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Abstract
We provide bounds in a Sobolev-space framework for transport equations with nontrivial
inflow and outflow.We give, for the first time, bounds on the gradient of the solution with the
type of inflow boundary conditions that occur in Poiseuille flow. Following ground-breaking
work of the late Charles Amick, we name a generalization of this type of flow domain in
his honor. We prove gradient bounds in Lebesgue spaces for general Amick domains which
are crucial for proving well posedness of the grade-two fluid model. We include a complete
reviewof transport equationswith inflowboundary conditions, providing novel proofs inmost
cases. To illustrate the theory, we review and extend an example of Bernard that clarifies the
singularities of solutions of transport equations with nonzero inflow boundary conditions.

Mathematics Subject Classification 35M35 · 65M60

1 Introduction

Transport equations [11] are central to many models, including compressible Navier–Stokes
equations [16], non-Newtonian fluids [9], conservation laws [8], and in many other areas.
Many models of non-Newtonian fluids [10, 12, 13, 18–20, 26] may be viewed as a coupling
of the Navier–Stokes equations with a transport equation. Smooth solutions of transport
equations have been of interest recently [2–6, 21]. It is not difficult to show that H1 solutions
exist if there is no inflow boundary [12], but inflow boundary conditions yield more complex
behavior.

Despite the extensive research to date on transport with nonzero inflow boundary con-
ditions, the critical case of Poiseuille flow has not been addressed. The simplest version of
this case is Poiseuille flow in a channel or pipe, which we both address and extend to a
class of more general geometries. The primary result is Theorem 5.1, which establishes the
existence and unicity of the solution with nontrivial inflow conditions in what we will refer to
as Amick [1] domains. These domains, as depicted in Fig. 1, and which we define precisely

This article is part of the section “Theory of PDEs” edited by Eduardo Teixeira.

B L. Ridgway Scott
ridg@cs.uchicago.edu

1 University of Chicago, Chicago, USA

2 Department of Mathematics, University of Florida, Gainesville, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s42985-022-00169-0&domain=pdf
http://orcid.org/0000-0002-7885-7106


35 Page 2 of 20 Partial Differential Equations and Applications (2022) 3 :35

Fig. 1 Domain for Amick’s
theorem

Ω
inflow

outflow

in Sect. 5, feature inflow and outflow tubes where the flow is asymptotically Poiseuille-like.
Such domains are essential for simulating experiments involving non-Newtonian fluid flow.
In particular, many rheometers [15, 17, 23] involve Amick domains, and thus our results
allow, for the first time, analysis of algorithms for simulating such devices. The gradient
bounds derived here are critical for analyzing the grade-two fluid model [22].

To place the results of Sect. 5 in context, we review and extend some previous results,
giving simpler derivations in most cases. In particular, Theorem 3.1 is the fundamental result
in Lebesgue spaces for transport problems, and we extend the range of applicable Lebesgue
exponents and present a new proof bymodifying the techniques introduced in [14]. The proof
of the results of Sect. 5 are actually quite simple by comparison, so our approach offers an
alternative entry point to understanding these estimates.

Surprisingly, quite singular solutions arise even in standard flow problems, such as
Poiseuille flow. This is one of the simplest flow problems, whose solution is given by a
quadratic polynomial for Newtonian fluids. We will show that for Poiseuille flow, the gradi-
ent of the transport solution fails to be square integrable, but we give bounds inW 1

q for q < 2.
(We provide definitions for standard Lebesgue and Sobolev spaces used here in Appendix
A.) This shows that the results of Theorem 5.1 are sharp. An example of Bernard [5] further
shows that the gradient of the solution can fail to be integrable for certain types of inflow
conditions. We rederive this example and extend it both analytically and computationally.

2 Problem definition

We consider transport in a bounded domain � ⊂ R
d with Lipschitz boundary ∂�, with

advection velocity u ∈ H1(�). See Appendix A for our notation for Lebesgue and Sobolev
spaces. Define the inflow boundary �− and the outflow boundary �+ by

�± = {
x ∈ ∂�

∣∣ ± u(x) · n > 0
}
, (1)

where n denotes the outward normal to ∂�.
Consider the transport problem to find w ∈ Lq(�)m such that

Cw + u · ∇w = f in �, w = w0 on �−, (2)

where C(x) ∈ Lm for x ∈ �, f ∈ Lq(�)m , m ≥ 1. Here, Lm is the space of linear operators
on R

m , which is of course isomorphic to R
m × R

m via matrix representation.
When u ∈ H1(�)d , �− is a measurable subset of ∂�. But to define the meaning of the

transport inflow boundary condition, Bernard [4] makes further assumptions on u, as follows.
Assume that we can write

∂� = �− ∪ �1, �− ∩ �1 = ∅, �− ∩ �1 = ∪κ
k=1Kk, with each Kk being Lipschitz.

(3)
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Thus �1 is the complement of the inflow boundary �− in ∂� and the sets Kk are the (finite
number of) d−2 dimensional connected components of�− ∩�1. Regarding the requirement
that each Kk is Lipschitz, see [4,(1.7)]. In two dimensions (d = 2), each Kk is a point.

We will assume that u corresponds to incompressible flow, that is,

∇·u = 0 in �.

We can make the space of solutions more precise by defining

Xu = {
w ∈ L2(�)m

∣∣ u · ∇w ∈ L2(�)m
}
,

with the norm

‖w ‖Xu =
√

‖w ‖2
L2(�)

+ ‖u · ∇w ‖2
L2(�)

.

It is proved in [10] that Xu is well defined for u ∈ H1(�)d , and that smooth functions are
dense. Under the condition (3), it is shown in [4] that the restriction of w ∈ Xu to �− is
well defined. We will be interested in more regular solutions in Lq for q > 2, but we will
not need to modify Xu in any way. Thus we can rely on the results of [10] without further
modifications. Since we are restricting our attention to bounded domains, we have w ∈ L2

if w ∈ Lq for q > 2. We now give some examples of interest.

2.1 Oldroydmodels

Oldroyd rheological models [12] have a transport equation linking the fluid stress T with
fluid velocity u. In the Oldroyd equations, the operator C takes the form

CT = λ1(R◦T + T◦Rt ) − μ1(E◦T + T◦E),

where the multiplication operator◦ is matrix multiplication and λ1 and μ1 are real numbers.
Here m = d2, and R and E are the matrix-valued functions defined by

R = 1
2 (∇ut − ∇u), E = 1

2 (∇ut + ∇u).

