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Mountains are known as the water towers of the world, 
capturing, storing and releasing water for downstream 
use1,2. In the western United States (WUS), as in many 
global regions2, this natural service largely occurs 
through seasonal mountain snowpacks (Fig. 1a), storing 
approximately 200 km3 or 162 million acre-​feet (MAF) 
of water annually3,4, as quantified through snow water 
equivalent (SWE). In places such as California, for exam-
ple, average 1 April snowpack water storage (21 km3 or 
17 MAF) nearly doubles the amount of surface water 
reservoir storage (29 km3 or 23.5 MAF)5. The springtime 
and summertime melt of these seasonal snowpacks is 
fundamental to water infrastructure and operations, 
supplying water during times of precipitation scarcity 
and when agricultural, ecological and municipal water 
demands are high6. Over the last century, observations 
and models reveal that anthropogenic climate change 
has substantially reshaped WUS water resources, includ-
ing a declining snowpack7–9,10–17. For instance, observed  
1 April snowpack decline since the mid-twentieth cen-
tury ranged between 15 and 30% or 25 and 50 km3 (ref.15).  

Future mountain snowpacks are further projected to 
decline, and even disappear, but at unknown rates4. 
While the complete loss of snow is the worst-​case 
scenario, a plausible situation informed by estimates 
of historical low-​snow conditions (Fig. 1b) would be 
a WUS-​wide reduction in SWE and seasonal snow, 
and a shift from rare or short-​term to more persistent 
low-​to-​no snow occurrences.

The potential for persistent low-​to-​no snow to dis-
rupt the WUS water system is substantial, potentially 
even catastrophic. Water storage and conveyance infra-
structure was designed and is now managed using spring 
snowmelt as a central criterion for operations5,18–22. These 
water management decisions are predicated on the 
assumption of a stationary climate19,23, which is an unin-
tended, yet, critical, oversight. Moreover, water rights 
allocations for many major WUS rivers were made in 
the late nineteenth and early twentieth century at the end 
of the Little Ice Age (ad 1400–1900)24–28, a period that is 
among the wettest in the past 4,000 years29–32. Given the 
high confidence that continued warming will result in 
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decreased river flows in the WUS, of which snow-​loss is 
a major contributor, warming will challenge the ability 
to meet water demands under allocations that did not 
include climate change risk management17.

Societies established on freshwater availability and 
seasonal storage capacity in mountainous snowpack 
could, therefore, face multibillion-​dollar implications, 
with costs dependent on the time horizon of a low-​to-​no 
snow transition4. For example, assuming a WUS-​wide 
loss of 66.6 km3 or 54 MAF of annual snow storage val-
ued at $200 per acre-​foot, with low-​to-​no snow condi-
tions emerging in the next 50–100 years, WUS snow loss 
is estimated to reach a cumulative cost of US$120–850 
billion4. Of course, economic impact assessments of 
snow loss are complicated by water values that depend 
on time, location and supply abundance, as well as the 
nonlinear changes in the value of water during severe 
drought. Yet, despite these complications, such estimates 
demonstrate the dire situation of a low-​to-​no snow 
future with little to no action.

Uncertainties in the time horizon of snow loss also 
have practical implications and challenges for the 
diverse set of water users, including for the agricultural 

and municipal sectors33,34. Future snowpack losses 
will be detrimental to long-​term water stores typically 
reserved for emergencies35,36 and become increasingly 
difficult to manage as transitions between low-​to-​no 
snow periods move from extreme (single year), to epi-
sodic (multi-​year), to persistent (decades) conditions. 
Moreover, the disappearance of snow in the WUS has 
important hydrologic ramifications on both natural 
and managed systems. Changes in the seasonal snow 
cycle influences the timing and magnitude of ground-
water recharge, vegetation dynamics and stream dis-
charge, which then directly impacts water availability. 
These processes occur simultaneously and demonstrate 
nonlinear and heterogeneous behaviour37–40.

Thus, there is a real need to understand the time 
horizons, spatial extents and magnitudes of snow-
pack changes to inform what can be gained through 
climate change mitigation. This information needs to 
be provided at decision-​relevant scales and conducted 
with use-​inspired science that is informed by a diverse 
stakeholder group41,42. Ultimately, water policy and gov-
ernance needs to be constrained by the spatiotemporal 
limits of the water cycle to avoid the prior pitfalls of 
assuming climate stationarity. This approach of being 
proactive rather than reactive to a low-​to-​no snow future 
will safeguard already limited natural and financial 
resources, and aid in building resilience to a low-​to-​no 
snow future.

In this Review, we provide a call to action and fore-
warn the dire implications of a low-​to-​no snow future, 
given its central role in mountainous watershed behav-
iour, ecosystem function and, ultimately, downstream 
water availability. We begin by synthesizing observa-
tional evidence of snowpack disappearance in the WUS, 
followed by the propagating impacts of those changes 
on the hydrologic cycle. We follow with discussion of 
adaptation strategies necessary to reduce the economic 
and ecosystem impacts of low-​to-​no snow. We end 
with recommendations for future research, includ-
ing the need for concerted efforts to cross historically 
siloed physical and disciplinary boundaries, as well as 
the scientific practitioner divide. While other hydro-
meteorological variables have important bearing on 
WUS water resources, emphasis is placed on snowpack 
changes, owing to the historic reliance on snowpack 
by water resources management as a seasonal natural 
reservoir, and due to a strong, inverse relationship with 
temperature17 compared with precipitation43–45, which 
lacks consensus on whether future conditions in the 
WUS will be wetter, drier or remain the same.

A declining mountain snowpack
Prior to assessing future projections of WUS snowpacks 
in the face of anthropogenic climate change, it is crucial 
to provide context on the historical and contemporary 
changes of snowpack and the observational networks 
used to measure them.

Observational networks and their limitations. 
Observational networks of WUS snowpack are some of 
the most extensive in the world, including centennial-​
length snow courses, decadal-​length manual and 

Key points

•	Mountain snowpacks in the western United States (WUS) have historically acted as 
large, natural reservoirs of water; yet, they are now harbingers of a changing climate 
through their signalling of a low-​to-​no snow future.

•	Models projecting the time horizon of low-​to-​no snow in the WUS lack 
spatiotemporal consensus due to differences in definitions, metrics, methods and 
regionally specific analyses.

•	Low-​to-​no snow will impose a series of cascading hydrologic changes to the water–
energy balance, including vegetation processes, surface and subsurface water 
storage and, ultimately, streamflow that directly impacts water management.

•	A re-​evaluation of long-​standing hydroclimatic stationarity assumptions in WUS 
water management is urgently needed, given the impending trickle-​down impacts 	
of a low-​to-​no snow future.

•	Observational and modelling advances are needed to better understand the 
implications of a low-​to-​no snow future on water resources and to evaluate the 
trade-​offs among a wide array of potential adaptation strategies that can address 
both water supply availability and water demands.

•	Co-​production of knowledge between scientists and water managers can help to 
ensure that scientific advances provide actionable insight and support adaptation 
decision-​making processes that unfold in the context of significant uncertainties 
about future conditions.
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automated in  situ measurements, and multi-​year 
airborne and remotely sensed products.

