
Gloria: Graph-based Sharing Optimizer for
Event Trend Aggregation

Lei Ma1, Chuan Lei2, Olga Poppe3, Elke A. Rundensteiner1
1Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609

2Instacart, 50 Beale Street Suite 600 San Francisco, CA 94105
3 Microsoft Gray Systems Lab, One Microsoft Way, Redmond, WA 98052

lma5@wpi.edu,chuan.lei@instacart.com,olpoppe@microsoft.com,rundenst@wpi.edu

ABSTRACT
Large workloads of event trend aggregation queries are widely
deployed to derive high-level insights about current event trends
in near real time. To speed-up the execution, we identify and lever-
age sharing opportunities from complex patterns with �at Kleene
operators or even nested Kleene expressions. We propose G�����, a
graph-based sharing optimizer for event trend aggregation. First, we
map the sharing optimization problem to a graph path search prob-
lem in the G����� graph with execution costs encoded as weights.
Second, we shrink the search space by applying cost-driven prun-
ing principles that guarantee optimality of the reduced G�����
graph in most cases. Lastly, we propose a path search algorithm
that identi�es the sharing plan with minimum execution costs. Our
experimental study on three real-world data sets demonstrates that
our G����� optimizer e�ectively reduces the search space, leading
to 5-fold speed-up in optimization time. The optimized plan consis-
tently reduces the query latency by 68%-93% compared to the plan
generated by state-of-the-art approaches.

CCS CONCEPTS
• Information systems! Data stream mining; • Computing
methodologies! Optimization algorithms.

KEYWORDS
Complex event processing; query optimization; computation shar-
ing; incremental aggregation; event trend
ACM Reference Format:
Lei Ma, Chuan Lei, Olga Poppe and Elke A. Rundensteiner. 2022. Gloria:
Graph-based Sharing Optimizer for Event Trend Aggregation. In Proceedings
of the 2022 International Conference on Management of Data (SIGMOD ’22),
June 12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3514221.3526145

1 INTRODUCTION
Complex Event Processing has shown great promise in retrieving
insights over high-velocity event streams in near real time for
applications ranging from transportation to public health. These

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00
https://doi.org/10.1145/3514221.3526145

applications often rely on aggregation queries composed of Kleene
[2, 7] and other operators that express dependencies among event
types to retrieve summarized information of interest. Unlike �xed
length event sequences, the sequences matched by Kleene patterns,
called event trends [25], can be arbitrarily long and expensive to
compute [21, 26, 27]. Thus, it is di�cult to guarantee real time
response of large workloads of such queries [3].

Multi-query optimization for event trend aggregation is a promis-
ing approach [21, 26, 29] to reduce the query execution costs by
sharing computations among queries in a workload. Given an event
trend aggregation workload, such optimization technique must (1)
identify sharing opportunities in nested Kleene patterns and (2)
decide how to leverage these sharing opportunities to truly bene�t
the execution of the given workload.

Motivation Example. Figure 1 shows an example workload
from a food delivery application. An event type corresponds to an
action made by the customer or the delivery driver, e.g., AppOrder
or WebOrder, Request or Travel. Each event in the stream is a tuple
composed of a customer/driver identi�er, an action, a district, and
a timestamp. The queries @1,@2 and @3 di�er by the patterns shown
at the bottom, while all other query clauses are the same. There
can be any number of consecutive (Pickup, Travel) sequences ex-
pressed byKleene. Query@1 focuses on the orders that are requested
and delivered. Query @2 detects the orders that are placed on the
app end and �nished by delivery. Query @3 tracks the orders are
cancelled by the customer. All three queries contain the Kleene sub-
pattern Request, (Pickup, Travel)+, which could be shared among
them. However, this is not the only sharing opportunity. In fact,
@1 and @2 could also share the longer sub-pattern (Request, (Pickup,
Travel)+, Delivery). Alternatively, @2 and @3 can share a di�erent
longer SEQ sub-pattern (AppOrder, Request, (Pickup, Travel)+). To
share such queries with both Kleene and SEQ sub-patterns with
di�erent sharing opportunities is not a trivial task.

RETURN district, SUM (Travel.duration)
PATTERN P
WHERE [driver_id] GROUP_BY district
WINDOW 20 min SLIDE 5 min

P for q1: Request, (Pickup, Travel)+, Delivery
P for q2: AppOrder, Request, (Pickup, Travel)+, Delivery
P for q3: AppOrder, Request, (Pickup, Travel)+, Cancel

Figure 1: Event Trend Aggregation Workload

State-of-the-Art Approaches. Early works [18, 21, 25, 36] use
a two-step approach that �rst constructs all event trends and then
aggregates them. While the event trend construction step may be
shared by several queries [18, 21], these two-step methods su�er
from an exponential time complexity in the number of matched

https://doi.org/10.1145/3514221.3526145
https://doi.org/10.1145/3514221.3526145

events [25, 36]. Instead, online approaches [26–29, 32] hold promise
by pushing aggregation into the pattern matching phase without
having to �rst construct event trends. This reduces the computation
complexity from exponential to quadratic [27].

However, the state-of-the-art online aggregation methods su�er
from two critical limitations. First, Kleene patterns can contain
nested SEQ and Kleene operators. Hence, most existing methods [21,
26, 28, 29] restrict or completely disallow Kleene patterns in the
event trend aggregation. For example, MCEP[21] only supports
the sharing of non-nested (�at) Kleene patterns, while S�����[29]
supports sharing �xed-length SEQ patterns only, i.e., no Kleene
patterns. Such restrictions on the Kleene patterns greatly reduce
the applicability of existing sharing methods.

Approach Aggregation Kleene Sharing
strategy pattern type decision

MCEP [21] two-step restricted �exible
S����� [29]

online

� restricted
G���� [27] general �
H����� [26] restricted restricted
G����� (our) general �exible

Table 1: Event trend aggregation approaches.