2.2 Derivatives

Many existing results [2–4, 6, 10, 12, 13] show that the transport equation (2) is well posed
on Lebesgue spaces. But there is significant interest in regularity of the solutions. A transport
equation for the gradient of the solution can be obtained by taking the gradient of the transport
equation. Consider the simplified model (m = 1)

w + u · ∇w = f , w = 0 on �−. (4)

The transport equation for w = ∇w is

(I + ∇u)w + u · ∇w = ∇ f . (5)

Thus C = I + ∇u, with m = d . The relevant boundary conditions will be discussed in
Sect. 4.3.
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3 Bounds in Lebesgue spaces

We begin with bounds in Lebesgue spaces as we need the results as building blocks for
the bounds in Sobolev spaces derived subsequently. The main theorem extends the result
[4, Theorem 3.3] for q = 2 to arbitrary Lebesgue exponent q ≥ 2. This improvement will
be crucial later for bounds on derivatives.

Theorem 3.1 Suppose that � has a Lipschitz boundary, 2 ≤ q ≤ ∞, u ∈ H1(�)d , the
Bernard condition (3) holds, f ∈ Lq(�)m, and C is bounded and positive definite, that is,

c1|ξ |2 ≥ ξ tCξ ≥ c0|ξ |2 ∀ ξ ∈ R
m . (6)

Suppose further that w0 can be extended to all of � so that w0 ∈ Xu ∩ Lq(�)m and
u · ∇w0 ∈ Lq(�)m. Then (2) has a unique solution w ∈ Xu satisfying

‖w ‖Lq (�) ≤ 1

c0
‖ f ‖Lq (�) +

(
1 + c1

c0

)
‖w0 ‖Lq (�) + 1

c0
‖u · ∇w0 ‖Lq (�). (7)

In the case that q ≥ 2, existence and uniqueness follow from [4, Theorem 3.3] for q = 2.
Thus the main challenge is to establish the bound (7) for q > 2. The proof follows closely
[14] with the main difference being the inflow boundary condition that has been added here.

3.1 Sufficient to prove it for w0 = 0

We first show that it is sufficient to consider the case w0 = 0. So suppose for the moment
that we have the bound (7) in the case that w|�− = 0:

‖w ‖Lq (�) ≤ 1

c0
‖ f ‖Lq (�).

Now consider a general w0 ∈ Xu. Let z solve

Cz + u · ∇z = f̂ in �, z|�− = 0, f̂ = f − Cw0 − u · ∇w0.

Define w = z + w0, which satisfies (2). Then

‖w ‖Lq (�) ≤ ‖ z ‖Lq (�) + ‖w0 ‖Lq (�) ≤ 1

c0
‖ f − Cw0 − u · ∇w0 ‖Lq (�) + ‖w0 ‖Lq (�),

which implies (7). Thus all we must do is establish the bound (7) in the case w0 = 0.
We now break down the proof into two cases depending on q .

3.2 Proof for w0 = 0 and 2 ≤ q < ∞

Following [14], we regularize the transport problem to obtain a standard diffusion-advection
problem [25, chapter 15]:

− ε�wε + Cwε + u · ∇wε = f in �, wε = 0 on �−,
∂wε

∂n
= 0 on ∂�\�−, (8)

where ε > 0. Define the space W = {
w ∈ H1(�)m

∣∣ w = 0 on �−
}
. Multiplying (8) by a

suitable test function σ ∈ W , integrating and integrating by parts gives

aε(wε, σ ) =
∫

�

f · σ dx (9)
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where

aε(τ , σ ) = ε

∫

�

m∑

i=1

∇τi · ∇σi dx +
∫

�

(Cτ ) · σ dx +
∫

�

(u · ∇τ ) · σ dx. (10)

In (10), we have used vector dot-product notation, but we have written the first integral
explicitly in terms of components, sincem is not connected to the dimension d of the domain.
Thus (Cτ ) · σ is a dot-product of m vectors, whereas u · ∇ is a dot-product of d vectors.

Now we address the last term in (10). Note that

∇· (u|σ |2) = 2(u · ∇σ ) · σ

because ∇· u = 0. For τ = σ ∈ W , the last term in (10) with τ = σ takes the form
∫

�

(u · ∇σ ) · σ dx =
∫

�

1
2∇· (u|σ |2) dx =

∮

�+
|σ |2(u · n) ds +

∮

�−
|σ |2(u · n) ds (11)

since ∇· u = 0 and u · n = 0 on the rest of ∂�. Technically, we must be sure that all
quantities in this equality are well defined. The smoothness of u insures all quantities in (11)
are integrable. Note that

∮

�+
|σ |2(u · n) ds ≥ 0,

∮

�−
|σ |2(u · n) ds ≤ 0,

due to the definition (1) of the inflow and outflow boundaries. Thus we conclude that
∫

�

(u · ∇σ ) · σ dx ≥ −
∮

�−
|σ |2|u · n| ds. (12)

We have written u · n = −|u · n| on �− just to clarify the sign of this term.
If we have σ = 0 on �−, then (10) and (12) imply

aε(σ , σ ) ≥ ε

∫

�

|∇σ |2 dx + c0

∫

�

|σ |2 dx, (13)

in view of (6). Here we have used the short-hand notation |∇σ |2 = ∑m
i=1 |∇σi |2 whereas

|σ |2 = ∑m
i=1 σ 2

i .
Following [14], we use the Yoshida regularization and define

σa = φ(a|wε |q−2)wε,

where a > 0 and φ is defined by φ(t)
(
1 + tφ(t)q−2

) = 1, t ≥ 0. Note that φ(0) = 1. Then
for t = a|wε |q−2 we get

σa + a|σa |q−2σa = wε . (14)

The function φ satisfies [14] φ′(0) = −1 and φ(t) ≈ t−1/(q−1) as t → ∞. Thus aswε(x) →
∞, σa(x) → 0. Similarly, it is shown in [14] that

|∇σa | ≤ |∇wε | a. e. in �.

Then

|aε(wε, |σa |q−2σa)| =
∣∣∣
∫

�

f · σa |σa |q−2 dx
∣∣∣ ≤ ‖ f ‖Lq (�)‖ σa ‖q−1

Lq (�).
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Therefore (13) and (14) imply

aε(σa, |σa |q−2σa) = aε(wε, |σa |q−2σa) − a aε(|σa |q−2σa, |σa |q−2σa)

≤ ‖ f ‖Lq (�)‖ σa ‖q−1
Lq (�).

