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Abstract—Graph states form an important class of mul-
tipartite entangled quantum states. We propose a new
approach for distributing graph states across a quantum
network. We consider a quantum network consisting of
nodes—quantum computers within which local operations
are free—and EPR pairs shared between nodes that can
continually be generated. We prove upper bounds for
our approach on the number of EPR pairs consumed,
completion time, and amount of classical communication
required, all of which are equal to or better than that of
prior work [10]. We also reduce the problem of minimizing
the completion time to distribute a graph state using our
approach to a network flow problem having polynomial
time complexity.

I. INTRODUCTION
A. Motivation

Graph states form an important class of multipartite
entangled states. They are interesting both theoretically,
for their importance in one-way and measurement-based
quantum computing [6] [13], and practically, for their
applications such as to quantum metrology [15] and
secure multi-party computation [7].

The role of graph states in measurement-based quan-
tum computation makes them especially interesting as
a resource to distribute across a quantum network. A
classic result states that any quantum computation can
be done in a “one-way” fashion [13] by preparing a
graph state among a set of qubits, then performing
measurements and single-qubit operations based on the
measurement results. Preparing such graph states among
qubits in different network nodes allows the network
to perform these one-way computations in a distributed
manner, which can be especially useful if different
network nodes receive different parts of the input to
some quantum computation. This establishes distribution
of graph states across a quantum network as an important
service for it to provide.

B. Prior Work

There has been considerable work on the construction
of graph states at a single node [2], [9] and in the context
of photonic cluster computing [1]. Much of the work
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on generation and distribution of graph states across a
quantum network has focused on providing robustness
and resilience to noise in the channels between network
nodes, and memories and gates in the nodes. For example
Cuquet and Calsamiglia [4] consider a similar graph state
distribution protocol to ours. However, they focus on a
network with a star topology as opposed to a network
having an arbitrary topology as in our work. They
optimize for both fidelity and fidelity decay rate given
the constraint of noisy channels, instead of optimizing
for EPR pair consumption and time required to distribute
the graph state given the network topology.

Pirker and Diir [11] [12] consider graph state distri-
bution protocols for more general network topologies
like our work. Their focus is on their placement in a
larger network protocol stack and how it can be modified
to work within an unreliable network rather than their
performance in terms of resource requirements and time
to complete entanglement distribution.

The work of Meignant et al. [10] is closest to ours
in spirit. They proposed an algorithm for constructing
an edge-decorated complete graph (EDCG) across a
network, which is then transformed into a desired graph
state. They then derived upper bounds on the number of
EPR pairs consumed and on time to complete the con-
struction, under the assumption that channels, memories,
and logic is perfect, and that Bell state measurements
are deterministic. We conduct a similar analysis of a
different algorithm to generate and distribute graph states
across a network. Our approach consists of constructing
the graph state at one node and transporting the qubits
to the appropriate nodes within the network. Henceforth,
we refer to the algorithm proposed in [10] as the EDCG
algorithm.

C. Overview of Results

In this work, we study the following Graph State
Transfer (GST) algorithm for distributing graph states
across a quantum network. Suppose a set of network
nodes desires to share a specific graph state, with one
qubit from the graph state in each network node. The
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idea behind our algorithm is to first create a local copy
of the desired graph state at one node of the network and
then distribute the graph state to the relevant set of nodes.
This can be thought of as an extension of the bipartite A
protocol from [4] to the general network setting. Besides
introducing this generalization we make the following
contributions:

o We analyze the EPR pair consumption of our GST
algorithm through the derivation of an upper bound
as a function of the quantum network size. We
also show that the GST algorithm never consumes
more EPR pairs than the EDCG algorithm. For
some networks, such as those with a binary tree
topology, the difference in the numbers of EPR
pairs consumed can be significant.

We derive an upper bound on the time needed
to distribute the graph state (henceforth referred
to as completion time). We present a polynomial
time algorithm that chooses paths in a network
that minimizes that completion time for the GST
algorithm. We also show that the completion time
of the GST algorithm is never more than that of the
EDCG algorithm.