An important observation date for WUS snow obser-
vations is 1 April. While somewhat arbitrary, this date 
results from monthly manual snow surveys established 

early in the twentieth century46,47, and is codified into 
water management as an indicator of warm season 
streamflow35. However, depending on location and 
hydroclimatic variability48, 1 April SWE does not nec-
essarily represent the total amount of water stored as 
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Fig. 1 | Spatiotemporal variability in western United States seasonal snowpack. a | Median peak snow water 
equivalent (SWE) for seasonal snowpacks of the western United States over 1982–2016 (ref.255). California and Upper 
Colorado hydrologic units, as defined by the United States Geological Survey, are distinguished by green and blue 
contours, respectively. b | As in panel a, but the minimum peak SWE for seasonal snowpacks. c | The temporal evolution of 
mean and historic high-​snow and low-​snow water years (WY) for the California hydrologic unit (left), and the cumulative 
distribution function of peak SWE water storage volume (right). Vertical bars in the right panel indicate peak SWE and 
median SWE for the time series illustrated in the left panel. d | As in panel c, but for the Upper Colorado hydrologic unit. 
Interannual differences in SWE conditions can proximally serve as an indicator of future low-​to-​no snow conditions.
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snow in a given water year49 (Fig. 1c,d), nor can it capture 
the warming-​induced earlier shift in the peak timing of 
SWE50,51. Peak SWE can better quantify the total amount 
of meltwater available and identify when the melt season 
might begin, but it cannot fully characterize the tem-
poral evolution and spatial variation of annual water 
storage and release12,29,52,53, especially in lower elevation, 
ephemeral snowpacks that have multiple peaks in the 
water year life cycle of SWE54. In the Rocky Mountains, 
1 April SWE underestimates peak SWE by 12%55. Both 
variables are, thus, often needed to assess whether snow-
pack changes represent an absolute loss or a temporal 
shift.

Other metrics are also used to characterize SWE. 
SWE centroid accounts for coarser temporal data 
(monthly) and snowpacks with multiple SWE values50, 
but it inherently provides a more constrained estimate 
of meltwater totals and can artificially influence other 
management-​relevant metrics, such as the snowmelt 
season start date, snowmelt season length and/or spring 
snowmelt rates18. SWE centroid and peak SWE also fail 
to account for SWE changes at daily-​to-​subseasonal 
scales56. ‘Snow drought’ refers to a historically low 
snowpack in a particular time in the water year, or over 
multiple water years, created by either anomalously low 
precipitation (dry snow drought) and/or anomalously 
high temperatures during precipitation events or driving 
midwinter melt (warm snow drought)29,57,58. The concept 
has gained momentum and enables a better understand-
ing of the drivers of low-​to-​no snow conditions and the 
identification of when snow conditions begin to diverge 
from normality.

Interannual variability that drives differences 
between peak SWE and 1 April SWE, as well as changes 
in snow accumulation and persistence as a result of 
anthropogenic climate change, highlight the importance 
of observational networks in providing real-​time mon-
itoring of current snowpack conditions. Yet, the utility 
of these observational networks is limited by instru-
ment measurement biases and spatiotemporal gaps59–61. 
A spatially incomplete in situ network, especially at 
high-​elevation headwater regions, creates challenges as 
warming continues to drive the freezing line upslope, 
which inhibits the accumulation and persistence of 
seasonal snowpack, particularly at mid-​elevations14,62,63. 
Loss of snowpack can further reduce the ability of in situ 
networks to provide skilful drought prediction, given a 
strong relationship between snowmelt and runoff 22.

To address challenges associated with monitor-
ing gaps and extreme events, various statistical and 
model-​based interpolation methods have been devel-
oped, so as to provide spatially distributed information. 
However, assumptions made in interpolation methods 
produce 40–66% differences in estimates of WUS-​wide 
peak SWE, limiting direct applications to water resource 
management64. Blending traditional approaches, such as 
snow sensors and expanded snow course surveys47, with 
novel techniques like airborne lidar65, remotely sensed 
observations53,66,67 and citizen science68, can offset some of 
these limitations. Nevertheless, heterogeneity in moun-
tainous environments limit the ability to obtain perfect 
snowpack observations, necessitating the use of models61.

Estimates of change. Despite observational challenges, 
estimates of contemporary changes have been widely 
documented, revealing significant reductions in WUS 
mountain snowpacks and their persistence (Fig. 1c,d). 
Indeed, observed reductions in both peak SWE and  
1 April SWE provide two lines of evidence for a declin-
ing snowpack15,69 (Supplementary Table 1). Peak SWE 
timing, for instance, has shifted 8 days earlier per degree 
of warming51, while peak SWE losses of −2.8 mm per 
year across 25% of stations have been estimated69. 
Moreover, 1 April SWE depths have decreased by 21% 
across 90% of reporting stations over 1955–2016, repre-
senting a snow loss equivalent to the storage capacity of 
Lake Mead, the largest reservoir in the WUS15. Below-​
normal conditions have further increased in likelihood 
in sequential years1,51,57,70,71.

While WUS mountains are dependent on extreme 
precipitation and snowfall events to build snowpacks, 
they are also susceptible to changes in precipitation 
characteristics, contributing to some of the observed 
changes alongside warming. Atmospheric rivers, 
for example, which are commonly associated with 
snowpack accumulation, are warming, intensifying 
and producing more rainfall and thus, rain-​on-​snow 
events35,36,72–74. Since the 1980s, rates of minimum tem-
perature warming in WUS mountains ranges have 
increased from 0.17 to 0.7 °C per decade, with greater 
warming (0.8–1.2 °C per decade) across more locations 
on wet days72,75. Warming temperatures push the snow-
line upslope, nonlinearly altering the amount of water 
that can be stored as snow63,76. Warming also causes 
snowpacks to ripen earlier in the season, increasing 
snowpack susceptibility to rain-​on-​snow events77. 
Deposition of light-​absorbing particles — including 
dust and black carbon — further lower snow albedo, 
increase solar energy absorption and accelerate snow 
depletion by 31–51 days, so as to result in earlier peak 
runoff timing60,78–80. Increasing wildfire activity81 and 
land-​use change79 are enhancing the deposition of 
light-​absorbing particles on WUS snowpacks, though 
regional impacts of these particles on the snowpack 
energy balance remain uncertain82,83.

Given the strong reliance on an increasingly volatile 
source of water, resource managers in the last decade 
have proactively turned to innovative strategies to retain 
higher reservoir levels via advances in hydrometeoro-
logical forecasting84. Low snowpack and, more broadly, 
drought have also motivated landmark policy changes, 
such as the Sustainable Groundwater Management Act 
in California85.

A low-​to-​no snow future
With observed contemporary changes in the WUS 
snowpack and projected continuation of anthropogenic 
climate change, there is high-​to-​very high confidence 
that WUS-​wide snowpack will continue to decline and 
peak earlier in the water year17. However, for various rea-
sons, little consensus exists regarding when snowpack 
disappearance becomes particularly detrimental, when 
the time-​to-​emergence of low-​to-​no snow might arise 
and how the spatial extent of a low-​to-​no snow future 
will materialize, as will now be discussed.
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Challenges of producing snow projections. Snowpack is 
an emergent property of cross-​scale interactions involv-
ing temperature, precipitation, radiation, topography 
and land-​surface characteristics, all of which span spa-
tial scales of the globe to hillslopes and temporal scales 
of centuries to seconds86 (Fig. 2). For decades, a lack of 
cross-​scale theory, as well as siloed sciences, sparse obser-
vational data and computational limitations, constrained 
advances in modelling mountain environments with high 
fidelity. Although Earth System Model (ESM) capabili-
ties have dramatically evolved in the last century87, par-
ticularly their strengths as large-​scale, centennial-​length 
projection tools, ESMs lack some key process representa-
tions needed to accurately simulate mountainous envi-
ronments, particularly at decision-​relevant scales (Box 1). 
Indeed, a fully coupled bedrock-​through-​atmosphere 
system remains a scientific grand challenge, given lim-
itations in resolving spatial and temporal heterogeneity 
of atmospheric and land-​surface hydrological processes 
(ranging from tens to hundreds of metres), the substantial 
disparity in model scales between scientific communities 
(sub-​kilometre to hundreds of kilometres) and the uncer-
tainties around the physical coupling, or lack thereof, 
between models and/or model components (Fig. 2).