But it is also shown in [14] that

∇σa : ∇(|σa |q−2σa) ≥ 0 a. e. in �.

From the non-negativity of the first term in the definition (10) of the form aε(·, ·), we have
∫

�

|σa |q−2σ t
a(Cσa) dx +

∫

�

(u · ∇σa) · |σa |q−2σa dx ≤ ‖ f ‖Lq (�)‖ σa ‖q−1
Lq (�). (15)

As in the derivation (11) and (12), we use ∇· (u|σ |q) = q(u · ∇σ ) · σ and find

∫

�

(u · ∇σa) · |σa |q−2σa dx = 1

q

∫

�

u · ∇|σa |q dx = 1

q

∫

�

∇· (u|σa |q) dx

=
∮

�+
|σa |q(u · n) ds +

∮

�−
|σa |q(u · n) ds ≥ 0,

(16)

since σa = 0 on �− (recall that wε = 0 on �−). Applying (6) and (15), we find

c0

∫

�

|σa |q dx ≤
∫

�

|σa |q−2σ t
a(Cσa) dx ≤ ‖ f ‖Lq (�)‖ σa ‖q−1

Lq (�). (17)

Dividing by ‖ σa ‖q−1
Lq (�), we have shown that

c0‖ σa ‖Lq (�) ≤ ‖ f ‖Lq (�)

for any a > 0. Letting a → 0 forces φ(a · ) → 1, and thus σa → wε , and as shown in
[14, Theorem 3]

c0‖wε ‖Lq (�) ≤ ‖ f ‖Lq (�).

Letting ε → 0 shows (as in [14]) that

c0‖w ‖Lq (�) ≤ ‖ f ‖Lq (�) (18)

as claimed. ��

3.3 Proof for w0 = 0 and q = ∞

If f ∈ L∞(�)m , then we can apply (18) for all finite q to get

c0‖w ‖Lq (�) ≤ ‖ f ‖Lq (�) ≤ ‖ f ‖L∞(�)|�|1/q .
Since |�|1/q → 1 as q → ∞, we conclude that w ∈ L∞(�)m and

‖w ‖L∞(�) = lim
q→∞ ‖w ‖Lq (�) ≤ 1

c0
‖ f ‖L∞(�).
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Fig. 2 Bernard’s example on a mesh with M = 50 used for the meshing program mshr. The impact of this
choice of mesh parameter input can be seen in the figure since the complete triangulation can be seen under
the computed surface

Fig. 3 Bernard’s triangle �

BA

C

4 Derivative estimates

A hallmark of the Lq estimates is that there is no nonlinear dependence on the size of u. This
is not the case for estimates of derivatives. We begin with an example that provides an upper
bound on our expectations for derivative estimates (Fig. 2).

4.1 Bernard’s example

There is an example in [5] with a polynomial (and thus smooth) u on a triangular domain�

for which f ∈ H1(�) butw /∈ H1(�) (m = 1). The vertices of the triangle are A = (−2, 1
3 ),

B = (0, 1
3 ), and C = (0, 1), as depicted in Fig. 3. The solution w is of the form

w(x, y) = 1 − e
1

α(x,y) − 1
y , α(x, y) = p(x, y)1/3 + 1

3 , p(x, y) = 1
3

(
xy2 + y − 1

9

)
.

(19)

Differentiating, we find

∇w(x, y) = e
1

α(x,y) − 1
y

(∇α

α2 − (0, y−2)
)
, ∇α = 1

3 p
−2/3∇ p, ∇ p(x, y) = 1

3 (y
2, 2xy + 1

)
.

The singularity in w is visible if we consider

p|AB = 1
3

( 1
9 x + 1

3 − 1
9

) = 1

27

(
x + 2

)
,

which implies that

α|AB = 1
3

(
(x + 2)1/3 + 1

) �⇒ (αx )|AB = 1
9 (x + 2)−2/3. (20)

But we can also identity the restriction of p to AC . The line AC can be parameterized by
y = 1

3 x + 1. Thus p|AB satisfies

p(x, 1
3 x + 1) = 1

3

(
x( 13 x + 1)2 + 1

3 x + 1 − 1
9

) = 1
3

( 1
9 x

3 + 2
3 x

2 + (1 + 1
3 )x + 8

9

)

= 1

27

(
x3 + 6x2 + 12x + 8

) = 1

27
(x + 2)3 =

( x + 2

3

)3
.

(21)
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Table 1 L2 error for solving (25)
using piecewise linears on (a) the
triangular domain (left), and (b)
quadrilateral domain (right,
A′ = (−2, 1

4 ))

(a) Triangle (b) Quadrilateral

M Ratio Error M Ratio Error

50 7.23 1.14e−02 50 6.28 1.19e−02

100 7.93 6.19e−03 100 7.65 7.90e−03

200 8.49 3.56e−03 200 7.62 4.17e−03

400 9.38 2.19e−03 400 8.48 2.60e−03

M is the mesh parameter used by mshr, ratio is the ratio of the H1

and L2 norms of the discrete solution, and error is the L2 norm error
between the computed solution and the exact solution in (19). The L2

norm of the solution is (triangle) 0.37 and (quadrilateral) 0.44

We introduce the notation Fx to mean the partial derivative of a general function F of two
variables with respect to the x-variable. We will use this for α and p. Thus

(αx )|AC = 3(x + 2)−2 px = (x + 2)−2(y2)|AC = (x + 2)−2( 13 x + 1)2 = (x + 3)2

9(x + 2)2
.

(22)

This is an even stronger singularity at A than seen on AB. Thus αx (and hence wx ) is not
even integrable on �.

The minimum of p over � is 0, and so α ≥ 1
3 on �. Thus w is smooth in the interior of

�, with the only singularity at the boundary point A. The velocity u in [5] is given by

u(x, y) = (2xy + 1,−y2). (23)

Thus u · ∇ p = 0. Similarly u · ∇α = 0. Therefore

u · ∇w = −e
1

α(x,y) − 1
y u(x, y) · (0, y−2) = e

1
α(x,y) − 1

y = 1 − w. (24)

Thus

w + u · ∇w = 1 in �, w|AC = 0. (25)

But wx /∈ L p(�) for any p ≥ 1.
In Fig. 2,we show the result of a standardGalerkinmethod for solving (25) using piecewise

linears, with no special upwinding or other techniques used to stabilize the numerical method.
We obtain a smooth solution away from the singularity, but near the singularity it is not
surprising to see some wiggles. On the other hand, the solution accuracy is quite good, as
indicated in Table 1, especially given the lack of regularity of the solution. As expected, the
H1 norm of the computed solution grows as the mesh is refined.