Second, the state-of-the-art methods make strict assumptions
about sharing decisions. For example, S����� [29] introduces the
concept of sharing con�ict, which does not allow one sub-pattern to
participate in multiple sharing query groups. Similar to MCEP[21],
H�����[26] only considers sharing opportunities among �atKleene
sub-patterns containing a single event type. These assumptions
often result in sub-optimal sharing plans, since many sharing op-
portunities are missed. Table 1 summarizes exemplar approaches
categorized by the three dimensions discussed above.

Challenges.We aim to address the following open challenges.
Query complexity. In real-world applications, a query workload

often consists of nested Kleene operators applied to a sequence of
event types. A sharing optimizer needs to discover sharing opportu-
nities among those complex Kleene queries, despite the exponential
complexity of the problem [25, 36].

Sharing complexity. Sharing opportunities must be fully exploited
without rigid constraints. Moreover, a cost model is needed to accu-
rately capture the execution cost of di�erent sharing opportunities.
A sharing optimizer can only harvest the maximal sharing bene�t
when it is able to identify truly bene�cial sharing opportunities
among complex event trend aggregation queries.

Search complexity. Allowing �exible sharing among arbitrary
Kleene queries increases the search space of possible sharing plans,
making it prohibitively expensive to �nd the optimal one. To address
this challenge, we need e�ective pruning strategies to reduce the
search space without compromising optimality.

Proposed Solution. Given a workload of event trend aggre-
gation queries composed of nested SEQ and Kleene operators, the
G����� optimizer generates a �ne-grained sharing plan that de-
cides which queries should share which sub-patterns depending
on the event stream characteristics. Speci�cally, by mapping the
sharing optimization problem into a graph path search problem,
the G����� optimizer generates a G����� graph that captures the
sharing plan search space. The G����� optimizer leverages a set
of universal pruning rules for SEQ and Kleene sub-patterns with

additional Kleene -speci�c rules to construct a compact G�����
graph. Lastly, the path search algorithm further prunes the graph
and �nds the optimal path in linear time in the size of the graph.

Contributions. Our main contributions are the following.
1. We present a novel approach for optimizing the sharing plan

for a workload of event trend aggregation queries with complex
Kleene patterns. To the best of our knowledge, G����� is the �rst
sharing optimizer that o�ers �exible sharing decisions on nested
Kleene patterns using e�ective online aggregation.

2. We introduce G����� graph to model a variety of sharing
opportunities in a diverse event trend aggregation workload. This
allows us to transform the workload sharing problem into a path
search problem. A cost model and e�ective pruning rules are also
introduced to reduce the size of the G����� graph.

3. We design a path search algorithm to �nd an event trend
aggregation sharing plan from the G����� graph. For a given com-
plex query workload, our optimizer has a linear-time complexity
in the number of nodes and edges in the G����� graph, while still
delivering optimality guarantees in most cases.

4. The experimental evaluation on three public data sets demon-
strates the e�ectiveness of our pruning principles and the quality
of the produced workload sharing plan. Our sharing plan achieves
up to 10x performance improvement over the state-of-the-art ap-
proaches.

2 PRELIMINARIES
2.1 G����� Query Model

De�nition 2.1 (Kleene Pattern). A pattern % is in the form of ⇢,
%1+, (NOT %1), SEQ (%1, %2), (%1 _ %2), or (%1 ^ %2), where ⇢ is an
event type, %1, %2 are patterns, + is a Kleene plus, NOT is a negation,
SEQ is an event sequence, _ a disjunction, and ^ a conjunction. %1
and %2 are called sub-patterns of % . If a pattern % contains a Kleene
plus, % is called a Kleene pattern. If a Kleene operator is applied
to the result of another Kleene pattern, then % is a nested Kleene
pattern. Otherwise, % is a �at Kleene pattern.

Notations Descriptions
& A workload of queries
?4 (⇢,@) Predecessor types of ⇢ w.r.t @
CA0=(⇢8 , ⇢ 9) Transition btw. ⇢8 and ⇢ 9 in template
4G?A (48 , & 9) Snapshot expression of 48 for & 9

B?48 Snapshot of an event 48
%>>; (⇢8 , ⇢ 9) Pool of candidate transition sharing plans

for transition (⇢8 , ⇢ 9)
=: Node =: in %>>; (⇢8 , ⇢ 9) (i.e., a candidate

transition sharing plan)
=@BC Start node of @ in G����� graph
=@
43

End node of @ in G����� graph
4364 (=: ,=<) Edge between =: and =<
=: .3B Minimum distance from all start nodes to =:
=: .34 Minimum distance from =: to all end nodes
% .F Weight of a path % in G����� graph

Table 2: Table of notations.

De�nition 2.2 (Event Trend Aggregation Query). An event trend
aggregation query @ consists of �ve clauses:

• RETURN clause: Aggregation result speci�cation;
• PATTERN clause: Event sequence pattern % per De�nition 2.1;
• WHERE clause: Predicates \ ; (optional)
• GROUPBY clause: Grouping ⌧ ; (optional)
• WITHIN/SLIDE clause: WindowF .

An event trend of query @ is a result sequence of events CA = (41,
. . ., 4:) that matches the pattern % . For any adjacent events 48 , 48+1
in CA , 48 is called the predecessor event of 48+1. All events in a trend
satisfy predicates \ , have the same values of grouping attributes ⌧ ,
and are within one windowF . Given a query @ and event trend CA of
@, the event types 41 .type and 4: .type of the �rst and last events 41
and 4: in CA must be the start and end event types in @, respectively.
Table 2 summarizes the notations.

De�nition 2.3 (Shareable Patterns). Given a pattern % and a work-
load& of event trend aggregation queries, if % appears in the pattern
clause of at least two queries, this pattern % is shareable.