Recent breakthroughs in supercomputing (for exam-
ple, Exascale and GPU computing)88–90, benchmarking 

of models to high-​spatiotemporal-​resolution observa-
tions (including remotely sensed and readily deployable 
in situ observational networks)91–94 and the growing field 
of artificial intelligence95,96 are accelerating ESM devel-
opment and their ability to represent the mountain-
ous hydrologic cycle. These breakthroughs combined 
with the use of variable and/or adaptive mesh refine-
ments to aid in scale-​awareness across resolutions97–103, 
mountain-​focused parameterizations104,105, more flexi-
ble and modular codes106,107, determination of when and 
where two-​way coupling is needed between models and 
submodels108, and utilization of machine learning to bet-
ter constrain parameter uncertainty or lack of cross-​scale 
theory95 will inevitably reduce the wide range of estimates 
in future projections of mountain snowpack.

The use of a hierarchy of models, namely, intermediate-​
scale (single to tens of kilometres) integrated process 
models (IPMs), can further inform assumptions made in 
ESMs and their ability to project future snow loss. IPMs 
are computationally less expensive, can more realistically 
represent important model lower boundary features and 
can be more easily benchmarked with and/or periodically 
updated by observations109,110. Most importantly, they can 
be used to interrogate the process assumptions made in 
ESMs by systematically removing process fidelity in the 
IPM for those found in ESMs. However, considerations 
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should also be made for how to minimize bias propa-
gation between coupled models and benchmarks that 
ensure that added value is actually provided with more 
costly, complex simulations. Lastly, systematic model 
intercomparison projects, such as the Snow Model 
Intercomparison Project (SnowMIP)111, will be pivotal 
in providing directions for other important community 
and model development needs.

Projections of mountain snowpacks, therefore, 
become a computational balance between limiting the 
physical process representation at a particular scale 
(model resolution versus subgrid-​scale parameteriza-
tion); the length of the simulation (a single water year 
versus multiple decades); the assessment of climate 
internal variability and statistical robustness (single 
versus multiple ensemble members); and/or the number 
of emissions scenarios assessed. These constraints yield 
an extensive and diverse literature, with a wide range of 
descriptive metrics, projection methods, time periods 
and regional specificity (Supplementary Table 1).

Literature synthesis of WUS snow projections. As a result 
of these limitations, particularly the difficulty in com-
paring different metrics and widespread use of a single, 
high-​emissions scenario, syntheses of WUS snowpack 
projections must be taken with caution. Nevertheless, 
bringing together 18 analyses3,7,21,104,105,112–124 of snow-
pack changes across the WUS and four major WUS 
mountain ranges reveals continued snow loss (Fig. 3; 
Supplementary Tables 1,2).

In particular, WUS-​wide average SWE decline (and 
their 95% confidence intervals, both rounded to the 

nearest 5%) is ~25 ± 5% by 2050, ~35 ± 10% by 2075 and 
~50 ± 10% by 2100 (Fig. 3a). The large spread in projected 
changes at mid-​century to end of century highlights the 
lack of consensus on the time to emergence of low-​to-​no 
snow. The spread also highlights challenges about how to 
best characterize SWE loss and standardize SWE projec-
tion methods, such that scientific findings can be trans-
formed into actionable information for water managers 
adapting to the rapid rate of snow-​loss brought about by 
anthropogenic climate change41,42,125,126. This actionable 
information is particularly pertinent for the maritime 
mountains of the WUS (the Cascades and the Sierra 
Nevada) (Fig. 3b,d), where ~45% losses are expected by 
2050, compared with 20–30% for the continental moun-
tains (the Rockies and the Wasatch/Uinta) (Fig. 3c,e). 
Additional projections and analyses are also needed in 
understudied mountains within, for example, the Great 
Basin and the Colorado Plateau.

Defining low-​to-​no snow. Declining SWE on a more fre-
quent, persistent and widespread basis3,7,9,113, albeit with 
regional variabilities (Fig. 3), is, thus, a hallmark of a pro-
jected shift to low-​to-​no snow in the WUS. Specifically 
defining low-​to-​no snow, however, is challenging owing 
to a multitude of considerations, including the metrics 
available to quantify snowpack decline.

In developing a quantitative definition of low-​to-​no 
snow, two critical points emerge. First, the definition 
should characterize conditions under which low-​to-​no 
snow becomes physically meaningful. Second, the snow 
conditions should represent deviations from ‘normal’ 
that result in challenges or failures in water management, 
recreational value and/or ecosystem services. The defini-
tion needs to be both broadly understood and regionally 
specific, while remaining applicable across WUS moun-
tains and downstream water management paradigms. 
Precise definitions of low-​to-​no snow depend on the 
physical characteristics of snowpack (for example, vol-
ume of water stored in seasonal and ephemeral snow, 
peak timing of water storage, and runoff rate and timing) 
and the dependence of historic management paradigms.

From a physical perspective, low-​to-​no snow can 
be defined by its lowest bound (zero snow). Although 
not impossible, it is unlikely that a complete disappear-
ance of snow in the WUS will occur before the end of 
the twenty-​first century, even under a high-​emissions 
scenario (Fig. 3), and deleterious impacts to resource 
management and ecosystems would likely occur before 
zero-​snow conditions. Alternatively, a definition uti-
lizing historic percentiles of peak SWE, akin to the 
US Drought Monitor127, has been successfully applied 
to identify snow drought conditions9,12. This approach 
provides a guide to defining low-​to-​no snow when com-
bined with the strengths of the peak SWE metric. Within 
this percentile context, low snow is defined as condi-
tions in which peak SWE falls between the 30th and 10th 
percentiles, and (effectively) no snow is defined as peak 
SWE conditions within the lowest 10th percentile.

Emergence of low-​to-​no snow. ESMs can be used to 
explore the time to emergence of low-​to-​no snow. They 
simulate the spatiotemporal scales necessary to assess 

Box 1 | mountainous hydrologic cycle process uncertainty in Earth  
System models

The mountainous hydrologic cycle provides a unique test for Earth System Models. 	
The mosaic of cross-​scale interactions and emergent behaviour stress the validity 	
of model assumptions, particularly subgrid parameterizations. Indeed, process 
representation in atmospheric, land-​surface and subsurface systems — needed to 
characterize the partitioning, stores and fluxes of the mountainous hydrologic cycle — 
remains a grand challenge, specifically under impending low-​to-​no snow conditions. 
Earth System Model limitations include:
•	Simplified microphysical and macrophysical representations of dominant 
hydrometeor processes that can bias the magnitude and elevational gradients in 
mountain precipitation256,257, and often do not account for wind redistribution and 
sublimation during or after precipitation111,258.

•	Parameterization omission of terrain influences on shortwave and longwave radiation, 
which impacts the spatial heterogeneity and lifetime of snowpack259–261.

