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AN ALGORITHM FOR THE GRADE-TWO RHEOLOGICAL MODEL

Sara Pollock1,* and L. Ridgway Scott2

Abstract. We develop an algorithm for solving the general grade-two model of non-Newtonian fluids
which for the first time includes inflow boundary conditions. The algorithm also allows for both of the
rheological parameters to be chosen independently. The proposed algorithm couples a Stokes equation
for the velocity with a transport equation for an auxiliary vector-valued function. We prove that this
model is well posed using the algorithm that we show converges geometrically in suitable Sobolev spaces
for sufficiently small data. We demonstrate computationally that this algorithm can be successfully
discretized and that it can converge to solutions for the model parameters of order one. We include in
the appendix a description of appropriate boundary conditions for the auxiliary variable in standard
geometries.
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1. Introduction

Non-Newtonian fluids are found in all aspects of life, from bodily fluids [28] to engine oil [12, 27]. Rheology
(non-Newtonian behavior) plays a significant role in manufacturing, including food [17, 19]. Thus advances in
modeling and simulation of non-Newtonian fluids can have broad impact.

Models of non-Newtonian fluids have been studied extensively for many years, but only recently have there
been mathematical advances [10] that allow models for them to be understood more completely. This under-
standing now allows development of numerical solution methods with a new level of reliability. The grade-two
model is the simplest of a family of models proposed by Rivlin and Ericksen [11, 15] in which the stress-strain
relationship involves derivatives of the fluid velocity. It has been widely studied, but to date no general numerical
method has been proposed and analyzed for solving it.

There have been many different approaches to the grade-two model. In two dimensions, certain simplifications
can be made if one of the parameters is eliminated, and this allows both rigorous analysis of the system in
Lipschitz domains [15] and also extensive numerical analysis of effective discretization schemes [14]. However,
in [15], it was assumed that the flow velocity was tangential to the boundary. Still in two dimensions, the paper
[8] removed that restriction by imposing third-order boundary conditions on the inflow velocity.

However, different approaches were required for general parameters and in three dimensions [1,3–5]. Although
the method proposed in [1] is quite general, it was developed and analyzed only in the case of tangential flow
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Figure 1. Two different rheometers: (a) the Lodge Stressmeter and (b) a contraction rheome-
ter. The arrows on the left of each rheometer indicate the fluid inflow, and the arrows on the
right of each rheometer indicate the fluid outflow.

fields. We propose here a slight variation of the approach [1] to the grade-two model that provides some
simplifications both theoretically and computationally, and it applies in full generality.

For certain flow problems, it is critical to allow nontrivial inflow and outflow boundary conditions. For
example, simulating many rheometers [21], the basic instruments for measuring fluid properties, requires this. In
Figure 1 we depict two different rheometers which involve nontrivial inflow and outflow. The Lodge Stressmeter,
depicted in Figure 4.13 of [2], was developed by Arthur Lodge [20]. The rheometer measurements are based on
the pressure difference between the top of the middle section of the channel and the bottom of “hole” along the
bottom of the channel. Contraction rheometers [23] measure the force on the contraction section in the middle
between the large inflow channel and the smaller outflow channel. The shape of the contraction section can be
chosen differently. Thus a major contribution of this paper is the development of analytical techniques to cover
this type of boundary condition.

One issue with the different methods is the requirement for boundary conditions on the inflow boundary.
Since the grade-two model is a third-order partial differential equation, we expect there to be another boundary
condition in addition to the standard ones for flow problems, such as the Stokes no-slip condition. In [1], this
issue was avoided by assuming tangential flow on the boundary. Generalizing [1] to allow an inflow boundary
requires a boundary condition on a certain tensor Σ. In the approach proposed here, a condition is posed instead
on the vector −∆u+∇𝑝, which is directly related to the divergence of the stress. Thus the additional boundary
condition can be viewed as a stress boundary condition. We give examples of what this boundary condition
should be for certain geometries.

2. Rheology models

In all (time-independent) models of fluids, the basic equation can be written as

u · ∇u + ∇𝑝 = ∇·T + f , (2.1)

where T is called the extra (also called deviatoric) stress and f represents externally given data. The models
only differ according to the dependence of the stress on the velocity u. In the case of a Newtonian fluid

T = 𝜈A ,

where A = ∇u + (∇u)𝑡. Thus, when ∇·u = 0, it follows that ∇·T = 𝜈∆u, and we obtain the well known
Navier-Stokes equations for Newtonian flow,

−𝜈∆u + u · ∇u + ∇𝑝 = f ,

where 𝜈 is the kinematic viscosity [18].
Typically, the data f is zero, but instead nonhomogeneous boundary conditions are physically relevant. Thus

we will assume that (2.1) holds in some domain Ω and that u = g on 𝜕Ω, where we assume
∫︁

𝜕Ω

g · n d𝑠 = 0
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to allow divergence-free solutions. Depending on the details of the model, there will also be a need for appropriate
boundary conditions for T and other ingredients.

2.1. Grade-two fluid model

The grade-two model of Rivlin and Ericksen [11,15] can be expressed as a single equation. The stress tensor
for the grade-two fluid model satisfies

TG = 𝜈A + 𝛼1
∆

∆𝑡
A + 𝛼2A

2 ,

where A = (∇u) + (∇u)𝑡 = 2E and the material derivative and the lower-convected Oldroydian derivative are
given by

D

D𝑡
f :=

(︂
𝜕

𝜕𝑡
+ u · ∇

)︂
f ,

∆

∆𝑡
f :=

D

D𝑡
f + f(∇u) + (∇u)𝑡f ,

for any tensor-valued function f . For the steady-state, grade-two fluid model, the stress tensor simplifies to

TG = 𝜈A + 𝛼1

(︀
u · ∇A + A∘(∇u) + (∇u)𝑡∘A + 𝛼2A∘A

)︀
. (2.2)

We have used the notation ∘ for tensor multiplication, which here will be just matrix multiplication.
Thus the equations of motion (2.1) can be written

−𝜈 ∆u + u · ∇u + ∇𝑝 = ∇· ̂︀𝜏 ,

∇·u = 0 in Ω, u = g on 𝜕Ω.
(2.3)

Here

̂︀𝜏 = TG − 𝜈A = 𝛼1

(︀
u · ∇A + A∘(∇u) + (∇u)𝑡∘A

)︀
+ 𝛼2A∘A

= 𝛼1

(︀
u · ∇A − A∘(∇u)𝑡 − (∇u)∘A

)︀
+ (2𝛼1 + 𝛼2)A∘A. (2.4)

We assume that the boundary data g is defined on all Ω, is divergence free, and sufficiently smooth, to be
specified subsequently.

2.2. Solving the grade-two model equations

It is helpful to expand the divergence of ̂︀𝜏 , defined in (2.4), to get a better sense of what the various terms
are in (2.3). Recall (3.2) of [16] that

∇· (u · ∇T) = ∇·
(︀
T∘(∇u)𝑡

)︀
+ u · ∇(∇·T)

for any tensor T. Therefore
∇· (u · ∇A) = ∇·

(︀
A∘(∇u)𝑡

)︀
+ u · ∇(∆u).

Recall that A is shorthand for A = ∇u + ∇u𝑡. Thus

∇· ̂︀𝜏 = ∇·
(︀
𝛼1

(︀
A∘(∇u)𝑡 + A∘(∇u) + (∇u)𝑡∘A

)︀
+ 𝛼2A∘A

)︀
+ 𝛼1u · ∇(∆u)

= ∇·
(︀
𝛼1(∇u)𝑡∘A + (𝛼1 + 𝛼2)A∘A

)︀
+ 𝛼1u · ∇(∆u). (2.5)

Equation (2.3) can thus be transformed [1] using (2.5):

−𝜈 ∆u + u · ∇u + ∇𝑝 − 𝛼1u · ∇(∆u) = ∇· ̃︀𝜏 , (2.6)

where

̃︀𝜏 = 𝛼1(∇u)𝑡∘A + (𝛼1 + 𝛼2)A∘A. (2.7)



1010 S. POLLOCK AND L.R. SCOTT

Define the tensor u ⊗ u by (u ⊗ u)𝑖𝑗 = 𝑢𝑖 𝑢𝑗 . Then

∇· (u ⊗ u) = u · ∇u, (2.8)

and so (2.6) can be further transformed to

−𝜈 ∆u − 𝛼1u · ∇(∆u) + ∇𝑝 = ∇· 𝜏 , (2.9)

where

𝜏 = ̃︀𝜏 − u ⊗ u = 𝛼1(∇u)𝑡∘A + (𝛼1 + 𝛼2)A∘A − u ⊗ u. (2.10)

Thus

TG = 𝜈A + 𝜏 + 𝛼1(u · ∇A + A∘(∇u) − A∘A) + u ⊗ u

= 𝜈A + 𝜏 + 𝛼1

(︀
u · ∇A − A∘(∇u)𝑡

)︀
+ u ⊗ u.

Note that 𝜏 appears at first not to be a symmetric tensor due to the term ∇u𝑡∘A. However, in two dimensions
this is a symmetric matrix if ∇·u = 0.

Lemma 2.1. Suppose that 𝑀 is a 2 × 2 matrix with trace zero. Then 𝑀(𝑀 + 𝑀 𝑡) is symmetric.