Example 2.4. For queries with Kleene patterns @1 = SEQ(�, ⌫)+,
@2 = SEQ(⇠ , SEQ(�, ⌫)+)+, and @3= SEQ((⇠ , SEQ(�, ⌫)+)+, ⇢), the
�at Kleene sub-pattern SEQ(�, ⌫)+ is shareable by all three queries
and nested Kleene sub-pattern SEQ(⇠ , SEQ(�, ⌫)+)+ by @2 and @3.

Aggregation Functions. We focus on aggregation functions
that can be computed incrementally [16], i.e., that are associative
and commutative. Speci�cally, COUNT(*) returns the number of
matched event trends, MIN/MAX(⇢.a�r) return the minimum or
maximum of an attribute a�r of events of type ⇢ in all event trends
matched by @, while SUM(⇢.a�r) and AVG(⇢.a�r) compute the sum
or average of a�r of these events. For simplicity, we use COUNT(*)
as the default aggregation function in this paper. We discuss sharing
of other aggregation functions in the discussion section (Sec. 7).

2.2 Event Trend Aggregation Sharing Problem
To facilitate the analysis of sharing opportunities, we represent a
query workload as a Finite-State-Automaton [12, 14, 35, 36], called
G����� Template. Each node in the template represents an event
type ⇢ in q. A transition from event type ⇢8 to ⇢ 9 represents a SEQ or
Kleene operator between ⇢8 and ⇢ 9 , denoted as CA0=(⇢8 , ⇢ 9). Event
types ⇢8 that precede ⇢ 9 in query @ (i.e., there is a transition from
⇢8 to ⇢ 9) are denoted as ?4 (⇢ 9 ,@). We adopt the state-of-the-art
algorithm for this template construction [27].

�������

$ 5 3

������� ������� '
����

7

&�

����

(a) Template of&

���������

$ 5 3

��������� ��������� '
����

7

&�

����

(b) Sharing plan 1

���������

$ 5 3

��������� ��������� '
����

7

&�

������

(c) Sharing plan 2

���������

$ 5 3

��������� ��������� '
������

7

&�

����

(d) Sharing plan 3

(YHQW�W\SH

(QG�HYHQW�W\SH

7UDQVLWLRQ

������ 4�VHW�RI�T���T�

Figure 2: G����� template and sharing plans of& = {@1,@2,@3 }

Example 2.5. Figure 2(a) shows the template of workload & in
Figure 1, where @1 = SEQ(', SEQ(% ,))+, ⇡), @2 = SEQ(�, ', SEQ(% ,
))+, ⇡), @3 = SEQ(�, ', SEQ(% ,))+, ⇠). This template reveals mul-
tiple sharing opportunities. Figures 2(b)-2(d) show three sharing

plans. Intuitively, a transitions1 in the template can be shared by
di�erent queries. The set of queries shared together is called a Q-
set. The sharing plan 1 in Figure 2(b) shares transitions CA0=(', %),
CA0=(%,)) and CA0=() , %) for all three queries, denoted as (1, 2, 3).
Alternatively, the sharing plan 2 in Figure 2(c) shares transitions
CA0=(', %), CA0=(%,)) and CA0=() , %) between @2 and @3. Figure
2(d) shows that @1 and @2 share transitions CA0=(', %), CA0=(%,)),
CA0=() , %) and CA0=() ,⇡).

This example raises three questions. (1) How can we e�ectively
share Kleene sub-patterns? (2) Could consecutive transitions share
di�erent queries? (3) Overall, how can we determine the costs of
alternate sharing plans and then �nd the optimal plan among them?
Belowwe introduce the concepts of transition andworkload sharing
plan to specify the required information for the above questions.

De�nition 2.6 (Transition Sharing Plan). A transition sharing plan
partitions all queries associated with a transition into a set of Q-sets
such that the queries in each Q-set share the execution modeled by
this transition respectively.

De�nition 2.7 (Workload Sharing Plan). Given a template of a
workload & , a workload sharing plan of & consists of a set of
transition sharing plans for all transitions in the template.

Problem Statement. Given a workload & and an event stream,
the event trend aggregation sharing problem is to �nd a workload
sharing plan composed of pattern sharing that executes & with the
minimized average query latency2. The latency of a query @ 2 &
is measured as the di�erence between the time point of producing
the aggregation result of the query @ and the arrival time of the last
event that contributed to this result.

Search Space. For a given transition (⇢8 , ⇢ 9) with< associated
queries, determining Q-sets of these queries corresponds to parti-
tioning a set of< elements into = (= <) non-overlapping subsets
that together cover the set <. The number of such partitions is
known as Bell-Number of< [19]:

⌫< =
<’
==1

⇢
<

=

�
= $ (44<) (1)

Given a workload& and its template with : transitions, the num-
ber of transition sharing plans for each transition is $ (⌫ |& |) in the
worst case (Equation 1). Since a workload sharing plan corresponds
to the combination of transition sharing plans of all : transitions,
the size of the search space (⇧ of the workload sharing plan opti-
mization problem ⇧ is $(⌫:|& |). Enumerating all possible plans is
prohibitively expensive due to its exponential time complexity in
the worst case. Hence, an optimizer is needed to e�ciently �nd an
optimized workload sharing plan.

3 GLORIA SYSTEM
3.1 G����� Framework Overview
Figure 4 depicts theG����� framework. TheG����� optimizer takes
as input a workload of queries and stream statistics. The query
workload is represented by a template (Sec. 2.2). The optimizer
1The terms sub-pattern and transition are used interchangeably in this paper.
2Average latency is the total latency of the entire workload divided by the number of
queries in the workload.