•	Assumptions in parameterization choice (such as aerodynamic roughness length) can 
decouple the atmosphere–land interface, particularly during the winter season, resulting 
in a rapid surface cooling effect that leads to large biases in surface temperature257,262.

•	Prescription of snowpack density and snow cover fraction by empirical functions 
based on discrete temperature ranges applied uniformly across mountain ranges, 
ignoring the influences of relative humidity263 and wind redistribution258, impacting 
surface albedo, water storage and energy fluxes.

•	Under-​representation of the multiple interacting gradients needed to resolve 
vegetation dynamics (for example, topographic, biogeographic, disturbance), 
impacting vegetation processes during cold season precipitation (such as canopy 
interception) and growing season evapotranspiration107.

•	Neglected or crude representation of subsurface processes, including vadose zone 
dynamics, lateral flow and geological heterogeneity, influencing infiltration–runoff 
partitioning and groundwater recharge264.
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Fig. 3 | ranges of projected twenty-first century snowpack loss. a | Projected snow water equivalent (SWE) loss  
across the mountainous western United States for the near future (2025–2049; yellow), mid-​century (2050–2074; orange) 
and end of century (2075–2099; red), as derived from published literature3,7,21,104,105,112–124. Percent SWE loss considers 1 April, 
peak SWE and/or seasonal SWE. Projection methods include Earth System Models (ESMs), bias-​corrected statistically 
downscaled ESMs (BC-​SD) and regional climate models (RCMs), incorporating analyses under RCP4.5 and RCP8.5,  
and, in some instances, older high-​emission scenarios (SRES A2) (Supplementary Information). Box plots represent the 
standard minimum, maximum, upper and lower quartiles, and median projected SWE changes. b | As in panel a, but for  
the Cascades. c | As in panel a, but for the Rockies. d | As in panel a, but for the Sierra Nevada. e | As in panel a, but for the 
Wasatch/Uinta. The map at the top right illustrates the areas considered for the regional analyses, with ‘western United 
States’ encapsulating the entire domain. Heterogeneity in projected snowpack changes exists across mountain ranges 
and for different modelling approaches, but generally indicate agreement in decreases by the end of the century.
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the timing, amount, phase and location of storms that 
deliver precipitation87; capture alterations in the sur-
face energy budget and the fluxes and stores of water; 
and avoid limitations associated with assumptions of 
stationarity19 through the use of emissions scenarios 
and land-​use change. While acknowledging the out-
standing limitations in ESM process representation 
in mountains (Box 1), the uncertainty in individual 

model projections128, the value of large ensembles129 
and the varying plausibility of emission scenarios130, 
exploration of the timeline to low-​to-​no-​snow emer-
gence is valuable, even within a single simulation as 
a proof of concept. Here, a 20-​km-​resolution simu
lation spanning 1950–2099 (ref.131) as part of the 
High Resolution Model Intercomparison Project 
(HighResMIP)132 is used for that purpose, adopting the 
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≤30th percentile of historical peak SWE low-​to-​no snow  
definition (Fig. 4).

Through the middle and end of the twenty-​first 
century, an increasing fraction of the WUS is impacted 
by SWE deficits relative to the historical period (Fig. 4; 
Supplementary Fig. 1). In particular, only 8–14% of years 
are classified as low-​to-​no snow over 1950–2000, com-
pared with 78–94% over 2050–2099. In all regions, an 
abrupt transition occurs in the mid-​to-​late twenty-​first 
century. For example, the onset of episodic low-​to-​no 
snow — the first time that five consecutive years of ≥50% 
of the basin area experience low-to-no snow — occurs in  
the 2060s for most basins, but in California, emerges 
in the late 2040s. Persistent low-​to-​no snow — the first 
time that 10 consecutive years of ≥50% of the basin area 
experience low-​to-​no snow — occurs as early as the late 
2050s in California and as late as the end of the 2070s 
in the Upper Colorado (Fig. 4). Indeed, from 2070 to 
2099, 80–97% of years meet the definition of persistent 
low-​to-​no snow. Projections indicate that situations can 
also arise where the shift from extreme to episodic con-
ditions is rapid, such as in the Pacific Northwest, essen-
tially skipping the episodic low-​to-​no snow regime133. 
Therefore, if global emissions continued unabated, there 
is ~35–60 years before low-​to-​no becomes persistent 
across the WUS.

Propagating impacts to the hydrologic cycle
In a low-​to-​no snow climate, several key hydrologic 
processes controlling the spatiotemporal partitioning 
of water will be altered (Fig. 5), including precipitation 
stores (surface water, soil moisture and groundwater) 
and fluxes (evapotranspiration (ET), runoff and stream-
flow). Furthermore, deviations from ‘normal’ snow years 
can have direct and indirect impacts on hydrologic 
processes. These impacts are now discussed.

Evapotranspiration. Snowmelt is a significant source 
of water for vegetation in the WUS134. Changes in 
snowpack are, therefore, expected to have direct, near-​
term influences on soil moisture profiles3,134 and ET 
fluxes. Anthropogenic warming enhances evaporative 
demand135, which, subject to water availability, will 
increase ET. Yet, changing snowpacks can dramati-
cally alter water availability, particularly during early 
spring and summer. Together, the increased evapora-
tive demands along with changing water availability 
can make contemporary droughts similar in severity 

to Medieval megadroughts136,137. However, there are 
several mediating factors influencing and complicating 
snow change influences on ET, including: plant physio
logical changes138,139; water-​limitation caps to ET140,141; 
vegetation access to water due to snowmelt timing shifts; 
and the degree to which subsurface storage can buffer 
changes in above ground snow. For example, assum-
ing access to deep (>2 m) rooting zones and associated 
storage142, a warmer climate is anticipated to increase ET 
by 28% across a western Sierra Nevada watershed by the 
end of the century143, with similar declines in streamflow. 
In contrast, other projections indicate reductions in ET 
by up to 40% for mid-​latitude Sierra catchments, owing 
to earlier snowmelt and truncated water availability into 
the growing season144. At longer, multi-​year timescales, 
changes in the timing and magnitude of water availabil-
ity for ET will both influence and respond to changes in 
the density and species composition of vegetation.

Groundwater. Groundwater recharge in mountainous 
systems, either diffuse (via direct percolation of pre-
cipitation into the subsurface) or focused (via surface 
water bodies), is expected to change, given alterations to 
snowpack145. In general, snowmelt more effectively infil-
trates into the subsurface when compared with rainfall146. 
Thus, a phase change in future precipitation can result 
in less mountainous groundwater diffuse recharge. 
Furthermore, upward elevation shifts in the snowline 
will decrease the surface area over which snowmelt 
can occur76, reducing snowmelt infiltration into lower 
permeability material and, thereby, decreasing overall 
recharge. If more snowpack becomes focused at higher 
elevations, there is potential for deeper snowpacks to 
accumulate, which melt later and faster122. However, 
low-​permeability alpine snowmelt drives substantial 
groundwater interflow because ET demands in these 
regions are also low, enabling a substantial contribution 
of groundwater to subalpine vegetation — a potential 
climate-​change-​resilient mechanism for groundwater 
recharge147. If changes in groundwater do occur, they can 
have cascading effects on subsurface weathering rates, 
chemical export148 and discharge for groundwater gain-
ing streams and rivers, with subsequent implications for 
groundwater-​dependent ecosystems149. There is, thus, a 
critical need to understand mountain groundwater in  
a future climate40.