Proof. Write 𝑀 as

𝑀 =

(︂
𝑎 𝑏
𝑐 −𝑎

)︂

using the fact that the trace of 𝑀 is zero. Then

𝑀(𝑀 + 𝑀 𝑡) =

(︂
𝑎 𝑏
𝑐 −𝑎

)︂(︂
2𝑎 𝑏 + 𝑐

𝑏 + 𝑐 −2𝑎

)︂
=

(︂
2𝑎2 + 𝑏(𝑏 + 𝑐) 𝑎(𝑏 + 𝑐) − 2𝑎𝑏
2𝑎𝑐 − 𝑎(𝑏 + 𝑐) 𝑐(𝑏 + 𝑐) + 2𝑎2

)︂

=

(︂
2𝑎2 + 𝑏𝑐 + 𝑏2 𝑎𝑐 − 𝑎𝑏

𝑎𝑐 − 𝑎𝑏 2𝑎2 + 𝑏𝑐 + 𝑐2

)︂
.

The latter matrix is evidently symmetric. �

The lemma is not true for 3 × 3 matrices as simple examples show.

3. Transformed grade-two model equations

Let 𝜋 be defined by solving
𝜈𝜋 + 𝛼1u · ∇𝜋 = 𝑝 (3.1)

with suitable inflow boundary conditions [5, 8]. Then

∇𝑝 = 𝜈∇𝜋 + 𝛼1

(︀
u · ∇(∇𝜋) + ∇u𝑡∇𝜋

)︀
.

This means that
∇𝑝 = (𝜈𝐼 + 𝛼1u · ∇)∇𝜋 + 𝛼1∇u𝑡∇𝜋. (3.2)

Thus (2.9) transforms to
(𝜈𝐼 + 𝛼1u · ∇)(−∆u + ∇𝜋) + 𝛼1∇u𝑡∇𝜋 = ∇· 𝜏 . (3.3)

Define

𝑁(u, 𝜋) = −𝛼1𝜋∇u𝑡 + 𝜏 = −𝛼1𝜋∇u𝑡 + 𝛼1(∇u)𝑡∘A + (𝛼1 + 𝛼2)A∘A − u ⊗ u. (3.4)
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Note that 𝑁 is not a symmetric tensor due to the term 𝜋∇u𝑡. The incompressibility condition ∇·u = 0 implies
that

∇· (𝜋∇u𝑡) = ∇u𝑡∇𝜋, ∇·𝑁(u, 𝜋) = −𝛼1∇u𝑡∇𝜋 + ∇· 𝜏 . (3.5)

Therefore
∇·𝑁(u, 𝜋) = −𝛼1∇u𝑡∇𝜋 + ∇·

(︀
𝛼1∇u𝑡∘A + (𝛼1 + 𝛼2)A∘A − u ⊗ u

)︀
. (3.6)

Thus (3.3) simplifies to
(𝜈𝐼 + 𝛼1u·)(−∆u + ∇𝜋) = ∇·𝑁(u, 𝜋). (3.7)

Now consider a coupled system that looks initially like a problem potentially different from (2.3), which is a
slight variant of the one proposed in [1]:

− ∆u + ∇𝜋 = w in Ω, ∇·u = 0 in Ω, u = g on 𝜕Ω,

(𝜈𝐼 + 𝛼1u · ∇)w = ∇·𝑁(u, 𝜋) in Ω, w = w𝑏 on Γ−, (3.8)

where
Γ− =

{︀
x ∈ 𝜕Ω

⃒⃒
𝛼1 g(x) · n < 0

}︀
.

Much of the paper will be devoted to proving this system is well posed and provides an equivalent formulation
for solution of (2.3).

Theorem 3.1. The solution (u, 𝜋) of (3.8) satisfies (3.3). With 𝑝 given by (3.1), then (u, 𝑝) satisfies (2.3)
with ̂︀𝜏 defined by (2.4). The vector function w satisfies

w =
1

𝜈
(∇· ̂︀𝜏 − u · ∇u −∇𝑝) + ∇𝜋.

Proof. If (u, 𝜋) solves (3.8), then (3.7) holds. In view of (3.5), (3.3) then follows. Assuming 𝑝 solves (3.1), then
∇𝑝 satisfies (3.2). Combining (3.2) and (3.3), we get

(𝜈𝐼 + 𝛼1u · ∇)(−∆u) + ∇𝑝 = ∇· 𝜏 ,

which is the same as (2.9). Reversing the derivation of (2.9) proves (u, 𝑝) satisfies (2.3) with ̂︀𝜏 defined by (2.4).
The statement about w just involves replacing −∆u in (2.3) by the indicated expressions. �

The difference between (3.8) and equation (2.6) of [1] is that w replaces ∇·𝜎 for a certain tensor 𝜎, and a
transport equation is posed for the full tensor 𝜎 as opposed to the vector w. Using (3.8) gives a smaller system
to solve. The issue of inflow boundary conditions [6, 7] did not arise in [1] which was restricted to tangential
flows. Thus in the general case, some suitable expression for 𝜎 on the inflow boundary would be required.

3.1. An algorithm for the transformed equations

The system (3.8) is analogous to the reduced system in [15], and the algorithm in that paper suggests an
algorithm for solving (3.8): start with some w0, then solve for 𝑛 ≥ 1

− ∆u𝑛 + ∇𝜋𝑛 = w𝑛−1 in Ω, ∇·u𝑛 = 0 in Ω, u𝑛 = g on 𝜕Ω,

(𝜈𝐼 + 𝛼1u
𝑛 · ∇)w𝑛 = ∇·𝑁(u𝑛, 𝜋𝑛) in Ω, w𝑛 = w𝑏 on Γ−. (3.9)

For definiteness, we will take w0 = w𝑏. We prove convergence of this iteration for small data (g and w𝑏) in
Section 4.3. To begin with, let us establish a basic bound.

We collect details on the Lebesgue and Sobolev spaces and norms used in Appendix A. Consider the Sobolev
inequalities

‖u ‖𝑊 1
∞

(Ω) ≤ 𝜎𝑞

{︃
‖u ‖𝑊 2

𝑞 (Ω), 𝑞 > 𝑑,

‖u ‖𝑊 3
𝑞 (Ω), 𝑞 > 𝑑/2 (𝑞 ≥ 1 if 𝑑 = 2).

(3.10)
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Lemma 3.2. The operator in (3.6) is a continuous map

∇·𝑁 : 𝑊 2
𝑞 (Ω)𝑑 × 𝑊 1

𝑞 (Ω) → 𝐿𝑞(Ω)𝑑

provided 𝑞 > 𝑑. More precisely,

‖∇·𝑁(u, 𝜋) ‖𝐿𝑞(Ω) ≤ 𝐶𝑁‖u ‖𝑊 2
𝑞 (Ω)

(︁
‖u ‖𝑊 2

𝑞 (Ω) + ‖𝜋 ‖𝑊 1
𝑞 (Ω)

)︁
, (3.11)

where 𝐶𝑁 ≤ 𝑐 𝜎𝑞(1 + |𝛼1| + |𝛼1 + 𝛼2|), 𝑐 is a constant that depends only on the dimension 𝑑, and 𝜎𝑞 is the
Sobolev constant in (3.10).

Proof. Applying (3.10) to (3.6), we get

‖∇·𝑁(u, 𝜋) ‖𝐿𝑞(Ω) ≤ 𝜎𝑞|𝛼1| ‖u ‖𝑊 2
𝑞 (Ω)‖𝜋 ‖𝑊 1

𝑞 (Ω) + 𝑐
⃦⃦

𝛼1(∇u)𝑡∘A + (𝛼1 + 𝛼2)A∘A − u ⊗ u
⃦⃦

𝑊 1
𝑞 (Ω)

for a constant 𝑐 that depends only on the dimension 𝑑. Note that

⃦⃦
(∇u)𝑡∘A

⃦⃦
𝑊 1

𝑞 (Ω)
=
⃦⃦

(∇u)𝑡∘
(︀
∇u + (∇u)𝑡

)︀ ⃦⃦
𝑊 1

𝑞 (Ω)

≤
⃦⃦

(∇u)𝑡∘
(︀
∇u + (∇u)𝑡

)︀ ⃦⃦
𝐿𝑞(Ω)

+
⃦⃦
∇
(︀
(∇u)𝑡∘

(︀
∇u + (∇u)𝑡

)︀)︀ ⃦⃦
𝐿𝑞(Ω)

≤
⃦⃦

(∇u)𝑡
⃦⃦

𝐿∞(Ω)

⃦⃦
∇u + (∇u)𝑡

⃦⃦
𝐿𝑞(Ω)

+
⃦⃦
∇
(︀
(∇u)𝑡

)︀
∘
(︀
∇u + (∇u)𝑡

)︀ ⃦⃦
𝐿𝑞(Ω)

+
⃦⃦

(∇u)𝑡∘∇
(︀
∇u + (∇u)𝑡

)︀ ⃦⃦
𝐿𝑞(Ω)

≤ ‖u ‖𝑊 1
∞

(Ω)2‖u ‖𝑊 1
𝑞 (Ω) + ‖u ‖𝑊 2

𝑞 (Ω)2‖u ‖𝑊 1
∞

(Ω) + ‖u ‖𝑊 1
∞

(Ω)2‖u ‖𝑊 2
𝑞 (Ω).

Thus (3.10) implies ⃦⃦
(∇u)𝑡∘A

⃦⃦
𝑊 1

𝑞 (Ω)
≤ 6 𝜎𝑞‖u ‖

2
𝑊 2

𝑞 (Ω).