The boundary condition holds because

α|AC = y.

This follows since on the line AC , x = 3(y − 1). Thus

3p|AC =3(y − 1)y2+y − 1
9 = 3y3 − 3y2 + y − 1

9 = 3(y − 1
3 )

3 �⇒ p1/3|AC = y − 1
3 .

We can identify the inflow and outflow regions of the boundary. A simple calculation gives
(u · n)|BC = 1. Similarly, (u · n)|AB = 1/9. We note that on AC , n = 1√

10
(−1, 3). Recall
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Fig. 4 A quadrilateral related to
Bernard’s triangle

BA

C

A’

that AC can be parameterized by y = 1
3 x + 1. Thus

−√
10 u · n|AC = 2x( 13 x + 1) + 1 + 3( 13 x + 1)2 = 2

3 x
2 + 2x + 1 + 1

3 x
2 + 2x + 3

= x2 + 4x + 4 = (x + 2)2.
(26)

Thus u · n vanishes to second order at A. For the purposes of comparing with Theorem 4.1,
we observe that

∇u(A) =
(
2/3 −4
0 −2/3

)
. (27)

4.2 Bernard’s quadrilateral

The fact that the singularity in Bernard’s example occurs at the point A does not depend
on the small angle there. Indeed, one can add another point A′, slightly below A, to get a
quadrilateral �′, as shown in Fig. 4. The general properties of the example still hold. In
particular, the inflow boundary remains AC , as indicated by the flow patterns in Fig. 5. More
precisely, we have

u · n|AA′ = 4y − 1 > 0

as long as y > 1
4 .

If we pick A′ = (−2, 1
4 ), then the line A′B is parameterized by

y = 1

24
(x + 8).

Therefore

nA′B = 1√
577

(1,−24).

Recalling (23), we have

u|A′B =
(2x(x + 8)

24
+ 1,− 1

576
(x + 8)2

)
= 1

24

(
2x2 + 16x + 24,− 1

24
(x + 8)2

)
.

Therefore

(n · u)|A′B = 1

24
√
577

(
2x2 + 16x + 24 + (x + 8)2

) = 1

24
√
577

(
3x2 + 32x + 88

)
.

It is elementary to show that

3x2 + 32x + 88 ≥ 8

3
for all x .
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Fig. 5 Plot of the vector field u
defined in (23) on �′

Thus A′B is an outflow region of the quadrilateral boundary for u given in (23).
In Fig. 6, we show the result of a standard Galerkin method for solving (25) on the Bernard

quadrilateral using piecewise linears, with no special upwinding or other techniques used to
stabilize the numerical method.We again obtain a smooth solution away from the singularity,
but near the singularity it is again not surprising to see some wiggles. On the other hand, the
solution accuracy is quite good, as indicated in Table 1, especially given the lack of regularity
of the solution. As expected, the H1 norm of the computed solution grows as the mesh is
refined, but it is smaller than for the triangle case.

4.3 Gradient bounds for restricted f

A version of the following corollary of Theorem 3.1 was given in [5, Theorem 2.1]. For
completeness, we sketch the proof since this result is central to the subsequent development
in this paper.

Theorem 4.1 In addition to the assumptions in Theorem 3.1, suppose u ∈ W 1∞(�)d , f ∈
W 1

q (�), and there exists c0 > 0 such that

ξ t (I − ∇u(x))ξ ≥ c0|ξ |2 ∀ ξ ∈ R
d , x ∈ �. (28)

Then (4) has a unique solution w ∈ H1(�)d satisfying

‖ ∇w ‖Lq (�) ≤ 1

c0
‖ ∇ f ‖Lq (�), (29)

provided that that f = 0 on �−.

Proof We summarize the proof of [5, Theorem 2.1]. Since w = 0 on �−, the transport
equation implies that u · ∇w = 0 on �−. Since u · n < 0 in the interior of �−, we conclude
that n ·∇w = 0 on �−. Similarly, the tangential derivatives also vanish, we we conclude that
∇w = 0 on �−.

We apply Theorem 3.1 to w = ∇w, with m = d . The equation for w is (5). Thus we
conclude that

‖ ∇w ‖Lq (�) = ‖w ‖Lq (�) ≤ 1

c0
‖ ∇ f ‖Lq (�),

in the case that f = 0 on �−. ��

The condition (28) holds if ‖ ∇u ‖L∞(�) is sufficiently small. But the condition (28) fails
for ∇u(x) for x near A with the velocity u in Sect. 4.1, as indicated by (27). Note that if
u · n = 0 on ∂�, then (29) holds for all f ∈ W 1

q (�), since �− is the empty set in this case.
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Fig. 6 Bernard’s example on a
mesh with M = 50 on the
quadrilateral domain �′

4.4 General f

Theorem 4.1 can be used [5] to prove results when f does not vanish on �−, but with further
restrictions. The idea is to pick w0 ∈ H2(�) such that w0 = 0 on �− and

∂w0

∂n
= f

u · n
on �−. This construction satisfies

(w0 + u · ∇w0)|�− = f |�− .

Then Theorem 4.1 is applied to w − w0. If u · n is bounded below on �−, then w0 can be
chosen so that ‖ w0 ‖H2(�) ≤ C‖ f ‖H1(�). See the proof of [5, Theorem 2.2] for details.

5 Amick’s theorem

Amick’s theorem [1] establishes existence of flows in domains which have inflow and out-
flow tubes, as shown in Fig. 1, where the flow is asymptotically Poiseuille-like. We call such
domains Amick domains, and we assume that the imposed boundary conditions are compat-
ible Poiseuille flows, that is, the input and output flux is the same. For such domains in three
dimensions, the sets Kk in (3) are circles. For simplicity, we limit the dimension to d = 2 or
d = 3.