Runoff and streamflow. On average, snowmelt produces 
more runoff than rainfall115,150,151 and more attenuated 
peak flows than rainfall runoff152. Models suggest that 
more than half of runoff in the WUS originates from 
snow, despite snowfall representing only one-​third of 
total precipitation. Snowmelt contributions to runoff in 
the mountains are even larger, up to 70%115, indicating 
that projected snowfall changes will influence streamflow.

Generally, a shift in precipitation phase from snow 
to rain leads to significant decreases in annual stream-
flow, reflecting increases in ET150. However, as noted, the 
direct effects of a low-​to-​no snow future on ET in winter 
wet–summer dry systems can include both decreases and 
increases in ET. More water-​limited areas might show 
decreases and higher elevation temperature-​limited areas 

Fig. 4 | Snow disappearance based on a low-to-no snow definition. a | Temporal 
evolution of the Upper Colorado hydrologic unit (see map on the right) categorized by 
peak snow water equivalent (SWE) percentiles. The white line indicates the 10-​year 
running average of basin area (both snow and non-​snow gridcells) considered low-​to-​no 
snow, that is, where an individual year's peak SWE ≤ 30th historical peak SWE percentile. 
Data are from a single ensemble member of the 20-​km-​resolution MRI-​AGRCM3-2-​S 
Earth System Model131 under RCP8.5 (Supplementary Information). Vertical dashed  
and solid lines indicate the time-​to-​emergence of episodic and persistent low-​to-​no 
snow conditions, respectively, as defined by the onset of 5 and 10 sequential years  
with low-​to-​no snow conditions over ≥50% of the basin. b | As in panel a, but for the 
Great Basin. c | As in panel a, but for the Pacific Northwest. d | As in panel a, but for 
California. Although illustrative of a single simulation, projections such as these 
demonstrate the utility of the ‘low snow’ and ‘effectively no snow’ definitions, as well  
as the time-​to-​emergence concepts.

◀
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might show increases, and these changes will evolve with 
changes in vegetation distribution and type. Thus, while 
overall streamflow is likely to decrease, there could be 
locations where annual streamflow might increase with 
shifts from snow to rain. Yet, some projections reveal that 
mean future flows will remain stable, but that peak flows 
will increase and low flows will decrease153. Changes to 
WUS hydrographs, however, should be contextualized 
relative to the low-​to-​no snow transition. For instance, in 
a warmer future where snowpack remains, it is expected 
that slower snowmelt rates will yield less streamflow154. 
In a transitional future where both snow and rain exist, 
there is also increased potential for flood hazards due 
to rain-​on-​snow events77,155. Rain-​on-​snow events effec-
tively enhance runoff efficiency, where streamflow 
contributions from winter rainfall can surpass snowfall 
contributions156.

At sub-​annual timescales, seasonal low flow, fed 
predominately by late spring snowmelt and ground
water in gaining streams, is an important consideration, 
given its role in sustaining ecological habitats and water 
demands in Mediterranean climates, where annual peak 
water supply demands correspond to precipitation-​free 

months. Historical evaluation of snowpack and resulting 
streamflow relationships during low-​discharge condi-
tions reveals that, for every 10% decrease in peak SWE, 
annual minimum flows could decrease on the order of 
9–22% and occur several days earlier157. Shorter snow-
melt seasons imply longer low-​flow periods, which 
results in reduced low flows158 (Fig. 5c). The translation 
of changes in the timing of snowmelt into low flows 
is strongly influenced by geological factors that influ-
ence watershed response times. Slower draining, deep 
groundwater-​dominated watersheds such as the High 
Cascades in Oregon, for example, could show greater 
reduction in late-​season flows relative to faster drain-
ing watersheds, such as steep granitic watersheds in 
the California Sierra Nevada or volcanic watersheds 
in the Western Oregon Cascades158,159. As streamflow 
responses to changes in the magnitude and timing of 
snowmelt are strongly mediated by geologic factors that 
control recession characteristics, heterogeneity in geol-
ogy, even within regions such as the California Sierra 
Nevada, will be an important consideration in hydro-
logic model applications to predict low-​flow responses 
to changing snow157.
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Fig. 5 | Changes in mountain environments under persistent low-to-no snow conditions. a | Physical and biological 
processes as observed in mountain systems with seasonal snowpack. b | Shifts in the behaviour of mountain systems under 
future low-​to-​no snow. c | Seasonal trends of groundwater and streamflow throughout a single water year (beginning 
1 October), where the blue line represents historical conditions and the red line represents hypothesized future conditions. 
Although predictions of many co-​evolving hydrologic processes as a result of low-​to-​no snow conditions are difficult to 
infer, changes in both above and below ground future watershed behaviour is expected.
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Longer term and indirect hydrologic changes. At multi-​
year timescales, snowpack changes will impact the  
co-​evolution of hydrologic and land-​surface processes, 
such as the amount and type of vegetation present. For 
example, forest productivity in the California Sierra 
Nevada increases with snow accumulation, particu-
larly for more water-​limited mid-​elevations160, and ear-
lier snowmelt reduces carbon uptake in the Colorado 
Rockies161, reflecting loss of water to support late sum-
mer productivity. Longer term species changes with 
warming are also expected162, along with increases in 
forest mortality with drought163,164 and disease165,166. 
How changes in vegetation structure (including leaf area, 
rooting depth and biomass) and composition (water use 
access and water use efficiency) translate to changes in 
ET–streamflow partitioning remains poorly constrained 
in models, and is likely to vary with geoclimatic settings.

Changing vegetation structure can also feed back on 
the snowpack. For instance, denser forest canopies can 
increase snow interception losses through sublimation 
and increase snowmelt via greater longwave radiation. 
Denser canopies, however, can also slow snowmelt by 
reducing incoming shortwave radiation at the snow sur-
face, and lessen sensible and latent heat fluxes into the 
sub-​canopy snowpack167. The relationship between for-
est cover and snow dynamics can also vary with local cli-
mate conditions and landscape morphology. Regionally, 
mean winter temperature is an indicator of where forest 
cover will act as an insulator to snow cover or enhance 
its melt; regions with December through February tem-
peratures >−1 °C reduce seasonal snow duration on the 
order of 1–2 weeks168.

Changes in wildfire frequency, severity and tim-
ing are particularly catastrophic consequences of a 
low-​to-​no snow future. Indeed, alongside continued 
warming, a shift towards a no-​snow future is antici-
pated to exacerbate wildfire activity, as observed169,170. 
However, in the longer term, drier conditions can also 
slow post-​fire vegetation regrowth, even reducing fire 
size and severity by reducing fuels. The hydrologic (and 
broader) impacts of fire are substantial, and include: 
shifts in snowpack accumulation, snowpack ablation 
and snowmelt timing171; increased probability of flash 
flooding and debris flows172,173; enhanced overland 
flow; deleterious impacts on water quality174,175; and 
increased sediment fluxes176,177. Notably, even small 
increases in turbidity can directly impact water supply 
infrastructure178,179. Vegetation recovery within the first 
few years following fire rapidly diminishes these effects, 
but some longer term effects do occur, as evidenced with 
stream chemistry180 and above and below ground water 
partitioning both within and outside of burn scars181.

Integrated cascading responses. Projecting the propaga-
tion of changing snow dynamics onto ET, groundwater 
and surface water involves integrating cascading responses 
and their coupling with changing land-​surface properties. 
Time horizons of these expected hydrologic and land-​
surface changes depend on the degree of low-​to-​no snow 
intermittency and other climate drivers, in turn, impact-
ing the degree of system rebound. The potential con
sequences of different changes in annual to sub-seasonal 

snowpack on major hydrologic stores and fluxes are 
substantial and difficult to infer, given simultaneous  
changes in temperature and precipitation (Fig. 6).

