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ABSTRACT
We study a quantum switch that creates shared end-to-end entangled quantum states to multiple sets of users that are
connected to it. Each user is connected to the switch via an optical link across which bipartite Bell-state entangled states
are generated in each time-slot with certain probabilities, and the switch merges entanglements of links to create end-to-
end entanglements for users. One qubit of an entanglement of a link is stored at the switch and the other qubit of the
entanglement is stored at the user corresponding to the link. Assuming that qubits of entanglements of links decipher after
one time-slot, we characterize the capacity region, which is defined as the set of arrival rates of requests for end-to-end
entanglements for which there exists a scheduling policy that stabilizes the switch. We propose a Max-Weight scheduling
policy and show that it stabilizes the switch for all arrival rates that lie in the capacity region. We also provide numerical
results to support our analysis.
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1. INTRODUCTION
Quantum entanglement is a key component of quantum information systems that enables applications like quantum key
distribution (QKD),1, 2 quantum sensing3 (e.g., multipartite entanglement for quantum metrology4, 5), and distributed quan-
tum computing.6 These applications motivate the need for a distributed infrastructure (quantum network) that will supply
high quality (fidelity) bipartite and multipartite entanglements to groups of end users;7–11 a quantum network consists of
a collection of quantum switches connected to each other through optical links. Although several network architectures
have been proposed to provide high entanglement rates at high fidelity,12–16 there is still a long road ahead in designing
efficient resource allocation algorithms and their performance analysis that can guide us to implement quantum networks
at full-scale in future.

In this paper we focus on design and performance analysis of efficient resource allocation algorithms for a single
quantum switch that serves incoming requests for end-to-end entanglements to M different groups of users, under the
assumption that the switch is connected to K users. Each user is connected to the switch via a link across which Bell-
pairs are generated between user and the switch, and each of the two nodes of a link stores one qubit of an entanglement
of the link in quantum memories. When enough Bell-pairs are available at the links corresponding to a group of users,
the switch performs a multi-qubit measurement to provide an end-to-end entanglement to the user group. If the switch
has to connect two links, it uses Bell-state measurements (BSMs) and when it must connect three or more links, it uses
Greenberger-Horne-Zeilinger (GHZ) basis measurements.17

We consider a time-slotted system where requests arrive according to a stochastic process. Within each type, requests
are stored in an infinite capacity queue and processed according to First-Come-First-Served (FCFS) service discipline. In
each time-slot, every link creates at most one entanglement, which decoheres after one time-slot.18 Hence, at most one
Bell-pair is available at each link in each time-slot to serve requests. Although the expectation is that eventually quantum
networks will include switches with many long coherence time quantum memories, this will not be the case in the near
term. For example, first generation quantum networks are likely to use controllable optical delay line buffers19 to store
single qubit at a time.

The main objective of the switch is to allocate available Bell-pairs in each time-slot cleverly to various requests so that
they are processed as quickly as possible. We ask the following research question, what is the capacity region i.e., the set
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of arrival rates for which there exists a scheduling policy under which the Markov chain associated with queues of requests
have a stationary probability distribution with finite average waiting times of requests? Can we design a scheduling policy
that stabilizes the switch for all the arrival rates that belong to the capacity region? In this paper, we address these questions
by characterizing this capacity region and then proposing and analyzing a Max-Weight scheduling policy that stabilizes the
switch for all the arrival rates that lie in the capacity region.

Related work: A simple quantum network that connects two users by a series of repeaters was studied in the literature.20

The focus was to compute the expected waiting time required to create an end-to-end entanglement across a path with
n links, under the assumption that each link creates a link-level entanglement with certain probability and measurement
operations are successful probabilistically. The analysis uses Markov chain theory to compute the waiting times of requests,
but closed-form expressions were only derived for networks with at most four segments.