& $

���� ����

'

�

%

����

(a) Template of& = {@1,@2 }

& $

������& ������&

'

�
%

������&

(YHQW�W\SH�IRU�VQDSVKRWV

(b) A sharing plan for&

F� D� E� D� E� G�

,QWHUPHGLDWH��
FRXQW�RI�T�

,QWHUPHGLDWH��
FRXQW�RI�T�

T��SURSDJDWLRQ T��SURSDJDWLRQ

� � � � � �

� � � � �

T��RXWSXWT��RXWSXW

(c) Non-shared execution

F� D� E� D� E� G�

6QDSVKRW
$UUD\

6QDSVKRW
([SUHVVLRQ

6QDSVKRW�SURSDJDWLRQ

VSF� ���

VSF� VSF� VSF� �VSF� �VSF� �VSF��

HYHQW�ZLWK�VQDSVKRW
T��RXWSXWT��RXWSXW

(d) Shared execution

Figure 3: Non-shared and shared executions over an event stream � = {20,01,12,03,14,35 } (best viewed in color).

transforms the query template into a G����� graph to compactly
encode all possible sharing opportunities (Sec. 4 and 5.1). This way,
an optimal workload sharing plan corresponds to a path with the
minimum weight in the G����� graph. To reduce the size of this
search space, a set of cost-based pruning rules are utilized (Sec. 5.2
and 6). The sharing plan �nder applies a path search algorithm sup-
ported by additional pruning principles to �nd the �nal workload
sharing plan (Sec. 5.3 and 6). This plan �nder features an e�cient
search time linear in the size of the graph.

*/25,$�237,0,=(5

(YHQW�6WUHDP

7HPSODWH

0DQDJHU

*ORULD

*UDSK

3UXQLQJ

5XOHV
&RVW�0RGHO

6KDULQJ�3ODQ

)LQGHU
$JJUHJDWLRQ

5HVXOWV

*/25,$�(;(&8725

([HFXWLRQ

(QJLQH

6QDSVKRW

0DQDJHU

4XHU\�:RUNORDG 6WUHDP�6WDWLVWLFV

2SWLPDO

6KDULQJ

3ODQ

Figure 4: G����� framework.

The G����� executor executes the optimized sharing plan pro-
duced by the G����� optimizer. It incrementally computes trend
aggregates by propagating intermediate aggregates from previously
matched events to new events. It is supported by the snapshot man-
ager that maintains the values of intermediate aggregates per query,
called snapshots, and shares their propagation. Details of execution
are below, while the optimizer is described in Sections 5 and 8.2.

3.2 G����� Executor
The G����� executor adopts state-of-art online aggregation meth-
ods [26, 27] to support both non-shared and shared executions.
Figure 3 features an example template. We use COUNT(⇤) as aggre-
gation function as an example.

Non-shared Online Aggregation. Every event 4 maintains
an intermediate aggregate for each query @ in non-shared online
aggregation, indicating the count of event trends matched by @ and
ending with 4 . During the execution, the count of 4 is incremented
by the sum of the intermediate aggregates of the predecessor events
of 4 that were matched by @ (denoted pe(4,@)). If 4 is of the end
type of @, this aggregate is output as the �nal result of @.

Example 3.1. Figure 3(c) shows the non-shared execution of &
in Figure 3(a) over an event stream � . The arrows indicate the in-
termediate aggregate propagation for each event per query. When
20 arrives, it starts a new event trend for both @1 and @2, and its
intermediate aggregates are 1 for @1 and @2. When 01 arrives, its
intermediate aggregates are obtained by propagation from its prede-
cessors 20 for @1 and @2. For the subsequent events, the intermediate
aggregates are obtained by summing the values of their predeces-
sors following the propagation for each query. Finally, when 35

arrives, its aggregate is output as the �nal count (fcount = 4) for @1.

The execution costs of @1 and @2 lie in the propagation of in-
termediate aggregates from the predecessors to the newly arrived
matched events. For example, cost (01,@1) = cost (01,@2) = 1 and
cost (03,@1) = cost (03,@2) = 2. As shown in Figure 3(c), the non-
shared execution costs of all events of type � for & = { @1, @2 } is 6
(i.e., two arrows pointing to 01 and four arrows pointing to 03).

In general, the non-shared online aggregation execution costs of
all events of type ⇢ for a given workload & is:

Costnonshared (⇢,&) =
’
@2&

’
⇢? 2?4 (⇢,@)

|⇢ | ⇥ |⇢? | (2)

where |⇢ | and |⇢? | denote the number of ⇢ events and the prede-
cessor events of ⇢ for @, respectively.

Shared Online Aggregation. Non-shared online aggregation
incurs re-computation for the common sub-pattern of multiple
queries. As shown in Figure 3(c), the intermediate aggregate of 20
and 01 are propagated to the events 01 to 14 twice for @1 and @2. To
avoid such re-computation, we exploit Snapshots [26] to support
e�cient sharing. For a set of shared queries, snapshots are assigned
with an event type. The executor creates a snapshot for each event
of the event type, which stores the intermediate values of the event
for the shared queries, so that the snapshot can be propagated
once for all queries. To support propagating snapshots, each shared
event maintains a snapshot expression. Intuitively, a shared event
summing the snapshot expressions of its predecessors to obtain
its own snapshot expression once for all shared queries, instead of
summing values for each query. During the shared execution, the
snapshot expression of an event 4 is only evaluated when the event
type of 4 is an end event type for any @ 2 & .

Example 3.2. Figure 3(b) shows a workload sharing plan that
shares@1,@2, using the snapshots of event type⇠ , denoted as (1, 2)⇠ ,
for three transitions CA0=(⇠,�), CA0=(�,⌫) and CA0=(⌫,�). Figure
3(d) illustrates the corresponding shared execution.When 20 arrives,
it increments 1 for both @1 and @2. Then these values are stored into
a new snapshot B?20 , which is inserted into a snapshot hash map.
The snapshot expression of 20 is set to B?20 . When 01 and 12 arrive,
their predecessors 20 and 01 propagate their snapshot to 01 and 12,
respectively. Since ⌫ is the end event type of @2, 12’s expression is
evaluated for@2 and returns 1 as the result. When 03 arrives, instead
of having 20 to propagate its snapshot, it obtains 20’s information
from its predecessors 01 and 12. Analogously, when 35 arrives,
12 and 14 propagate their snapshots to 35 and 35’s expression is
evaluated to produce the �nal value 4 for @1.

