ensuring min{d(0, ®;),c} =d(0,®;). The
argument for 4<-4” is the same.

Next, 5=5° holds because T(6*,n) shrinks toward 7 (6*) \ {0} as n — O.
Also, suppose 7 (0*) \ {0} = @, then Assumption 5’ holds vacuously; but in this
case, T(60*,n) =  for small enough n and so Assumption 5 holds as well. It
remains to show that, if 7(6*) \ {0} # @ and therefore T'(6*,n) # @ for any 7,
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then failure of Assumption 5 implies failure of Assumption 5°. Now, failure of
Assumption 5 and nonemptiness of 7'(6*, 1) jointly imply existence of sequences
(8n, 1) 4 (0,0) and 6, € B(0*, 1) \ {07} s.t. p'(6p — 0%) /16, — 07I| > —5,. But
then any accumulation point # of (6, — 6*)/|6,, — 6*|| is in 7 (6*) and has p't > 0,
contradicting Assumption 5°.

Assumption 6 obviously implies 6°. To see the reverse implication, suppose 6’
holds, then one can verify Assumption 6 by choosing § to be half the slack of the
tightest inactive inequality (or arbitrarily if all inequalities are active).

Next, note first that

max{p't/|t]l : 1 € LO)\{0}} <0 @3.1)
= min  max{ max D;(#*):, max |D;#")|}>0.
teRe: ||t =1,p/ >0 JeT ©%) jel+1,....J}

For example, it is easy to see that the above minimum is attained. If it equalled 0,
the vector ¢ attaining it would be in £(6*), so the first maximum would be at least
0. The converse argument is similar.

The left-hand side of (3.1) is Assumption 7°. We next show that its right-
hand side is equivalent to Assumption 7. It is implied by Assumption 7 because
the minimization is over a smaller set. To see the converse, suppose Assump-
tion 7 fails, then there exist sequences 8, 1 0, &, | 0, and #, with p't, > §,

point of ¢, then is a counterexample to the right-hand side of (3.1). [ ]

Remark 3.1. Some of these equivalences are due to localization of assumptions.
For example, the original Assumption 3 in PPHI, but also both polynomial
minorant conditions, are otherwise stronger than their simplifications. Indeed,
regarding the equivalences 3<3’ and 4<>4°, the real insight is that the original
assumptions combine local and global conditions, e.g., (for Assumption 3)

d,0)) <$ (32)
= max{O,Frlr}g§ 1 E(mj(X,G))/q,-(G),,ﬁrlrﬁJ |E(m;(X,0))/0;(0)]} = Cxd(8,0))
and

d,0)) >4 (3.3
= max{0, max E(m;(X,0)) /q,-(@),j: max  |E(m;(X.6)) /o)) = ¢

for some ¢ > 0 (namely, setting ¢ = C§). Only the local condition (3.2) is related to
constraint qualifications. The other part is really a global identification condition.
We will revisit this distinction later.

3.2. Econometric Assumptions as Constraint Qualifications

We now present our main insight: Several of the above assumptions are equivalent,
or very close to, constraint qualification assumptions, and there are numerous
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A
Y

MFCQ & no equalities [« Assumption 6

Y

Assumption 2

Y

Assumption 3 > ACQ Assumption 5

Y

Assumption 4 | Assumption 7 | if |7*(0*)| = d: LICQ

FIGURE 3. A flow chart illustrating Theorem 3.1. Examples for reading this: “3 implies Abadie
Constraint Qualification (ACQ)”; “2 and 6 are equivalent”; “5 and ACQ jointly imply 7.”

logical relations between them. Our main result, which is also visualized in
Figure 3, follows.

THEOREM 3.1. Suppose Assumption 1 holds. Then the following relations
between assumptions hold true.

1. Assumptions 2 and 6 are equivalent. Furthermore, both are equivalent to jointly
(i) excluding equality restrictions and (ii) imposing 9.

