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ABSTRACT
Communication lower bounds have long been established formatrix
multiplication algorithms. However, most methods of asymptotic
analysis have either ignored constant factors or not obtained the
tightest possible values. The main result of this work is establish-
ing memory-independent communication lower bounds with tight
constants for parallel matrix multiplication. Our constants improve
on previous work in each of three cases that depend on the relative
sizes of the matrix aspect ratios and the number of processors.
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1 INTRODUCTION
The cost of communication relative to computation continues to
grow, so the time complexity of an algorithm must account for
both the computation it performs and the data that it communi-
cates. Communication lower bounds for computations set targets
for e�cient algorithms and spur algorithmic development. Classical
matrix multiplication is one of the most fundamental computations,
and its I/O complexity on sequential machines and parallel commu-
nication costs have been well studied over decades [1, 7, 8].

The earliest results established asymptotic lower bounds, ignor-
ing constant factors and lower order terms. Because of the ubiquity
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of matrix multiplication in high performance computations, more
recent attempts have tightened the analysis to obtain the best con-
stant factors for memory-dependent sequential bounds [10]. These
improvements in the lower bound also helped identify the best
performing algorithms to be further tuned for high performance in
settings where small constant factors make signi�cant di�erences.

The main result of this paper is the establishment of tight con-
stants for memory-independent communication lower bounds for
parallel matrix multiplication. These bounds apply even when the
local memory is in�nite, and they are the tightest bounds in many
cases when the memory is limited. Demmel et al. [6] prove as-
ymptotic bounds for general rectangular matrix multiplication and
show that three di�erent bounds are asymptotically tight in sepa-
rate cases that depend on the relative sizes of the aspect ratios of the
matrices and the number of processors. Our main result reproduces
those asymptotic bounds and improves the constants in all three
cases. We present a comparison to previous work in Tab. 1.

We believe one of the main features of our lower bound result
is the simplicity of the proof technique, which makes a uni�ed
argument that applies to all three cases. The key idea is to cast the
lower bound as the solution to a constrained optimization problem
whose objective function is the sum of variables that correspond to
the amount of data of each matrix required by a single processor’s
computation. All of the complexity of the three cases, including
establishing the thresholds between cases and the leading terms in
each case, are con�ned to a single optimization problem that can be
solved analytically. This uni�ed argument is elegant and improves
on previous results to obtain tight constants.

2 PRELIMINARIES
2.1 Parallel Computation Model
We consider the U-V-W parallel machine model [11]. In this model,
each of % processors has its own local memory of size" and can
compute only with data in its local memory. The processors can
communicate data to and from other processors via messages that
are sent over a fully connected network. The cost of communication
is a function of two parameters U and V , where U is the per-message
latency cost and V is the per-word bandwidth cost, and W is the
per-operation arithmetic cost. We focus on the bandwidth cost in
this work, as it typically dominates the communication cost for
dense matrix multiplication.
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Table 1: Summary of explicit constants of leading term of
parallel memory-independent rectangular matrix multipli-
cation communication lower bounds for multiplication di-
mensions< � = � : and % processors

2.2 Related Work
Aggarwal, Chandra, and Snir [1] extend the sequential lower bound
for matrix multiplication of Hong and Kung [7] to the LPRAM paral-
lel model, which closely resembles the model we consider with the
exception that there exists a global sharedmemorywhere the inputs
initially reside and where the output must be stored at the end of
the computation. In addition to proving bounds for sequential ma-
trix multiplication and an associated memory-dependent bound for
parallel matrix multiplication, Irony, Toledo, and Tiskin [8] prove
also that a parallel algorithmmust communicate ⌦(=2/%2/3) words,
and they provide explicit constants in their analysis. Demmel et al.
[6] extend the memory-independent results to the rectangular case
(multiplying matrices of dimensions =1 ⇥ =2 and =2 ⇥ =3), showing
that three di�erent bounds apply that depend on the relative sizes of
the three dimensions and the number of processors, and their proof
provides explicit constants. We summarize the constants obtained
by these previous works and compare them to our results in Tab. 1.
Further details of the comparison are given in [2].

2.3 Fundamental Results
In this section we collect the fundamental existing results we use to
prove our main result, Theorem 1. The �rst lemma is a geometric
inequality that has been used before in establishing communication
lower bounds for matrix multiplication [3, 6, 8].