The shared execution cost lies in the snapshot propagation and
expression evaluation. The costs of value insertion and snapshot

maintenance are relatively minimal. The former is linear in the
number of queries, meanwhile the latter is constant for operations
on a snapshot hash map. Since each event carries only one snapshot
expression, the number of snapshot propagations for all events
of type � is reduced from 6 to 3 as indicated in Figure 3(d). The
evaluations of expressions are needed for the end events 12,14 and
35. This sharing plan saves 3 propagations compared to the non-
shared execution. However, it requires additional evaluations of the
snapshot expressions needed for sharing. Hence the sharing plan
can only be bene�cial when savings from the snapshot propagation
outweigh the expression evaluation overhead. Intuitively, a sharing
bene�t is substantial the more queries and events are shared.

Therefore, the shared propagation cost of all events of type ⇢ for
a given workload & is:

⇠>BCB⌘0A4 (⇢,&) =
’

⇢? 2?4 (⇢,@)
|⇢? | ⇥ 4G?A (⇢? ,&).;4=

=
’

⇢? 2?4 (⇢,@)
(⇢? == ⇢B)?|⇢? | : |⇢? | ⇥ |⇢B |

(3)

where ⇢? denotes the event type of predecessors of the event type
⇢, and expr (E, q) .len is the length of the snapshot expression of ⇢?
for & , which corresponds to the frequency of the event type ⇢B of
the snapshots. Notice that such ⇢B could be ⇢? or even earlier event
type as ⇠ for ⌫,⇡ in the above example. Detailed discussion is in
Section 5.1.

In general, given an event type ⇢, the snapshot expressions of
events of ⇢ can be evaluated with evaluation cost:

⇠>BC4E0; (⇢,&) =
’
@2&

|⇢ | ⇥ |⇢B | (4)

4 GLORIA GRAPH MODEL
We now introduce our G����� graph model to transform the work-
load sharing plan problem into an optimal path problem. Given a
template, a workload sharing plan decides which queries are shared
on each transition in the template. We use the G����� graph to
capture the search space of all workload sharing plans.

De�nition 4.1 (G����� Graph). A G����� graph is a weighted
directed graph with a set of nodes and a set of directed edges. A
node =: represents either a transition sharing plan of CA0=(⇢8 , ⇢ 9),
in which ⇢8 and ⇢ 9 are two adjacent event types, a start node =

@
BC

to indicate the start of query @, or an end node =@
43

to indicate
the end of @. A pool %>>; (⇢8 , ⇢ 9) consists of all nodes, i.e., can-
didate sharing plans, for CA0=(⇢8 , ⇢ 9). A directed weighted edge
4364 (=: ,=<) connects node =: to =< , if they belong to two consec-
utive pools. Let &̄ be the common queries in=: (CA0=(⇢8 , ⇢ 9)) and in
=< (CA0=(⇢ 9 , ⇢⌘)), then the weight of the edge 4364 (=: ,=<) repre-
sents the execution costs of ⇢ 9 for &̄ (⇠>BC (⇢ 9 , &̄)), when applying
the transition sharing plans =: and =< .

Example 4.2. Figure 5 depicts the template of a workload & =
{@1,@2,@3} and its corresponding G����� graph, where @1 = SEQ(� ,
�, ⌫, ⇠ , ⇡), @2 = SEQ(�,⌫,⇠,⇡) and @3 = SEQ(⇢,⇠,⇡). For exam-
ple, =1 is the only sharing plan in %>>; (� ,�) for CA0=(� ,�). The
nodes (=2, ..., =8) are the sharing plans in %>>; (�,⌫) for CA0=(�,⌫).
To indicate the start and end of each query, we add three start
nodes (i.e., =@1BC , =

@2
BC , and =

@3
BC) and a common end node =&

43
, since @1

T���6(4�)��$��%��&��'�
T���6(4�$��%��&��'�
T���6(4�(��&��'�

(a) Workload

(

') $

� ����

&

����

%

�������

�

(b) Template

!!"
#$

!!"
#%

!!"
#&

!'()

Pool(F, A) Pool(A, B) Pool(B, C)

Pool(C, D)

Pool(E, C)

!%

!*

!$!*+$

!,
… …

!,+$

!,+%

!-

…

Cost(F, q1)

Cost(A, q1)

Cost(A, q2)
Cost(B, q1)
Cost(B, q2)

Cost(E, q3)

Cost(C, q1)
Cost(C, q2)

Cost(C, q3)

Cost(D, q1)
Cost(D, q2)
Cost(D, q3)

Start/End Node

(c) G����� graph
Figure 5: G����� graph model for& (best viewed in color).

to @3 start with di�erent event types but end with the same one.
For pools of consecutive transitions like %>>; (�,⌫) and %>>; (⌫,⇠),
their nodes are connected such that each =: 2 %>>; (�,⌫) has an
outgoing edge to each =< 2 %>>; (⌫,⇠).

Intuitively, a G����� path corresponds to a selection of sharing
decisions that completely covers the transitions of the workload.

De�nition 4.3 (G����� Path). Given a G����� graph, a G�����
path % (or a path % in short) consists of a list of edges in the G�����
graph, starting from all start nodes, connecting one node from each
pool, and ending with all end nodes.

The bold lines in Figure 5(c) illustrate an example path, namely
one workload sharing plan for & . It provides one sharing plan for
each transition.

L���� 4.4. The weight % .F of a G����� path % corresponds to the
execution cost of the workload sharing plan that % represents.