2. Any of Assumptions 2, 6, and 9 (the latter combined with excluding equality
constraints) imply 3.

. Assumption 3 implies 10.

. Assumptions 5 and 10 jointly imply 7.

. Assumption 7 implies 5.

. Assumption 7 implies that the gradients of active constraints span RY. In
particular, if J7*(0*) has exactly d elements, 8 is implied.

7. Assumption 7 implies 4.

AN L bW

Proof. Throughout this proof, consider a fixed 6*. We invoke Lemma 3.1 and
use the simplified versions of the assumptions.
1. If equalities are excluded, MFCQ reduces to

min  max D;(0*)t <O0. 3.4)
teRY:||7|=1j€T*(0*) ~

This immediately clarifies that excluding inequalities and imposing MFCQ is just
Assumption 6’. It remains to show equivalence with Assumption 2.

Assumption 2 excludes equalities because the presence of even one equality
constraint implies that max;—;,.. s E(m;(X,0))/0;(#) =0 for all 8 € ®;. This leaves

.....
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two possibilities: Either ®; ¢ # @, in which case (2.4) fails, or ®;° = ¢, in which
case (2.5) fails because d(6, ©; ) = oco.

To see that Assumption 2 also implies (3.4), consider a sequence &, — O.
For n large enough we have ¢,/M < 8, where M and § are from Assumption 2.
Then by (2.5) there exists 6, € ©; /" with ||6, — 6*|| < &,, and by (2.4), we
have max;c 7+« {E(m;(X,0,))/0;(6,)} < —Cg,/M. Next, let ¢ be any accumula-
tion point of (6, —0*)/||6, — 0*||, then by continuous differentiability one has
manEJ*(Q*)Dj(Q*)t <—-C/M <0.

To see the converse, let
ff=arg min max D;(6")t 3.5)

teR4:||7|=1j€T *(6%)
and let u = %|man€j*(9*)Dj(9*)t*|. By (3.4), maxc 7x@g+) Dj(0*)t* = =21 < 0.
We next argue why inactive constraints, i.e., j ¢ J*(6*), can be ignored in what

follows. Note first that by the Mean Value Theorem and Assumption 1, there exists
6 componentwise between 6 and 6 s.t.

E(m;(X,0)) B E@m;(X,0%))
5;(6) 01(6%)
= (D;(6%) +0(|6 —6*))(6 — 6%) = O([16 — 6" [)) + O(1|6 — 6" |1*).

=D;(0)(0 —6%)

Let p = maxj¢ 7+ o+ E(m;(X,60%))/0;(6*) < 0, then it follows that
max max E(m;(X,0))/0;(0) <
0eB©*,n) jET*(6) (m;(X.0))/0;(0) < p
E(m;(X,0 E(m;(X,0*
4 max { (mi(X,6))  E(m;( ))} -0
0eB(6*,1) 0i(0) 0j(6*)

for a small enough choice of 1. Thus, inactive constraints do not affect the value
taken by max;— . s E(m;(X,6))/0;(0) anywhere on B(6*,1). (In the remainder of
this proof, n is understood to be either the 1 just chosen or the 1 from Assumption
2, whichever is smaller.)

Fix § > 0 and consider any 6 € B(6*,n) with max;c 7+@+) E(m;(X,0))/0;j(0) >
—4. Then

“max E(mj(X,0 —8r"/))/o;(0 — 8" /1)

JET*(0%)

= max_ {E(m;(X,6))/0;(0) — 8D;(6))1*/ u}

= max {Em;(X.,0))/0;(0) —8D;(0")* /1 —0(8)}
JjeT*(0%)

>—§+25—0(5) >0
for § small enough, implying that 0 — 237"/ u ¢ ©; and therefore that d(0, ©\ ©;) <