Regional-​to-​continental-​scale estimates of the cas-
cading effects of future low-​snow scenarios on runoff 
are available for the WUS3,115. However, the hydrologic 
models used for such analyses generally do not account 
for potential feedbacks related to changes in vegetation 
and land-​surface characteristics, which are vital for 
longer range forecasts. Empirical analysis of hydrologic 
responses to wildfires182 show substantial regional var-
iation within the WUS. Similarly, expected trajectories 
of changing wildfire regimes vary both within and 
between WUS regions183. Coupled models must, there-
fore, resolve parameters and processes that drive not 
only significant spatial patterns in snow and hydrology 
but also spatial patterns of changing vegetation and its 
cascading impacts on water.

Hypothetical sequencing of low snow years can con-
ceptually define transition times between conditions that 
are extreme, episodic or persistent (Fig. 6b), depending 
on their frequency and order. The occurrence of these 
transitions can subsequently impact the hydrologic 
dynamics. For example, groundwater response signals 
during high snow years can alleviate stresses of previous 
years during the extreme low-​snow regimes, but not dur-
ing episodic or persistent regimes (Fig. 6b). Hydrologic 
deviations from expected (or historic) responses will 
be dependent on the resilience of each component of 
the system, and the co-​evolution and interaction of pro-
cesses simultaneously. Thresholds in system response 
could then be reached more quickly, given disturbances 
(for example, fire or vegetation mortality induced by 
disease or insects).

Climate change adaptation strategies
In a future characterized by low-​to-​no snow, creative and 
flexible strategies to adapt to variable water supplies will 
be critical to reduce economic and ecosystem impacts, 
particularly in light of 71% of water experts believing 
that current water management strategies would be 
insufficient and the need for a better understanding of 
climate-​change-​induced uncertainties33.

Vulnerabilities of the WUS water system. Over the last 
century, a complex engineered system has been devel-
oped in the WUS alongside the natural river network 
and snowpack storage to meet diverse water demands, 
including: rural, urban, residential, tribal, commercial, 
industrial, agricultural and hydroelectric power (Fig. 7). 
This system includes reservoirs for surface storage, 
canal and pump structures to move water long distances 
across basins and over mountains, groundwater pumps 
to augment surface supplies and hedge against dry years, 
run-​of-​river and reservoir-​based hydropower to gener-
ate electricity, and water efficiency technologies and con-
servation practices to reduce water needs. In addition to 
ensuring reliable water supply, this system mitigates flood 
risk from high-​water events and provides environmen-
tal flows for ecosystem benefits. Together, these systems 
have been designed to facilitate the movement of water 
from water-​surplus to water-​limited regions, to manage 

Nature Reviews | Earth & Environment

R e v i e w s



0123456789();: 

Average snow year  

Snow

Snow

Precipitation

Soil moisture

Soil moisture

Groundwater

Groundwater

Discharge

Low snow with earlier melt Low snow with rain on snow

Snow
Rain

? ?

? ?

–10 years 0 years 10 years 20 years 30 years 

Extreme Episodic Persistent

–20 years 
Time since present

a Single water year 

b Multiple water years
Month of water year

O N D J F M A M J J A S O O N D J F M A M J J A S O O N D J F M A M J J A S O

ET

Average snow year Low snow year 

Fig. 6 | Cascading above and below ground impacts of snowpack changes. a | Temporal dynamics of annual water 
partitioning for hypothetical variations (average snow year, low snow with earlier melt and low snow with rain on snow)  
in average and low snow years. With the exception of the rain-​on-​snow scenario, these illustrations assume no additional 
compensation from rain. Question marks denote scenarios where inferring potential changes are more uncertain.  
b | Sequencing effects of multi-​year low-​to-​no snow conditions indicating transitions between extreme, episodic  
and persistent system behaviour. Red shading indicates low snow years and blue shading indicates high snow years. 
Inferences in system behaviour such as rebounds after single or sequential low snow years are difficult, given interactions 
across the atmosphere–bedrock continuum, warranting the use of physically based models. ET, evapotranspiration.
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the natural spatiotemporal variability that is inherent  
in the WUS precipitation patterns and the locational 
and timing mismatch between water availability and 
human water demands across multiple sectors184,185. The 
high value placed on water in these regions, particularly 
during times of scarcity, drives this movement of water 
across basins, despite the great financial and energy cost 
of doing so186. A complicated set of legal commitments 
regulate much of the physical infrastructure, including 
long-​term water compacts, interbasin transfers, water 
rights, water quality standards, and environmental water 
and species protection mandates. These physical and legal 

structures are managed together in response to changing 
water demands across daily, yearly and decadal scales.

While WUS water management has adapted to inter-
annual variability in water supply, fundamentally, the 
water infrastructure, legal framework of water rights187 
and management institutions were built with the expec-
tation that supply variability would be contained within 
a stationary range of known possible conditions19. 
However, changes in the seasonality and variability of 
the mountainous hydrologic cycle has important direct 
and indirect implications for the management of WUS 
water resources that extend beyond just changes in 
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Fig. 7 | Supply and demand connections between the natural and managed WUS water systems. a | Water sources, 
storage and conveyance across the western United States (WUS). b | Water demands across the WUS. This combination  
of natural and engineered systems illustrates the interconnected nature of WUS water and the long travel distances of 
water moved away from mountains to support urban and agricultural water end users and to power run-​of-​river and 
reservoir-​based hydropower generation. Note that groundwater aquifers, another major water source in the region,  
are not included in this figure for clarity of visual representation. See Supplementary Information for the data sources. 
SWE, snow water equivalent.
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the historical mean and variability of annual runoff. 
For example, under a low-​to-​no snow future, it will be 
more challenging to capture earlier snowmelt in reser-
voirs required to maintain early season flood control 
capacity188 or to gauge reservoir releases in order to 
prepare for secondary or tertiary peaks in inflow.

These changes will affect water availability for urban 
water suppliers, for example, in Southern California, a 
region heavily dependent on imported water from the 
snowpacks of the Sierra Nevada and Colorado River 
Basin189. There will be increased pressure on agricultural 
water users in the WUS190, who have come to rely on 
snowmelt stored in reservoirs to irrigate during the sum-
mer growing season6,191. Rural community water sys-
tems, such as in the Central Valley of California, could 
become more reliant on already stressed and overdrafted 
groundwater sources, particularly those that already 
have water quality violations192. Climate change impacts, 
including declining snowpack, could create water supply 
availability and quality challenges in some tribal areas 
that exacerbate socio-​economic vulnerabilities62,193,194. In 
addition, a low-​to-​no snow future will affect the WUS 
energy sector; high-​elevation hydropower generators 
that have small reservoirs designed around stationary 
snowpack storage will likely decrease their electricity 
production, particularly during the summer195–197. Given 
that conveyance infrastructure connects disparate natu-
ral systems across hundreds of miles and between basins 
(Fig. 7), such impacts of low-​to-​no snow conditions in 
one region can have far-​reaching impacts that disrupt the 
WUS water system across a diverse group of stakehold-
ers with different economic values, water use priorities 
and legal mandates. These connections further com-
pound existing pressures on water supplies from ageing 
infrastructure, population growth, increased demands 
from energy production and land-​use change184,198.