We analyze the quantum memory and classical
communication requirements for the GST algo-
rithm. The memory requirements are shown to be
considerably less for the GST algorithm and the
classical communication overheads are comparable.

Table I details these comparisons.

Our approach to distributing graph states naturally
leads to a new resource graph state: a graph state
that can be distributed among a set of network nodes
ahead of time that allows instantaneous distribution of
any other graph state among those nodes by consuming
the resource graph state, once that other graph state is
known. This is useful if one knows the set of nodes
that will request to share a graph in the future, but one
does not yet know the exact graph state that will be
requested. Our resource graph state requires maintaining
fewer qubits than that of prior work.

II. BACKGROUND

A. Graph States

A graph state [8] is a type of multiple-qubit state
that is useful for certain quantum computing operations
between multiple parties. We represent a graph state as
a graph G = (V, E) where the vertices correspond to
qubits. The graph state for G is initiated with all qubits
in the |+) state followed by the application of controlled
Z operations to all pairs of qubits corresponding to
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pairs of vertices in E. More precisely, the graph state
corresponding to G is

we) = JI CZuv| )"V

(u,v)EE

Note that C'Z operations commute, so we can apply the
CZ operations in any order we want (or all at once).

The graph state class of multiparty entangled states
is useful because, among other reasons, there is a set
of quantum operations that affect the state (up to lo-
cal correction operations) graphically—ie, we can think
about simple, familiar graph operations instead of quan-
tum operators and measurements. We use the following
quantum operations (and their corresponding graphical
operations) in this paper:

o Local complementation of a vertex a € V re-
places the subgraph corresponding to the neigh-
bors of a with its complement. This operation
requires O(|N,|) bits of classical communication
(O(1) communication between a and each of its
neighbors), where N, is the set of neighbors of a.
The quantum operations required to perform this
graphical operation are given in [8].

Edge addition/deletion of an edge (u,v) creates an
edge if one does not exist, or deletes it if it does.
It corresponds to the C'Z, ,, operation.
Z-measurement of a vertex a deletes a and all of
its incident edges.

Y -measurement of a vertex a has the effect of
deleting vertex a and all of its incident edges, and
locally complementing its neighbors. This operation
requires O(|N,|) bits of classical communication:
O(1) communication between « and each of its
neighbors.

A useful property of the edge addition/deletion and Y -
measurement operations (along with the local correc-
tion operations implicit to Y-measurement) is that any
sequence of edge addition/deletion operations and Y-
measurement operations can be rewritten into an equiv-
alent sequence of operations such that the edge addi-
tions/deletions occur first and all measurements come
next. All local correction operations (one per qubit) can
be executed concurrently [6] at the end. This allows us
to perform a sequence of O(n) edge creation and Y-
measurement operations in O(1) time.

B. Quantum Networks

A quantum network is a set of nodes and edges
(V’, E"). Nodes correspond to routers and repeaters; they
are computers with unlimited numbers of qubits, the
capability to perform local operations and communicate
within their neighborhood in order to effect long dis-
tance entanglement. An edge represents a pair of nodes
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Fig. 1: An example quantum network. Red circles rep-
resent nodes; blue edges represent connections between
nodes, which can be regenerated after being consumed
by quantum operations within nodes.

connected by a quantum channel that can generate EPR
pairs between them, and can regenerate EPR pairs as
necessary. The state of a quantum network at any point in
time is a graph state among all the qubits in all the nodes
of the network. We give an example quantum network
in Figure 1.

A natural task is to distribute a graph state across a
quantum network to a set of nodes. This means we alter
the network state such that each qubit in a graph state
exists in a specific node. Rather than preparing a graph
state from some other graph state among a specified set
of qubits via graphical operations, which is not always
possible (in fact, it is NP-complete to determine whether
transforming one graph state into another is possible
[5]), we only require that each qubit in the graph state
be part of a specified node. To achieve this, we can
use local operations within nodes (which are free in
our model), and link-level EPR pair regeneration. EPR
pair regeneration, an operation on qubits in different
nodes, is expensive—EPR pair consumption is one of the
performance metrics of a quantum networking algorithm
in this model.