258/ (Here, 6; is componentwise between 6 and 6 — §t*/u and may change with
J; ©; C int® ensures 6 —25t*/u € O for § small enough.)
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Conversely, by setting ¢ = 25§/, we find that (for ¢ small enough)

d0.0\O) 2 e = max E(m(X.0))/0(0) < —pe/2.
je * (%

verifying (2.4) with C = /2. The requirement that ¢ be small enough can be
enforced by choosing 1 low enough.
Next, for any 6 € ®; N B(6*,n), we similarly have

max E(m;(X,0 +8t*/w)) /0;(0 + 1%/ )
jE * *

= max {E(m(X.6))/0;0) +D;O)t" /)

= max, {E(m;(X,0))/0;(6) + 8D;(0")r* /i + 0(8) }

0—28+0(3)

IA

for § small enough. (Again, 6 +é1*/i € © because ©; C int®. The interpretation,
though not th_e value taken, of ¢; is as before.)
Now, set M = maX;c 7+*) ||D;j(0*)]| and let ¢ be any unit vector, then

1}1a(x E(m;(X,0 +68t* /M+51/M))/O’j(9+5t /i +8t/M)

JE * *

= ?ﬂg*){E(mj(X,e +81* /1)) /0;(6 + 8t* /1) + 8D;(0,)t /M }
je

< —=264+64+0(5) <0

for § small enough, thus

§/M s/M

B+t /1, 8/M) CO; = 0+t /ue®,”" = d6,0,”") <5/u.
Setting & = §/M, we find d(0,©;°) < eM/u, verifying (2.5) with M = M/ 1.

2. Suppose that (3.4) applies and let u and #* be as in (3.5). Fix any scalar

1
(O — max max E(m;(X, 9))/0](9)}
L OEB(O*, ) je T*(6*)

noting that by Assumption 1(d), the upper bound on y vanishes as  — 0. Consider

any 0 € B(6*,n) s.t. maXxje 7+ E(m;j(X,0))/0j(0) < py. Then by a use of the
mean value theorem very similar to preceding displays,

max Emj(X,0 +y1"))/0;(0 +yt*) < py —2uy +o(y) <0

jeT*(0*

for y small enough (which can be ensured by choosing 1 small enough). It follows
that 6 + y* € int®;, hence d(0,0;) < y. Conversely, d(0,0;) = y then implies
maxje 7+ E(mj(X,0))/0j(@) = ny and therefore max; E(m;(X,0))/0;(6) > uy.
As y was arbitrary, this verifies Assumption 3” with C = u.
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3. Fix any ¢t € £(6). By differentiability of E(m;(X,-))/o;(-) and the definition
of L(-), we then have
]imsup{n X max{ max D;(0*)t/n, max |Dj(9*)t/n|}} =0asn— oo.

Tr0%) jet+1,..J)
But then Assumption 3’ implies n x d(6* + t/n,®;) — 0. Next, let 6, =
argmingeg, |0 — (0* +1t/n)|| and therefore |6, — (0 +t/n)|| = d(0* +t/n,O)),
then
9,,—9* . 9,1—(9*+t/n)+(9*+t/n)—
m = lim
16, — 0*l 6, — (0* +1/n) + (0* +1/n) — 6%
nx (6,— (0 +t/n))+t t

m __7
lnx 6, — O*+t/m)+1ll 2l

hence ¢t € T (6%).

4. Under ACQ, L(0*) = T (0*), hence Assumptions 7’ and 5  are then
equivalent.

5. This holds because T (6*) C L(0%).

6. Suppose the conclusion fails, thus no d gradients of active constraints span
R?. Then there exists a unit vector ¢ s.t. D;(0*)t=0forallj € J*(0*). This implies

min max D;(0")t=
teR4:||7]|=1,p'1=>0j€T *(6%) !
because at least one of (¢, —¢) is feasible in this minimization problem, contra-
dicting Assumption 7’; compare in particular the equivalent representation of this
assumption on the right-hand side of (3.1).
7.Because p't =0 < 0* 4+t € H(p, ©;), the right-hand side of (3.1), and thereby
Assumption 7°, can be restated as

