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1 INTRODUCTION

Over the past 15 years, conforming finite element methods for Hodge-Laplace-type problems on
simplicial and cubical meshes have been analyzed and categorized using the mathematical theory
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of Finite Element Exterior Calculus (FEEC) [Arnold et al. 2015, 2006, 2010]. While this effort
was initially focused on placing related theoretical results under a single, unified mathematical
framework, it also exposed the frontier of knowledge and spawned a wealth of spin-off projects
that improved awareness, understanding, and implementation of the methods described. Among
these follow-on projects was a revisiting of the notion of “serendipity” finite elements, a particular
type of finite element method dating back to the 1970s. Named for its seemingly too-good-to-be-
true computational benefit, a serendipity finite element method converged to the correct solution
of a partial differential equation (PDE) at an equivalent rate but with fewer degrees of free-
dom than the corresponding tensor product method. The simplest and most well-known serendip-
ity method replaces the quadratic 9-node square element with a “serendipity” 8-node element
that has no interior degree of freedom, but still converges at a quadratic rate in the appropriate
sense.
The core idea of serendipity elements, i.e., reducing degrees of freedom from tensor product

methods without reducing the accuracy of the method, floated around computational engineering
communities until it found a resurgence under the FEEC framework. In a seminal work by Arnold
and Awanou [Arnold and Awanou 2011] the scalar-valued serendipity elements were formalized
as providing approximation on a space of polynomials Sr that nests between maximum-degree r
polynomials Pr and tensor product degree r polynomials Qr . In a subsequent work [Arnold and
Awanou 2014], this notion was extended using FEEC to introduce “serendipity vector elements” to
the literature—analogues of the famous Nédélec elements [Nédélec 1980, 1986]—which led to the
widely circulated Periodic Table of Finite Elements [Arnold and Logg 2014].

Despite excitement at these developments, implementing serendipity elements and realizing any
potential computational benefits proved to be a significant challenge. While creating data struc-
tures for “all polynomials up to degree r” is straightforward, simply trying to write down the ap-
proximation spaces used by serendipity elements—especially the vector-valued elements—requires
a substantial amount of mathematical notation and explanation. As a consequence, the serendipity
elements have never been implemented or rigorously studied beyond a few special use cases.
Recent work on a closely related family of methods—called trimmed serendipity ele-

ments [Gillette and Kloefkorn 2019]—has opened the door to potential widespread usage and ben-
efit from the notions of serendipity theory just described. The trimmed serendipity spaces are
identical to the serendipity spaces in the scalar-valued cases but are distinct in the vector-valued
cases where, notably, they have fewer degrees of freedom than the serendipity elements of the
same order. Since the computational motivation for serendipity methods is entirely about reduc-
ing degree of freedom count while preserving approximation power, the smaller dimensionality of
the trimmed serendipity spaces obviates the need to implement the vector-valued “non-trimmed”
serendipity elements.
Implementation of trimmed serendipity spaces is feasible by merging two independent efforts:

the systematic definition of computational basis functions for these methods fromwork by Gillette,
Kloefkorn and Sanders [Gillette et al. 2019] and the easily extensible open-source finite element
software package Firedrake [Rathgeber et al. 2016]. The Unified Form Language [Alnæs et al. 2014;
Logg et al. 2012], inspired by FEEC, provides a common backbone for translating the basis func-
tions from their formal statement into a code structure using awell-established, high level interface.
We explain the idea of the implementation by walking through the process of discretizing a PDE
and selecting a finite element method for approximating its solution.

Motivating example. Listing 1 provides a snippet of code that a user could write to approximate
a solution to the mixed Poisson equation on the domain Ω := [0, 1] × [0, 1] with boundary Γ. The
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Fig. 1. The degree 2 RTCF tensor product element (Raviart-Thomas H (curl) elements on quadrilaterals,

[Raviart and Thomas 1977]) (left) used in Listing 1. The RTCF element is an example of a tensor product ele-

ment in 2D, which depending upon the orientation of the DOFs on the edges, can be used for either H (div)
or H (curl) problems. The right displays a similar example for the DQ element, which is an L2-conforming

tensor product element in 2D, and is necessary to form the stable pair for the mixed Poisson problem.

formal problem statement of the continuous weak form in this case is: find σ ∈ Σ := H (div) and
u ∈ V := L2 such that ∫

Ω
(σ · τ + ∇ · uτ ) dx = 0 ∀ τ ∈ Σ,∫

Ω
∇ · σv dx = −

∫
Ω
f v dx ∀ v ∈ V .

(1)

We assume homogeneous Dirichlet boundary conditions so that the Dirichlet data in u vanishes
on Γ. Solving the discretized version of Equation (1) requires choosing a suitable pair of finite
element spaces to create a stable method. On a mesh of squares, the typical stable pair of tensor
product finite elements would be RTCF and DQ for H (div) and L2, respectively. These elements are
visualized in Figure 1 and are part of the tensor product family of elements. We demonstrate the
tensor product pairing in Listing 1, where the order of the vector and scalar elements are offset by
1 in accordance with the theory for optimal convergence rates.

Listing 1. Basic Firedrake implementation of the mixed Poisson problem showcasing where to choose the

elements that are used and how to create the equations in Firedrake’s notation.