P����. Given a path % , and an arbitrary node =: 2 ?>>; (⇢ 9 , ⇢⌘)
on % , by the de�nition of the edge weight in De�nition 4.1, the sum
of weights of all incoming edges for =: on % covers the execution
cost of ⇢ 9 for queries on CA0=(⇢ 9 , ⇢⌘). Based on that, by the de�ni-
tion of path, % visits every pool in the graph that every node covers
the execution cost of an event type for a transition. Therefore, given
a path % , its weight % .F exactly captures the execution cost of all
event types for all transitions, which equals the execution cost of
the workload sharing plan that % represents. ⇤

L���� 4.5. The paths in the G����� graph cover all possible work-
load sharing plans.

P����. We prove this by contradiction. Assume that one work-
load sharing plan which contains a set of nodes, cannot be repre-
sented as a path in the G����� graph. This means in the node set,
at least two nodes from consecutive pools that are not connected in
the G����� graph. However, according to the de�nition of G�����
graph in De�nition 4.1, every pair of nodes from consecutive pools
is connected. Therefore, such workload sharing plan does not exit.

⇤
L���� 4.6. Let %̄ denote the path with minimal path weight in the

G����� graph. %̄ corresponds to the optimal workload sharing plan.

!! !"
#$%&((!,*)

(", $)!!
(&, ')!"

(", $)!!
(&, ')!"

#$%&(("	*)

(a) Node Generation Principle
(Reuse)

!! !"
#$%&((!,*)

(", $)!!
(&, ')!"

(", $)!!
(&, ')!#

#$%&((", *)

(b) Node Generation Principle (Local
Snapshot)

!! !"
#$%&((!,*)

(", $)!!
(&, ')!" (", $, &, ')!#

#$%&((", *)

(c) Node Generation Principle
(Merge)

!! !"
#$%&((!,*)

(", $)!!
(&, ')!"

(", &)!#
($, ')!#

#$%&((", *)

(d) Other Nodes

Figure 6: Node generation (best viewed in color).

P����. The proof can be inducted from Lemma 4.4 and 4.5. ⇤

5 GLORIA OPTIMIZER
In this section, we introduce the G����� optimizer based on the
G����� graph model. We propose three principles for search space
reduction that limit the number of nodes (i.e., transition sharing
plans) created in the graph. We also design two classes of pruning
rules for nodes and edges respectively to further reduce the size of
the G����� graph. With the pruned G����� graph, our path search
algorithm �nds the optimized workload sharing plan equal to the
one in the unpruned G����� graph. We illustrate the core of the
G����� optimizer on SEQ sub-patterns below and the extended
optimizer also covering Kleene sub-patterns in Section 6.

5.1 Node Generation
When sharing plans of consecutive transitions share di�erent queries,
the executor constantly applies evaluation to adapt to sharing plans
with di�erent Q-sets. Therefore, instead of enumerating nodes in-
dependently for each pool, G����� optimizer generates a node
=< 2 %>>; (⇢ 9 , ⇢⌘) from a node =: 2 %>>; (⇢8 , ⇢ 9). Otherwise, the
executor keeps evaluating for di�erent transition sharing plans, on
3, the sharing bene�t lies in the single snapshot expression propa-
gation for a Q-set. To maximize the sharing bene�t, a Q-set should
be maintained for as many transitions as possible. Otherwise, if
two consecutive transitions have sharing plans that shares di�erent
Q-sets, the executor keeps applying the expensive evaluation to
adapt to these plans, which jeopardizes the sharing bene�t.

A node=: 2 %>>; (⇢8 , ⇢ 9) can generatemultiple nodes in %>>; (⇢ 9 ,
⇢⌘). However, not all nodes are worth being generated. Recall that
the goal of the optimizer is to �nd the optimal path in G�����
graph. For all nodes in %>>; (⇢ 9 , ⇢⌘) that can be generated from =: ,
if the weights of the incoming and outgoing edges of a node =< are
known to be larger than other nodes in the same pool. Such local
expensive =< without potential saving opportunities does not have
to be generated, compared with other nodes in %>>; (⇢ 9 , ⇢⌘).

Example 5.1. Figure 6 shows four cases of =< 2 %>>; (⇢ 9 , ⇢⌘)
that can be generated from the same =: . The respective weight
of the incoming and the outgoing of =< is represented by the
edge thickness. Compared with other three cases, =< in Figure 6(d)
has heavy weights of both incoming and outgoing edges, which
corresponds to⇠>BC (⇢ 9 ,&) and⇠>BC (⇢⌘,&) respectively. This local
expensive =< brings no potential sharing bene�ts.

L���� 5.2. Given=: 2 %>>; (⇢8 , ⇢ 9) with Q-sets, when generating
=< 2 %>>; (⇢ 9 , ⇢⌘), the sharing plans that (1) increase the number of
Q-sets or (2) maintain the number but shu�e the Q-sets of =: can be
safely pruned.

P����. Let=: 2 %>>; (⇢8 , ⇢ 9) have a set ofQ-sets {&̄1, &̄2 . . . &̄G }
that each Q-set has an event type as the snapshots {⇢1, ⇢2 . . . ⇢G }.
We prove that for both case 1 and case 2, when generating such=< 2
%>>; (⇢ 9 , ⇢⌘), we can always �nd another node =0< 2 %>>; (⇢ 9 , ⇢⌘)
that can replace =< , where the path passing =0< has a lighter weight
that the path passing =< . Due to the limited space, the full version
of proof can be found in our technical report [10]. ⇤

Lemma 5.2 removes the local and global expensive nodes. Then
we focus on the nodes that could be visited by the optimal path
potentially. A node can be visited only if it has a light incoming edge
or a light outgoing edge. Based on this observation, we propose
three node generation principles.

Given a node =: 2 %>>; (⇢8 , ⇢ 9), a =< 2 %>>; (⇢ 9 , ⇢⌘) has the
minimum incoming edge weight 4364 (=: , =<).F in the pool, when
it reuses all Q-sets and snapshots from =: . Such node avoids the
expensive evaluation for ⇢ 9 .