Similarly,

‖A∘A ‖𝑊 1
𝑞 (Ω) =

⃦⃦
(∇u + (∇u)𝑡)∘

(︀
∇u + (∇u)𝑡

)︀ ⃦⃦
𝑊 1

𝑞 (Ω)
≤ 12 𝜎𝑞‖u ‖

2
𝑊 2

𝑞 (Ω).

Finally,

‖u ⊗ u ‖𝑊 1
𝑞 (Ω) ≤ ‖u ⊗ u ‖𝐿𝑞(Ω) + ‖∇(u ⊗ u) ‖𝐿𝑞(Ω) ≤ 3 ‖u ‖𝐿∞(Ω)‖u ‖𝑊 1

𝑞 (Ω)

≤ 3 𝜎𝑞 ‖u ‖
2
𝑊 1

𝑞 (Ω) ≤ 3 𝜎𝑞 ‖u ‖
2
𝑊 2

𝑞 (Ω).

Combining these estimates yields (3.11). �

Lemma 3.3. The operator in (3.6) is a continuous map

∇·𝑁 : 𝑊 3
𝑞 (Ω)𝑑 × 𝑊 2

𝑞 (Ω) → 𝑊 1
𝑞 (Ω)𝑑

provided 𝑞 > 𝑑/2 (𝑞 ≥ 1 if 𝑑 = 2). Moreover

‖∇∇·𝑁(u, 𝜋) ‖𝐿𝑞(Ω) ≤ 𝐶𝑁‖u ‖𝑊 3
𝑞 (Ω)

(︁
‖u ‖𝑊 3

𝑞 (Ω) + ‖𝜋 ‖𝑊 2
𝑞 (Ω)

)︁
, (3.12)

where 𝐶𝑁 ≤ 𝑐 𝜎𝑞(1 + |𝛼1| + |𝛼1 + 𝛼2|), 𝑐 is a constant that depends only on the dimension 𝑑, and 𝜎𝑞 is the
Sobolev constant in (3.10).
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Proof. One consequence of the assumption 𝑞 > 𝑑/2 is the Sobolev inequality

‖TU ‖𝐿𝑞(Ω) ≤ 𝜎 ′
𝑞‖T ‖𝑊 1

𝑞 (Ω)‖U ‖𝑊 1
𝑞 (Ω) (3.13)

for any tensors T,U.
In view of (3.6), we get

‖∇∇·𝑁(u, 𝜋) ‖𝐿𝑞(Ω) ≤ |𝛼1|
⃦⃦
∇(∇u𝑡∇𝜋)

⃦⃦
𝐿𝑞(Ω)

+
⃦⃦
∇∇·

(︀
𝛼1(∇u)𝑡∘A + (𝛼1 + 𝛼2)A∘A − u ⊗ u

)︀ ⃦⃦
𝐿𝑞(Ω)

.

We have from the Sobolev inequalities (3.13) and (3.10) that

⃦⃦
∇(∇u𝑡∇𝜋)

⃦⃦
𝐿𝑞(Ω)

≤
⃦⃦
∇2u𝑡∇𝜋

⃦⃦
𝐿𝑞(Ω)

+
⃦⃦
∇u𝑡∇2𝜋

⃦⃦
𝐿𝑞(Ω)

≤
(︀
𝜎 ′

𝑞 + 𝜎𝑞

)︀
‖u ‖𝑊 3

𝑞 (Ω)‖𝜋 ‖𝑊 2
𝑞 (Ω).

Similarly, for a constant 𝑐 that depends only on the dimension 𝑑, we have

‖∇∇· (A∘A) ‖𝐿𝑞(Ω) ≤ 2
(︁
‖ (∇A)∇·A ‖𝐿𝑞(Ω) + ‖ (∇∇·A)A ‖𝐿𝑞(Ω)

)︁
≤ 𝑐
(︀
𝜎 ′

𝑞 + 𝜎𝑞

)︀
‖u ‖

2
𝑊 3

𝑞 (Ω).

The remaining terms are similar. �

We can recover the physical pressure 𝑝 from (3.1), that is

𝑝 = 𝜈𝜋 + 𝛼1u · ∇𝜋. (3.14)

One computational challenge is that (2.3) is a third-order PDE due to the presence of the term u · ∇(∆u).
Thus we need to be careful about the number of boundary conditions required to get a unique solution.

3.2. Variational formulation

A variational formulation of (3.9) is as follows. The first two equations can be approximated by the iterated
penalty method: find u𝑛,ℓ ∈ 𝑉ℎ + g such that

∫︁

Ω

∇u𝑛,ℓ : ∇v d𝑥 + 𝜌

∫︁

Ω

∇·u𝑛,ℓ ∇·v d𝑥 =

∫︁

Ω

w𝑛−1 · v d𝑥 −

∫︁

Ω

∇· zℓ ∇·v d𝑥 ∀v ∈ 𝑉ℎ,

zℓ+1 = zℓ + 𝜌u𝑛,ℓ. (3.15)

Once this is converged, we set u𝑛 = u𝑛,ℓ and define the pressure via [22]

∫︁

Ω

𝜋𝑛 𝑞 d𝑥 =

∫︁

Ω

−∇· zℓ+1 𝑞 d𝑥 ∀𝑞 ∈ Πℎ. (3.16)

Note that 𝜋𝑛 has mean zero if constant functions are in Πℎ, in view of the divergence theorem:

∫︁

Ω

𝜋𝑛 d𝑥 =

∫︁

Ω

−∇· zℓ+1 d𝑥 = −

∫︁

𝜕Ω

n · zℓ+1 d𝑠 = 𝑐

∫︁

𝜕Ω

n · g d𝑠 = 0.

We can pose the transport equation (3.9) via: find w𝑛 ∈ ̃︀𝑉ℎ + w𝑏 such that

𝜈

∫︁

Ω

w𝑛 · v d𝑥 + 𝛼1

∫︁

Ω

(u𝑛 · ∇w𝑛) · v d𝑥 −

∫︁

Ω

(∇·𝑁(u𝑛, 𝜋𝑛)) · v d𝑥 = 0 ∀v ∈ ̃︀𝑉ℎ, (3.17)

where w𝑏 is posed only on the inflow boundary, that is,

̃︀𝑉ℎ =
{︀
v ∈ 𝑊ℎ

⃒⃒
v = 0 on Γ−

}︀
, Γ− =

{︀
x ∈ 𝜕Ω

⃒⃒
n · g < 0

}︀
,
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whereas
𝑉ℎ =

{︀
v ∈ 𝑊ℎ

⃒⃒
v = 0 on 𝜕Ω

}︀
.

Note that it is tempting to integrate by parts to get

𝜈

∫︁

Ω

w𝑛 · v d𝑥 + 𝛼1

∫︁

Ω

(u𝑛 · ∇w𝑛) · v d𝑥 +

∫︁

Ω

𝑁(u𝑛, 𝜋𝑛) : ∇v d𝑥 = . . . ∀v ∈ ̃︀𝑉ℎ,

but there would be boundary terms that would need to be added to the formulation.
We can take 𝑊ℎ to be continuous, vector-valued, piecewise polynomials of degree 𝑘 and Πℎ to be continuous,

scalar-valued, piecewise polynomials of degree 𝑘 − 1. The use of continuous elements in (3.16) is called the
unified Stokes algorithm (USA) [22].

Recall from (3.6) that

∇·𝑁(u, 𝜋) = −𝛼1∇u𝑡∇𝜋 + ∇·
(︀
𝛼1(∇u)𝑡∘A + (𝛼1 + 𝛼2)A∘A − u ⊗ u

)︀
.

Recalling (2.8), we have

∫︁

Ω

(∇·𝑁(u𝑛, 𝜋𝑛)) · v d𝑥 =

∫︁

Ω

−𝛼1

(︀
(∇u𝑛)𝑡∇𝜋𝑛

)︀
· v d𝑥

+

∫︁

Ω

(︁
∇·
(︁
𝛼1(∇u𝑛)

𝑡
∘A𝑛 + (𝛼1 + 𝛼2)A

𝑛∘A𝑛
)︁)︁

· v d𝑥

−

∫︁

Ω

(u𝑛 · ∇u𝑛) · v d𝑥, A𝑛 = (∇u𝑛)𝑡 + ∇u𝑛.

We can compute the physical pressure 𝑝𝑛 from (3.14) via

∫︁

Ω

𝑝𝑛 𝑞 d𝑥 =

∫︁

Ω

(𝜈𝜋𝑛 + 𝛼1u · ∇𝜋𝑛)𝑞 d𝑥 ∀𝑞 ∈ Πℎ, (3.18)

but this does not need to be done at each iteration.

3.3. Required inflow boundary conditions

One drawback to the proposed method (3.9) is that it requires specification of boundary conditions for
w = −∆u + ∇𝜋. Although we cannot provide general guidance for this, we can compute boundary conditions
for w for typical flow geometries. We present this in Appendix B.

4. Theoretical details

Here we collect the theoretical details required to prove the validity of our algorithm. We begin with an
assumption about the smoothness of the data and domain. First we assume that for some 𝑞 > 𝑑, g ∈ 𝑊 2

𝑞 (Ω),
with ∮︁

𝜕Ω

n · g d𝑠 = 0.