The analysis of a single quantum switch connected to several users was investigated in previous works.21, 22 First,
the rate at which a switch creates bipartite and tripartite entanglements was analyzed, under the assumption that it has
capabilities to store one qubit and two qubits per each link.21 Later, the analysis was extended to study the switch that
generates end-to-end n-partite entanglements.22 Using Lyapunov stability theory of Markov chains, it was proved that the
switch is stable if and only if the number of attached links, K, is greater than or equal to n. Linear quantum networks
with multiplexing capabilities have been studied in the literature23–25 to improve end-to-end entanglement generation rates.
Quantum networks could be implemented on several physical platforms, the implementation of quantum networks with
multiplexing capabilities on dual-species trapped-ion systems was investigated in previous works.25 A major drawback
of previous works21–25 is that, entangled states for users were created whenever there are enough link-level entanglements
available across links, but they did not consider queues that store requests that are waiting for their service. In our modeling
and analysis of the switch, similar to previous works,23–25 we associate probabilities with various stochastic operations that
affect how a quantum switch operates.

A Max-Weight scheduling policy was first introduced for resource allocation in communication networks26 and later,
this policy was adopted for the analysis of a single switch in classical networking27 where they showed that the switch is
stable for all feasible arrival rates under this policy. Although the Max-Weight policy has high implementation cost,27 it lead
to a significant progress on design and analysis of low complexity efficient scheduling algorithms in classical networking.28

A major challenge in analyzing quantum networks is that they are more dynamic than classical networks due to the fact that
several required operations to create end-to-end entanglements are probabilistic operations. Hence, both the design and
analysis of scheduling policies must be modified to consider various characteristic properties of quantum networks. For
example, if qubits of link-level entanglements decipher after multiple time-slots then the analysis of scheduling policies
involves study of two-sided queues, in that one set of queues are used to store requests and the other set of queues are used
to store qubits of link-level entanglements; analyzing two-sided queues is very difficult and they are often not needed to
study classical networking problems. In this paper, we assume that qubits of entanglements decohere after one time-slot,
to simplify the analysis. In a different context, a Max-Weight scheduling policy that is similar to ours was studied for
networks with certain dynamic properties.29, 30 Our analysis is similar in spirit to the Lyapunov stability theory of Markov
chains used in these works.29

Our Contributions: We make the following contributions:

• We derive necessary conditions on the request arrival rates for existence of a scheduling policy that stabilizes the
switch.

• We propose a Max-Weight scheduling policy as a function of probability of successful creation of link-level entan-
glements and measurement operations, and dynamic queue sizes of requests. We prove that this policy stabilizes the
switch for all feasible arrival rates using Lyapunov stability theory of Markov chains.

• Finally, we provide numerical results that corroborate our analysis.

The rest of the paper is organized as follows. In Section 2, we give details of the system model and then we give
notation and some preliminary results in Section 3 where we also define our Max-Weight scheduling policy. In Section 4,
we give necessary conditions on the request arrival rates for the stability of the switch and provide main results. We then
discuss some numerical results in Section 5. Finally, we conclude in Section 6.
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Figure 1: Switch creating end-to-end entanglements

2. SYSTEM MODEL
Consider a quantum switch that is connected to a set of K users, denoted by U ≜ {u1, · · · , uK}, in a star topology with
user ui connected to the switch via link li ∈ L ≜ {l1, · · · , lk}. Time is divided into fixed-length time-slots. One Bell-pair
is generated across the link li in each time-slot with probability pi; no entanglement is generated with probability 1 − pi.
The Bell-pairs generated across links are referred to as link-level entanglements and the goal of the switch is to merge
link-level entanglements to form end-to-end entanglements for various sets of users.

If a link-level entanglement is created between a user and the switch, then the switch stores one qubit of the entangle-
ment in a quantum memory and the other qubit is stored at the user. The qubits of an entanglement are assumed to decoher
after one time-slot. That is, if a link-level entanglement is created in time-slot n then that entanglement must be used to
form an end-to-end entanglement in time-slot n, otherwise the link-level entanglement is considered to be wasted. As a
result, the switch uses only one quantum memory to store qubits of entanglements generated across each link.

There are M types of requests arriving at the switch for end-to-end entanglements. A type i request is served when the
switch creates an ni-qubit end-to-end entanglement shared among a set of users denoted by Ri ≜ {ui1, · · · , uini}. Let Li

denote the set of links whose Bell-pairs are required to serve a type i request, and let Xj denote the set of types of requests
that require a link-level entanglement of link j. The process of creating an end-to-end entanglement shared among users
Ri involves two steps; successful generation of Bell-pairs across links Li followed by a successful entanglement swapping
operation performed on the qubits stored at the switch, which is assumed to occur with probability qi.