For the problem of distributing an arbitrary graph state
among a network with n nodes, Meignant et al. [10] give
an algorithm that consumes at most @ EPR pairs
and has a completion time of at most n — 1 timesteps.
They also propose a “resource graph state” (see Figure 2)
that can be distributed among a network ahead of time in
order to enable instantaneous distribution of an arbitrar
graph state. Their resource graph state requires ”("%
qubits. We present a graph state distribution algorithm
that uses at most % EPR pairs. This algorithm
naturally leads to an alternate resource graph state that
requires 2(n — 1) qubits.

III. CONNECTION TRANSFER

We start with a simple sequence of operations we refer
to as connection transfer. This operation starts with a
qubit a at a node A € V' that is connected to other
qubits, which are possibly outside A. A also includes
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(b) Edge-decorated
graph (EDCG)

(a) Complete graph complete
Fig. 2: A 4 node example of a resource graph state. (a) A
4-node network such that the network graph state is the
complete graph among 4 qubits, each qubit in a different
node. (b) A 4-node network such that the network graph
state is the edge-decorated complete graph: a complete
graph with additional vertices added to split each edge
into two. The additional vertices added can exist in
either of the nodes of the edge which that vertex split
in two. Z or Y measuring a decoration vertex deletes
or preserves the original edge, respectively. By Z or Y
measuring each decoration vertex (along with associated
local correction operations), any 4-qubit graph state can
be prepared among the 4 nodes.

(D3 (e

(a) Setup. (b) End result.

Fig. 3: The setup and end result of the connection
transfer process. We transfer the edges connected to a
to qubit ¢, by consuming the EPR pair between b and c.

a second qubit b that is entangled with a third qubit ¢
residing at another node. Connection transfer changes
the network graph state such that the edges between
qubit a and its neighborhood are connected to qubit ¢
instead of a. See Figure 3 for the setup and end result
of connection transfer. We present two approaches to
connection transfer: via graphical operations, and via
teleportation.

Figure 4 details connection transfer via graphical
operations. First we create an edge between a and b with
a local C'Z operation. Then we Y'-measure both a and
b. The successive Y -measurements locally complement
a’s neighborhood twice, but the second such local com-
plementation undoes the first, making the net effect of
the two Y'-measurements to transfer a’s connections to
c. This process consumes one (non-local) EPR pair.

Connection transfer via teleportation is straightfor-
ward. Again, we start with a qubit @ whose edges we
wish to transfer to a qubit c. Qubit ¢ is connected to a
qubit b located in the same node as a. This situation is
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(b) Local quantum opera-
tion: C'Zq .

(=

(d) Y-measure b. This un-
does the local complementa-
tion of the neighborhood of
a.

(a) Starting configuration.

C‘s

Ca=3

(¢) Y-measure a. Results in
locally complementing a’s
(former) neighborhood.

.--

Fig. 4: Connection transfer via graphical operations.

depicted in Figure 3(a). The initial state is

) =%(|+>b|o>c +=hl1)e)
1
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where E” is the edge set of the network’s graph state
except for those incident to a, and except for (b,c).
We break this expression down term by term. The
|4-)@V\@b.eH term corresponds to all qubits except a,
b, and ¢ prepared in the [+) state. The [, . cpr CZu,0
operations create all the edges except for (b,c) and
those connected to a. The % (10)a + Dalsen, Zv)
term creates the qubit a and the edges between
a and the vertices in its neighborhood N,. The
% (|4)6]0)c + |—)5|1)c) term creates the qubits b and
c and the edge between them.

It is easy to see that measuring qubits a and b in the

basis
1
V2 ’
1
V2
results in the desired transfer of a’s connections to c.