Node Generation Principle 1 (Reuse). Given a node =: 2
%>>; (⇢8 , ⇢ 9), a node =< 2 %>>; (⇢ 9 , ⇢⌘) is generated so that =<
reuses Q-set(s) and snapshots of Q-set(s) from =: .

Example 5.3. Figure 6(a) shows an example of generating =< 2
%>>; (⇢ 9 , ⇢⌘) from =: 2 %>>; (⇢8 , ⇢ 9). =: is sharing two Q-sets
&̄1 = (1, 2) with snapshots of ⇢0 and &̄2 = (3, 4) with snapshots
of ⇢1. By the node generation principle (Reuse), =< reuses all the
Q-sets together with the snapshots. According to our cost model in
Equation 3 and the weight de�nition, the weight of 4364 (=: ,=<) is
the shared execution cost of ⇢ 9 for &̄1, &̄2.

This principle does not consider the weight of its outgoing edges.
So the path passing through =< could have a light weight before
=< but have a heavy weight after =< .

Alternatively, instead of minimizing the weight of the incoming
edge, a node =< 2 %>>; (⇢ 9 , ⇢⌘) with heavier incoming edges may
have a lighter outgoing edge, which corresponds to lower execu-
tion cost of ⇢⌘ . According to Equation 3, the saving from sharing
comes from two aspects. Either sharing the same Q-sets with fewer
snapshots which shorten the expression length, or sharing with
fewer but larger Q-sets. Therefore, when the optimizer generates
a node =< in the G����� graph, the expensive evaluation for ⇢ 9
could be allowed, which increases the weight of incoming edge,
when =< brings the above two saving opportunities for ⇢⌘ .

With respect to the �rst saving opportunity, =< 2 %>>; (⇢ 9 , ⇢⌘)
can choose to share the same Q-set with =: but create local snap-
shots of ⇢ 9 , if ⇢ 9 has a lower frequency than the event type of
existing snapshots.

Such snapshot replacing shortens the length of snapshot expres-
sions of ⇢ 9 and ⇢⌘ , which reduces the execution cost of ⇢⌘ .

Node Generation Principle 2 (Local Snapshots). Given a
node =: 2 %>>; (⇢8 , ⇢ 9), a node =< 2 %>>; (⇢ 9 , ⇢⌘) is generated that
it reuses the Q-set(s) of =: but creates local snapshots of ⇢ 9 , if ⇢ 9
has a lower frequency than the event type of old snapshots.

Example 5.4. Figure 6(b) shows an example of generating =<
from=: with local snapshots of ⇢ 9 for &̄2 = (3, 4). During execution

!!"#$

!!"#%

!!"#&

!'(
)

Pool(F, A) Pool(A, B) Pool(B, C) Pool(C, D)Pool(E, C)

10

5

5

105

50

3

5

50

(1) (1, 2)A

(1),(2)

(1, 2)A

(1, 2)B

(1),(2)

(3)

(1, 2)A,(3)

(1, 2)B,(3)

(1, 2)C,(3)

(1),(2), (3)

(1, 2, 3)C

100

100

50

170170

10

250
250

240
240

240

36

36
36

36

36
148

248

156

96

156

!!

!"

!#

!$

!%

!&

!'

!(

!)

!#*

!##

!#!

(a) Full Gloria Graph

!!"#$

!!"#%

!!"#&

!'(
)

Pool(F, A) Pool(A, B) Pool(B, C) Pool(C, D)Pool(E, C)

10

5

5

50

3

5
50

(1) (1, 2)A

(1),(2)

(1, 2)A

(1),(2)

(3)

(1, 2)A,(3)

(1),(2), (3)

(1, 2, 3)C

100

50

170

240

36

36
36

148

96

156

!!

!"

!#

!$

!%

!&

!'

!##

!#!

(b) Pruned Gloria Graph With Optimal Path

Figure 7: G����� Graph with and without pruning.

Pool Node 3B
(� ,�) =1 10

(�,⌫) =2 65
=3 65

(⌫,⇠)
=4 70
=5 (?) 165
=6 165

(⇢,⇠) =7 3

(⇠,⇡)

=8 159
=9 -
=10 (?) 279
=11 444
=12 279

Table 3: 3B of nodes.

for this Q-set, each event 4 of ⇢ 9 sums the snapshot expressions
of predecessors, which is an expression of snapshots of ⇢1, then
this expression is evaluated and the value is stored into a new local
snapshot of ⇢ 9 . The weight of 4364 (=: ,=F) is the shared execution
cost of ⇢ 9 for &̄1, &̄2, plus the evaluation cost of ⇢ 9 for &̄2.

Compared with =< in Figure 6(a), =< in Figure 6(b) has a heavier
incoming edge but a lighter outgoing edge.

Another saving opportunity comes from merging Q-sets. In this
case, =: merges all Q-sets of =: with local snapshots ⇢ 9 .

Such merging brings evaluation cost of ⇢ 9 for every Q-set, but
could reduce the execution cost of ⇢⌘ since the number of propaga-
tions for multiple Q-sets is reduced to 1.

Node Generation Principle 3 (Merging). Given a node =: 2
%>>; (⇢8 , ⇢ 9), a node =< 2 %>>; (⇢ 9 , ⇢⌘) is generated that it merges
the Q-sets of =: with local snapshots of ⇢ 9 .

Example 5.5. Figure 6(c) shows an example of generating =<
from=: bymergingQ-sets. According to our cost model, the weight
of 4364 (=: ,=<) is the sharing cost plus the evaluation cost of ⇢ 9
for both &̄1 and &̄2.

Compared with the other two principles in Figure 6(a) and Figure
6(b), 4364 (=: ,=<) in this case has the heaviest weight, but =< may
have the minimum weight of outgoing edge.