Let Ai(n) denote the number of type i requests that arrive in time-slot n and the process {Ai(n)} is an independent
and identically distributed (i.i.d.) process with E[Ai(n)] = λi where λi is the rate at which type i requests arrive in each
time-slot. The switch stores requests of each type in an infinite capacity queue and processes them in First-Come-First-
Served (FCFS) basis. The main aim of the switch is to make scheduling decisions on how to allocate available link-level
entanglements to different types of requests so as to serve requests with finite waiting times.

In Figure 1, we show a quantum switch that connects to three users where user ui is connected to the switch via link li.
There are three types of requests arriving in the system, each type of request seeks a creation of shared entanglement for a
set of users. For type i requests, λi denotes the average number of requests arriving in each time-slot. From Figure 1, the
set of users and links associated with different types of requests are: R1 = {u1, u2}, R2 = {u2, u3}, R3 = {u1, u2, u3},
L1 = {l1, l2}, L2 = {l2, l3}, and L3 = {l1, l2, l3}. There is a competition among different types of requests to use
available link-level entanglements in each time-slot. For example, entanglements of link l1 are used to serve both type 1
and type 3 requests.

In this paper, we address the following question. For a switch with K links and given system parameters p =
[p1, · · · , pK ] and q = [q1, · · · , qM ], what is the capacity region of request rates that is defined as the set of request
rates λ = [λ1, · · · , λM ] for which there exists a scheduling policy that stabilizes the switch? In the next section, we define
a Max-Weight scheduling policy, which is shown to stabilize the switch for all feasible arrival rates.
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3. NOTATION AND PRELIMINARY RESULTS
We write vectors as bold-faced letters in the rest of the paper. We denote the number of type i requests that are waiting
for service at the beginning of time-slot n by Qi(n). The number of link-level entanglements generated across link lj in
time-slot n is written as Tj(n), where, Tj(n) = 1 with probability pj and Tj(n) = 0 with probability 1− pj . The states of
the vector T(n) = (Tj(n)) belong to the set A, defined as

A ≜ {a = (a1, · · · , aK) : ai ∈ {0, 1}, 1 ≤ i ≤ K}.

In time-slot n, since qubits of link-level entanglements decoher after one time-slot, the number of Bell-pairs available
at link lj is Tj(n). When Tj(n) = 1, only one request can use it. The switch needs to decide how to process various
requests using available link-level entanglements of links, in such a way that the average waiting times of requests are
finite. Next we define a notion called matching, that is used in the process of allocating available link-level entanglements
to requests.

DEFINITION 1. Matching: We call π = [π1, · · · , πM ] a matching if πi ∈ {0, 1} and for each link lj (1 ≤ j ≤ K), we
have ∑

i∈Xj

πi ≤ 1. (1)

Furthermore, the vector π satisfies the condition that if πr = 0 (1 ≤ r ≤ M ) in π, then the vector π∗ obtained from π by
replacing the rth element πr = 0 with πr = 1 violates the condition (1).

Condition (1) guarantees that each link-level entanglement is assigned to at most one request. If the scheduler selects
a matching π to decide which requests to be served in a time-slot, if πi = 1, then the switch attempts to serve a type i
request by performing a swapping operation on qubits of related links Li. Let M be the set defined as

M ≜ {π : πi ∈ {0, 1},
∑
i∈Xj

πi ≤ 1, ∀lj}.

.

In time-slot n, the switch selects a matching from the set M based on Q(n) = (Qi(n)) and T(n) = (Ti(n)).
Intuitively, the switch should allocate available link-level entanglements to types of requests that have large queues, which
guides us to define a Max-Weight scheduling policy for given quantum switch. Suppose that W(n) ∈ M is the matching
to be used in time-slot n, then we denote ri(T(n),W(n)) to be the probability that a type i request is successfully served
given that it is selected for service. To serve a type i request, first, the switch should make a decision to perform a
relevant swapping operation, which happens if all the links in Li have Bell-pairs and the selected matching W(n) satisfies
Wi(n) = 1. Second, the subsequent swapping operation must succeed, which happens with probability qi. As a result,

ri(T(n),W(n)) = qiI{Wi(n)=1}I{Tj(n)>0,∀lj∈Li}, (2)

where, I{B} is the indicator function of the event B.