1 polyDegree = 2
2 numberOfCells = 2**5
3 mesh = UnitSquareMesh(numberOfCells , numberOfCells , quadrilateral=True)
4 hDivSpace = FunctionSpace(mesh , "RTCF", polyDegree)
5 l2Space = FunctionSpace(mesh , "DQ", polyDegree - 1)
6 mixedSpace = hDivSpace * l2Space
7
8 sigma , u = TrialFunctions(mixedSpace)
9 tau , v = TestFunctions(mixedSpace)
10
11 x, y = SpatialCoordinate(mesh)
12 uex = sin(pi*x)*sin(pi*y)
13
14 f = -div(grad(uex))
15 a = (dot(sigma , tau) + div(tau)*u + div(sigma)*v)*dx
16 l = -f*v*dx
17 w = Function(mixedSpace)
18 solve(a == l, w)

An important strength of Firedrake is its modular structure for both users and developers. For
the user, swapping to trimmed serendipity elements to solve the mixed Poisson problem is now
only a matter of modifying lines 4 and 5 in Listing 1 to the appropriate identifiers, SminusDiv
and DPC inside the FunctionSpace calls that define hDivSpace and l2Space. For developers, im-
plementing a new element type—such as trimmed serendipity—is simply a matter of defining a
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Fig. 2. Comparison of the degrees of freedom (DOFs) required for a trimmed serendipity element S−Λk
vs a tensor product element Q−Λk , as calculated on a [0, 1]3 mesh with a total of 163 cubes. After order 1,
where the element types coincide, the trimmed serendipity elements have strictly fewer degrees of freedom

than the corresponding tensor product elements, with a gap that increases as the degree of polynomial

approximation order increases.

suitable computational basis and connecting it to the intermediate interfaces in the included li-
braries.
Accordingly, we have implemented the basis functions from Gillette et al. [2019] using Fire-

drake’s internal coding conventions and then carried out tests of various use cases in a reliable
computational framework. We show in Figure 2 how the number of degrees of freedom (DOFs)

grow in tensor product spaces (Q−) versus trimmed serendipity spaces (S−) in various element
types, for increasing degree of polynomial approximation order. Seeing how such quick back-
of-the-envelope calculations might translate into significant computational savings requires the
thorough implementation provided in this article.
The main contributions of this article are as follows:

(1) We explain the implementation of trimmed serendipity elements within the Firedrake soft-
ware environment and describe how users can easily employ the elements in their own code,

(2) We validate the implementation of the trimmed serendipity finite elements by confirming
they attain the theoretical bounds that are predicted in terms of convergence rates, and

(3) We examine the costs and benefits of using trimmed serendipity elements within the con-
fines of typical test problems for numerical analysis by comparing them to tensor product
elements.

2 BACKGROUND AND NOTATION FOR TRIMMED SERENDIPITY ELEMENTS

Among its many advantages, FEEC [Arnold et al. 2015, 2006, 2010] gives an easy, unified way to
notate different element types. The four best known families of elements are denoted P−r Λk , PrΛk ,
Q−r Λk , and SrΛk , which are, respectively, the trimmed polynomial, polynomial, tensor product,
and serendipity elements of order r using k-forms. The P and P− spaces are defined over meshes
of simplices (triangles, tetrahedra, etc.) while the Q− and S spaces are defined over meshes of
hypercubes (squares, cubes, etc.). The optional notation (�n ) specifies that the space is constructed
over the n-dimensional cube in Rn , but we will frequently omit this addition if n is clear from
context.
The mathematical results from FEEC regarding these four families synthesize decades of re-

search into what constitutes a stable finite element, i.e., a numerical method that can be proven to
converge to the correct solution of certain PDEs in certain norms at a prescribed rate, indicated
by the subscript r . In any dimension, the 0-form spaces provide scalar-valued, H 1-conforming
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elements. In 2D, 1-forms can represent bothH (curl) andH (div) elements, depending on the orien-
tation of the DOFs defined on the edges of a mesh. In 3D, 1-forms correspond to H (curl) elements
while 2-forms correspond toH (div) elements. Notably, the serendipity familySrΛk is the youngest,
least implemented, and hence least understood among all these families. In particular, the 1-form
and 2-form (regular) serendipity elements in 3D were only characterized in 2014 by Arnold and
Awanou [2014], whereas the equivalent tensor product elements were first described more than
30 years earlier in Nédélec [1980, 1986].

2.1 Trimmed Serendipity Elements

The trimmed serendipity family is an even newer addition to this collection that attains a key opti-
mality condition arising from the FEEC framework. Christiansen and Gillette [2016] computed the
minimal possible dimensions for an exact sequence of conforming finite element spaces on cubes
that contained PrΛk for each k . Gillette and Kloefkorn [2019] identified polynomial differential
form spaces with these prescribed dimensions and approximation power, denoting them trimmed
serendipity elements with the notation S−r Λ

k . Thus, trimmed serendipity elements represent the
cheapest possible way to get an order r conforming finite element method, if cost is only measured
in terms of number of degrees of freedom.
To test if this benefit translated to computational speedups, Gillette, Kloefkorn and Sanders

gave a systematic way to build the computational basis for each of these elements for dimensions
n = 2, 3, k = 0, 1, 2, 3-forms, and arbitrary order r ≥ 1 [Gillette et al. 2019]. These “computational
bases” are well-suited for implementation, since each basis function is associated to a unique mesh
identity—i.e., a specific vertex, edge, face (for cubes), or element interior. The required geometric
localization of DOFs is visualized for low orders in 3D in Table 1, arranged equivalently to the
Periodic Table of the Finite Elements. We note that neither the particular bases defined in Gillette
et al. [2019] nor any other general implementation of trimmed serendipity elements has been
attempted prior to this article.