min max{ max, D(Q )O—0%)/10—0%,
HeH(p,®y) VG

ax J}|Dj(0 )(O—69)1/16—6%]}>0

jet1+l

By continuous differentiability (using arguments very similar to above), this then
implies that, for small enough 1 > 0,

max {0, max E(m;(X.0))/0;0). Jrlrﬁf_’jIE(mj(X,H))/G;(G)I} > C|16 — 6%

for all & € B(9*,n) NH(p, Oy),
where C = mmteRd =1, /1= Omax{max EJ*(Q*)D (0™)t, maxjeqy, +1,..0y Dj (9*)t}

> 0. [ |

3.3. Tightness of Theorem 3.1

We next clarify that Theorem 3.1 is tight, i.e., no implication that is not indicated
in Figure 3 holds true. This subsection can be skipped without loss of continuity.
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Let m;j(X,0) = u;(0) +X; for functions u; : ® — R defined below and suppose
that all X; are standard normal; thus, E(m;(X,0))/0;(6) = u;(6). Also, ® =
[—1,1]%. All examples are constructed s.t. the support point of interest is 6* =
(0,0). Direction of projection is p = (0, 1) unless explicitly indicated otherwise.
There are no equality constraints, so for the purpose of these examples, “MFCQ
and no equalities” is just MFCQ.

e Neither Assumption 5’ nor 4’ imply either 7’ or 10 (ACQ).
11(0) =05 —
p2(0) =65 +6;.

We start with this example because several others build on it. Qualitatively, it is
the left panel of Figure 1. The linear coneL(6*) is spanned by {(0, 1), (0, — 1)}, the
tangent cone 7 (6*) is spanned only by {(0, — 1)}. The one direction, = (0, — 1),
that is in 7 (6*) is tangential to all constraints. The example violates ACQ (and all
stronger assumptions) as well as 7° but fulfills 5* as well as 4°.

o Assumption 3’ does not imply 9 (MFCQ).
w1 (0) =65 =6,
pa(0) = 0; +
u3(0) = 6s.

This example adds a third constraint to the first example; compare the right panel
of Figure 1. Both £(6*) and 7 (6*) are spanned by (0, — 1). The example therefore
fulfills 3° (and by implication ACQ) but not MFCQ.

o Assumption 10 (ACQ) does not imply 3°.
11(0) = 67 (6, +67)
u2(0) = 0.

Here, £(0*) = T (6*) = {t : p't < 0}, so that ACQ is fulfilled. However, 3’ is
violated in direction t = (1,0):

mi(yt) =y*
d(yt,®)) <y* (because (y,—y?) €Oy
= wi(yH/d(yt,®;)—0 as y —0.

o Assumption 7’ does not imply 10 (ACQ).

n1(0) =—01+6,
12(0) =01+ 6,
13 (0) = (6162)%.
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In this example (which is inspired by a well-known counterexample to ACQ),
we have that £(6%) is spanned by {(—1, — 1), (1, — 1)} but 7 (6*) is spanned by
(0, — 1) only.

e Assumption 4’ does not imply 7’ or 5.

n1(0) =0,
H2(0) =01 +0,.

In this example, £(6*) and 7 (6*) coincide and are spanned by {(—1,0), (1, — 1)},
contradicting both 7” and 5°. Assumption 4’, which here only applies if we move
in direction (1,0) from 6%, is fulfilled.

4. DISCUSSION
Our findings inform a number of clarifying remarks on the existing literature.

e Asmentioned above, CHT’s polynomial minorant condition can be disentangled
into a local and a global identification condition. The local condition (3.2) is a
mild strengthening of ACQ and is implied by degeneracy. The global condition
(3.3) is essentially the weakest additional statement needed to ensure that ®, is a
well-separated (if set-valued) minimum of max{ max;_ ..y, E(m;j(X,0))/0;(),

maxj—y, 41,...J |E(mj(X,9))/(7_,-(9)|,O}.7 While the polynomial minorant condi-
tion is, therefore, not redundant, an instructive restatement of the assumptions
is available.

e Regarding assumptions in PPHI, claim 5 of Theorem 3.1 owes to our simplifi-
cation, but in view of the smoothness imposed in their Assumption 7, claim 4
also applies to the original versions.