Further, we assume that there is a constant 𝑐𝑞 such that for any g as above and any w ∈ 𝐿𝑞(Ω) the solution
(u, 𝜋) of

−∆u + ∇𝜋 = w and ∇·u = 0 in Ω, with u = g on 𝜕Ω (4.1)

satisfies, for 𝑠 = 0, 1,

‖u ‖𝑊 𝑠+2
𝑞 (Ω) + ‖𝜋 ‖𝑊 𝑠+1

𝑞 (Ω) ≤ 𝑐𝑞

(︁
‖w ‖𝑊 𝑠

𝑞 (Ω) + ‖g ‖𝑊 𝑠+2
𝑞 (Ω)

)︁
, 𝑞 ≤ 𝑄𝑠, (4.2)



ALGORITHM FOR THE GRADE-TWO RHEOLOGICAL MODEL 1015

where 𝑐𝑞 depends on Ω as well as 𝑞. For 𝑠 = 0, we require 𝑄𝑠 > 𝑑, but for 𝑠 = 1 we only require 𝑄𝑠 > 𝑑/2. This
follows from Theorem 5.4 in [13], page 88 when 𝜕Ω is sufficiently smooth. In our computational tests, we will
have less smoothness with the polyhedral domains used, but these could be approximated by smooth domains.

We will prove the following theorem which establishes the existence of solutions for the grade-two model (2.3)
as well as for the equivalent model (3.8).

Theorem 4.1. Assume that (4.2) holds for the Stokes problem (4.1). Suppose that 𝑑/(𝑠 + 1) < 𝑞 ≤ 𝑄𝑠, for
𝑠 = 0, 1, and that 𝑟 satisfies

2

𝑑
>

1

𝑟
>

1

𝑞
+

1

2
· (4.3)

Then there exist positive, finite constants 𝛾 and 𝐶𝑤 such that if the boundary data satisfy

‖w𝑏 ‖𝑊 1
𝑞 (Ω) + ‖g ‖𝑊 2

𝑞 (Ω) ≤
1

8𝛾2 + 2𝛾
,

‖w𝑏 ‖𝑊 2
𝑟 (Ω) ≤

𝜈

(𝜈 + 1)𝐶𝑤𝛾
,

and ‖g ‖𝑊 3
𝑟 (Ω) ≤

1

𝐶𝑤𝛾
,

(4.4)

and the initial iterates are sufficiently small, then the iterates (3.9) are bounded for all 𝑛 > 0:

‖w𝑛 ‖𝑊 𝑠
𝑞 (Ω) ≤ 𝒦, ‖u𝑛 ‖𝑊 𝑠+2

𝑞 (Ω) + ‖𝜋𝑛 ‖𝑊 𝑠+1
𝑞 (Ω) ≤ 𝑐𝑞

(︁
‖g ‖𝑊 𝑠+2

𝑞 (Ω) + 𝒦
)︁
, (4.5)

where 𝒦 is a finite positive constant and 𝑠 = 0, 1. Moreover, (u𝑛, 𝜋𝑛,w𝑛) converge geometrically in 𝑊 2
𝑟 (Ω)𝑑 ×

𝑊 1
𝑟 (Ω)×𝐿𝑟(Ω)𝑑 to the solution (u, 𝜋,w) of (3.8), In view of Theorem 3.1, (u, 𝑝) is the solution of the grade-two

model (2.3), where 𝑝 is related to 𝜋 by (3.1).

The constraint (4.3) implies 𝑞 > 2 for 𝑑 = 2 and 𝑞 > 6 for 𝑑 = 3, and thus the constraint 𝑞 > 𝑑 is satisfied
implicitly. In our computational experiments, we will see that the assumptions on the data size may not be very
restrictive in practice.

4.1. 𝐿𝑞 bounds on the iterates

Applying (4.2) with 𝑠 = 0 to the algorithm (3.9), we have

‖u𝑛 ‖𝑊 2
𝑞 (Ω) + ‖𝜋𝑛 ‖𝑊 1

𝑞 (Ω) ≤ 𝑐𝑞

(︁
‖g ‖𝑊 2

𝑞 (Ω) +
⃦⃦
w𝑛−1

⃦⃦
𝐿𝑞(Ω)

)︁
. (4.6)

Consider the abstract transport problem

(𝜈𝐼 + 𝛼1u · ∇)w = f in Ω, w = w𝑏 on Γ−. (4.7)

In [24], it is proved that this has a unique solution satisfying

𝜈‖w ‖𝐿𝑞(Ω) ≤ ‖ f ‖𝐿𝑞(Ω) + (1 + 𝜈)‖w𝑏 ‖𝐿𝑞(Ω) + |𝛼1| ‖u · ∇w𝑏 ‖𝐿𝑞(Ω), (4.8)

where 2 ≤ 𝑞 ≤ ∞.
Applying (4.8), (3.11), and (4.6), we conclude that

𝜈‖w𝑛 ‖𝐿𝑞(Ω) ≤ 𝐶𝑁‖u𝑛 ‖𝑊 2
𝑞 (Ω)

(︁
‖u𝑛 ‖𝑊 2

𝑞 (Ω) + ‖𝜋𝑛 ‖𝑊 1
𝑞 (Ω)

)︁

+ (1 + 𝜈)‖w𝑏 ‖𝐿𝑞(Ω) + |𝛼1| ‖u𝑛 · ∇w𝑏 ‖𝐿𝑞(Ω)

≤ 𝐶𝑁𝑐𝑞‖u𝑛 ‖𝑊 2
𝑞 (Ω)

(︁
‖g ‖𝑊 2

𝑞 (Ω) +
⃦⃦
w𝑛−1

⃦⃦
𝐿𝑞(Ω)

)︁

+ (1 + 𝜈)‖w𝑏 ‖𝐿𝑞(Ω) + |𝛼1| ‖u𝑛 ‖𝑊 1
∞

(Ω)‖w𝑏 ‖𝑊 1
𝑞 (Ω).
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Thus (3.10) implies

𝜈‖w𝑛 ‖𝐿𝑞(Ω) ≤ 𝐶𝑁𝑐𝑞‖u𝑛 ‖𝑊 2
𝑞 (Ω)

(︁
‖g ‖𝑊 2

𝑞 (Ω) +
⃦⃦
w𝑛−1

⃦⃦
𝐿𝑞(Ω)

)︁

+ (1 + 𝜈)‖w𝑏 ‖𝐿𝑞(Ω) + 𝜎𝑞|𝛼1| ‖u𝑛 ‖𝑊 2
𝑞 (Ω)‖w𝑏 ‖𝑊 1

𝑞 (Ω)

≤
(︁
𝑐𝑞𝐶𝑁‖g ‖𝑊 2

𝑞 (Ω) + 𝜎𝑞|𝛼1| ‖w𝑏 ‖𝑊 1
𝑞 (Ω)

)︁
‖u𝑛 ‖𝑊 2

𝑞 (Ω)

+ 𝐶𝑁𝑐𝑞‖u𝑛 ‖𝑊 2
𝑞 (Ω)

⃦⃦
w𝑛−1

⃦⃦
𝐿𝑞(Ω)

+ (1 + 𝜈)‖w𝑏 ‖𝐿𝑞(Ω).

Define 𝜔𝑛 = ‖w𝑛 ‖𝐿𝑞(Ω), 𝜂𝑛 = ‖u𝑛 ‖𝑊 2
𝑞 (Ω), and

𝜖 = max
{︁

𝜈−1
(︁
𝑐𝑞𝐶𝑁‖g ‖𝑊 2

𝑞 (Ω) + 𝜎𝑞|𝛼1| ‖w𝑏 ‖𝑊 1
𝑞 (Ω)

)︁
, (1 + 1/𝜈)‖w𝑏 ‖𝑊 1

𝑞 (Ω), 𝑐𝑞‖g ‖𝑊 2
𝑞 (Ω)

}︁
.

Let 𝐶𝐺 = 𝐶𝑁𝑐𝑞/𝜈. Then we have proved that

𝜂𝑛 ≤ 𝜖 + 𝑐𝑞𝜔𝑛−1

𝜔𝑛 ≤ 𝐶𝐺𝜂𝑛𝜔𝑛−1 + 𝜖(1 + 𝜂𝑛) = (𝐶𝐺𝜔𝑛−1 + 𝜖)𝜂𝑛 + 𝜖

≤ (𝐶𝐺𝜔𝑛−1 + 𝜖)(𝜖 + 𝑐𝑞𝜔𝑛−1) + 𝜖 = 𝐶𝐺𝑐𝑞𝜔
2
𝑛−1 + 𝜖((𝐶𝐺 + 𝑐𝑞)𝜔𝑛−1 + 1) + 𝜖2. (4.9)

Define 𝛾 to be any constant such that

𝛾 ≥ 𝛾0 = max{𝑐𝑞𝐶𝐺, 𝑐𝑞 + 𝐶𝐺, 1}. (4.10)

Then (4.9) implies
𝜔𝑛 ≤ 𝛾 𝜖 (1 + 𝜖 + 𝜔𝑛−1) + 𝛾 𝜔2

𝑛−1.

Choosing 𝜖 ≤ 1/4𝛾, we conclude that

𝜔𝑛 ≤ 𝜖
(︀
𝛾 + 1

4

)︀
+ 1

4𝜔𝑛−1 + 𝛾 𝜔2
𝑛−1.