2.1.1 Scalar Trimmed Serendipity Elements. The scalar-valued trimmed serendipity elements
that are represented by 0-forms are used as the shape functions for an H 1-conforming finite el-
ement space. These are denoted by S−r Λ0 and are identical to the scalar-valued serendipity ele-
ments from the Periodic Table of Finite Elements, i.e., S−r Λ0 (�n ) = SrΛ0 (�n ) for any n. Arnold
and Awanou provided a simple description of the functions in SrΛ0 as the span of all monomials
of “superlinear degree” less than or equal to r [Arnold and Awanou 2011].
Likewise, the scalar-valued trimmed serendipity elements that are represented by n-forms cre-

ate L2-conforming finite element spaces. These are denoted by S−r Λn (�n ), and here we have the
equality S−r Λn (�n ) = Sr+1Λn (�n ). In terms of the Periodic Table of Finite Elements, these are the
dPcr spaces. The shape functions for these spaces are simply the space of order r polynomials.
Since no inter-element continuity is needed for L2-conformity, we have the additional equivalence
S−r Λn (�n ) = Pr+1Λn (�n ).

2.1.2 Vector-valued Trimmed Serendipity Elements. The trimmed serendipity elements are truly
distinct from regular serendipity spaces for k values 0 < k < n. Here, we will only consider
dimensions n = 2 and n = 3, where the k-form spaces can be identified as vector-valued finite
elements. In 2D, the vector-valued spaces S−r Λ1 (�2) bear close relation to the Arbogast-Correa
elements [Arbogast and Correa 2016], as explained in Gillette and Kloefkorn [2019, Prop 2.2]. In
3D, the vector valued spaces S−r Λ1 (�3) and S−r Λ2 (�3) were also characterized by Cockburn and
Fu [2017], as explained in Gillette and Kloefkorn [2019, Property 2.3].
A major reason that the vector trimmed serendipity elements have only recently been con-

sidered in the mathematical literature is that their DOF per element count is complicated. As
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Table 1. Trimmed Serendipity Elements on a Reference Cube in 3D, Akin to the Periodic Table of

the Finite Elements Columns show Increasing form Order from k = 0 to k = 3, Corresponding to
H1, H (curl), H (div), and L2 Conformity, Respectively

Rows show increasing order of approximation r = 1, 2, 3. On the front face of each element, dots indicate the
number of DOFs associated to each vertex, edge, or face of the cubical element. The number of DOFs
associated to the interior of the cube is indicated with “# int =.” The total degree of freedom count for each
element is shown to its right.

evidenced by Table 1, certain DOFs grow in predictable patterns with r . For instance, elements
in the 1-form family, S−r Λ1 (�3), have exactly r DOFs per edge of the cube (corresponding to “or-

der r” approximation on edges) and elements in the 2-form family, S−r Λ2 (�3), have
(r + 1

2

)
DOFs

per face (corresponding to “order r” approximation on faces). However, the 2-form family has the
more obscure quantity of (r 3−2r 2+3r )/2 DOFs associated to the interior of an element (for r > 1).
This growth pattern is recognized as sequence A064808 by the On-line Encyclopedia of Integer
Sequences [Sloane 2018] and is in agreement with the general formulae presented in Gillette and
Kloefkorn [2019], but a natural geometric interpretation remains elusive. Equally unexpected pat-
terns are evident in the growth of DOFs on faces and interiors of the S−r Λ1 (�3) family. As we will
discuss in the next section, Firedrake makes the creation and incorporation of such unusual DOF
growth patterns simple for the developer, and thus opens these elements to numerical testing for
the first time.

3 BUILDING CAPACITY FOR SERENDIPITY ELEMENT TYPES IN FIREDRAKE

Firedrake uses FIAT [Kirby 2004, 2012] to provide finite element basis functions on reference ele-
ments. To implement a new element in FIAT, wemust provide both rules to tabulate basis functions
and their derivatives at reference element points and a data structure that assigns basis functions to
particular reference element facets. Said element is then made available in Firedrake by providing
a symbolic name (in UFL [Alnæs et al. 2014]) and a translation from symbolic name to concrete
implementation in the form compiler TSFC [Homolya et al. 2018]. While FIAT initially consid-
ered a very wide range of finite elements [Kirby et al. 2012], it would seek to express their bases as
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linear combinations of orthogonal polynomials. However, for some elements, it is easier to directly
describe the basis functions. We follow the construction of Gillette et al. [2019], which provides
explicit formulae for the basis functions for each of the trimmed serendipity elements and directly
implement tabulation of the basis functions. To provide tabulations of derivatives, we implement
the basis functions symbolically with SymPy [Meurer et al. 2017] and compute derivatives sym-
bolically.
We use the decompositions from Gillette et al. [2019] to group the basis functions according to

the geometric portions of a reference mesh element (vertices, edges, faces, or cell interiors). For
instance, a basis for S−r Λ1 (�3)—the trimmed serendipity H (curl)-conforming element in 3D—can
be decomposed as

S−r Λ1 (�3) =
⎡⎢⎢⎢⎢⎣
r−1⊕
i=0

EiΛ
1
⎤⎥⎥⎥⎥⎦︸��������︷︷��������︸

edge functions

⊕
⎡⎢⎢⎢⎢⎣
r−1⊕
i=2

FiΛ
1
⎤⎥⎥⎥⎥⎦
⊕
[
F̃rΛ

1
]

︸����������������������︷︷����������������������︸
face functions

⊕
⎡⎢⎢⎢⎢⎣
r−1⊕
i=4

IiΛ
1
⎤⎥⎥⎥⎥⎦
⊕
[
ĨrΛ

1
]

︸��������������������︷︷��������������������︸
interior functions

. (2)