L���� 1 (L������W������ [9]). Let + be a �nite set of lattice
points in R3, i.e., points (8, 9,:) with integer coordinates. Let q8 (+ )
be the projection of + in the 8-direction, i.e., all points ( 9,:) such
that there exists an 8 so that (8, 9,:) 2 + . De�ne q 9 (+ ) and q: (+ )
similarly. Then

|+ |  |q8 (+ ) | · |q 9 (+ ) | · |q: (+ ) |,
where | · | denotes the cardinality of a set.

The next set of de�nitions and lemmas allow us to solve the key
constrained optimization problem (Lemma 5) analytically. We use
boldface to indicate vectors and matrices and subscripts to index
them, so that G8 is the 8th element of x , for example.

D��������� 1 ([5, ��. (3.2)]). A di�erentiable function 5 : R3 !
R is convex if its domain is a convex set and for all x,~ 2 dom 5 ,

5 (~) � 5 (x) + hr5 (x),~ � xi.

D��������� 2 ([5, ��. (3.20)]). A di�erentiable function 6 : R3 !
R is quasiconvex if its domain is a convex set and for all x,~ 2 dom 6,

6(~)  6(x) implies that hr6(x),~ � xi  0.

D��������� 3 ([5, ��. (5.49)]). Consider an optimization problem
of the form

min
x

5 (x) subject to g(x)  0 (1)

where 5 : R3 ! R and g : R3 ! R2 are both di�erentiable. De�ne
the dual variables - 2 R2 , and let Pg be the Jacobian of g. The
Karush-Kuhn-Tucker (KKT) conditions of (x, -) are as follows:

• Primal feasibility: g(x)  0;
• Dual feasibility: - � 0;
• Stationarity: r5 (x) + - · Pg (x) = 0;
• Complementary slackness: `868 (x) = 0 for all 8 2 {1, . . . , 2}.

The next two results establish that our key optimization problem
in Lemma 5 can be solved analytically using the KKT conditions.
Proofs of these results can be found in [2].

L���� 2 ([4, L���� 2.2]). The function 60 (x) = ! � G1G2G3, for
some constant !, is quasiconvex in the positive octant.

L���� 3. Consider an optimization problem of the form given in
eq. (1). If 5 is a convex function and each 68 is a quasiconvex function,
then the KKT conditions are su�cient for optimality.

3 MAIN LOWER BOUND RESULT
3.1 Lower Bounds on Individual Array Access
The following lemma establishes lower bounds on the number of
elements of each individual matrix a processor must access based on
the number of computations a given element is involved with. This
result is used to establish a set of constraints in the key optimization
problem used in the proof of Theorem 1.

L���� 4. Given a parallel matrix multiplication algorithm that
multiplies an =1 ⇥ =2 matrix A by an =2 ⇥ =3 matrix B using %
processors, any processor that performs at least 1/% th of the scalar
multiplications must access at least =1=2/% elements of A and at
least =2=3/% elements of B and also compute contributions to at least
=2=3/% elements of C = A · B.

P����. The total number of scalar multiplications that must be
computed is =1=2=3. Consider a processor that computes at least
1/%th of these computations. Each element of A is involved in
=3 multiplications. If the processor accesses fewer than =1=2/%
elements of A, then it would perform fewer than =3 · =1=2/% scalar
multiplications, which is a contradiction. Likewise, each element of
B is involved in =1 multiplications. If the processor accesses fewer
than =2=3/% elements of B, then it would perform fewer than =1 ·
=2=3/% scalar multiplications, which is a contradiction. Finally, each
element of C is the sum of =2 scalar multiplications. If the processor
computes contributions to fewer than =1=3/% elements of C, then it
would perform fewer than =2 ·=1=3/% scalar multiplications, which
is again a contradiction. ⇤
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3.2 Key Optimization Problem
The following lemma is the crux of the proof of our main result
(Theorem 1). We state the optimization problem abstractly here, but
it may be useful to have the following intuition: the variable vector
x represents the sizes of the projections of the computation assigned
to a single processor onto the three matrices, where G1 corresponds
to the smallest matrix and G3 corresponds to the largest matrix. In
order to design a communication-e�cient algorithm, we wish to
minimize the sum of the sizes of these projections subject to the
constraints of matrix multiplication (and the processor performing
1/%th of the computation), as speci�ed by the Loomis-Whitney
inequality (Lemma 1) and Lemma 4. A more rigorous argument
that any parallel matrix multiplication algorithm is subject to these
constraints is given in Theorem 1.

We are able to solve this optimization problem analytically using
properties of convex optimization (Lemma 3). The three cases of
the solution correspond to how many of the individual variable
constraints are tight. When none of them is tight, we can minimize
the sum of variables subject to the bound on their product by setting
them all equal to each other (Case 3). However, when the individual
variable constraints make this solution infeasible, those become
active and the free variables must be adjusted (Cases 1 and 2).