Thus if 𝜔𝑛−1 ≤ 1
4𝛾 , then

𝜔𝑛 ≤ 𝜖
(︀
𝛾 + 1

4

)︀
+ 1

2𝜔𝑛−1 ≤ 𝜖
(︀
𝛾 + 1

4

)︀
+

1

8𝛾
·

Now choose

𝜖 =
1

8𝛾2 + 2𝛾
·

Then we conclude that 𝜔𝑛 ≤ 1
4𝛾 as well. Note that by definition, 𝛾 ≥ 1, so 𝜖 ≤ 1/4𝛾. Recall that we have taken

w0 = w𝑏.
Therefore, if the boundary data is sufficiently small, e.g.,

‖w𝑏 ‖𝑊 1
𝑞 (Ω) + ‖g ‖𝑊 2

𝑞 (Ω) ≤
1

8𝛾2 + 2𝛾
, (4.11)

we conclude that in particular that
⃦⃦
w0
⃦⃦

𝐿𝑞(Ω)
≤ 1

4𝛾 , and thus

‖w𝑛 ‖𝐿𝑞(Ω) ≤
1

4𝛾
, (4.12)

for all 𝑛 > 0. Thus also

‖u𝑛 ‖𝑊 2
𝑞 (Ω) + ‖𝜋𝑛 ‖𝑊 1

𝑞 (Ω) ≤ 𝑐𝑞

(︂
‖g ‖𝑊 2

𝑞 (Ω) +
1

4𝛾

)︂
≤

𝑐𝑞

2𝛾
(4.13)

for all 𝑛 > 0. Note that we can take the constant 𝛾 as large as we like.
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4.2. 𝑊 1

𝑞
bounds on the iterates

Applying (4.2) with 𝑠 = 1 to the algorithm (3.9), we have

‖u𝑛 ‖𝑊 3
𝑟 (Ω) + ‖𝜋𝑛 ‖𝑊 2

𝑟 (Ω) ≤ 𝑐𝑟

(︁
‖g ‖𝑊 3

𝑟 (Ω) +
⃦⃦
w𝑛−1

⃦⃦
𝑊 1

𝑟 (Ω)

)︁
. (4.14)

In [24], it is proved that the unique solution of (4.7) satisfies

𝜈‖w ‖𝑊 1
𝑟 (Ω) ≤ ‖ f ‖𝑊 1

𝑟 (Ω) + 𝑐𝑞𝑟‖ f ‖𝐿𝑞(Ω) + (1 + 𝜈)‖w𝑏 ‖𝑊 1
𝑟 (Ω) + |𝛼1| ‖u · ∇w𝑏 ‖𝑊 1

𝑟 (Ω), (4.15)

where 1 ≤ 𝑟 < 2 and 𝑞 ≤ ∞ satisfies
1

𝑞
<

1

𝑟
−

1

2
·

Applying (4.15) with f = ∇·𝑁(u𝑛, 𝜋𝑛) as in (3.9), then (3.12), (3.11), (4.14), and (3.13) imply that

𝜈‖w𝑛 ‖𝑊 1
𝑟 (Ω) ≤ 𝐶𝑁‖u𝑛 ‖𝑊 3

𝑟 (Ω)

(︁
‖u𝑛 ‖𝑊 3

𝑟 (Ω) + ‖𝜋𝑛 ‖𝑊 2
𝑟 (Ω)

)︁

+ 𝐶𝑁𝑐𝑞𝑟‖u𝑛 ‖𝑊 2
𝑞 (Ω)

(︁
‖u𝑛 ‖𝑊 2

𝑞 (Ω) + ‖𝜋𝑛 ‖𝑊 1
𝑞 (Ω)

)︁

+ (1 + 𝜈)‖w𝑏 ‖𝑊 1
𝑟 (Ω) + |𝛼1| ‖u𝑛 · ∇w𝑏 ‖𝑊 1

𝑟 (Ω)

≤ 𝐶𝑁𝑐2
𝑟

(︁
‖g ‖𝑊 3

𝑟 (Ω) +
⃦⃦
w𝑛−1

⃦⃦
𝑊 1

𝑟 (Ω)

)︁2

+
𝐶𝑁𝑐2

𝑞𝑐𝑞𝑟

4𝛾2
+ (1 + 𝜈)‖w𝑏 ‖𝑊 1

𝑟 (Ω)

+ |𝛼1|
(︁
‖u𝑛 ‖𝐿∞(Ω)‖w𝑏 ‖𝑊 2

𝑟 (Ω) + 𝜎 ′
𝑟‖u𝑛 ‖𝑊 2

𝑟 (Ω)‖w𝑏 ‖𝑊 2
𝑟 (Ω)

)︁
. (4.16)

Note that Hölder’s inequality and (4.13) imply

‖u𝑛 ‖𝑊 2
𝑟 (Ω) ≤ |Ω|1−𝑟/𝑞‖u𝑛 ‖𝑊 2

𝑞 (Ω) ≤ |Ω|1−𝑟/𝑞 𝑐𝑞

2𝛾
·

Combining this with (4.16) yields

𝜈‖w𝑛 ‖𝑊 1
𝑟 (Ω) ≤ 𝐶𝑁𝑐2

𝑟

(︁
𝑔3 +

⃦⃦
w𝑛−1

⃦⃦
𝑊 1

𝑟 (Ω)

)︁2

+
𝐶𝑁𝑐2

𝑞𝑐𝑞𝑟

4𝛾2

+

(︃
(1 + 𝜈) +

|𝛼1|
(︀
𝜎𝑞 + 𝜎 ′

𝑟|Ω|1−𝑟/𝑞
)︀
𝑐𝑞

2𝛾

)︃
‖w𝑏 ‖𝑊 2

𝑟 (Ω), (4.17)

where 𝑔3 = ‖g ‖𝑊 3
𝑟 (Ω), provided 𝛾 satisfies (4.10). Define 𝐶𝑤 = 𝜈−1𝐶𝑁𝑐2

𝑟 and

𝜖 =
𝐶𝑁𝑐2

𝑞𝑐𝑞𝑟

4𝜈𝛾2
+

1

𝜈

(︃
(1 + 𝜈) +

|𝛼1|
(︀
𝜎𝑞 + 𝜎 ′

𝑟|Ω|1−𝑟/𝑞
)︀
𝑐𝑞

2𝛾

)︃
‖w𝑏 ‖𝑊 2

𝑟 (Ω).

Then (4.17) implies

‖w𝑛 ‖𝑊 1
𝑟 (Ω) ≤ 𝐶𝑤

(︁
𝑔3 +

⃦⃦
w𝑛−1

⃦⃦
𝑊 1

𝑟 (Ω)

)︁2

+ 𝜖.

Define 𝜔𝑛 = 𝐶𝑤‖w𝑛 ‖𝑊 1
𝑟 (Ω). Then we have

𝜔𝑛 ≤
(︀
𝐶𝑤𝑔3 + 𝜔𝑛−1

)︀2
+ 𝐶𝑤𝜖. (4.18)

Assume that
‖w𝑏 ‖𝑊 2

𝑟 (Ω) ≤
𝜈

(𝜈 + 1)𝐶𝑤𝛾
· (4.19)
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Then

𝐶𝑤𝜖 ≤
𝐶𝑤𝐶𝑁𝑐2

𝑞𝑐𝑞𝑟

4𝜈𝛾2
+

1

𝛾
+

|𝛼1|
(︀
𝜎𝑞 + 𝜎 ′

𝑟|Ω|1−𝑟/𝑞
)︀
𝑐𝑞

2(𝜈 + 1)𝛾2
·

By taking 𝛾 sufficiently large, we have

𝐶𝑤𝜖 ≤
2

𝛾
· (4.20)

More precisely, this holds when

𝛾 ≥ 𝛾1 = max

{︃
𝛾0,

𝐶𝑤𝐶𝑁𝑐2
𝑟𝑐𝑞𝑟

4𝜈
+

|𝛼1|
(︀
𝜎𝑞 + 𝜎 ′

𝑟|Ω|1−𝑟/𝑞
)︀
𝑐𝑞

2(𝜈 + 1)

}︃
, (4.21)

where 𝛾0 is defined in (4.10). Assume further that

𝑔3 = ‖g ‖𝑊 3
𝑟 (Ω) ≤

1

𝐶𝑤𝛾
· (4.22)

Then (4.18) and (4.20) imply that

𝜔𝑛 ≤

(︂
1

𝛾
+ 𝜔𝑛−1

)︂2

+
2

𝛾
· (4.23)

Note that (4.19) implies that

𝜔0 = 𝐶𝑤

⃦⃦
w0
⃦⃦

𝑊 1
𝑟 (Ω)

= 𝐶𝑤‖w𝑏 ‖𝑊 1
𝑟 (Ω) ≤ 𝐶𝑤‖w𝑏 ‖𝑊 2

𝑟 (Ω) ≤
𝜈

(𝜈 + 1)𝛾
≤

1

𝛾
·

Under the inductive hypothesis that

𝜔𝑛−1 ≤
3

𝛾
,

then (4.23) implies that

𝜔𝑛 ≤

(︂
4

𝛾

)︂2

+
2

𝛾
≤

3

𝛾
(4.24)

provided that 𝛾 ≥ 16. Therefore (4.24) implies that

‖w𝑛 ‖𝑊 1
𝑟 (Ω) ≤

3

𝐶𝑤𝛾
=

3𝜈

𝐶𝑁𝑐2
𝑟𝛾

, (4.25)

for all 𝑛, provided that

𝛾 ≥ 𝛾2 = max{𝛾1, 16}, (4.26)

where 𝛾1 is defined in (4.21).

Using (4.14), we find

‖u𝑛 ‖𝑊 3
𝑟 (Ω) + ‖𝜋𝑛 ‖𝑊 2

𝑟 (Ω) ≤ 𝑐𝑟

(︁
‖g ‖𝑊 3

𝑟 (Ω) +
⃦⃦
w𝑛−1

⃦⃦
𝑊 1

𝑟 (Ω)

)︁
≤

𝐶𝑟

𝛾
(4.27)

for all 𝑛 > 0, under the assumptions (4.19) and (4.22), where

𝐶𝑟 =
𝑐𝑟

𝐶𝑤
+

3𝜈

𝐶𝑁𝑐𝑟
· (4.28)
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4.3. Convergence estimates

Recall the tensor 𝜏 introduced in (2.10):

𝜏 = 𝛼1(∇u)𝑡∘A + (𝛼1 + 𝛼2)A∘A − u ⊗ u.