Subsets in these decompositions denoted with an E, F , or I are defined on edges, faces, and interior,
respectively, of the cubical cell in 3D. The subsets F̃ and Ĩ are extra sets of basis functions defined
on the faces or the interior that follow a different pattern in their definitions than those of the
functions in E, F , or I .
To see how this plays out in the Firedrake implementation, consider the H (curl) elements for

trimmed serendipity at order r = 2 in n = 3 dimensions, indicating the space S−2 Λ
1 in 3D. The

space ĨrΛ1 is defined to be empty for r < 4, so there are only two sets of functions to include in
this case: one set associated to edges of the reference element (the EiΛ1 sum) and one set for the
faces of the reference element (the F̃2Λ1 functions). According to Equation (2), the basis functions
can be decomposed as

S−2 Λ1 (�3) =
⎡⎢⎢⎢⎢⎣

1⊕
i=0

EiΛ
1
⎤⎥⎥⎥⎥⎦
⊕
[
F̃2Λ

1
]
⊕
[
Ĩ2Λ

1
]
. (3)

We then implement these in Firedrake as follows. The first step is to determine the number of
DOFs we will need on the reference element where we will define the basis functions. To do this,
we count the DOFs for each mesh entity on the reference element (vertex, edge, face, and interior).
For example, S−2 Λ1 (�3) should have no DOFs at the vertices (these only come into play for the
H 1-conforming elements), two DOFs on each edge, two DOFs on each face, and no DOFs on the
interior. This agrees with Equation (3), where EiΛ1 supplies one DOF to each edge for each i = 0, 1,
and then F̃2Λ

1 supplies two DOFs to each face. An illustration of this can be seen in the second
column, second row of Table 1.
With the number of DOFs assigned to each mesh entity in the reference element, we can then

define the basis functions. The order of definition is important so that basis functions are matched
to the proper mesh entity. Note that Equation (3) does not explicitly give a way to order the basis
functions. Instead, we need to use the properties of the basis functions to determine the correct
ordering. This is best illustrated by an example. Two of the “edge” basis functions that are contained
in the sum of the EiΛ1 sets are (y + 1) (z + 1)dx and x (y + 1) (z + 1)dx . Notice that these functions
have no dy or dz portions. Therefore, these function vanish on any edge not parallel to the x axis.
Further, the polynomial coefficients of these forms indicate that they also vanish on the planes
y = −1 and z = −1. Thus, the only edge of the cube on which these functions do not vanish is the
edge contained in the line {y = 1} ∩ {z = 1}. This edge is shown in blue and labeled with an “e” in
Figure 3.
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Fig. 3. The reference cube [0, 1]3 is shown, with coordinate axes indicated. The edge e lies in the intersection

of the planes y = 1 and z = 1. To ensure proper continuity, basis functions associated to e must vanish on

all edges of the cube except e . Examples of such functions for e are described in detail in the text. Additional

examples of functions associated to the face F are also given.

This process is what determines the ordering for the basis functions. If, in the first step described
above where we are assigning DOFs to mesh entities, we assign the first two DOFs to be on the
edge of the reference element where y = 1 and z = 1, then we must define the basis functions
(y + 1) (z + 1)dx and x (y + 1) (z + 1)dx as our first two basis functions.
While the formulas above are taken from Gillette et al. [2019], these monomials have poor

conditioning at higher orders. Therefore, we use Legendre polynomials obtained symbolically
from SymPy via the legendre function denoted leg. Then, we write the differential forms
in vector notation. For our examples of (y + 1) (z + 1)dx and x (y + 1) (z + 1)dx , we get
tuple([(leg(j,x_mid)*dz[1]*dy[1],0,0)]), where leg(j, x_mid) is computed at the mid-
point between two vertices and used for the 1 or x coefficient, and the dy[1] and dz[1] are used
for the values of (y + 1) and (z + 1), respectively. After repeating this process for each of the edges
and associated basis functions, we then also do a similar process for the face functions in the set
F̃2Λ

1.
This process changes only slightly if we instead had considered the the 2-forms S−2 Λ2 (�3). In

this scenario, we would have the basis functions given by the equation

S−2 Λ2 (�3) =
⎡⎢⎢⎢⎢⎣

1⊕
i=0

FiΛ
2
⎤⎥⎥⎥⎥⎦
⊕
[
Ĩ2Λ

2
]
.

In this case, one of the basis functions is y jzk (x + 1)dydz. The dydz represents a 2-form, which
vanishes on any face not parallel to theyz plane. This leaves only the faces contained in the planes
x = 1 or x = −1 as possibilities for association. As in the 1-form example above, the polynomial
coefficient of the form indicates that this function will vanish on an additional mesh entity, namely,
the face contained in the plane x = −1, in this case. Hence, we associate this function with the
face contained in x = 1 (labeled with an “F” in Figure 3). The rest of the process for defining the
2-form basis functions is similar to the process for the 1-form basis functions.
The newly supported elements, mapping FEEC spaces onto names in UFL are shown in the lower

half of Table 2. Modifying the code from Listing 1 to utilize trimmed serendipity spaces rather than
tensor product spaces is then simply a case of replacing the element names in the FunctionSpace
definitions with appropriate trimmed space names. Concretely, the new FunctionSpace defini-
tions are shown in Listing 2, the rest of the code remains unchanged.