Also, if J = d, then the PPHI assumptions imply LICQ. This clarifies relation
to recent work by Cho and Russell (2019) and Gafarov (2019): Both effectively
impose LICQ and benefit from this by being able to propose relatively simple
inference. However, while stronger than assumptions in CHT, BCS, and cer-
tainly Kaido, Molinari, and Stoye (2019), the assumptions exceed those in PPHI
only in the sense of excluding “overidentified” support points, i.e., more than d
active constraints, and are actually weaker in other respects.

e Cho and Russell (2019) furthermore impose Assumption 3, i.e., (by Theorem
3.1) ACQ. This is not redundant in their paper because 3 is imposed for all
6 € ©; and with universal C, i.e., “more uniformly” than LICQ.

e Yildiz (2012) presents conditions for Hausdorff consistency of ©,. Some of
these are in essence constraint qualifications and can be related to our analysis as
follows. For the case of pure inequality constraints, her high-level Assumption
3.1 states that ®; is the closure of the strict level 0 lower contour set of

TA well-separated minimum requires that for each ¢ > 0, there exists § > 0 s.t. (6, ®y) > ¢ implies max{...} > §.Its
role in ensuring “inner consistency” of sample analogs of identified sets is well understood (Newey and McFadden,
1994).
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max; E(m;(X,0)) /oj(é)).x For the case of at most d active constraints, this is
derived as an implication of the LICQ (Assumption 3.2). For the more general
case, it is derived from an assumption (in Lemma 3.1) enforcing that, at any
boundary point 6* of ®y, the criterion function max; E(m;(X, 0))/0;(9) is strictly
increasing in some component of 6. To make it comparable to our assumptions,
one would impose this to hold at any support point 8*. By a minimal extension of
step 2 of Theorem 3.1 (see expression (3.4)), it is then equivalent to Assumption
2. Therefore, Yildiz (2012) essentially imposes MFCQ for the pure inequality
case.’ For the case of mixed equalities and inequalities, she invokes a LICQ
(Assumption 4.1(b)).

e We close with some remarks on why, for inference on projections p’6, certain
approaches do not require constraint qualifications. Specifically, the profiling
approach in BCS gets by with the relatively weak Assumption 4; Kaido et al.
(2019) or projection of confidence regions for 6 (such as those in Andrews and
Soares, 2010, Bugni, 2009, or Canay, 2010) use no shape restrictions for ®,
at all.

The reason is that all of these approaches localize inference at a conjectured
true value of the support function s(p, ®;) (in BCS) or parameter vector 6 (in
all others). Consistent estimation of identified sets for these objects is then not
a concern. In particular, BCS need to ensure some form of consistency of a
sample analog of ®; that is restricted to the true supporting hyperplane, and
this is precisely what the minorant on the support plane achieves. The other
approaches need no constraint qualifications at all.

Of course, there is no free lunch. All the methods just alluded to are
computationally expensive because they effectively invert tests whose critical
value depends on the exact value of the parameter under the null. Thus, while
some shortcuts may be available in practice (see in particular Kaido et al., 2017,
2019), critical values must in principle be recomputed at every conceivable value
of 6 or s(p, ®).

5. VERIFYING ASSUMPTIONS IN SOME EXAMPLES

In this section, we discuss how these restrictions apply to two well-understood
examples of partial identification. It will become clear that one cannot take for
granted that they “typically” hold and that verifying them could be intricate in
more involved examples. That is part of our message: We point out that many of
them are basically constraint qualifications, and it is well known that constraint
qualifications can be subtle to verify.