L���� 5. Consider the following optimization problem:

min
x2R3

G1 + G2 + G3

such that✓
<=:

%

◆2
 G1G2G3,

=:

%
 G1,

<:

%
 G2,

<=

%
 G3,

where< � = � : � 1 and % � 1. The optimal solution x⇤ depends
on the relative values of the constraints, yielding three cases:

(1) if %  <
= , then G⇤1 = =: , G⇤2 = <:

% , G⇤3 = <=
% ;

(2) if <
=  %  <=

:2 , then G⇤1 = G⇤2 =
⇣
<=:2

%

⌘1/2
, G⇤3 = <=

% ;

(3) if <=
:2  % , then G⇤1 = G⇤2 = G⇤3 =

�<=:
%

� 2
3 .

This can be visualized as follows:

%1 <
=

<=
:2G⇤1 = =:

G⇤2 = <:
%

G⇤3 = <=
%

G⇤1 = G⇤2 =
�<=:2

%

�1/2
G⇤3 = <=

%

G⇤1 = G⇤2 = G⇤3 =
�<=:

%

�2/3

P����. By Lemma 3, we can establish the optimality of the so-
lution for each case by verifying that there exist dual variables
such that the KKT conditions speci�ed in Def. 3 are satis�ed. This
optimization problem �ts the assumptions of Lemma 3 because the
objective function and all but the �rst constraint are a�ne func-
tions, which are convex and quasiconvex, and the �rst constraint is
quasiconvex on the positive octant (which contains the intersection
of the a�ne constraints) by Lemma 2.

To match standard notation (and that of Lemma 3), we let 5 (x) =
G1 + G2 + G3 and

g(x) =

26666664

(<=:/%)2 � G1G2G3
=:/% � G1
<:/% � G2
<=/% � G3

37777775
.

Thus the gradient of the objective function is r5 (x) =
⇥
1 1 1

⇤
and the Jacobian of the constraint function is

Pg (x) =

26666664

�G2G3 �G1G3 �G1G2
�1 0 0
0 �1 0
0 0 �1

37777775
.

Case 1 (%  =
< ). We let

x⇤ =
⇥
=: <:

%
<=
%

⇤
and

-⇤ =
h

%2

<2=: 0 1 � %=
< 1 � %:

<

i
and verify the KKT conditions. Primal feasibility is immediate, and
dual feasibility follows from %  <

=  <
: , the condition of this

case and by the assumption = � : . Stationarity follows from direct
veri�cation that -⇤ · Pg (x⇤) =

⇥
�1 �1 �1

⇤
. Complementary

slackness is satis�ed because the only nonzero dual variables are
`⇤1 , `

⇤
3 , and `⇤4 , and the 1st, 3rd, and 4th constraints are tight.

Case 2 (<=  %  <=
:2 ). We let

x⇤ =
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<=:2

%

⌘1/2 ⇣
<=:2

%

⌘1/2
<=
%

�

and

-⇤ =
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%
<=:2/3

⌘3/2
0 0 1 �
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%:2
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⌘1/2�

and verify the KKT conditions. The primal feasibility of G1 = G2

is satis�ed because =:
%  <:

% 
⇣
<=:2

%

⌘1/2
where the �rst in-

equality follows from the assumption < � = and the second in-
equality follows from</=  % (one condition of this case). The
other constraints are clearly satis�ed. Dual feasibility requires that
1 � (%:2/<=)1/2 � 0, which is satis�ed because %  <=/:2 (the
other condition of this case). Stationarity can be directly veri�ed.
Complementary slackness is satis�ed because the 1st and 4th con-
straints are both tight for x⇤, corresponding to the only nonzeros
in -⇤.

Case 3 (<=
:2  % ). We let

x⇤ =
⇣

<=:
%

⌘2/3 ⇣
<=:
%

⌘2/3 ⇣
<=:
%

⌘2/3�

and

-⇤ =
⇣

%
<=:

⌘4/3
0 0 0

�

and verify the KKT conditions. We �rst consider the primal feasi-

bility conditions. We have =:
%  <:

%  <=
% 

⇣
<=:
%

⌘2/3
, where

the �rst two inequalities are implied by the assumption< � = � :
and the last follows from <=

:2  % , the condition of this case. Dual
feasibility is immediate, and stationarity is directly veri�ed. Com-
plementary slackness is satis�ed because the 1st constraint is tight
for x⇤ and `⇤1 is the only nonzero.