Definition 5.1 Let � be a Lipschitz domain and recall the definition (1) of the inflow and
outflow boundaries, where we now suppose that u ∈ W 1∞(�). We say that � is an Amick
domain (for u) if there are neighborhoods �± of �± in � which coincide with a channel (for
d = 2) or a pipe (for d = 3) and u tends to Poiseuille flow on �±, with the input and output
flux being the same.

In particular, the definition implies that u is tangential (or zero) on ∂� outside of �±.
The definition of the Amick domain is really for a pair, � and u. We have indicated that by
the parenthetical (for u) after “domain” in the second sentence of Definition 5.1. The vector
field u is arbitrary except for the requirement to be Poiseuille-like at the inlet and outlet. For
example, it could be defined by solving a Stokes-like equation with Poiseuille flow boundary
conditions [22].

Figure 7 shows the horizontal component of the solution of the Stokes equations with
Poiseuille flowboundary conditions in an expanded channel, an example of anAmick domain.
We see that the Poiseuille (quadratic) flow is adopted fairly quickly for Reynolds number
zero. For larger Reynolds numbers, longer input and output channel buffers would have to be
used to guarantee asymptotic similarity, e.g., the same flow profile in and near the expanding
region.
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Fig. 7 Horizontal component of
the solution of the Stokes
equations in an expanded
channel, an example of an Amick
domain

Amick’s theorem provides the basis for the choice of boundary conditions in both physical
and computational experiments. It says that if wemake the input and output pipes sufficiently
long, we can be assured that Poiseuille flow will be an appropriate boundary condition. For
this reason, we focus first on transport in channels and pipes with Poiseuille flow profiles.

5.1 Poiseuille flow

Suppose that the x-axis is the centerline for the input or output section of �. Then Poiseuille
flow takes the form u(x, y) = (u(y), 0) in two dimensions or u(x, y, z) = (u(y, z), 0, 0) in
three dimensions. We begin with the two-dimensional case, and we write the input section
as

{
(x, y)

∣∣ 0 ≤ x ≤ X , |y| ≤ 1
}

after scaling the coordinates appropriately.
Theorem 3.1 in [5] gives the most general result known for H1 estimates for transport

equations with inhomogeneous boundary conditions. But it requires u(x) �= 0 at boundary
points of �− = {

(0, y)
∣∣ |y| ≤ 1

}
. In standard Poiseuille flow, u(x, y) = (u(y), 0), where u

vanishes at y = ±1, and this condition does not hold. On the other hand,

u(y) = 1 − y2 (30)

vanishes only to first order at the boundary points of �−, unlike the example in Sect. 4.1
where the flow velocity vanishes to second order at the boundary point A of �−. Thus it is
of interest to look in detail at the solution in this case.

For Poiseuille flow, the transport equation takes the form

w + uwx = f , w(0, y) = 0. (31)

It suffices to assume that f is independent of x , because if we analyze the case f = f (y)
we can apply Theorem 4.1 to f (x, y) − f (0, y). We claim that (31) is solved by

w(x, y) = f (y)
(
1 − e−x/u(y)). (32)

Checking, we have

wx (x, y) = f (y)

u(y)
e−x/u(y). (33)

Thus

w(x, y) + u(y)wx (x, y) = f (y)
(
1 − e−x/u(y)) + f (y)e−x/u(y) = f (y),
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as claimed. Differentiating (32) with respect to y gives

wy(x, y) = f ′(y)
(
1 − e−x/u(y)) − x

u′(y)
u(y)2

f (y)e−x/u(y). (34)

Therefore

∇w(x, y) =
(
0, f ′(y)

(
1 − e−x/u(y))

)
+ e−x/u(y) f (y)

u(y)

(
1,−x

u′(y)
u(y)

)
. (35)

Let τ = x/u(y). Then

∣∣∣
e−x/u(y)

u(y)

∣∣∣ =
∣∣∣
e−τ

u(y)

∣∣∣ =
∣∣∣
τe−τ

x

∣∣∣. (36)

Since e−τ ≤ 1 and τe−τ ≤ e−1 ≤ 1, for all τ ≥ 0, we have

∣∣∣
e−x/u(y)

u(y)

∣∣∣ ≤ min{|u(y)|−1, x−1}. (37)

Before proceeding, we introduce a small technical lemma.

Lemma 5.1 Suppose that a, b > 0. Then

min{1/a, 1/b} ≤
√
2√

a2 + b2
. (38)

Proof Without loss of generality, assume that a ≤ b. Then min{1/a, 1/b} = 1/b =
1/max{a, b}. Similarly

√
a2 + b2 ≤ √

b2 + b2 = √
2b = √

2max{a, b}. Putting the above
two observations together we have

(min{1/a, 1/b})−1 = max{a, b} ≥ 1√
2

√
a2 + b2.

Inverting this gives the required bound. ��
Applying the lemma to (37), we get

∣∣∣
e−x/u(y)

u(y)

∣∣∣ ≤
√
2

√
x2 + u(y)2

. (39)

We conclude from (35) and (39) that the only singularities in ∇w occur at the boundary
points of �−. From the formula (30) for u, we conclude that

∣∣∣
e−x/u(y)

u(y)

∣∣∣ ≤
√
2

√
x2 + (1 − y2)2

. (40)

Similarly,

∣∣∣e−x/u(y) xu
′(y)

u(y)2

∣∣∣ = |u′(y)|
∣∣∣
e−τ τ

u(y)

∣∣∣ = |u′(y)|
∣∣∣
e−τ τ 2

x

∣∣∣. (41)

Note that τ 2e−τ ≤ 4e−4 < e−1. Since
√
2e−1 < 1, we conclude from Lemma 5.1 that

∣∣∣e−x/u(y) f (y)xu
′(y)

u(y)2

∣∣∣ ≤ | f (y)u′(y)|(x2 + (1 − y2)2
)−1/2

. (42)
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Thus

|∇w(x, y)| ≤ | f ′(y)| + √
2| f (y)|(1 + |u′(y)|)(x2 + (1 − y2)2

)−1/2
. (43)

Define �γ = {
(x, y) ∈ �

∣∣ x < γ
}
. Note that

∫

�γ

(
x2 + (1 − y2)2

)−p/2
dx dy < ∞ (44)

for any p < 2. Thus ∇w ∈ L p for p < 2 if f is bounded. More generally, suppose that
1 < s < 2, and define

t = 2 + s

2 − s
, t ′ = 2 + s

2s
�⇒ 1

t
+ 1

t ′
= 1.