8 Molchanov (1998) also uses this condition to ensure Hausdorff consistency of set estimators.

9Yildiz (2012) writes that her assumptions imply a degeneracy condition in CHT without claiming the reverse
implication. This refers to their high-level degeneracy Assumption C.3, which is implied whenever the simple sample
analog of ®; is consistent.
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FIGURE 4. Visualization of the two examples from Section 5. Dashed lines denote (in)equality
restrictions. The figures also display the identified set ©;, the support point 6* in direction p = (0, 1)
(i.e., “up,” as in previous figures), and the associated linear and tangent cones (which coincide). Left
panel: Linear regression with interval outcome data (Section 5.1). Right panel: A simple entry game
(Section 5.2).

The examples are visualized in Figure 4, which is designed to resemble Figure
2. Note that in the second example, ®; has zero measure.

5.1. Linear Regression with Interval Outcome Data and Discrete
Regressors

Consider a linear regression model:
W=276+u,

where Z = (Z,,...,Z;) is a d x 1 random vector with Z; = 1. We assume that Z
has k points of support denoted Z = {z,...,75 e R?) with max,—;,_x||1Z]| <M <
00. The researcher observes {Wy, Wi,Z} with P(Wy < W <Wy|Z=Z7)=1,r=
l,....,k,where 1" =P(Z=7") > 0,r=1,...,k are assumed known. Suppose that
Wy and W, take values in YW C R. An important special case is missing data, where
Wy and W, both equal the true W if the latter is observed and correspond to some
bound on it otherwise.
The identified set is characterized by the following moment inequalities.

EWy)Z=7)-7"0<0,r=1,...,k
7O—EWZ=7)<0,r=1,...,k
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Equivalently,
EWol{Z=7})/n"—7"0 <0, r=1,...,k, (5.1)
O-—EWZ=7Y/7" <0, r=1,... .k (5.2)
Define the following objects.
Var(Wo [{Z = ZD'/? /7, j=1,... .k
%= kW 1/2 ik
Var(W\ H{Z =Z77*D /< /ni7*, j=k+1,...,2k,
—7'Jo;,  j=1,....k
Dj= .Zk/aj’ J Y
Y0, j=k+1,...,2k,
E(Wy|Z=7) -
b; = "V S =Lk
) =

E(W;|1Z=7~5) P
VaWz=B1Z = k+1,...,2k.

Note that, since D; does not depend on 6, we drop its argument.
By (5.1) and (5.2), the identified set is a polytope characterized by k pairs of
parallel constraints

EWoHZ=2))/n" <0 <0 —Ep(W,{Z=7}/n", r=1,... .k (5.3)

See the left panel of Figure 4 for an illustration with k = 3. Each support point is
either a vertex of the polytope or a point in the relative interior of a nonsingleton
support set. We therefore analyze subcases below. Note that, since the gradients
7', ..., 7F of the constraints in (5.3) are known, one knows without data which case
applies.

We first establish conditions implying MFCQ. For j = 1, ..., 2k, define:

%:{9€®D19=bj}
I'IJ_={9€®D]9§bj}

We call H; a hyperplane and H;" a half space. Let ri(A) denote the relative
interior of A. A (d — 1)-dimensional flat face in R is called a facet. Similarly,
a ¢-dimensional element of a d-dimensional polytope is called a ¢-face, where
1 < £ <d—2.For example, a one-face is an edge in a three-dimensional polytope.

LEMMA 5.1. Suppose (i) W is compact; (ii) © = {# € R? : ||0||> < By} with
By < oo satisfying CoBy > ksup,,c, W, where Co = inf,cga-1 Z,(p/zr)z; (iii) k >
d, and any subset C C Z with #C < d is linearly independent; (iv) E[ZW, —Wy|Z =
Z1>0forallr=1,...,k. Let 6* € S(p, O).