4 EXPERIMENTS

The following experiments show the benefits and costs of using trimmed serendipity elements in
comparison to traditional tensor product elements. We first present a basic projection example
as a means of confirming approximation properties of our elements. Next, we present results on
a primal Poisson problem (to test H 1 elements), a mixed Poisson problem (to test H (div) and L2

elements), and a cavity resonator problem (to testH (curl) elements). Since theH (curl) andH (div)
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Table 2. A Translation between FEEC and Firedrake Usage Names for

Tensor Product and Trimmed Serendipity Elements

FEEC UFL name (2D) UFL name (3D)

Q−r Λ0 Lagrange Lagrange
Q−r Λ1 RTCE or RTCF NCE
Q−r Λ2 DQ NCF
Q−r Λ3 - DQ

S−r Λ0 S S
S−r Λ1 SminusCurl or SminusDiv SminusCurl
S−r Λ2 DPC SminusDiv
S−r Λ3 - DPC

In 2D, the 0-forms are H 1 conforming spaces, the 1-forms are H (curl) and
H (div) conforming spaces (dependent upon oreintation of the DOFs), and the
2-forms are L2 conforming spaces. For 3D, the 0-forms are H 1 conforming
spaces, the 1-forms are H (curl) conforming spaces, 2-forms are H (div)
conforming spaces, and 3-forms are L2 conforming spaces.

elements are only a rotation of the DOFs on the edges of elements in 2D, we do not give an exper-
iment using H (curl) elements in 2D.

Listing 2. Setting up Firedrake to use the trimmed serendipity elements in a mixed Poisson problem in 3D.

3 ...
4 hDivSpace = FunctionSpace(mesh , "SminusDiv", polyDegree)
5 l2Space = FunctionSpace(mesh , "DPC", polyDegree - 1)
6 ...

The experiments were performed either on a single cluster compute node with 2x AMD EPYC
7642 48-core (Rome) processors (2.4 GHz) and 512 GB of memory running CentOS 7 or a similar
node with 3 TB of memory. The 2D experiments were all done using the 512 GB node, while in 3D,
the fourth-order experiments were run on the 3 TB node. Each job was run by submitting a SLURM
script that requested one node in isolation to ensure no other jobs were running at the same time.
We utilized on-node parallelism by requesting a full node and executing the jobs with mpirun set
to use 24 processes, with a few exceptions for smaller cases that will be pointed out later. Timing
data was collected after first performing a dry run of the code to warm the cache and then taking
the minimum time over three subsequent runs. The timing results presented here depend upon
the solver choice, and changing that may give different results illustrating the relative efficiency
between Q− and S−.

For simplicity, our numerical experiments all use a sparse direct solver. We expect the multigrid
theory in Arnold et al. [2000, 2006] to carry over from existing Q− spaces to S− spaces. Optimal
smoothers require aggregating degrees of freedom for vertex patches, and we anticipate that the
reduction in local dimensionality that trimmed serendipity spaces offer will be beneficial in these
contexts as well.

4.1 Projection

We solve an L2 projection problem to give a baseline accuracy test for the elements. Given either
the unit square or unit cube as our domain of integration on definite integrals, we compute the
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projection of f into the function space V by using a discretization of the problem: find u ∈ V ⊂
H (curl) such that ∫

Ω
u · v dx =

∫
Ω
д · v dx , where д = ∇f

for allv ∈ V . For our experiments, we chooseV to beH (curl) spaces for the proper dimension (one
of the spaces RTCE, NCE, or SminusCurl) and f = sin(πx )sin(πy) or f = sin(πx )sin(πy)sin(πz) for
two or three dimensions, respectively. Recall that the trimmed serendipity elements are denoted
with S−r and the tensor product elements with Q−r . In Firedrake, the trimmed serendipity elements
use the label SminusCurl or SminusDiv for 1-forms in 2D, depending upon the orientation of the
edge DOFs, and in 3D, they represent the 1- and 2-forms, respectively. The tensor product elements
use the labels RTCE (or RTCF) and NCE for 1-forms in 2D and 3D, while the 2-forms in 3D are NCF.
To solve the projection problem, we use a Galerkin L2 projection into V .

The goal of the projection problem is to establish that the elements attain the mathemati-
cally expected L2 rates of approximation as mesh size decreases, as well as comparing relative
efficiencies of S− and Q−. For this, we create a mesh on [0, 1]n of uniformly sized squares or
cubes, where we refine themesh fromN = 4 squares (or cubes) in each row and column toN = 128
squares in each row and column (or N = 64 cubes). This results in a mesh with N 2 or N 3 squares
or cubes, respectively. For the following results, we will use h = 1

N
, since the mesh elements are

all uniformly sized. We employ both trimmed serendipity elements and tensor product elements
on each mesh and record the L2 error in each case. In Figure 4, we report the L2 error in terms of
the classical measure of maximum edge length (h) as well as total number of DOFs.

The expectation is that S−r and Q−r converge at the same rate with respect to h, which is con-
firmed in the plots by parallel trendlines. These parallel trendlines can be seen in each of the
projection plots. The overall results from the projection problem show that tensor product and
trimmed serendipity elements give similar levels of error.
For the r = 2 case, the trimmed serendipity elements achieve a better accuracy while requiring

fewer DOFs. Therefore, in this low-order case, trimmed serendipity elements would be beneficial
to use. In the case of r = 3, 4, the trendlines for S−r are above the trendlines for Q−r . However,
considering the elements Q−3 and S−4 , we see that Q−3 requires approximately 1.71× 108 DOFs and
S−4 at the same mesh refinement requires 0.95×108 DOFs. While Q−3 attains an error of 8.96×10−8,
the S−4 elements attain an error of 2.1 × 10−9.