To see this, consider what happens when we obtain the
measurement result |¢) = % (10)al+)s + [1)a|—=)s):

(@li) == (e + e ] )

vEN,

( I1 CZW) |4y &V \abe ]

(u,v)€E’

(10)al+)e £ [1)al=)es)
(1
(10)al=)s = [1)al+)e)

This is precisely the graph state depicted in Figure 3(b).
If the measurement result is another Bell state besides
|¢) then an X and/or Z gate correction will also need
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Fig. 5: Example setup and end result of our GST
algorithm. A local copy of the final graph state (green)
is prepared within a node and distributed throughout the
network.

to be applied to qubit , as is done with conventional
quantum teleportation of one qubit.

Note that the graphical and teleportation approaches to
connection transfer are essentially equivalent—the local
C'Z operation of the graphical approach effects a change
of basis, allowing the 2 single-qubit Y -measurements to
achieve the same effect as the multi-qubit measurement
in the basis (1) used in teleportation. The graphical
approach requirement that each node be able to perform
local C'Z operations and Y -measurements is no stricter
than the operation requirements of nodes considered in
prior work [10].

IV. GRAPH STATE DISTRIBUTION

We can transfer a qubit’s connections to a node not
connected to that qubit’s node through a sequence of
connection transfers along a path of edges in the network
running from the starting node to the desired node. This
suggests the following algorithm for generating a graph
state. First, generate a local copy of the graph state at
some node via local C'Z operations, which are free in
our model. Next, transfer the connections (using either
of the aforementioned connection transfer methods) of
each qubit to its corresponding node. Figure 5 illustrates
the starting state and end result of this algorithm for an
example network and desired final graph state. We call
this algorithm the Graph State Transfer algorithm, or the
GST algorithm.

This requires the root node to maintain |S| qubits
(where S is the set of network nodes that will share
the final graph state) and prepare them in an entangled
state via local C'Z operations. This may be a difficult
requirement to meet for large networks; however, it is
also required of the graph state distribution approach in
[10].

A. Resource Graph State

This approach to distributing graph states suggests
a resource graph state—a graph state that can be dis-
tributed among a set of nodes ahead of time that allows
any arbitrary graph state to be distributed among those



other nodes that will
share the graph state

Fig. 6: A resource graph state that requires 2(n — 1)
qubits, where n is number of nodes that will share the
final graph state.

nodes in one timestep. Resource graph states are useful if
we know ahead of time that a set of nodes (or a superset
of nodes) will request a graph state, but we do not know
what that graph state will be. We choose one node in the
network (called the “root node”) and have the network
graph state be such that the root node shares an entangled
pair with every other node that will share the desired final
graph state, as in Figure 6. This allows us to generate an
arbitrary graph state in one time step by generating the
local copy at the root and distributing the graph state as
usual, using either connection transfer method.

This resource graph state requires 2(n — 1) qubits,
where n is the number of nodes that will share the graph
state. This is an improvement over the @ qubits
needed for the EDCG (Figure 2), the resource graph
state proposed in [10]. This improvement is significant
because long-term maintenance of memory qubits is,
and likely will continue to be, a challenging engineering
problem.

V. EPR PAIR CONSUMPTION

Each connection transfer operation consumes one EPR
pair. For each qubit in a graph state whose connections
are transferred to a relevant node, those connection
transfers consume a number of EPR pairs equal to the
length of the path in the network from the root node the
relevant node. Thus the total number of EPR pairs used
to distribute a graph state across a network depends on
the choice of paths from the root node to every other
node in the network (and also implicitly depends on
the choice of a root node). The number of EPR pairs
consumed equals the sum of the lengths of such paths.