1. (Facet) If S(p, ®y) is not a singleton and is the intersection of a hyperplane and
a finite number of half spaces, MFCQ holds at any 0* € ri(S(p, ©)));

2. (L-face) If S(p, ®y) is not a singleton and is the intersection of more than one
hyperplanes, MFCQ holds at any 6* € ri(S(p, ®y)), and

3. (Vertex) If S(p, ©y) is a singleton and #7*(0*) < d, MFCQ holds at 6*.
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Remark 5.1. The lemma shows that, even if one is not sure about whether 6* is
on a facet or any other lower dimensional elements of the polytope, MFCQ holds
as long as #J*(6*) < d (and other conditions of the lemma hold). Also, things
simplify if k = d, in which case conditions (iii) and (iv) imply #J*(6*) < d at any
support point. Condition (iii) then ensures LICQ, and therefore MFCQ, at 6*.

Proof. Under our assumptions, ®; is nonempty and is in the interior of ® by
Proposition F.1 in Kaido and Santos (2014).

Case 1: Suppose S(p,®y) is a flat face and 6* € ri(S(p, ®;)). This occurs if
and only if p = ¢z" (or p = —c¢z") for some r € {1,...,k} and ¢ > 0, and p'6* =
EW{Z=27})/n" (or EWy1{Z = 7"})/7"). By (iii), such r is unique. Without
loss of generality, suppose p'6* = E(W,1{Z = 7'})/n". The assumption E[W; —
Wo|Z = 7] > 0 ensures

EWIHZ=2})/n"—EWH{Z=2"})/n"
=E[E[W, =W|Z=Z1H{Z=7"}]/=" > 0.
54)

Hence, p'0* > E(Wy1{Z = 7"}) /", implying the lower bound is slack. This and
6* € 1i(S(p, ©))) imply J*(6%) = {j*} with j* = r+k.
The gradient of the normalized moment is

r! 1!

Z
op Var(W {Z =z )2 /mr”

Let * = —7', then

DA t* _ Zr/zr -
T NarW {Z =DV e
which establishes MFCQ.

Case 2: We first claim that #77(6*) < d. Suppose otherwise. Then, there are
at least d active inequalities at 6*. Select a subset J C J(6%) such that #7 = d.
Then, by condition (iii), {D;,j € J}are linearly independent, implying 6* is a unique
solution to the system of linear equations

D =b;, VjeJ.

Furthermore, by the necessary condition of the maximization problem, there is
A € R such that

p+ Z MDD =0, (5.5)

where A; >0f0ralljej.
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Let 6 € S(p,®,) and § # #*. By construction, p'(6 —6*) = 0. This and (5.5)
imply

Z,\,D,(é —6*) =0. (5.6)
jed

Suppose that Dj(O~ —6*) > 0 for some j € 7. This implies
Djé > bj,

hence the jth constraint is violated, hence 6 cannot be in S(p, ®;), a contradiction.
Similarly, suppose that Dj(é —6*) < 0 for some j € .7, then by (5.6) and the posi-
tivity of the Lagrange multipliers, there must exist j' € J such that Dy 0—6%) >0,
and the same argument applies. The only remaining possibility is D; @-6"=0
forall j € j , in which case

D6 =b;, VjeJ,

which contradicts 6* being the unique solution to (5.5). Therefore, #7*(6*) < d
must hold. Now, by condition (iii) and #7*(6*) < d, LICQ holds at 8*, which
implies the claim.

Case 3: By #7%(0*) < d and condition (iii), LICQ holds at 6*, which implies
the claim. [ |

We conclude by mentioning other conditions. The identified set ®; is a finite
polytope, hence any projection is the value of a linear program. This immediately
clarifies that ACQ obtains, which furthermore means that Assumptions 5 and 7
coincide. Both restrict £(6*), which locally just coincides with @, to not intersect
the supporting hyperplane other than at 6*. This will hold iff the support set is
a singleton, i.e., a vertex. Finally, the solution to a linear program is necessarily
well-separated, so that Assumption 4 holds.