4.2 The Poisson Problem

In this section, we discuss results for both the primal formulation and the mixed formulation of the
Poisson problem. We solve the primal weak formulation described below on a unit square domain
Ω for u ∈ U :

−Δu = f ,

u |∂Ω = 0,

where f (x ,y) = 2π 2sin(πx )sin(πy), yielding the solution u (x ,y) = sin(πx )sin(πy). In 3D,
we can extend this to f (x ,y, z) = 3π 2sin(πx )sin(πy)sin(πz) with the solution u (x ,y, z) =
sin(πx )sin(πy)sin(πz) on the unit cube. The primal weak formulation of the Poisson equation
is as follows: find u ∈ V := H 1 (Ω) such that∫

Ω
∇u · ∇v dx =

∫
Ω
f v dx , for all v ∈ V.

Accordingly, the primal formulation employs H 1 elements, using S for S−r Λ0 and Lagrange for
Q−r Λ0.
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Fig. 4. Results of solving an L2 projection problem using trimmed serendipity and tensor product H (curl)
elements in both 2D (top row) and 3D (bottom row). Experiments were ran for k-forms for k = 0, 1, 2, 3 in 2D

and 3D, however, only the 1-forms in 3D are displayed here. In every case, the trimmed serendipity element

trendline has the same slope as its tensor product counterpart, as expected by the theory. In panels (a) and

(c), the order 2 elements only show one trendline as they differ only slightly in error values and have the

same edge lengths.

The mixed formulation of the Poisson problem introduces an intermediate variable, σ , which is
solved for simultaneously. Formally, this is: find σ ∈ H (div) and u ∈ L2 such that

σ − ∇u = 0,

∇ · σ = −f ,
u |∂Ω = 0.

In a similar fashion as for the primal formulation, we can create the mixed formulation of the
Poisson problem that we saw in Equation (1).
These equations are discretized and solved using a suitable pair of finite elements—one ofH (div)

type and one of L2 type. We use (Q−r Λn−1,Q−r Λn ) and (S−r Λn−1,S−r Λn ) for dimensions n = 2 and
n = 3. Note that the mathematical notation here calls for Q−r Λn−1 to be paired with Q−r Λn , but
the code notation will require setting the degree of the L2 element one below the degree of the
H (div) element, and similar with the trimmed serendipity elements. For both the primal Poisson
andmixed Poisson problems, we solve the system usingMUMPS [Amestoy et al. 2001, 2006] with a
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Fig. 5. A convergence analysis of the primal and mixed Poisson problems in 2D and 3D. Error here is calcu-

lated as the L2 error between the exact solution and the approximate using the corresponding finite element

space.

sparse direct LU factorization using iterative refinement to attain high accuracy in the solvers and
allow us to focus on analyzing the elements instead of confounding variables. At high degree and
fine mesh resolutions, we noticed that both the tensor product and trimmed serendipity elements
would hit a floor in error values that was unexpected. At lower degrees or coarser meshes, this was
unnecessary, but we chose to keep the solver parameters the same to be consistent throughout the
experiments. The exact details of the MUMPS configuration can be found both in the zenodo link
and in the appendix in order for results to be reproducible.
The empirical convergence results for the primal and mixed formulations of the Poisson prob-

lems can be seen in Figures 5(a)–5(d). In each of the subfigures of Figure 5, we see that independent
of the performance of each element, the S−r and Q−r have parallel trendlines, indicating that they
have the same overall convergence rate. For the primal formulation in 2D and 3D, the trimmed
serendipity elements perform similar to the tensor product elements for orders r = 2, 3. Further-
more, comparing the elements via DOFs as in the projection problem yields another instancewhere
we see that using S−3 instead of Q−2 will attain a higher accuracy for essentially the same number
of DOFs.
In Figure 6, we analyze the timing data for computing the solutions to the primal and mixed

formulations using trimmed serendipity and tensor product elements. As in the error vs DOFs
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Table 3. Expressing the Number of Nonzero Entries in the Matrices

Used to Compute Solutions to the Primal and Mixed Formulations

of the Poisson Problem

Q−4 Elements

Primal n = 2 Primal n = 3 Mixed n = 2 Mixed n = 3

381,825 143,992,308 2,096,704 989,178,624
5.51 × 10−6 4.99 × 10−7 3.38 × 10−6 2.18 × 10−7

S−4 Elements

Primal n = 2 Primal n = 3 Mixed n = 2 Mixed n = 3

156,625 17,148,900 848,624 107,771,596
8.97 × 10−6 1.39 × 10−6 4.01 × 10−6 2.98 × 10−7

The data shown here represents order 4 elements, where the meshes are
either 1282 or 643 depending on the dimension of the space. The first row of
each half indicates the number of nonzero entries, while the second row of
each half indicates the proportion of the number of nonzero entries.

graphs, we see good evidence in Figures 6(a) and 6(b), that the trimmed serendipity and tensor
product elements compute solutions at a similar speed based on the number of DOFs. In Figure 6(b),
we see that for a given error level, trimmed serendipity elements require less time. The overall time
required being dependent upon on the number of DOFs rather than the element type is seen again
in Figure 6(c). Further evidence of this is seen in Figure 6(d). Similar to the previous analysis of
DOFs vs error for the mixed formulation, the timing data here illustrates that attaining the extra
accuracy from using S−3 instead of Q−2 does not invoke a larger time requirement. The sparsity of
the matrices involved in the order 4 elements can be seen in Table 3.

4.3 Cavity Resonator

The last numerical experiment that we give here is the cavity resonator problem, making use
of the H (curl) elements in 3D. We a pose a Maxwell eigenvalue problem on the domain Ω =
[0, 1]3 with perfectly conducting boundary conditions, yielding an eigenvalue problem where λ
represents a quantity proportional to the frequency squared of the time-harmonic electric field
(i.e., eigenvalues) and E represents the electric field (i.e., eigenfunctions):

∇ · E = 0 in Ω,

∇ × ∇ × E = λE in Ω,

E × n = 0 on ∂Ω.