Next, we define the Max-Weight scheduling policy of interest below.

DEFINITION 2. Max-Weight Scheduling: In time-slot n, the switch selects the matching W(n) computed as follows:

W(n) = arg max
π∈M

M∑
i=1

ri(T(n),π)Qi(n). (3)

From (3), it is clear that W(n) is chosen to maximize the weighted sum of queue sizes of requests over the set M with
weights corresponding to success probabilities of serving requests. This helps us to avoid congested queues.

If W(n) is the matching selected in time-slot n, then the number of entanglement swapping operations performed to
serve type i requests is equal to min(Qi(n),Wi(n)). Next, we show how the process {Q(n)} evolves with time. Suppose
that Zi(n) ∈ {0, 1} denotes whether an entanglement swapping operation performed on qubits of links Li in time-slot
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n succeeds or not. Variable Z(n) satisfies Zi(n) = 1 if the entanglement swapping operation succeeds and Zi(n) = 0,
otherwise. Now define Di(n) ∈ {0, 1} to be the number of type irequests served in time-slot n. Then we have

Di(n) = Zi(n)I{Wi(n)>0}I{Qi(n)>0}I{Tj(n)>0,∀lj∈Li}. (4)

The process {Q(n)} is a Markov chain that evolves according to the following relation,

Q(n+ 1) = Q(n)−D(n) +A(n), (5)

where, A(n) = (Ai(n)) and D(n) = (Di(n)). Note that the newly arrived requests in time-slot n, A(n), are not used to
compute D(n), but rather they are used to determine D(n+ 1).

Our goal is to find necessary conditions on λ for existence of a scheduling policy under which the switch is stable, that
there exists a stationary probability distribution for queue sizes of requests with finite average queues. We will show that
our Max-Weight policy, stabilizes the switch for all arrival rates belonging to the capacity region as defined below.

DEFINITION 3. Capacity Region: The set of request rates λ for which there exists a scheduling policy that stabilizes the
switch.

A scheduling policy is said to be throughput optimal if it stabilizes the switch for all arrival rates belonging to the
capacity region. In the following remark, we will recall results on the analysis of a switch in classical networking, and then
discuss how classical and quantum switch differ in the way they operate.

Remark 1. In classical networking, a switch forwards packets from input ports to output ports, under the condition that
in each time-slot, an input port forwards at most one packet to only one output port and an output port receives at most
one packet from only one input port. Suppose that λij denotes the average number of arriving packets per time-slot at the
input port i to be transferred to the output port j. Define Λ′ as

Λ′ = {a = [aij ] :
∑
j

aij ≤ 1 and
∑
l

alm ≤ 1, ∀ i,m}.

Let M′ denote the set of matchings used in classical networking defined as

M′ ≜ {π = [πij ] :
∑
j

πij = 1 and
∑
l

πlm = 1, ∀ i,m}.

It was shown that if the switch selects the matching W (n) computed according to the following Max-Weight scheduling
policy then the switch is stable if λ lies inside Λ′,27

W(n) = arg max
π∈M′

∑
ij

πijQij(n).

Furthermore, if λ /∈ Λ′, then no scheduling policy can stabilize the switch. We can view the quantum switch as the device
with M input ports and K output ports, where each input port is associated with an application that generates requests
for end-to-end entanglements and each output port is associated with a link. In every time-slot, the input port i is either
matched to output ports Li or not matched to any output port depending on whether Wi(n) = 1 or not. Furthermore, each
output port is matched to at most one input port since each link has at most one link-level entanglement. If the input port i
is matched to output ports, then it means that the switch has decided to serve a type i request.

In the next section, we will derive necessary conditions on λ for achieving the stability of the switch and show that the
proposed Max-Weight scheduling policy achieves the stability of the switch for all arrival rates that lie inside the capacity
region.