Upper bounding the number of EPR pairs consumed
by this algorithm when distributing a graph state among
a set of nodes S is thus equivalent to upper bounding the
sum of minimum path lengths from some root node to
every node in S. We upper bound this sum by choosing
the root node to our advantage. For any connected graph
with n vertices and any vertex v, at most n — ¢ vertices
can be distance ¢ away from v. This means the sum of
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minimum path lengths from v to all vertices in S, which
we call Ne(S), is at most

Ne(S)<(n=1)+(n—=2)+--+(n—|5])
sl 1S| - 1)
5 .
In particular, if S = V'’ (ie. we are distributing a graph
state across the entire network) then we use at most

N(V)<(n=1)+(n—=2)+--+1
_n(n—1)
2
EPR pairs. Note that this upper bound is achieved when
the network is a linear graph with the root at one end of
the line.

Suppose we have the flexibility to select any vertex
as the root. For any connected graph with n vertices
and maximum degree of at least two, basic graph theory
tells us that there exists a vertex v that is distance at
most [ 251] from any other vertex (see eg. [14] Theorem
4.1). Thus by choosing a root in the center of the graph,
we can replace every term in the above sum that is at
least (”T’l] by [an] to get a better upper bound. We
compute this bound for even and odd n.

For even n, we replace every term in the sum from
(2) that is at least 5 by 5 to get

2

n n n n
N (V)< 2.2 (7—1) (7_2) 1
(V)_2 2+ 5 + 5 + +
3G
4 2
3n% —2n

3)

For odd n, we replace every term in the sum from (2)

that is at least "5+ by 271 to get
n+1l n—1 n—1
N (V) < : -1
(V)< 2 2 Jr( 2 )
n—1
+< - 2)+-~+1
_ n2 -1 N TL;] (n;l _ 1)
4 2
_3n2—4n—|—1

“)

As n > 0, the even n bound from (3) is greater than the
odd n bound from (4), so in general N (V') < (3n? —
2n)/8.

This EPR pair consumption upper bound is lower
than that for the EDCG algorithm, [10], which uses up
to @ EPR pairs. However, we can also prove a
stronger result: that we always use less than or an equal
number of EPR pairs used by the EDCG algorithm.

The EDCG algorithm creates an edge-decorated com-
plete graph (EDCG) between the set of nodes S that
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will share the final graph state (see Figure 2). To
create an EDCG among S = {s1,82, - ,Sm}, the
EDCG algorithm creates an m-qubit GHZ state between
{s1,-+,Sm}, then an m — 1 qubit GHZ state between
{s2,-+,Sm}, then an m — 2 qubit GHZ state between
{83, ,8m}, etc, until creating a 2 qubit GHZ state
(ie, just an EPR pair/edge in the network’s graph state)
between s,,_1 and s,,. These GHZ states are then
combined via local operations at each node to form an
EDCG. Then, each edge in the complete graph is either
deleted or kept, by Z-measuring or Y -measuring the
decoration vertex on that edge, respectively. See [10]
Figures 7 and 8 for more detail.

Theorem 1. The GST algorithm always uses less than
or an equal number of EPR pairs used by the EDCG
algorithm.

Proof. Creating a GHZ state between {sj,- - ,Sm}
requires at least as many EPR pairs as performing
connection transfer from s,, to s;, as the former will
use EPR pairs along a path in the network between sy
and s,, (and possibly more EPR pairs). Thus, performing
connection transfer |S| — 1 times between s, and the
other nodes in S uses no more EPR pairs than generating
all the GHZ states required by the EDCG algorithm. So
by choosing s, as our root node, we use no more EPR
pairs than the EDCG algorithm does to distribute a graph
state among nodes in S. O

A. An Example: Full Binary Tree

Here we provide an example where there is a large
gap in the numbers of EPR pairs consumed by the GST
algorithm and by the EDCG algorithm to distribute a
graph state among every node in a full binary tree.
Consider a full binary tree of height h (by convention
we consider the trivial tree with 1 vertex to have height
0); this graph has n = 2"*1 — 1 vertices. We choose the
root of the tree as the root node of the network, and the
paths we use to transfer connections to every other node
of the network are obvious as there is only one choice
of path for each node since the network structure is a
tree. The number of EPR pairs consumed is the sum of
path lengths from the root node to every other node:

h
> 2t =2 (h— 1) + 2 = ©(nlogn).