A path forward. A number of potential adaptation 
strategies to a low-​to-​no snow future can be pursued 
to address both water supply availability and water 
demands, with, for example, hard infrastructure (includ-
ing dams, canals and new supplies) and soft manage-
ment approaches (including better forecasting to inform 
operations, managed aquifer recharge (MAR) and con-
servation)199. It is likely that a diversified portfolio of 
both supply-​side and demand-​side strategies will be 
needed to flexibly adapt to a low-​to-​no snow future, and 
overcome implementation barriers and physical limits of 
any one approach17,200.

Physical surface storage and conveyance infrastruc-
ture (for example, dams, pipelines and aqueducts) serve 
to smooth the variability of water supplies in time and 
space. Proposed future adaptation strategies include 
building new surface storage capacity (for example, the 
Sites Reservoir in California)201, retrofitting existing res-
ervoirs to increase capacity (for example, raising Shasta 
Dam in California)202,203 and constructing large new 
conveyance projects (for example, Utah’s proposed Lake 
Powell Pipeline on the Colorado River)204. However, 
dams and large conveyances are expensive, slow to 
develop relative to the speed of anthropogenic climate 
change and can have significant negative ecosystem 

impacts, including obstructing and changing other phys-
ical aspects of fish habitats205,206, trapping sediment207 and 
changing water quality. Planning of these new systems 
and associated water governance is also challenging 
because large infrastructure is designed, built and main-
tained on the multidecadal scale and includes trade-​offs 
such as cost versus capacity, requiring decision frame-
works and optimization paradigms that can account for 
multiple factors208,209.

Besides new infrastructure, there is some flexibility 
to adapt existing surface storage infrastructure to new 
conditions through innovative reservoir operations. 
Forecast-​informed reservoir operation (FIRO) is a rel-
atively new concept in which weather and hydrologic 
forecasts are used to selectively retain or release water 
from reservoirs, as opposed to conventional release 
schedules based on rule curves, which are estimates of 
allowable maximum daily storage to reduce downstream 
flood risk84,210. Advances in sub-​seasonal to seasonal 
weather forecasting have made it possible for reservoir 
operators to more effectively balance water supply and 
flood control objectives (for example, avoid releasing 
water supply for flood preparedness if large precipita-
tion events are unlikely in the near future). A modelling 
case study on Lake Mendocino showed the potential to 
increase water storage by 33%84. Such strategies are inval-
uable as the need to capture spring snowmelt becomes 
less reliable in the water year. Enhanced monitoring 
networks can further support critical management 
decisions during these high-​impact events211.

Groundwater reservoirs can also provide signifi-
cant storage capacity to offset snow loss. For example, 
California groundwater basins are estimated to have 
between 850 million to 1.3 billion acre-​feet (1,048 to 
1,604 km3) of storage, compared with an annual aver-
age of 23.5 MAF or 29 km3 of surface water reservoir 
storage (with an upper bound of 50 MAF or 62 km3)5,212. 
Therefore, MAR, whereby excess surface water is con-
veyed to flood-​permeable landscapes to infiltrate into 
groundwater aquifers or stormwater is captured and 
stored in urban areas213, could be another important cli-
mate adaptation strategy214. Conveyance can transport 
water to locations suitable for groundwater recharge 
either at times when there is excess conveyance capac-
ity or when coupled with FIRO to provide more stor-
age space in reservoirs without ‘losing’ water from the 
managed system. Importantly, these potential new 
groundwater stores must be managed conjunctively, or 
in coordination with surface water, to allow critically 
overdrafted basins to recover and be maintained at more 
sustainable levels215.

There are also potential approaches to increase 
total supply by bringing ‘new’ water into the system. 
These approaches can be natural-​engineered hybrid 
approaches such as forest and vegetation management 
to reduce ET and increase snow storage, runoff and 
recharge216. However, forest management for water 
could conflict with other desired forest management 
outcomes, and must consider a range of other objectives, 
including wildfire hazard, terrestrial carbon storage, 
habitat refugia, recreation impacts and economics of its 
scalability, again highlighting inherent trade-​offs among 

www.nature.com/natrevearthenviron

R e v i e w s



0123456789();: 

competing societal objectives217,218. Cloud seeding is 
another hybrid system that has been pursued histori-
cally but carries with it controversy219. Fully engineered 
approaches such as seawater and brackish desalination 
and recycled water for potable and non-​potable reuse are 
also possibilities and face their own challenges in terms 
of cost, energy usage, social acceptance, implementation 
lags and capacity220–223.

Water demand management can complement the 
aforementioned supply-​side approaches. Agricultural 
water use can be reduced by improved irrigation effi-
ciency, more precise water use versus yield estimates for 
crops, integrated crop water management, crop switch-
ing and land repurposing224–227. Ideas for reducing water 
use in urban sectors include more water-​efficient appli-
ances, reduced outdoor irrigation, leak detection, rain-
water capture and localized storage185,228. Additionally, 
changes in agricultural and urban water markets and 
pricing could be powerful tools to manage demand  
and respond to scarcity229. All of these approaches 
could help to increase WUS water system resilience, but 
their implementation would be more optimal with an 
improved understanding of the spatiotemporal dynamics 
of a low-​to-​no snow future.

Decision-​making under uncertainty and co-​production. 
Evaluating the risks and trade-​offs among alternative 
climate adaptation strategies presents a scientific and 
policy challenge, given the highly variable, multiscale, 
interconnected and nonlinear nature of built infra-
structure systems and the natural systems that they are 
embedded within. Upgrading water infrastructure so 
that it is prepared to respond to these types of changes 
and challenges will require enormous investment. For 
example, the American Society of Civil Engineers pro-
jects US$1 trillion are needed to maintain and expand 
the nation’s drinking water systems, which have received 
a grade of ‘D’ in their 2017 infrastructure ranking230. 
Determining which investments are worthwhile to pur-
sue is a process that is informed by scientific and tech-
nical knowledge about hydroclimatic and infrastructure 
systems. For example, operational decision support 
models can be combined with economic231 and bedrock 
through atmosphere modelling capabilities232, to explore 
physically plausible future scenarios with consideration 
of mitigation strategies and water supply and demands. 
However, additional or improved scientific information 
is, by no means, the only barrier to adaptation233,234, and 
related decision-​making is fundamentally a social pro-
cess that must resolve the trade-​offs among multiple 
objectives arising from different communities, actors 
and institutions.

There is an extensive social science literature on 
climate adaptation that examines, for instance, insti-
tutional, cultural, behavioural and political aspects of 
decision-​making235,236, including which stakeholders have 
a voice in planning (often referred to as procedural jus-
tice)237 and who benefits from adaptations (often referred 
to as distributive justice)238,239. There are several prom-
ising scientific developments that can serve to narrow 
uncertainties regarding a low-​to-​no snow future. These 
include real-​time modelling and monitoring networks, 

and the development of observationally informed cou-
pled modelling strategies that represent key human and 
natural system processes in a self-​consistent manner. 
While such advances in science can reduce uncertainty 
regarding future conditions, some degree of irreducible 
uncertainty will always remain240. Thus, at the same time 
that science evolves to increase predictive understanding 
of the mechanisms of hydroclimatic change, manage-
ment practice must evolve to accommodate uncertainty 
regarding the changing patterns of current and future 
hydrologic variability. Developing a robust strategy and 
selecting investment options that balance competing 
societal objectives and multisectoral interactions (such 
as the interaction among water and energy186 or water 
and carbon207 reduction goals) requires new approaches 
to integrate water resource planning. Frameworks and 
planning methods for decision-​making under deep 
uncertainty that acknowledge and accommodate imper-
fect knowledge regarding the probabilistic range of pos-
sible future conditions such as decision scaling241, robust 
decision-​making, dynamic adaptation pathways242 and 
scenario planning can identify scientifically informed 
adaptive strategies that leverage best available science 
without overstating its confidence243.