4. MAIN RESULTS
In this section, we present necessary conditions on arrival rates λ to achieve stability of the switch and prove that the
Max-Weight policy stabilizes the switch for all feasible arrival rates using Lyapunov stability theory of Markov chains. We
omit proofs of theorems presented in this section and provide them in an online report.
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Next we provide a formal definition of stability of the switch.

DEFINITION 4. Stability of the switch: We say that the quantum switch is stable if the sequence {Q(n)} converges in
distribution to a random vector Q(∞) with E [Q(∞)] < ∞ for all initial states Q(0).

In our proofs we use the condition that the process {Q(n)} is an irreducible Markov chain. The process {Q(n)} is an
irreducible Markov chain under a scheduling policy if the following two conditions are satisfied. These are:

C1 : If λi > 0, then there exists π ∈ M such that ri(T(n),π) > 0 for some T(n).

C2 : If Q(n) ̸= 0, then there exists a matching π such that ri(T(n),π) > 0 for a given state of T(n) for some i with
Qi(n) > 0, in this case the scheduling policy of interest must select a matching W(n) such that rj(T(n),W(n)) >
0 for some j with Qj(n) > 0.

If a scheduling policy satisfies conditions C1 and C2, then the process {Q(n)} is guaranteed to reach the empty state
starting from any initial state. From (2) and (3), it is evident that the two conditions, C1 and C2, are satisfied under our
Max-Weight scheduling policy. Hence, the process {Q(n)} is an irreducible Markov chain.

If the switch is stable under any scheduling policy then the request arrival rate coincides with the request departure rate
in the stationary regime since we have

λ = lim
n→∞

∑n
j=1 D(j)

n
, a.s. (6)

Next, we derive necessary conditions on λ for existence of a scheduling policy that stabilizes the switch. If the switch
is stable under a scheduling policy, then we denote X(∞) to be the random vector with stationary probability distribution
of X(n). Let ca,π be defined as

ca,π = P(min(W(∞),Q(∞)) = π, Q(∞) ̸= 0|T(∞) = a),

where min(W(∞),Q(∞)) = (min(Wi(∞), Qi(∞))) indicates the number of entanglement swapping operations per-
formed for each type of requests in time-slot n, and ca,π denotes the stationary probability that min(W(∞),Q(∞)) = π
and Q(∞) ̸= 0 given that T(∞)) = a. Note that the process {T(n)} is a stationary process with the property that
P(T(n) = 1) = pi and P(T(n) = 0) = 1− pi.

THEOREM 4.1. If there exists a scheduling policy that stabilizes the switch with {Q(n)} being an irreducible Markov
chain, then using (6) we show that λ satisfies

λ =
∑

{a∈A,a ̸=0}

P(T(n) = a)
∑
π∈M

ca,πr(a,π), (7)

where, r(a,π) = (ri(a,π)), ca,π > 0, and
∑

π ca,π < 1 for all a ∈ A with a ̸= 0.

From (7), we can write

λ =
∑

{a∈A,a ̸=0}

P(T(n) = a)
∑
σ∈M

∑
π∈M

P(W(∞) = σ,min(W(∞),Q(∞)) = π, Q(∞) ̸= 0|T(∞) = a)r(a,π)

≤
∑

{a∈A,a ̸=0}

P(T(n) = a)
∑
σ∈M

∑
π∈M

P(W(∞) = σ,min(W(∞),Q(∞)) = π, Q(∞) ̸= 0|T(∞) = a)r(a,σ)

=
∑

{a∈A,a ̸=0}

P(T(n) = a)
∑
σ∈M

P(W(∞) = σ, Q(∞) ̸= 0|T(∞) = a)r(a,σ)

=
∑

{a∈A,a ̸=0}

P(T(n) = a)
∑
σ∈M

ba,σr(a,σ), (8)

where ba,σ = P(W(∞) = σ, Q(∞) ̸= 0|T(∞) = a).