5.2. A Simple Entry Game

Two-player entry games are a workhorse example of partial identification since
Tamer (2003). We analyze the game specified in BCS but without covariates.
The equilibrium concept is pure strategy Nash equilibrium (PSNE). Firm 1 and,
respectively, 2 enters if

&1 —601A2 >0,
& —0A; >0,
where (A,A,) € {0, 1}? are the firms’ actions, (0;,6,) € [0, 1]? are the interaction
parameters, and (g1, &,) are observed by the players but not by the researcher. This
system is incomplete: For certain realization of (g1, ¢,), both (1,0) and (0, 1) are

PSNE and the model is silent on which is played. Hence, different (stochastic)
selection mechanisms picking an equilibrium in the region of multiplicity can be
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coupled with different values of 6 to yield the same distribution of observables
(A1,Az). Nonetheless, inference can be carried out by bounding the likelihood
of different outcomes from below by the respective probabilities of them being
unique PSNE. In this simple example, this exhausts all the information in the model
and data, leading to a sharp identification region. See Beresteanu, Molchanov,
and Molinari (2011) for characterizations of sharp identification regions in more
complex models.

In this model,

e (1,1) is the unique PSNE if &y — 014, > 0 and &, — 6,A; > 0,
e (1,0) is the unique PSNE if &y — 614, > 0 and &, —6,A; <0, and
e (0,1) is the unique PSNE if & — 0,4, <0 and &; —6,A; > 0.

Letting 7y = Pr(A; = j,A2 = k) and assuming (as in BCS) that (¢1,&,) are
distributed independently uniformly on [0, 1], we have

w1 =(1-01)(1—-6,), (5.7)
70 = (1 -61)0s, (5.8)
o1 > 01 (1 —6y), (5.9
700 = 0. (5.10)

Geometrically, the identified set ®; is an arc segment. The right panel of Figure 4
depicts its true shape if o) = w90 = 7y = 1/3.

Consider now the problem of bounding 6, from above; all other bounds on
individual parameters are similar. Guessing that (5.7) and (5.8) will bind at the
solution, one can easily solve for

9* — eik — TTo1 )
05 10/ (10 + 7T11)

Furthermore, the linear and tangent cone are tangent to (5.7) and are spanned by
(10411, — 711/ (o +m11)). This vector has strictly negative inner product with
p = (0,1). We conclude:

e Assumption 2 and any equivalent assumption cannot hold because ®; has no
interior.
o All of Assumptions 3, 4, 5, 7, LICQ, and ACQ hold.

However, fulfillment of some of these assumptions is delicate in that it depends
on 0* being an exposed point of ®;. Other directions of optimization (e.g., p =
(1, — 1), corresponding to testing the null that 6; = 6,) have 6* in the relative
interior of ©®y, i.e., at a point where only (5.7) is active. Assumptions 4, 5, and 7
will then fail.
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6. CONCLUSION

The literature on partial identification uses constraint qualifications in many ways:
To ensure Hausdorff consistency or rates of convergence for simple estimators
of identified sets (CHT; Yildiz, 2012), to justify inference for the full parameter
vector & (CHT) or subvectors (PPHI; Cho and Russell, 2019; Gafarov, 2019), or to
justify efficiency bounds (Kaido and Santos, 2014). However, some of these uses
are implicit, making it difficult even for expert readers to compare assumptions.
We provide a guide to how different high-level assumptions relate to each other
and to well-known constraint qualifications. A simple, important message is that
several high-level assumptions are tightly related to the Mangasarian—Fromowitz
constraint qualification and are essentially mutually equivalent. We believe that
this provides useful guidance to readers trying to make sense of the large menu
of inference methods for partially identified vectors and subvectors (Canay and
Shaikh, 2017; Molinari, 2020). For example, it clarifies costs and benefits relative
to work that has weak-to-no geometric regularization, mostly at the expense of
computational effort.
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