i=1

It is a straightforward calculation to show that the
EDCG algorithm requires @ EPR pairs to distribute
a graph state to every node in this network with the
EDCG algorithm. For this example, the EDCG algorithm
consumes O(n/logn) more EPR pairs.
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node A node B node C

Fig. 7: The setup for teleportation along two edges in
the network. The pair of qubits in node A and the pair
of qubits in node B will be measured in the basis in
Equation (1).

VI. MINIMIZING COMPLETION TIME
A. Parallelization

First, we show that any sequence of connection trans-
fers that does not require using any network edge more
than once can be done simultaneously in one timestep.

For the graphical connection transfer approach, note
that any sequence of connection transfers is a sequence
of controlled-Z operations, Y measurements (at most
one per qubit), and local correction operations required
by the measurement results. We can rearrange those
operations [6] (see Section 5.2 of [6] for details) into
a different sequence of operations with the same effect
such that the new sequence of operations consists first
of controlled-Z operations, followed by measurements,
and then local correction operations. The controlled-Z
operations will be done on the same qubit pairs as the
original sequence of operations, and the measurements
and local correction operations will also be done on the
same qubits as the original sequence.

This means any sequence of connection transfer op-
erations that does not use any edge in the network more
than once can equivalently be done as a sequence of (in
order):

1) Controlled-Z operations. These can all be done at
once as these operations commute.
Measurements. These can all be done at once
because the measurements are of different qubits.
Local correction operations based on the measure-
ment results.

2)

3)

The teleportation approach to connection transfer, like
the graphical approach, also allows connection transfers
among distinct edges in the network to be parallelized.
We can perform the necessary local correction operations
(X and/or Z gates) on the final qubit in the connection
transfer path based on the results of all the measurements
in the connection transfer path. The exact correction
operations on the final qubit are the correction operations
that would have been done on the qubits in the path, done
in reverse order of their appearance in the path.

To illustrate this rearrangement of operations from
multiple teleportations, we show exactly how it works
for the case of two teleportations in a row; see Figure
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7 for the setup. When teleporting a state from node A
to node B and then from node B to node C, the usual
sequence of operations is:

1) Measure two qubits in node A in the basis in
Equation (1).

Based on the measurement result, perform a cor-
rection operation (X and/or Z gates) on a qubit in
node B.

Measure two qubits in node B in the basis in
Equation (1).

Based on the measurement result, perform a cor-
rection operation (X and/or Z gates) on a qubit in
node C.

Note that instead of correcting for the first measurement
result in step 2, we can teleport the uncorrected state
from node B to node C' and then perform the correction
operations that we would have done in step 2 on the qubit
in node C'. This results in the sequence of operations:

2)

3)

4)

1) Measure two qubits in node A in the basis in
Equation (1).

Measure two qubits in node B in the basis in
Equation (1).

Based on the second measurement result, perform
a correction operation (X and/or Z gates) on the
qubit in node C'.

Based on the first measurement result, perform a
correction operation (X and/or Z gates) on the
qubit in node C'.

2)

3)

4)

We can do both measurement operations at once since
they are performed on different qubits. The measurement
results can then be reported to node ¢, followed by all
local correction operations on node c.

This also easily generalizes to sequences of more
than two teleportations; we just continue teleporting
uncorrected states to the last qubit in the path and then
do all correction operations at that last qubit. This means
the only operations done at each node in a path of
teleportation connection transfers (except the last node
in the path) are the measurement operations, which can
all be done at once because they are measurements on
different qubits. Also, because the only local correction
operations are performed at the end of any chain of
connection transfers, the measurement results need only
be communicated to the last node of any path.