Thus (3.4) and (3.6) imply
∇·𝑁(u, 𝜋) = −𝛼1∇u𝑡∇𝜋 + ∇· 𝜏 . (4.29)

To estimate terms involving 𝑁 , note that for any two sequences 𝑎𝑛 and 𝑏𝑛,

𝑎𝑛𝑏𝑛 − 𝑎𝑛−1𝑏𝑛−1 = 𝑎𝑛𝑏𝑛 − 𝑎𝑛𝑏𝑛−1 + 𝑎𝑛𝑏𝑛−1 − 𝑎𝑛−1𝑏𝑛−1 = 𝑎𝑛
(︀
𝑏𝑛 − 𝑏𝑛−1

)︀
+
(︀
𝑎𝑛 − 𝑎𝑛−1

)︀
𝑏𝑛−1.

Thus (4.29) implies

⃦⃦
∇·
(︀
𝑁(u𝑛, 𝜋𝑛) − 𝑁

(︀
u𝑛−1, 𝜋𝑛−1

)︀)︀ ⃦⃦
𝐿𝑟(Ω)

≤ |𝛼1|
⃦⃦
⃦∇
(︀
u𝑛 − u𝑛−1

)︀𝑡
∇𝜋𝑛 + ∇

(︀
𝜋𝑛 − 𝜋𝑛−1

)︀(︀
∇u𝑛−1

)︀𝑡 ⃦⃦⃦
𝐿𝑟(Ω)

+ |𝛼1|
⃦⃦
⃦∇(u𝑛)

𝑡
∘
(︀
A𝑛 − A𝑛−1

)︀
+ ∇

(︀
u𝑛 − u𝑛−1

)︀𝑡
∘A𝑛−1

⃦⃦
⃦

𝑊 1
𝑟 (Ω)

+ |𝛼1 + 𝛼2|
⃦⃦ (︀

A𝑛 + A𝑛−1
)︀
∘
(︀
A𝑛 − A𝑛−1

)︀ ⃦⃦
𝑊 1

𝑟 (Ω)

+
⃦⃦
u𝑛 ⊗

(︀
u𝑛 − u𝑛−1

)︀
+
(︀
u𝑛 − u𝑛−1

)︀
⊗ u𝑛−1

⃦⃦
𝑊 1

𝑟 (Ω)
. (4.30)

We examine these four terms separately. First, (3.13), (4.27), (3.10), and (4.13) give
⃦⃦
⃦∇
(︀
u𝑛 − u𝑛−1

)︀𝑡
∇𝜋𝑛 + ∇

(︀
𝜋𝑛 − 𝜋𝑛−1

)︀(︀
∇u𝑛−1

)︀𝑡 ⃦⃦⃦
𝐿𝑟(Ω)

≤ 𝜎 ′
𝑟

⃦⃦
∇
(︀
u𝑛 − u𝑛−1

)︀ ⃦⃦
𝑊 1

𝑟 (Ω)
‖∇𝜋𝑛 ‖𝑊 1

𝑟 (Ω) +
⃦⃦
∇
(︀
𝜋𝑛 − 𝜋𝑛−1

)︀ ⃦⃦
𝐿𝑟(Ω)

⃦⃦
∇u𝑛−1

⃦⃦
𝐿∞(Ω)

≤
𝜎 ′

𝑟𝐶𝑟

𝛾

⃦⃦
∇
(︀
u𝑛 − u𝑛−1

)︀ ⃦⃦
𝑊 1

𝑟 (Ω)
+ 𝜎𝑞

⃦⃦
∇(𝜋𝑛 − 𝜋𝑛−1)

⃦⃦
𝐿𝑟(Ω)

⃦⃦
u𝑛−1

⃦⃦
𝑊 2

𝑞 (Ω)

≤
𝑐𝑟𝜎𝑞

𝛾

⃦⃦
u𝑛 − u𝑛−1

⃦⃦
𝑊 2

𝑟 (Ω)
+

𝜎𝑞𝑐𝑞

2𝛾

⃦⃦
𝜋𝑛 − 𝜋𝑛−1

⃦⃦
𝑊 1

𝑟 (Ω)
.

For the second term, there is a constant 𝐶 depending only on the dimension such that
⃦⃦
⃦∇(u𝑛)

𝑡
∘
(︀
A𝑛 − A𝑛−1

)︀
+ ∇

(︀
u𝑛 − u𝑛−1

)︀𝑡
∘A𝑛−1

⃦⃦
⃦

𝑊 1
𝑟 (Ω)

≤ 𝐶
(︁
‖u𝑛 ‖𝑊 1

∞
(Ω) +

⃦⃦
u𝑛−1

⃦⃦
𝑊 1

∞
(Ω)

)︁⃦⃦
u𝑛 − u𝑛−1

⃦⃦
𝑊 2

𝑟 (Ω)

≤
𝐶𝑐𝑞𝜎𝑞

𝛾

⃦⃦
u𝑛 − u𝑛−1

⃦⃦
𝑊 2

𝑟 (Ω)
,

and a similar estimate holds for the third and fourth terms. Thus (4.30) shows that

⃦⃦
∇·
(︀
𝑁(u𝑛, 𝜋𝑛) − 𝑁

(︀
u𝑛−1, 𝜋𝑛−1

)︀)︀ ⃦⃦
𝐿𝑟(Ω)

≤
𝐶

𝛾

(︁⃦⃦
u𝑛 − u𝑛−1

⃦⃦
𝑊 2

𝑟 (Ω)
+
⃦⃦

𝜋𝑛 − 𝜋𝑛−1
⃦⃦

𝑊 1
𝑟 (Ω)

)︁

≤
𝐶𝑐𝑟

𝛾

⃦⃦
w𝑛−1 − w𝑛−2

⃦⃦
𝐿𝑟(Ω)

. (4.31)

At the last step, we utilized the fact that u𝑛 − u𝑛−1 is zero on the boundary, so we could apply (4.2) directly.
Define e = w𝑛 − w𝑛−1. Then from (3.9)

𝜈e + 𝛼1u
𝑛 · ∇e = 𝐺 − 𝛼1

(︀
u𝑛 − u𝑛−1

)︀
· ∇w𝑛−1,

𝐺 = ∇·
(︀
𝑁(u𝑛, 𝜋𝑛) − 𝑁

(︀
u𝑛−1, 𝜋𝑛−1

)︀)︀
. (4.32)
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Sobolev’s inequality implies that
‖v ‖𝐿∞(Ω) ≤ 𝑐′‖v ‖𝑊 2

𝑟 (Ω) (4.33)

for any 𝑟 > 𝑑/2 (𝑟 ≥ 1 if 𝑑 = 2). Applying (4.8), (4.31), (4.33), and (4.25) implies

𝜈
⃦⃦
w𝑛 − w𝑛−1

⃦⃦
𝐿𝑟(Ω)

≤
𝐶𝑐𝑟

𝛾

⃦⃦
w𝑛−1 − w𝑛−2

⃦⃦
𝐿𝑟(Ω)

+ |𝛼1|
⃦⃦
u𝑛 − u𝑛−1

⃦⃦
𝐿∞(Ω)

⃦⃦
w𝑛−1

⃦⃦
𝑊 1

𝑟 (Ω)

≤
𝐶𝑐𝑟

𝛾

⃦⃦
w𝑛−1 − w𝑛−2

⃦⃦
𝐿𝑟(Ω)

+ |𝛼1|𝑐
′
⃦⃦
u𝑛 − u𝑛−1

⃦⃦
𝑊 2

𝑟 (Ω)

⃦⃦
w𝑛−1

⃦⃦
𝑊 1

𝑟 (Ω)

≤
𝐶𝑐𝑟

𝛾

⃦⃦
w𝑛−1 − w𝑛−2

⃦⃦
𝐿𝑟(Ω)

+
3𝜈|𝛼1|𝑐

′

𝐶𝑁𝑐2
𝑟𝛾

⃦⃦
u𝑛 − u𝑛−1

⃦⃦
𝑊 2

𝑟 (Ω)
. (4.34)

Applying (4.2) to (4.34), we get

⃦⃦
w𝑛 − w𝑛−1

⃦⃦
𝐿𝑟(Ω)

≤
1

𝛾

(︂
𝐶𝑐𝑟

𝜈
+

3|𝛼1|𝑐
′

𝐶𝑁𝑐𝑟

)︂⃦⃦
w𝑛−1 − w𝑛−2

⃦⃦
𝐿𝑟(Ω)

. (4.35)

Taking 𝛾 sufficiently large, that is,

𝛾 = 𝛾3 = max

{︂
𝛾2,

2𝐶𝑐𝑟

𝜈
+

6|𝛼1|𝑐
′

𝐶𝑁𝑐𝑟

}︂
, (4.36)

where 𝛾2 is defined in (4.26), and correspondingly restricting the size of the data as in (4.11), (4.19), and (4.22),
if necessary, we conclude from (4.35) and (4.36) that

⃦⃦
w𝑛 − w𝑛−1

⃦⃦
𝐿𝑟(Ω)

≤ 1
2

⃦⃦
w𝑛−1 − w𝑛−2

⃦⃦
𝐿𝑟(Ω)

.