We consider the weak formulation of this problem (similar to Fumio [1987]), where ω represents
the resonances (i.e., eigenvalues) and E represents the electric field (i.e., eigenfunctions):∫

Ω

(
∇ × F

)
·
(
∇ × E

)
dx = ω2

∫
Ω
F · E dx for all F ∈ H0 (curl).

The exact eigenvalues follow the formula

ω2 =m2
1 +m

2
2 +m

2
3,

wheremi ∈ N ∪ 0 and no more than one ofm1,m2,m3 may be equal to 0 at a time [Rognes et al.
2010].
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Fig. 6. Analyzing timing data for primal and mixed Poisson problems using trimmed serendipity and tensor

product elements. Error here is calculated as the L2 error between the exact solution and the approximate

solution found using the corresponding finite element space.

In Table 4, we display the convergence rates of different eigenvalues when computing the eigen-
values with tensor product and trimmed serendipity elements in 3D. The table is split into halves,
the top half showing values from using Q− H (curl) elements while the bottom half shows values
from using the corresponding S− elements. Each half of the table has a row giving the DOFs in the
mesh for each refinement level N and a row giving the time per iteration that the solver required.
Note that the convergence rates are computed by

r =

log

(
λ̃i,N −λi,N

λ̃i,N+1−λi,N+1

)

log

(
hN
hN+1

) .

Based on earlier eigenvalue works [Boffi 2010], we expect the rate of convergence to be double the
order of the finite element used to solve the problem. This is reflected in the table well for both
S− and Q− elements. The “−” entries in the table indicate the eigenvalue solver did not find that
specific eigenvalue in the allowed number of iterations; we set the solver to iterate a sufficient
number of times to find the first 15 eigenvalue-eigenvector pairs.

ACM Transactions on Mathematical Software, Vol. 48, No. 1, Article 8. Publication date: February 2022.



Trimmed Serendipity Elements in Firedrake 8:15

Table 4. A Comparison of How Q−2 and S−2 Finite Elements Solve the Maxwell Cavity Resonator Eigenvalue

Problem, 〈curl(F ), curl(E)〉 = ω2〈F ,E〉

Q−2 H (curl) Elements

Actual (Count) N = 4 N = 8 N = 16 N = 32

2 (3) 2.001024 2.000066 (3.96) 2.000004 (4.04) 2.0000003 (4.00)
3 (2) 3.001536 3.000098 (3.97) 3.000006 (4.03) 3.0000004 (4.02)
5 (4) 5.030601 5.002081 (3.88) 5.000133 (3.97) 5.000008 (4.06)
6 (3) 6.031114 6.002114 (3.88) 6.000135 (3.97) 6.000008 (4.08)
8 (0) − − − −
DOF 1,944 13,872 104,544 811,200

EPS solve time per iteration 0.01565225 0.0743845 1.0484236 7.6186526

S−2 H (curl) Elements

Actual (Count) N = 4 N = 8 N = 16 N = 32

2 (3) 2.001092 2.000066 (4.05) 2.000004 (4.04) 2.000000 (4.00)
3 (2) 3.009018 3.000586 (3.94) 3.000037 (3.99) 3.000002 (4.21)
5 (3) 5.032027 5.002097 (3.93) 5.000133 (3.98) 5.000008 (4.06)
5 (1) 5.032027 5.002097 (3.93) 5.000133 (3.98) −
6 (1) 6.072012 6.004976 (3.86) 6.000319 (3.96) 6.000020 (4.00)
6 (1) 6.072012 6.004976 (3.86) 6.000319 (3.96) 6.000024 (3.73)
6 (1) − − 6.00038 6.000024 (3.98)
8 (1) − − − 8.000017

DOF 1,080 7,344 53,856 411,840

EPS solve time per iteration 0.01288725 0.0309768 0.401663 4.1996873

An eigenvalue found with the same error multiple times was condensed to a single row. Numbers in parentheses next to
the actual eigenvalue are the number of times we found an approximation of the actual eigenvalue. The columns labeled
N = 4, 8, 16, 32 are giving the approximate eigenvalues found on a mesh of size N × N × N . The values in parentheses
in these columns indicates the rate of convergence for that approximate eigenvalue.

The experiment was done by using Firedrake to create the mass and stiffness matrices as
petsc4py objects [Balay et al. 2021, 1997; Dalcin et al. 2011], then using slepc4py [Hernandez et al.
2005; Roman et al. 2020] to do the eigenvalue analysis. The eigenvalue analysis was done by com-
puting an inverted shift to a target of 3.0, then solving for 15 eigenvalue-eigenvector pairs. The
SLEPc solve was done using the default (Krylov-Schur) solver with a tolerance level of 10−7. We
note that the eigensolver finds a varying number of spurious eigenvalues with value 1. These exist
because Firedrake enforces strong boundary conditions by placing a 1 on the diagonal and zeroing
out the rows and columns, not due to the elements that we use or the SLEPc solver that is called.
We do not report these eigenvalues.