Note that the optimal solutions coincide at boundary points
between cases so that the values are continuous as % varies. ⇤
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3.3 Communication Lower Bound
We now state our main result, memory-independent communica-
tion lower bounds for general (classical) matrix multiplication with
tight constants. After the general result, we also present a corollary
for square matrix multiplication.

T������ 1. Consider a classical matrix multiplication compu-
tation involving matrices of size =1 ⇥ =2 and =2 ⇥ =3. Let < =
max{=1,=2,=3}, = = median{=1,=2,=3}, and : = min{=1,=2,=3},
so that< � = � : . Any parallel algorithm using % processors that
starts with one copy of the two input matrices and ends with one copy
of the output matrix and load balances either the computation or the
data must communicate at least ⇡ � <=+<:+=:

% words of data, where

⇡ =

8>>>>><
>>>>>:

<=+<:
% + =: if 1  %  <

=

2
⇣
<=:2

%

⌘1/2
+ <=

% if <
=  %  <=

:2

3
⇣
<=:
%

⌘2/3
if <=

:2  % .

P����. To establish the lower bound, we focus on a single pro-
cessor. If the algorithm load balances the computation, then ev-
ery processor performs <=:/% scalar multiplications, and there
exists some processor whose input data at the start of the algo-
rithm plus output data at the end of the algorithm must be at most
(<= +<: + =:)/% words of data (otherwise the algorithm would
either start with more than one copy of the input matrices or end
with more than one copy of the output matrix). If the algorithm
load balances the data, then every processor starts and end with a
total of (<= +<: +=:)/% words, and some processor must perform
at least<=:/% scalar multiplications (otherwise fewer than<=:
multiplications are performed). In either case, there exists a proces-
sor that performs at least<=:/% multiplications and has access to
at most (<= +<: + =:)/% data.

Let � be the set of multiplications assigned to this processor,
so that |� | � <=:/% . Each element of � can be indexed by three
indices (81, 82, 83) and corresponds to the multiplication of A(81, 82)
with B(82, 83), which contributes to the result C(81, 83). Let qA (� )
be the projection of the set � onto the matrix A, so that qA (� ) are
the entries of A required for the processor to perform the scalar
multiplications in � . Here, elements of qA (� ) can be indexed by
two indices: qA (� ) = {(81, 82) : 9 83 s.t. (81, 82, 83) 2 � }. De�ne
qB (� ) and qC (� ) similarly. The processor must access all of the
elements in qA (� ), qB (� ), and qC (� ) in order to perform all the
scalar multiplications in � . Because the processor starts and ends
with at most (<= +<: +=:)/% data, the communication performed
by the processor is at least |qA (� ) | + |qB (� ) | + |qC (� ) |�<=+<:+=:

% ,
which is a lower bound on the communication of the algorithm.

In order to lower bound |qA (� ) | + |qB (� ) | + |qC (� ) |, we form
a constrained minimization problem with this expression as the
objective function and constraints derived from Lemmas 1 and 4.
The Loomis-Whitney inequality (Lemma 1) implies that

|qA (� ) | · |qB (� ) | · |qC (� ) | � |� | � =1=2=3
%

=
<=:

%
,

and the lower bound on the projections from Lemma 4 means

|qA (� ) | �
=1=2
%

, |qB (� ) | �
=2=3
%

, |qC (� ) | �
=1=3
%

.

For any algorithm, the processor’s projections must satisfy these
constraints, so the sum of their sizes must be at least the minimum
value of optimization problem. Then by Lemma 5 (and assigning
the projections to G1, G2, G3 appropriately based on the relative sizes
of =1,=2,=3), the result follows. ⇤

C�������� 2. Consider a classical matrix multiplication computa-
tion involving two matrices of size =⇥=. Any parallel algorithm using
% processors that starts with one copy of the input data and ends with
one copy of the output data and load balances either the computation
or the data must communicate at least 3 =2

%2/3 � 3=
2

% words of data.

4 CONCLUSION
Theorem 1 establishes memory-independent communication lower
bounds for parallel matrix multiplication. By casting the lower
bound on accessed data as the solution to a constrained optimiza-
tion problem, we are able to obtain a result with explicit constants
spanning over three scenarios that depend on the relative sizes
of the matrix aspect ratios and the number of processors. These
constants established in Theorem 1 are tight, as a general 3D al-
gorithm attains the bounds in each of the three scenarios [2]. Our
lower bound proof technique tightens the constants proved in ear-
lier work, and we believe it can be generalized to improve known
communication lower bounds for other computations.
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