Using Theorem 4.1 and (8), we characterize the capacity region as follows.
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DEFINITION 5. Capacity region: The capacity region is defined as

Λ ≜

{
λ : ∃{ba,π,a ∈ A,π ∈ M} s.t. λ ≤

∑
{a∈A,a ̸=0}

P(T(n) = a)
∑
π

ba,πr(a,π), ba,π > 0,
∑
π

ba,π < 1, ∀a

}
.

(9)

If λ /∈ Λ, then the switch cannot be stabilized under any scheduling policy as this would contradict the results of Theo-
rem 4.1.

Next, we prove that the Max-Weight scheduling policy stabilizes the switch for all arrival rates in the capacity region.
For this, we apply a Lyapunov stability theorem of Markov chains [26, Theorem 3.1], using the following Lyapunov
function

V (Q(n)) =
M∑
i=1

Qi(n)
2.

It suffices to show that
E [V (Q(n+ 1))− V (Q(n))|Q(n)] ≤ −ϵ∥Q(n)∥, (10)

for sufficiently large ∥Q(n)∥, where ∥Q(n)∥ =
√∑M

i=1 Qi(n)2, and ϵ > 0. Finally, we state the main result on the
stability of the switch under our Max-Weight scheduling policy in the following theorem.

THEOREM 4.2. If λ ∈ Λ and E
[
A2

i (n)
]
< ∞ for all 1 ≤ i ≤ M , then the Max-Weight scheduling policy defined in

Definition 1 stabilizes the switch.

5. NUMERICAL RESULTS
In this section, we provide numerical results that support our analysis. We simulate the switch shown in Figure 1 to
understand the behavior of the process {Q(n)} for various parameters, where Q(n) =

∑M
i=1 Qi(n)

M .

In Figure 2, we plot Q(n) as a function of n for p =[0.7 0.8 0.6], and q =[0.9 0.8 0.7]. In Figure 2a, for λ =[0.35
0.2 0.15], we observe that switch is stable for the considered parameters and the stationary average queue size denoted by
E[Q(∞)] is finite as shown in the figure, where E[Q(∞)] =

∑N
n=1 Q(n)

N with N = 107. In Figure 2b, we study the switch
assuming higher request arrival rates than the arrival rates considered in Figure 2a. For λ =[0.45 0.35 0.25], we observe
that Q(n) increases monotonically with n as shown in Figure 2b implying that the switch is unstable and E[Q(∞)] is very
large.

In Figure 3, we study how the average queue sizes of requests change with γ for the parameters λ =[0.35 0.2 0.15],
p =[γ γ γ], and q =[0.9 0.8 0.7]. We plot E[Q(∞)] as a function of γ in Figure 3a for γ ∈ [0.5, 0.95]. We observe that
the switch is unstable when γ < 0.75 due to the fact that there are not enough link-level entanglements available in each
time-slot to serve requests stored in queues. The average queue sizes of requests decrease with link-level entanglement
generation rate γ. In Figure 3b, for γ ≥ 0.75, we observe that the average queue sizes of requests are small and decrease
with γ. Our numerical results support the importance of characterizing the capacity region of the switch for given p and q.

6. CONCLUSIONS
In this paper, we have investigated stability properties of a quantum switch that provide insights into performance of the
switch. We proposed a Max-Weight scheduling policy that takes into account for differences in various parameters so as
to achieve good performance. We also prooved that the proposed policy stabilizes the switch for all feasible arrival rates.
Although our policy has high implementation cost due to the fact that it requires the switch to search over all possible
matchings to find the best matching in each time-slot, it provides insights into how to design low complexity scheduling
algorithms and also, its performance acts as a benchmark to the performance of other policies.

We plan to address several important problems in future work. We would like to investigate the design and analysis
of scheduling algorithms that have low implementation costs. We also plan to study the case where Bell-pairs take more
than one time-slot to decoher. Finally, it is of interest to analyze scheduling algorithms for distribution of entangled states
over quantum networks and also consider the effect of entanglement purification procedures into the design of scheduling
algorithms.
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(a) Stable switch (b) Unstable switch
Figure 2: Evolution of queue sizes

(a) For γ ∈ [0.5, 0.95] (b) For γ ≥ 0.75

Figure 3: Average queue sizes versus γ
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