Therefore the sequence w𝑛 converges geometrically in 𝐿𝑟(Ω)𝑑. Subtracting iterates in (3.9), we find

− ∆(u𝑛 − u𝑛−1) + ∇(𝜋𝑛 − 𝜋𝑛−1) = w𝑛−1 − w𝑛−2 in Ω,

∇· (u𝑛 − u𝑛−1) = 0 in Ω, u𝑛 − u𝑛−1 = 0 on 𝜕Ω.

Thus (4.2) implies that
⃦⃦
u𝑛 − u𝑛−1

⃦⃦
𝑊 2

𝑟 (Ω)
+
⃦⃦

𝜋𝑛 − 𝜋𝑛−1
⃦⃦

𝑊 1
𝑟 (Ω)

≤ 𝑐𝑟

⃦⃦
w𝑛−1 − w𝑛−2

⃦⃦
𝐿𝑟(Ω)

, (4.37)

and thus the sequence u𝑛 converges geometrically in 𝑊 2
𝑟 (Ω)𝑑 and the sequence 𝜋𝑛 converges geometrically in

𝑊 1
𝑟 (Ω). This completes the proof of Theorem 4.1.

5. Computational experiments

Here we explore computational techniques for implementing the grade-two algorithm. Table 1 presents results
for the algorithm (3.9) for 𝜈 = 𝛼1 = 𝛼2 = 1, implemented using quadratic and cubic elements using the iterated-
penalty method (IPM) [9], on the unit square domain (B.1) with 𝐿 = 1 and boundary data (B.11) with 𝑈 = 1.
The exact 𝜋 is quadratic as indicated in (B.8). Using piecewise degree 𝑘 elements for 𝑉ℎ results in piecewise
degree 𝑘 − 1 elements for the pressure approximation. Thus for 𝑘 = 2, the pressure approximation is only
piecewise linear, and the approximation of 𝜋 dominates the overall errors. Table 1a indicates that the error 𝑒𝜋

is close to second order. But for 𝑘 = 3, the exact 𝜋 is in the pressure space, and we get essentially round-off
error. Due to some sort of instability, the errors grow as the mesh size is reduced, but they are significantly
smaller than for the case 𝑘 = 2. Figure 2 shows that there is a localized error that occurs in 𝑤1 (which should
be identically zero) near the corners of the inflow boundary. This pollutes the component 𝑤2 (which is isolated
in Tab. 1) and causes errors in u and 𝜋. Computations for 𝑘 = 4 yielded similar results as for the 𝑘 = 3 case.

The error for approximating w in 𝐻1 are much worse than for other errors. But we know from Section 4.2
that the transport problem does not have uniform bounds in 𝐻1, so the larger errors are not surprising.
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Table 1. Grade-two simulations of Poiseuille flow in the domain (B.1) with 𝐿 = 1 and 𝜈 = 1
and boundary data (B.11) with 𝑈 = 1 using (a) piecewise quadratics for 𝑉ℎ and (b) piecewise
cubics for 𝑉ℎ. The mesh consisted of an 𝑀×𝑀 array of Malkus splits (squares divided into four
triangles by the bisectors) [26]. The algorithm (3.9) was implemented using the iterated penalty
method (3.15). The column “iters” indicates the number of iterations of (3.9). The pressure was
computed via USA [22] as described in (3.16) with Πℎ begin continuous piecewise polynomials
of degree 𝑘 − 1. Errors: 𝑒u = ‖u − uℎ ‖𝐻1 , 𝑒𝜋 = ‖𝜋 − 𝜋ℎ ‖𝐿2 , 𝑒w,𝐻1 = ‖w − wℎ ‖𝐻1 , 𝑒𝑤1

=
‖𝑤1 − 𝑤1ℎ ‖𝐻1 , 𝑒𝑤2

= ‖𝑤2 − 𝑤2ℎ ‖𝐻1 , 𝑒w,𝐿2‖w − wℎ ‖𝐿2 .

𝑀 𝑈 𝛼1 𝛼2 iters 𝑒u 𝑒𝜋 𝑒
w,𝐻1 𝑒𝑤1 𝑒𝑤2 𝑒

w,𝐿2

8 1.0 1.0 1.0 23 3.20e-03 1.44e-02 1.72e-01 2.37e-02 1.70e-01 2.43e-02
16 1.0 1.0 1.0 29 1.15e-03 4.65e-03 1.36e-01 1.70e-02 1.35e-01 1.29e-02

(a) 32 1.0 1.0 1.0 37 3.48e-04 1.38e-03 1.02e-01 1.18e-02 1.01e-01 5.82e-03
64 1.0 1.0 1.0 46 9.86e-05 3.88e-04 7.44e-02 8.31e-03 7.40e-02 2.37e-03
128 1.0 1.0 1.0 58 2.76e-05 1.07e-04 5.35e-02 5.87e-03 5.32e-02 9.11e-04
256 1.0 1.0 1.0 80 7.59e-06 2.92e-05 3.82e-02 4.15e-03 3.80e-02 3.39e-04

8 1.0 1.0 1.0 2 4.13e-10 6.30e-10 5.15e-08 1.27e-08 4.99e-08 3.15e-09
16 1.0 1.0 1.0 2 8.75e-10 1.89e-09 3.71e-07 4.17e-08 3.69e-07 1.17e-08

(b) 32 1.0 1.0 1.0 2 2.03e-09 6.97e-09 2.89e-06 1.52e-07 2.89e-06 4.61e-08
64 1.0 1.0 1.0 2 5.67e-09 2.76e-08 2.30e-05 7.02e-07 2.30e-05 1.84e-07
128 1.0 1.0 1.0 3 2.09e-08 1.03e-07 1.88e-04 4.39e-06 1.88e-04 7.59e-07

Figure 2. The component 𝑤1 for the computations in Table 1b with 𝑀 = 16.

6. Conclusions

We developed an algorithm for solving the general grade-two model of non-Newtonian fluids which for the first
time allows nontrivial inflow boundary conditions. The new algorithm couples a Stokes equation for the fluid
velocity with a transport equation for an auxiliary vector-valued function. As a third-order partial differential
equation, the grade-two model requires an additional boundary condition, and our new formulation leads to a
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condition with a clear physical interpretation. We prove that the model is well posed using an iterative algorithm
in function space by proving the iteration converges geometrically for sufficiently small data.

Finally, we demonstrated computationally that this algorithm can be successfully discretized. In subsequent
work we will investigate the numerical discretization of the model in more detail.

Appendix A. Spaces

Here we collect the notation used for various Sobolev spaces and norms. We denote by 𝐿𝑝(Ω) the Lebesgue
spaces [9] of 𝑝-th power integrable functions, with norm

‖ 𝑓 ‖𝐿𝑝(Ω) =

(︂∫︁

Ω

|𝑓(x)|𝑝 d𝑥

)︂1/𝑝

.

Note that we can easily apply the same notation to vector or tensor valued 𝑓 . We think of tensors of any arity
as vectors of the appropriate length, and we think of |𝑓(x)| as the Euclidean length of this vector. For tensors of
arity 2 (i.e., matrices) this is the same as the Frobenius norm. We will write the spaces for such tensor-valued
functions as 𝐿𝑝(Ω)𝑚 for the appropriate 𝑚 (e.g., 𝑚 = 𝑑2 for arity 2). Similarly, we denote by 𝐿∞(Ω) the
Lebesgue space of essentially bounded functions, with

‖ 𝑓 ‖𝐿∞(Ω) = sup
{︀
|𝑓(x)|

⃒⃒
a.e. x ∈ Ω

}︀
.

Correspondingly, we define Sobolev spaces and norms of order 𝑚 by

‖ 𝑓 ‖𝑊 𝑚
𝑝 (Ω) =

⎛
⎝
∑︁

|𝛼|≤𝑚

‖𝐷𝛼𝑓 ‖
𝑝
𝐿𝑝(Ω)

⎞
⎠

1/𝑝

,

where 𝐷𝛼 is the weak derivative 𝜕𝛼/𝜕x|𝛼| [9]. More precisely, the spaces 𝑊𝑚
𝑝 (Ω) are defined as the subspaces

of 𝐿𝑝(Ω) for which the corresponding norm is finite. The case 𝑝 = 2 is denoted by 𝐻:

𝐻𝑚(Ω) = 𝑊𝑚
2 (Ω).

We will briefly use the space 𝐻1
0 (Ω) of 𝑓 ∈ 𝐻1(Ω) such that 𝑓 = 0 on 𝜕Ω. The dual space 𝐻−1(Ω)𝑑 is the set

of Schwartz distributions [25] for which the dual norm

‖u ‖𝐻−1(Ω) = sup
0 ̸=𝜑∈𝐻1

0 (Ω)𝑑

⟨u · 𝜑⟩

‖𝜑 ‖𝐻1(Ω)

is finite.

Appendix B. Determining inflow boundary conditions

The proposed method (3.9) requires specification of boundary conditions for w = −∆u + ∇𝜋. Here we
compute the stress w for typical flow geometries.