Hölder’s inequality implies that
∫

�γ

| f (y)|s(x2 + (1 − y2)2
)−s/2

dxdy ≤
( ∫

�γ

| f (y)|st dxdy
)1/t

( ∫

�γ

|x2 + (1 − y2)2|−st ′/2 dxdy

)1/t ′

.

(45)

Define r = st and

cs = √
2

( ∫

�γ

|x2 + (1 − y2)2|−st ′/2 dxdy

)1/st ′

. (46)

Note that

st ′ = 2 + s

2
< 2.

Thus (43), (45) and (46) combine to give

‖ ∇w ‖Ls (�γ ) ≤ cs‖ f ‖Lr (�) + ‖ ∇ f ‖Lr (�). (47)

Poincaré’s inequality and (47) imply that

‖ w ‖W 1
s (�γ ) ≤ cP‖ f ‖W 1

r (�). (48)

Therefore, we claim the following result.

Theorem 5.1 Suppose that the assumptions of Theorem 4.1 hold on u, and that s < 2. Pick
r = s(2 + s)/(2 − s) and assume that f ∈ Lr (�) and ∇ f ∈ Ls(�)d . Suppose that either
(a) u · n = 0 on ∂� or (b) � is an Amick domain with Poiseuille-like boundary conditions
on the inflow and outflow boundaries. In the case (b), assume that f is radially symmetric
in the inflow and outflow pipes of the Amick domain. Then there is a constant cs depending
on s and � such that the unique solution w of (4) satisfies w ∈ W 1

s (�)d and

‖ ∇w ‖Ls (�) ≤ cs
(
‖ f ‖W 1

s (�) + (
1 + ‖u ‖W 1∞(�γ )

)‖ f ‖W 1
r (�)

)
. (49)

Note that in case (a), this follows from Theorem 4.1 since �− is the empty set. Note that
Theorem 5.1 easily extends to Amick multidomains, in which there are multiple Poiseuille
input and output channels or tubes. The constant cs in (49) is not the same as the one in (46),
but they are related as indicated in the proof of Theorem 5.1.
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5.2 Proof of Theorem 5.1 in 2D

We are nearly done with the proof of Theorem 5.1 in 2D, but we need to show how we can
subtract the solution (32) and use Theorem 4.1. Let w̃ denote the solution of (4) and write

v = w̃ − wχ̂, χ̂(x, y) = (1 − 2x + x2)χ[0,1](x),

where χ[0,1] is the characteristic function of the unit interval. Here we are assuming that the
inflow domain is a channel of length γ ≥ 1. If not, make the cut-off more abrupt. Note that
‖ χ̂ ‖L∞(�) = 1 and ∇χ̂ = (−2 + 2x, 0)χ[0,1]. Then

v + u · ∇v= f − (
wχ̂+u(wχ̂)x

) = f (1 − χ̂ ) + uwχ̂x = f (1 − χ̂ ) + uw(2 − 2x)χ[0,1].

Applying Theorem 4.1, we find

‖ ∇v ‖Lq (�) ≤ 1

c0
‖ ∇(

f (1 − χ̂) + uwχ̂x
) ‖Lq (�)

≤ 1

c0

(
‖ ∇ f ‖Lq (�) + 2‖ f ‖Lq (�) + ‖ ∇(uw) ‖Lq (�γ ) + 2‖ uw ‖Lq (�γ )

)

≤ C
(‖ f ‖W 1

q (�) + ‖u ‖W 1∞(�γ )‖ w ‖W 1
q (�γ )

)
. (50)

Note that

‖ ∇(χ̂w) ‖Lq (�) ≤ C‖ w ‖W 1
q (�γ ). (51)

From the definition of v and the combination of (50) and (51), we find

‖ ∇w̃ ‖Lq (�) ≤ ‖ ∇v ‖Lq (�) + ‖ ∇(χ̂w) ‖Lq (�)

≤ C
(
‖ f ‖W 1

q (�) + (
1 + ‖u ‖W 1∞(�γ )

)‖ w ‖W 1
q (�γ )

)
,

(52)

for a possibly larger constant C . Combining with (48) gives

‖ ∇w̃ ‖Lq (�) ≤ C
(
‖ f ‖W 1

q (�) + (
1 + ‖u ‖W 1∞(�γ )

)‖ f ‖W 1
r (�)

)
, (53)

which completes the proof.

5.3 Sharpness

Other bounds could be proved, especially ones with weights involving the distance to the
boundary of the inflow boundary, ∂�−. However, for standard Lebesgue spaces, we can show
the restriction on q is sharp as follows.

Taking f ≡ 1, we find

wx (x, y) = e−x/u(y)

u(y)
, wy(x, y) = − xe−x/u(y)u′(y)

u(y)2
,

which implies that (take τ = x/u(y))
∫ X

0
|wx (x, y)|2 dx =

∫ X

0

e−2x/u(y)

u(y)2
dx = 1

u(y)

∫ X/u(y)

0
e−2τ dτ.

Thus as u(y) → 0,
∫ X

0
|wx (x, y)|2 dx ≈ 1

u(y)

∫ ∞

0
e−2τ dτ = 1

2u(y)
.

123



35 Page 16 of 20 Partial Differential Equations and Applications (2022) 3 :35

Thus
∫ 1−δ

−1+δ

∫ X

0
|wx (x, y)|2 dx → ∞

as δ → 0. Thus we conclude that ∇w /∈ L2.

5.4 Special f

Suppose that f (y) = f (0, y) ≤ C f u(y) for some positive constant C f . Then (35) implies
that

|∇w(x, y)| ≤ | f ′(y)|(1 − e−τ
) + C f e

−τ
(
1 + τ |u′(y)|), (54)

where τ = x/u(y). More generally, let g(y) = f (y)/u(y). Then

|∇w(x, y)| ≤ | f ′(y)|(1 − e−τ
) + |g(y)|e−τ

(
1 + τ |u′(y)|)

≤ | f ′(y)| + |g(y)|(1 + |u′(y)|). (55)

These observations are similar to what is observed in Sect. 4.4.