Even though the final qubit in a chain of n telepor-
tations may require up to 2n correction operations, that
sequence of operations will be equivalent to one of the
16 elements of the Pauli group on 1 qubit. So the up to
2n correction operations required can be accomplished
in O(1) time by applying the relevant element from the
Pauli group.

We refer to the time it takes to perform simulta-
neous C'Z operations, measurements, local correction
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operations, and generate any EPR pairs as needed, as
a timestep. Thus any sequence of connection transfer
operations that does not use any edge in the network
more than once, done via the graphical approach or
teleportation approach, can be executed in one timestep.
In general, distributing a graph state across an n node
network will take no more than n — 1 timesteps. This
is because the connection transfers on each path from
the root node to another node can be executed in one
timestep, and there are at most n — 1 such paths—one
per node that receives connections from the root node.

B. Optimization via Path Selection

We can often do better than n — 1 timesteps. We can
minimize the completion time by solving a network flow
problem (see eg. [3] chapter 26). Specifically, given a
network graph, a root node, and a set of vertices S of
the network graph that will share the final graph state,
we construct a network flow problem instance such that
its maximum flow is |S| iff there is a set of |S| paths
from the root to the vertices in .S’ such that no edge in
the graph is used more than k times (which allows us to
distribute a graph state in & timesteps). A binary search
on k, as well as trying all possible root nodes, gives the
optimal time to distribute a graph state among the nodes
in S.

The construction is as follows. Start with the original
network graph with each edge having weight k. Add
a new vertex t. Finally, add edges from each vertex
in S to t with weight 1 (see Figure 8). This network
flow problem instance is related to completion time
minimization by the following theorem.

Theorem 2. In the network flow construction given in
Figure 8, the max flow from the root node to t is |S| iff
there exist |S| paths in the network, each from the root
to a different node in S, such that each edge is used at
most k times.

Proof. The <= direction is obvious, as we can
construct a flow of value |S| by adding all of the |S|
paths, and setting the flow of the edges from S to ¢ to
be one.

For the — direction, start with a maximum
flow of value |S| from the root node to ¢t. The flow
decomposition theorem allows us to decompose a max
flow of value | S| into path flows (and cycle flows, which
we can ignore) that combine to form the max flow.
Because there are |\S| edges going into ¢ each with weight
one, those path flows must have value one and there must
be |S| of them. Those |S| path flows each with value
one from the root node to ¢ give us |S| paths from the
root node to each node in S. Because each edge in the
network flow instance has capacity at most k, each edge
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network graph with edge weights k

(edges from S to t have weight 1)

Fig. 8: Let every edge in this graph (which is the network
graph, plus |S| edges from every node in S to an extra
vertex t) have weight k, except for the edges to ¢t which
have weight 1. Then the max flow from vy (the root) to
t is | S| iff there is set of |.S| paths from the root to every
node in S such that every edge in the network is used
at most k& times.

in the original network graph must be used at most k
times by all the paths. O

Our completion time minimization algorithm is given
in Algorithm 1. See Figure 9 for an example of connec-
tion transfer paths found by our network flow approach.

Note that selecting connection transfer paths in the
network that minimize completion time may result in
more EPR pairs consumed than indicated by our pre-
viously derived upper bound. This is because the paths
found from the network flow problem may not be the
shortest paths from the root node to the nodes in S,
and the EPR pair consumption bound relies on using
the shortest paths in the network. Exploring the trade-
off between reducing completion time and reducing EPR
pair consumption is a subject for future work.

C. An Example: Full Binary Tree

In Section V.a, we computed the number of EPR pairs
consumed when distributing a graph state among every
node of a network with a full binary tree structure. If
we use the same root node (the root of the tree) and
paths as we introduced in Section V.a, then the two edges
connected to the root node will each be used ”T’l times,
and every other edge in the network will be used fewer
times. Thus the completion time for the GST algorithm
to distribute a graph state to every node of that network
is "T’l timesteps. This is an improvement over the n —1
timesteps required by the EDCG algorithm.