B.1. Grade-two channel flow

To be specific, we define the domain Ω to be

Ω =
{︀
x ∈ R

2
⃒⃒
0 < 𝑥1 < 𝐿, 0 < 𝑥2 < 1

}︀
. (B.1)

Suppose that 𝑢2 ≡ 0 and 𝑢1 depends only on 𝑥2. This is true for shear flow (Couette flow) and pressure-driven
flow (Poiseuille flow). For the remainder of this subsection, we refer to 𝑢1 as just 𝑢 to simplify notation. For
such flows, u · ∇u = 0, and the strain rate ∇u is given by

∇u =

(︂
0 𝑢′

0 0

)︂
, ∇u𝑡 =

(︂
0 0
𝑢′ 0

)︂
.
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Thus

A =

(︂
0 𝑢′

𝑢′ 0

)︂
, u · ∇A = 0, A∘A =

(︂
(𝑢′)2 0

0 (𝑢′)2

)︂
= (𝑢′)2ℐ,

A∘(∇u) =

(︂
0 0
0 (𝑢′)2

)︂
, (∇u)𝑡∘A =

(︀
A𝑡∘(∇u)

)︀𝑡
= (A∘(∇u))

𝑡
=

(︂
0 0
0 (𝑢′)2

)︂
,

(∇u)∘A =

(︂
(𝑢′)2 0

0 0

)︂
, A∘(∇u)𝑡 = ((∇u)∘A𝑡)𝑡 = ((∇u)∘A)𝑡 =

(︂
(𝑢′)2 0

0 0

)︂
.

We can use the formula (2.2) to compute the stress:

TG = 𝜈

(︂
0 𝑢′

𝑢′ 0

)︂
+ 2𝛼1

(︂
0 0
0 (𝑢′)2

)︂
+ 𝛼2

(︂
(𝑢′)2 0

0 (𝑢′)2

)︂

= TN + (𝑢′)2
(︂

𝛼2 0
0 2𝛼1 + 𝛼2

)︂
. (B.2)

The tensor 𝜏 is given by (2.10):

𝜏 = 𝛼1(∇u)𝑡∘A + (𝛼1 + 𝛼2)A∘A − u ⊗ u

= 𝛼1

(︂
0 0
0 (𝑢′)2

)︂
+ (𝛼1 + 𝛼2)

(︂
(𝑢′)2 0

0 (𝑢′)2

)︂
−

(︂
𝑢2 0
0 0

)︂

= (𝑢′)2
(︂

𝛼1 + 𝛼2 0
0 2𝛼1 + 𝛼2

)︂
−

(︂
𝑢2 0
0 0

)︂
. (B.3)

We can compute ∇· 𝜏 as follows. By definition, (∇· 𝜏 )𝑖 =
∑︀

𝑗 𝜏𝑖𝑗,𝑗 = 𝜏𝑖2,2 since 𝜏 is constant in 𝑥1 and thus
𝜏𝑖1,1 = 0. Therefore

∇· 𝜏 =

(︂
𝜏12,2

𝜏22,2

)︂
=

(︂
0

𝜏22,2

)︂
= (2𝛼1 + 𝛼2)2𝑢′𝑢′′

(︂
0
1

)︂
.

Similarly,

𝑁(u, 𝜋) = −𝛼1𝜋∇u𝑡 + 𝜏 = −𝛼1𝜋

(︂
0 0
𝑢′ 0

)︂
+ (𝑢′)2

(︂
𝛼1 + 𝛼2 0

0 2𝛼1 + 𝛼2

)︂
−

(︂
𝑢2 0
0 0

)︂
,

and from (3.5) we find

∇·𝑁(u, 𝜋) = −𝛼1𝑢
′

(︂
0

𝜋𝑥1

)︂
+ (2𝛼1 + 𝛼2)2𝑢′𝑢′′

(︂
0
1

)︂
. (B.4)

For shear flow, 𝑢 is linear, so 𝑢′ is constant, and thus TG is constant. Therefore ∇·TG ≡ 0. Similarly, ∆u ≡ 0,
and 𝑝 is constant. Suppose that 𝑝0 is this constant. If we specify that 𝜋|Γ−

= 𝑝0, then we conclude that 𝜋 is also
constant (𝜋 = 𝑝0). Thus w = 0 as well. But there could be other solutions for other choices of 𝜋|Γ−

, leading to
nonconstant 𝜋. In that case, w = ∇𝜋 ̸= 0.

B.2. Poiseuille flow

For Poiseuille flow, 𝑢 is quadratic, and ∇·TG is not even constant. Since u · ∇u = 0, the top equation in
(2.3) takes the form

(︂
−𝜈𝑢′′ + 𝑝𝑥1

𝑝𝑥2

)︂
= −𝜈∆u + ∇𝑝 = ∇· (TG − TN) =

(︂
0

(2𝛼1 + 𝛼2)
(︀
(𝑢′)2

)︀′
)︂

.

Then we get two equations for the pressure:

𝑝𝑥1
= 𝜈𝑢′′, 𝑝𝑥2

= (2𝛼1 + 𝛼2)
(︀
(𝑢′)2

)︀′
.
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Define
𝑝(x) = 𝜈𝑢′′𝑥1 + (2𝛼1 + 𝛼2)(𝑢

′)2 + 𝑐𝑝. (B.5)

This function satisfies the required equations for the pressure for any constant 𝑐𝑝.
The equation relating 𝑝 and 𝜋 is 𝑝 = 𝜈𝜋 + 𝛼1𝑢𝜋𝑥1

, so

𝜈𝜋 + 𝛼1𝑢𝜋𝑥1
= 𝜈𝑢′′𝑥1 + (2𝛼1 + 𝛼2)(𝑢

′)2 + 𝑐𝑝. (B.6)

Let us make the ansatz that 𝜋(x) = 𝑢′′𝑥1 + 𝑓(𝑥2). Computing, we find

𝜈𝜋 + 𝛼1𝑢𝜋𝑥1
= 𝜈𝑢′′𝑥1 + 𝜈𝑓(𝑥2) + 𝛼1𝑢𝑢′′

= 𝑝(x) − (2𝛼1 + 𝛼2)(𝑢
′)2 − 𝑐𝑝 + 𝜈𝑓(𝑥2) + 𝛼1𝑢𝑢′′.

Thus our ansatz if valid if
𝑓(𝑥2) = 𝜈−1

(︀
(2𝛼1 + 𝛼2)(𝑢

′)2 + 𝑐𝑝 − 𝛼1𝑢𝑢′′
)︀
. (B.7)

Therefore
𝜋(x) = 𝑢′′𝑥1 + 𝜈−1

(︀
(2𝛼1 + 𝛼2)(𝑢

′)2 − 𝛼1𝑢𝑢′′
)︀

+
𝑐𝑝

𝜈
· (B.8)

Applying (B.8) to (B.4), we get

∇·𝑁(u, 𝜋) = −𝛼1𝑢
′𝑢′′

(︂
0
1

)︂
+ (2𝛼1 + 𝛼2)2𝑢′𝑢′′

(︂
0
1

)︂
= (3𝛼1 + 2𝛼2)𝑢

′𝑢′′

(︂
0
1

)︂
. (B.9)

Let us check the first equation in (3.8). We have (recall that 𝑢′′′ = 0)

∆u = 𝑢′′

(︂
1
0

)︂
, ∇𝜋 =

(︂
𝑢′′

𝜈−1(3𝛼1 + 2𝛼2)𝑢
′𝑢′′

)︂
=⇒ w =

(︂
0

𝜈−1(3𝛼1 + 2𝛼2)𝑢
′𝑢′′

)︂
. (B.10)

Note that w,𝑥1
≡ 0. Thus (3.8) implies that

∇·𝑁 = 𝜈w,

which is consistent with (B.9). Thus (B.10) gives a boundary condition for the inflow boundary Γ− suitable
for use in the algorithm (3.9) to compute Poiseuille flow. More importantly, it can be used for more complex
pressure-driven flows in which the inlet is a two-dimensional channel.

To summarize, for shear (Couette) flow, 𝑢′′ = 0, so w = 0. For Poiseuille flow, in the channel (B.1),

𝑢 = 𝑈𝑥2(𝐿 − 𝑥2), 𝑢′ = 𝑈(𝐿 − 2𝑥2), 𝑢′′ = −2𝑈, 𝑢′𝑢′′ = 2𝑈2(2𝑥2 − 𝐿),

so we can take

g = u = 𝑈

(︂
𝑥2(𝐿 − 𝑥2)

0

)︂
, w = −

2𝑈2

𝜈
(𝐿 − 2𝑥2)

(︂
0

2𝛼2 + 3𝛼1

)︂
. (B.11)
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[17] D. Gómez-Dı́az and J.M. Navaza, Rheology of aqueous solutions of food additives: effect of concentration, temperature and
blending. J. Food Eng. 56 (2003) 387–392.

[18] L.D. Landau and E.M. Lifshitz, Fluid Mechanics. Pergamon Press (1959).

[19] R. Lapasin, Rheology of Industrial Polysaccharides: Theory and Applications. Springer Science & Business Media (2012).

[20] A.S. Lodge, Low-shear-rate rheometry and polymer quality control. Chem. Eng. Commun. 32 (1985) 1–60.

[21] A.S. Lodge, W.G. Pritchard and L.R. Scott, The hole–pressure problem. IMA J. Appl. Math. 46 (1991) 39–66.

[22] H. Morgan and L. Ridgway Scott, Towards a unified finite element method for the Stokes equations. SIAM J. Sci. Comput.
40 (2018) A130–A141.

[23] M. Nyström, H.R. Tamaddon Jahromi, M. Stading and M.F. Webster, Hyperbolic contraction measuring systems for extensional
flow. Mech. Time-Depend. Mater. 21 (2017) 455–479.

[24] S. Pollock and L. Ridgway Scott, Transport equations with inflow boundary conditions. Submitted (2022).
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