5.5 Proof of Theorem 5.1 in 3D

We modify the notation in Sect. 5.1.
Suppose that the x-axis is the centerline for the input or output section of�. ThenPoiseuille

flow takes the form u(x, y, z) = (u(r), 0, 0) in three dimensions, where r = √
y2 + z2. We

write the input section as
{
(x, y, z)

∣∣ 0 ≤ x ≤ X , y2 + z2 ≤ 1
}

after scaling the coordinates appropriately.
For Poiseuille flow, the transport equation takes the form

w + uwx = f , w(0, y, z) = 0. (56)

It suffices to assume that f is independent of x , because if we analyze the case f = f (y)
we can apply Theorem 4.1 to f (x, y) − f (0, y). As before, (56) is solved by

w(x, y, z) = f (r)
(
1 − e−x/u(r)), r =

√
y2 + z2. (57)

Differentiating (57) with respect to r gives

wr (x, r) = f ′(r)
(
1 − e−x/u(r)) − x

u′(r)
u(r)2

f (r)e−x/u(r). (58)

Let τ = x/u(r). Then
∣∣∣e−x/u(r) f (r)

u(r)

∣∣∣ =
∣∣∣e−τ f (r)

u(r)

∣∣∣ =
∣∣∣τe−τ f (r)

x

∣∣∣. (59)

Since e−τ ≤ 1 and τe−τ ≤ e−1, applying (38) as before, we have
∣∣∣e−x/u(r) f (r)

u(r)

∣∣∣ ≤ | f (r)|min{|u(r)|−1, x−1} ≤ √
2| f (r)|(x2 + u(r)2

)−1/2
. (60)
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Similarly,
∣∣∣e−x/u(r) f (r)xu

′(r)
u(r)2

∣∣∣ =
∣∣∣e−τ τ

f (r)u′(r)
u(r)

∣∣∣ =
∣∣∣e−τ τ 2

f (r)u′(r)
x

∣∣∣. (61)

Thus
∣∣∣e−x/u(r) f (r)xu

′(r)
u(r)2

∣∣∣ ≤ √
2e−1| f (r)u′(r)|(x2 + u(r)2

)−1/2
. (62)

Therefore

|∇w(x, r)| ≤ | f ′(r)| + √
2| f (r)|(1 + |u′(r)|)(x2 + u(r)2

)−1/2
. (63)

Thus ∇w ∈ L p for p < 2.
The cut-off argument is the same. Therefore, we have proved Theorem 5.1 in three dimen-

sions.

6 Negative norms

To obtain bounds in negative norms, we need to consider the adjoint transport equation

Cφ − u · ∇φ = ψ in �, φ = 0 in �+, (64)

where we recall that �+ is defined in (1). In particular, we will be interested in the case
that ψ ∈ W 1

q (�)d and the resulting solution φ ∈ W 1
q (�)d . The equations (2) and (64) are

essentially the same: we just switch flow directions u → −u.
Suppose that w ∈ Xu with w = 0 on �−. Then u · ∇w ∈ L2(�)d . Let φ ∈ H1(�)d with

φ = 0 on �+. Then (w · φ)(u · n) = 0 on ∂�. We have

∇· (u(w · φ)
) = (u · ∇w) · φ + (u · ∇φ) · w (65)

in� since∇· u = 0 in�. This holds as an expression in L1(�). Thus the divergence theorem
implies that

(u · ∇w,φ) = −(w,u · ∇φ). (66)

Suppose that w solves (2) with w = 0 on �−. Then (66) implies

(w, Cφ − u · ∇φ) = (f,φ).

Let ψ ∈ C∞
0 (�)d be any test function. Apply (18) and (29) to the solution of (64) with data

ψ , namely the function φ satisfying

Cφ − u · ∇φ = ψ in �, φ = 0 on �+, ‖ φ ‖W 1
q (�) ≤ cq‖ ψ ‖W 1

q (�),

where cq = 2(q−1)/q/c0, cf. (69). Then

(w,ψ)

‖ ψ ‖W 1
q (�)

= (f,φ)

‖ ψ ‖W 1
q (�)

≤ cq(f,φ)

‖ φ ‖W 1
q (�)

.

Thus we conclude that

‖w ‖(W 1
q )′(�) ≤ cq sup

0 �=φ∈W 1
q+(�)d

(f,φ)

‖ φ ‖W 1
q (�)

, (67)
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where W 1
q+(�) =

{
v ∈ W 1

q (�)
∣∣ v = 0 on �+

}
.

Thus we have proved the following.

Theorem 6.1 Under the conditions of Theorem 5.1, there is a constant cq such that

‖w ‖(W 1
q )′(�) ≤ cq sup

0 �=φ∈W 1
q+(�)d

(f,φ)

‖ φ ‖W 1
q (�)

. (68)

7 Conclusions and questions

We have shown that transport equations with inflow boundary conditions may be posed in
Sobolev spaces.We showed that for simple problems like Poiseuille flow there is a singularity
at the boundary of the inflow section of ∂� that arises naturally, due to the fact that u vanishes
there.We extended this observation to prove a general result onAmick domains.We reviewed
an example of Bernard that shows that the gradient of the solution of the transport equation
is not even integrable if u vanishes to second order there.

Since the proof of bounds in Sect. 4.3 do not require the assumption of Bernard (3), it is
an interesting question whether this assumption is essential for Theorem 3.1.

Acknowledgements SP is supported in part by the National Science Foundation NSF DMS-2011519. We
thank the referees for valuable suggestions.

A Spaces

Herewe collect the notation used for various Sobolev spaces and norms.We denote by L p(�)

the Lebesgue spaces [7] of p-th power integrable functions, with norm

‖ f ‖L p(�) =
( ∫

�

| f (x)|p dx
)1/p

.

Note that we can easily apply the same notation to vector or tensor valued f . We think
of tensors of any arity as vectors of the appropriate length, and we think of | f (x)| as the
Euclidean length of this vector. For tensors of arity 2 (i.e., matrices) this is the same as the
Frobenius norm. We will write the spaces for such tensor-valued functions as L p(�)m for
the appropriate m (e.g., m = d2 for arity 2). Similarly, we denote by L∞(�) the Lebesgue
space of essentially bounded functions, with

‖ f ‖L∞(�) = sup
{| f (x)| ∣∣ a.e. x ∈ �

}
.