Since both elements attain the expected convergence rate, we focus on the rest of the results
in the table. Investigating the error in the eigenvalues in the chart compared to the exact values,
we see that tensor product elements are able to get results that are up to an order of magnitude
better near the target eigenvalue. However, this loss of accuracy from using trimmed serendipity
elements is offset by a reduction in required time to solve for the requested eigenvalues. At every
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Fig. 7. Results for solving for λ = 3 and λ = 5 using Firedrake and SLEPc by increasing the order from 2 to
5. Error is calculated as the absolute value of the error between the actual eigenvalue and the approximated

eigenvalue.

mesh refinement level, trimmed serendipity elements have nearly half the DOFs of tensor product
elements, and correspondingly, require approximately half the time per iteration to solve for the
eigenvalues (outside of the case N = 4). At higher orders, we expect that this will be even more
exaggerated.
Continuing the eigenvalue example, we used Firedrake and SLEPc to compute two eigenvalues,

λ = 3 and λ = 5. We computed the eigenvalues at different orders of the elements, from r = 2 to
r = 5, and kept the mesh constant at 16× 16× 16. The timing data was then collected by choosing
the largest time required for any of the multiplicities of 3 or 5 that the solver found.
The error results shown in Figure 7(a) for the eigenvalue problem indicate that trimmed serendip-

ity elements yield less error in the eigenvalues for the number DOFs required to compute them
than the tensor product elements. This is a change from the mixed formulation of the Poisson prob-
lem where the DOFs vs Error trendline for trimmed serendipity was generally above the trendline
for tensor product elements. The timing results in Figure 7(b) showed that the timing requirements
for both trimmed serendipity and tensor product elements were similar, with trimmed serendipity
generally requiring a little bit less time for a given error value.

5 DISCUSSION

This implementation of trimmed serendipity elements gives a new method for computing the so-
lution to a discretized PDE and has been tested on meshes of squares and cubes. Completing the
implementation of these elements within Firedrake by using the basis functions defined in Gillette
et al. [2019] is an illustration of Firedrake’s modular capabilities for implementing new and unusual
finite elements.
The convergence studies done in each of the numerical experiments show that the trimmed

serendipity elements can attain the theoretical rates of convergence that they were predicted to
achieve. While we only illustrate orders 2, 3, and 4 in 2D and 3D, our implementation of trimmed
serendipity elements in Firedrake is designed to work in both 2D and 3D for arbitrary orders r .
In comparison to tensor product elements Q−r , we make a choice when using trimmed serendip-

ity elements S−r to lower accuracy in return for less computation, both in terms of DOFs and time
required. At low orders the choice to use trimmed serendipity elements could actually reduce the
error per DOF, as we saw in the primal formulation of the Poisson problem, where the trendlines
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for DOFs vs Error for trimmed serendipity elements were below the trendlines for the tensor prod-
uct elements. In the mixed formulation case however, the opposite was true, and the trendlines for
the tensor product elements were below the trendlines for the trimmed serendipity elements.
Rather than comparing in terms of approximation order, it can also be beneficial to compare

the two elements based on the DOFs that they require. Consider the 3D mixed formulation of the
Poisson problemwhile focusing onDOFs vs Error given in Figure 5(d). The tensor product elements
Q−2 required a similar number of DOFs as the trimmed serendipity elements S−3 . Compared this
way, the trimmed serendipity elements provide an extra order of magnitude of accuracy over the
tensor product element. Furthermore, in Figure 6(d) the time required for S−3 and Q−2 was also
approximately equal. Thus, while it is helpful to compare Q−r and S−r to see that the trimmed
serendipity elements have the expected convergence behavior, a more practical computational
comparison is between Q−r and S−r+1.
The eigenvalue problem yields another example of comparing the tensor product and trimmed

serendipity elements, where instead of refining the mesh, we refined the order of the element used.
Just as in the mixed Poisson problem, we again see that Figure 7(a) showsS−2 has a higher error for
λ = 3 than Q−2 . However, comparing against where the DOFs are approximately equal leads to a
comparison between S−3 and Q−2 . In this scenario, we had that Q−2 required 104,544 DOFs yielding
an error of 1.33 × 10−4 for λ = 5, while S−3 required 106,896 and achieved an error of 3.67 × 10−7

for λ = 5. In this case, we note that the time required for S−3 did require more time to solve, using
about 2.71 s while the Q−2 required 1.98 s.
Our computational findings suggest that trimmed serendipity elements could be particularly

beneficial at improving accuracy for compute-bound applications. For any application, there is
eventually a mesh resolution and element order for which refining the mesh or increasing the
tensor product order is computationally infeasible. In this instance, keeping themesh but switching
to a trimmed serendipity method of one order higher presents a new option to the practitioner that
still provides an increase in accuracy without a significant increase to computational cost.

CODE AVAILABILITY

All major Firedrake components, as well as the code for the numerical experiments in the article
have been archived on Zenodo [2021].

A APPENDIX: SOLVER CONFIGURATIONS

The solver configurations for the primal and mixed Poisson formulations can be found below.
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Listing 3. An example of some solver parameters that we can use for the Poisson problem. The options

presented here solve the algebraic system with a simplified Newton method where the Jacobian is held

constant at the first iterate. Therefore, it is factored at the beginning and triangular solves are applied to it

at each subsequent iteration. This has the effect of performing iterative refinement [Moler 1967; Wilkinson

1994] and yields an increased algebraic accuracy on fine meshes.

1 ...
2 params = {"snes_type": "newtonls",
3 "snes_linesearch_type": "basic",
4 "snes_monitor": None ,
5 "snes_converged_reason": None ,
6 "mat_type": "aij",
7 "snes_max_it": 10,
8 "snes_lag_jacobian": -2,
9 "snes_lag_preconditioner": -2,
10 "ksp_type": "preonly",
11 "ksp_converged_reason": None ,
12 "ksp_monitor_true_residual": None ,
13 "pc_type": "lu",
14 "snes_rtol": 1e-12,
15 "snes_atol": 1e-20,
16 "pc_factor_mat_solver_type": "mumps",
17 "mat_mumps_icntl_14": "200",
18 "mat_mumps_icntl_11": "2"}
19 ...
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