For instance, the United States Bureau of Reclamation 
and water management agencies within the Colorado 
River Basin engaged in a robust decision-​making study 
that identified a range of potential future climate con-
ditions under which water delivery obligations would 
be vulnerable. Portfolios of adaptation strategies aimed 
at demand reduction (including agricultural, municipal 
and industrial conservation) and supply augmentation 
(including reuse, desalination and water import) were 
evaluated for their ability to alleviate these vulnerabilities 
and for their trade-​offs in cost, yield, technical feasibil-
ity, legal risk and other criteria. The portfolios gener-
ally increase system robustness but have a wide range 
of implementation costs, especially under the declining 
supply conditions, and vary between the Upper Basin 
and the Lower Basin244.

Making science usable for decision-​making requires 
strong trust between the parties245. This trust often 
develops over deliberate, long-​term collaboration246, 
with mutual understanding of the science, models and 
tools being discussed and demonstration of the credibil-
ity, saliency and legitimacy of the new approach(es)247. 
Institutional, technical and financial capacity to imple-
ment these approaches must also be overcome233. 
Scientists must also recognize that practitioners are 
often directly responsible, sometimes even person-
ally liable, for the outcomes of decisions made, which 
makes them hesitant in the application of new climate 
science236, especially if perceived as not fitting with 
existing knowledge or policy goals233,248.

A path forward can be made by including Earth 
scientists, infrastructure experts, decision scientists, 
water management practitioners and community 
stakeholders, in a collaborative, iterative process of sci-
entific knowledge creation through a co-​production 
framework41,42,249,250. This process helps to ensure that 
new science is suited to challenges at hand and can pro-
vide meaningful input into decision-​making processes, 
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enabling more efficient, flexible and robust solutions. For 
example, an interdisciplinary, social and hydroclimatic 
co-​production project between the Eastern Shoshone 
and Northern Arapaho tribes of the Wind River Indian 
Reservation in Wyoming, university partners and more 
than a dozen government agencies helped to develop 
early-​warning tools for drought and to support climate 
adaptation planning at scales relevant to local water 
managers, in response to climate information needs 
identified by the tribes62. In such collaborations, bound-
ary spanners or information brokers, organizations 
and/or individuals who can facilitate the co-​production 
process play critical convening and translating roles  
in increasing the usability of new climate science for 
adaptation planning234,248,251,252.

Summary and future perspectives
The WUS water sector built its infrastructure and devel-
oped its management practices under the assumption of 
an abundant winter snowpack that reliably melts prior to 
peak water demands in summer months. Observations 
highlight multiple lines of evidence indicating a his-
torically declining snowpack that peaks and melts 
earlier. Models further project a continuation of this 
decline, with equivalent snowpack losses on the order 
of ~35 ± 10% by mid-​century and ~50 ± 10% before the 
end of the twenty-​first century, should emissions con-
tinue unabated. Exact timelines of snowpack declines 
are uncertain, shaped by projection methods, emission 
scenario and metrics used. To standardize community 
efforts to understand the time to emergence of snow 
loss, a new low-​to-​no snow definition is provided based 
on historical peak SWE percentiles, ≤30th percentile 
(low snow) and ≤10th percentile (effectively no snow). 
This low-​to-​no snow definition helps characterize when 
snow loss becomes particularly detrimental, which 
is likely regionally specific and will be a function of  
the sequencing of low snow years and the response  
of the hydrologic system to those low snow years. The 
implications of these snowpack changes include pertur-
bations to groundwater recharge, streamflow dynamics 
and ET fluxes, and are complicated by simultaneous, 
nonlinear processes from the bedrock through the  
canopy, as well as disturbance such as wildfire. Owing 
to the expansive and interconnected nature of WUS 
water storage and conveyance, particularly to differential 
snow loss in various mountain regions, several vulner-
abilities to the existing WUS water system will require 
innovative adaptation approaches that can be supported 
by new modes of usable, decision-​relevant knowledge 
production.

Of the many uncertainties imposed by climate 
change on the hydrologic cycle, the high confidence in 
snowpack decline enables proactive planning. From a 
water storage perspective alone, a shift in precipitation 
from snow to rain will result in a failure to meet water 
demands, given limitations in existing reservoir storage 
capacity. Strategies could include additional surface and 
subsurface storage, diversifying supply options and con-
servation. A re-​evaluation of the operation and design 
of WUS water systems is timely, given current plans 
for large-​scale federal investments in infrastructure 

and the American Society of Civil Engineers’ recent 
declaration of ‘chronically underinvested’ US drinking 
water systems230. This re-​evaluation also presents an 
opportunity to proactively plan for snow-​related water 
failures. Snow loss is often less of a priority relative to 
other investments made retroactively to a changing cli-
mate, for example, Texas’ winterization from the national 
electric grid or the US coastal flood defence from storm 
surges and sea level rise253. For water management, the 
urgency of implementation for the planning, permit-
ting, construction and/or retrofitting of storage and 
conveyance systems is immediate, but the realization 
of benefits is on the order of several decades184. Thus, 
decisions and investments made today will extend mul-
tiple generations, operate for half-​centuries or more, 
and need to function within rapidly changing hydrocli-
matic conditions. To avoid pitfalls of assuming station-
arity again, investments should not solely focus on hard 
infrastructure but also the potential for soft management 
approaches and continuous optimization of the hard 
infrastructure investments, such as MAR and FIRO, as 
environmental conditions change.

In combination with hard infrastructure and soft 
management investments, additional investments in 
maintaining and expanding observational networks 
and supporting the implementation of frameworks 
to develop co-​produced, use-​inspired research will be 
instrumental as snow disappears. Gaps between opera-
tional and research models need to be addressed. Future 
ESM development aimed at enhancing the fidelity of 
integrated mountainous hydrologic cycle processes 
should also be considered a scientific grand challenge. 
The overall goal being that future models that can reli-
ably translate projections of planetary-​to-​regional-​scale 
changes in the Earth’s climate system to the scales rele-
vant to the mountainous hydrologic cycle is, in turn, bet-
ter suited to isolate existing natural and managed system 
vulnerabilities and assess the efficacy and scalability of 
climate adaptation strategies.

Finally, a paradigm shift in the science commu-
nity is also needed, where those studying climate 
change will need to not only look for a single mode of 
hypothesis-driven research but also towards a problem- 
oriented framework254. Likewise, water agencies will 
need to be amenable to new technologies, approaches 
and develop non-​traditional relationships to inform new 
protocols for operations. This more holistic approach 
that accepts nonstationarity while considering both the 
natural physical system and the managed one can help 
to ensure that systems are less vulnerable to longer term 
hydroclimatic change and short-​term hydrometeoro-
logical extremes. A concerted, community-​wide effort 
is needed to support the funding mechanisms, legal and 
research institutions, incentive structures, co-​production 
teams and/or boundary organizations to represent a 
diverse set of stakeholder needs. The overall goal of 
these investments and interactions would be WUS-​wide 
resilience to ongoing snow loss and the imminent onset 
of a persistent low-​to-​no snow future if anthropogenic 
climate change continues unabated.
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