Correspondingly, we define Sobolev spaces and norms of order m by

‖ f ‖Wm
p (�) =

( ∑

|α|≤m

‖ Dα f ‖p
L p(�)

)1/p

,

where Dα is the weak derivative ∂α/∂x|α| [7]. More precisely, the spacesWm
p (�) are defined

as the subspaces of L p(�) for which the corresponding norm is finite. The case p = 2 is
denoted by H :

Hm(�) = Wm
2 (�).
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Correspondingly, we define

‖ ∇m f ‖L p(�) =
( ∑

|α|=m

‖ Dα f ‖p
L p(�)

)1/p

.

Note that

‖ f ‖W 1
p(�) ≤ ‖ f ‖L p(�) + ‖ ∇ f ‖L p(�) ≤ 2(p−1)/p)‖ f ‖W 1

p(�). (69)

We will briefly use the space H1
0 (�) of f ∈ H1(�) such that f = 0 on ∂�. The dual space

H−1(�)d is the set of Schwartz distributions [24] for which the dual norm

‖u ‖H−1(�) = sup
0 �=φ∈H1

0 (�)d

〈u · φ〉
‖ φ ‖H1(�)

is finite.

References

1. Amick, C.J.: Steady solutions of the Navier–Stokes equations in unbounded channels and pipes. Annali
della Scuola Normale Superiore di Pisa-Classe di Scienze 4(3), 473–513 (1977)

2. Bernard, J.-M.: Solutions globales variationnelles et classiques des fluides de grade deux.ComptesRendus
de l’Academie des Sciences - Series I - Mathematics 327, 953–958 (1998)

3. Bernard, J.-M.: Problem of second grade fluids in convex polyhedrons. SIAM J. Math. Anal. 44(3),
2018–2038 (2012)

4. Bernard, J.-M.: Steady transport equation in the case where the normal component of the velocity does
not vanish on the boundary. SIAM J. Math. Anal. 44(2), 993–1018 (2012)

5. Bernard, J.-M.: Solutions in H1 of the steady transport equation in a bounded polygon with a full non-
homogeneous velocity. Journal de Mathématiques Pures et Appliquées 107(6), 697–736 (2017)

6. Bernard, J.-M.: Fully nonhomogeneous problem of two-dimensional second grade fluids. Math. Methods
Appl. Sci. 41(16), 6772–6792 (2018)

7. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, third Springer, Berlin
(2008)

8. Choudhury, A.P., Crippa, G., Spinolo, L.V.: Initial-boundary value problems for nearly incompressible
vector fields, and applications to the Keyfitz and Kranzer system. Zeitschrift für angewandte Mathematik
und Physik 68(6), 138 (2017)

9. Cioranescu, D., Girault, V., Rajagopal, K.R.: Mechanics and Mathematics of Fluids of the Differential
Type. Springer, Berlin (2016)

10. Girault, V., Scott, L.R.: Analysis of a two-dimensional grade-two fluid model with a tangential boundary
condition. J. Math. Pures Appl. 78, 981–1011 (1999)

11. Girault, V., Scott, L.R.: On a time-dependent transport equation in a Lipschitz domain. SIAM J. Math.
Anal. 42, 1721–1731 (2010)

12. Girault, V., Scott, L.R.: Oldroyd models without explicit dissipation. Rev. Roumaine Math. Pures Appl.
63(4), 401–446 (2018)

13. Girault, V., Scott, L.R.: Tanner duality between the Oldroyd–Maxwell and grade-two fluid models.
Comptes Rendus—Mathématique 359(9), 1207–1215 (2021)

14. Girault, V., Tartar, L.: Régularité dans L p etW 1,p de la solution d’une équation de transport stationnaire.
Comptes Rendus. Mathématique 348(15–16), 885–890 (2010)

15. Lodge, A.S., Pritchard, W.G., Scott, L.R.: The hole-pressure problem. IMA J. Appl. Math. 46, 39–66
(1991)

16. Mucha, P.B., Piasecki, T.: Stationary compressible Navier–Stokes equations with inflow condition in
domains with piecewise analytical boundaries. Pure Appl Anal 2(1), 123–155 (2019)

17. Nyström, M., Tamaddon Jahromi, H.R., Stading, M., Webster, M.F.: Hyperbolic contraction measuring
systems for extensional flow. Mech. Time Depend. Mater. 21(3), 455–479 (2017)

18. Oliveira, P.J., Pinho, F.T.: Analytical solution for fully developed channel and pipe flow of Phan–Thien–
Tanner fluids. J. Fluid Mech. 387, 271–280 (1999)

123



35 Page 20 of 20 Partial Differential Equations and Applications (2022) 3 :35

19. Otárola,E., Salgado, A.J.: On the analysis and approximation of some models of fluids over weighted
spaces on convex polyhedra. Numerische Mathematik (2022)

20. Phan-Then, N., Tanner, R.I.: A new constitutive equation derived from network theory. J. Non Newton.
Fluid Mech. 2(4), 353–365 (1977)

21. Piasecki, T.: Steady transport equation in Sobolev–Slobodetskii spaces. Colloq. Mathemat. 154, 65–76
(2018)

22. Pollock, S., Scott, L.R.: An algorithm for the grade-two rheological model. M2AN (accepted) (2022)
23. Pritchard, W.G.: Measurements of the viscometric functions for a fluid in steady shear flows. Philos.

Trans. R. Soc. Lond Ser. A 302 270(1208), 507–556 (1971)
24. Schwartz, L.: Théorie des distributions. Hermann, Paris (1966)
25. Scott, L.R.: Introduction toAutomatedModelingwith FEniCS. ComputationalModeling Initiative (2018)
26. Tanner, R.I.: The stability of some numerical schemes for model viscoelastic fluids. J. Non Newton. Fluid

Mech. 10, 169–174 (1982)

123


	Transport equations with inflow boundary conditions
	Abstract
	1 Introduction
	2 Problem definition
	2.1 Oldroyd models
	2.2 Derivatives

	3 Bounds in Lebesgue spaces
	3.1 Sufficient to prove it for w0=0
	3.2 Proof for w0=0 and 2leqq<infty
	3.3 Proof for w0=0 and q=infty

	4 Derivative estimates
	4.1 Bernard's example
	4.2 Bernard's quadrilateral
	4.3 Gradient bounds for restricted f
	4.4 General f

	5 Amick's theorem
	5.1 Poiseuille flow
	5.2 Proof of Theorem 5.1 in 2D
	5.3 Sharpness
	5.4 Special f
	5.5 Proof of Theorem 5.1 in 3D

	6 Negative norms
	7 Conclusions and questions
	Acknowledgements
	A Spaces
	References