VII. CLASSICAL COMMUNICATION REQUIREMENTS

Both graphical and teleportation based graph state
distribution require O(n?) bits of classical communi-
cation to distribute a graph state across a network of
size n. The classical communication requirement comes
from communicating measurement results so nodes can
perform the appropriate local correction operations.

For the graphical approach—if, for each qubit whose
connections we transfer to its destination node, we
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(b) The network flow prob-
lem instance with k = 2.

(a) The network graph, in-
cluding the root and S.

root

b root (d) The paths from the root
to S found by the flow de-
composition theorem. Each
edge is used at most k = 2

times.

(¢) A maximum flow from
the root to ¢, with value 3 =
|S|. All flow directions are
upward.

Fig. 9: An example of connection transfer paths found
by our network flow approach.

reorder the edge addition, Y -measurement, and local cor-
rection operations such that the local corrections come
last [6] (see Section VI for details on this process), then
we send O (nz) classical bits for measurement results.
This is because each time we transfer the connections
of a qubit to its destination node, we can transmit all
O(n) measurement results to the root node, which will
then transmit all O(n) correction operation requirements
(which require O(1) classical communication each) to
the nodes which require local correction. Thus we
require O(n) classical communication for each qubit
whose connections we transfer to a destination node, or
O (n?) communication total.
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Algorithm 1 Our algorithm for minimizing the completion time of distributing a graph state in a network with
graph structure (G, to some subset S of nodes in the network.

i

: procedure NETWORKFLOW(G, S, k, root)

Add a vertex t.

1
2
3
4.
5:
6: return the max flow of this network.

7. procedure MINIMIZECOMPLETIONTIME(G, S)
8 for all possible root nodes v € V(G) do

9
has max flow |S|.

10: Let k, be this minimum k value.
Let root = arg min,cy (g) ko-

Let k = min,cy (g) ko.

Start with the network graph G and assign all edge weights k.

Add |S| edges, from every vertex in S to ¢, with weight 1.
Let root be the source node of this network flow instance and let ¢ be the sink node.

Use binary search on % to find the minimum %k € {1,2,---,|S|} such that NetworkFlow(G, S, k, v)

Use the flow decomposition theorem to extract |S| paths from NetworkFlow(G, S, k, root).
Use these |S| paths to distribute the graph state among the network from the root node to the nodes in S.

For the teleportation approach—when transferring any
qubit’s connections to its destination node, the local
correction operation at the destination node depends on
the measurement results of all of the O(n) measurements
done at each node along the path in the network. Hence
each node that shares the final graph state requires O(n)
qubits of classical communication, for a total of O(n?)
bits of classical communication.

The EDCG algorithm for graph state distribution also
requires O(n?) classical communication. A star expan-
sion operation on a qubit with m neighbors requires
O(m) bits of classical communication. Distributing a
GHZ state across a graph with n vertices requires that
each node only be communicated with once, so only
O(n) bits of communication are required. The EDCG
algorithm requires distributing a GHZ state n times,
so O(n?) bits of classical communication are required.
Also, performing edge measurements and subsequent
local corrections to turn the EDCG state into the desired
graph state requires O(1) bits for each edge, for O(n?)
bits total.

Note that both of our connection transfer approaches
result in O(1) bits of classical communication required
for each measurement done—equivalently, O(1) bits of
classical communication for each EPR pair consumed.
Also, the EDCG algorithm requires €2(1) bits of classical
communication per EPR pair consumed as that also
requires communicating measurement results of each
measurement that consumes an EPR pair. Thus Theorem
1 from Section V also extends from EPR pair consump-
tion to bits of classical communication—if the EDCG
algorithm for graph state distribution uses ¢(n) bits of
classical communication to distribute a graph state in a
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network of size n, then the GST algorithm uses O(c(n))
bits.

Table I summarizes all the cost metrics of our graph
state distribution algorithm compared to the EDCG al-
gorithm [10].
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