We generate nodes for %>>; (⇢ 9 , ⇢⌘) based on above three prin-
ciples. Given a workoad & , If there are multiple %>>; (⇢8 , ⇢ 9) that
⇢8 2 ?4 (⇢ 9 ,@),@ 2 & , each =: 2 %>>; (⇢8 , ⇢ 9) can generate part of
=< by above principles. Every combination of these parts forms
a =< . Due to space limitation, we elaborate this process in our
technical report [10].

G�����GraphConstruction.TheG����� graph is constructed
from start nodes, pool by pool, to all end nodes. For each =: 2
%>>; (⇢8 , ⇢ 9), the optimizer generates multiple =< 2 %>>; (⇢ 9 , ⇢⌘),
following one of node generation principles, together with the
edges and the corresponding weights. To compare the sharing with
non-sharing, we always generate a =< of non-sharing from =: that
also non-shares.

Example 5.6. Figure 7(a) shows the G����� graph of template
in Figure 5(b). Each edge is labelled with its weight. Starting from
start node =@1BC for @1, %>>; (� ,�) has only candidate =1 = (1). In
%>>; (�,⌫), =2 is generated by merging @1,@2 following node gener-
ation principle (Merging) and =3 is a non-sharing plan. In %>>; (⌫,⇠),
=4 can be generated from =2 by node generation principle (Reuse). =5

can be generated from =2 by node generation principle (Local Snap-
shot) or from=3 by node generation principle (Merging). Analogously,
%>>; (⇠,⇡) can be generated based on %>>; (⌫,⇠) and %>>; (⇢,⇠),
following the node generation rules. Since ⇡ is the ending event
type for @1 to @3, all nodes =8 to =12 in %>>; (⇠,⇡) are connected to
a common end node =&

43
.

5.2 Progressive G����� Graph Pruning
Instead of pruning the G����� graph in a post-processing step, each
pool is pruned immediately during the graph construction. Such
progressive pruning process reduces the number of nodes in each
pool, preventing the graph from exploding in the early stage as
well as bene�t the �nal path search. Figure 7(b) shows the actual
G����� graph we generate without losing optimality.

Given a node =< , when there are multiple paths from start nodes
to =< , only the optimal path with the minimum weight needs
to be kept, other paths can be safely pruned. The path is stored
in the node for further searching, as well as the weight, which
presents the distance from all start nodes to =< , denoted as =< .3B .
Let =< 2 %>>; (⇢ 9 , ⇢⌘) be a node, the distance of =< to all start
nodes can be computed by:

=< .3B =
’
⇢8

<8={=: .3B + 4364 (=: ,=<) .F},

=: 2 %>>; (⇢8 , ⇢ 9), ⇢8 2 ?4 (⇢ 9 ,@),@ 2 &
(5)

Edge Pruning Principle. Given a node =< 2 %>>; (⇢ 9 , ⇢⌘), for
incoming edges of =< that comes from the same pool %>>; (⇢8 , ⇢ 9),
as in Equation 5, only the edge which provides the minimum dis-
tance of =< to all start nodes is kept. Other edges to =< can be
safely pruned.

Example 5.7. Consider %>>; (⌫,⇠) in Figure 7(a) as the targeting
pool. Table 3 lists the distances to all star nodes for all nodes. For =5,
there are two edges from %>>; (�,⌫), 4364 (=2,=5) and 4364 (=3,=5).
By Equation 5,=2 .3B+4364 (=2,=5) .F = 170 and=3 .3B+4364 (=3,=5).F
= 165. Therefore, 4364 (=2,=5) is pruned and =5 .3B is set to 165.

L���� 5.8. The edge pruning principle does not discard any opti-
mal path in the G����� graph.

P����. This lemma can be proved by contradiction. Assume
the optimal path %̄ passes node =< 2 %>>; (⇢ 9 , ⇢⌘), through an
edge 4364 (=0,=<) that doesn’t follow Equation 5. By replacing
4364 (=0,=<) with the edge 4364 (=1,=<) following Equation 5, we

prove that the new %̄ has a lower weight. The full version proof is
in our technical report[10]. ⇤

After edge pruning, we consider node pruning for a pool. Given
two nodes =: and =< in the same pool, if =< is known to have
larger distance to start nodes 3B , as well as a larger distance to end
nodes 34 , the path passing =< has heavier weight than the path
passing =: , so =< can be pruned immediately. First we de�ne for
which nodes their distances to end nodes 34 are comparable.

De�nition 5.9 (Comparable Nodes). Given two nodes =: and =<
in the same pool, =: and =< are comparable for 34 , if they have the
same Q-sets.

Given two comparable nodes, we can estimate the relative mag-
nitude of 34 by the number of snapshots that each Q-set is carrying.

Node Pruning Principle. Given two comparable nodes =: ,=<
in the same pool. If for every Q-set, =: uses snapshots of less fre-
quent event type than =< , then =: has a smaller distance to start
nodes than =< . The node =< can be safely pruned compared with
=: , if =: has smaller distances to both start nodes and end nodes,
denoted as =: .34 < =< .34 and =: .3B < =< .3B .

Example 5.10. Consider =4 and =5 in Figure 7(a) as an example.
They both have the same Q-set (1, 2) but with snapshots of di�erent
event types � and ⌫ respectively, where |�| < |⌫ |. According to
node pruning principle, =4 has a smaller distance to end nodes than
=5. Also, according to Table 3, =4 also has a smaller distance to start
nodes than =5. Thus, =5 can be pruned compared with =4, denoted
as =5 (?) in the table.

L���� 5.11. The node pruning principle does not exclude any
optimal path in G����� graph.

Lemma 5.11 can be proved by applying the cost model. Due to
the limited space, the proof of Lemma 5.11 can be found in the
technical report [10]. Since =4 is sharing the same queries with
fewer snapshots, according to our cost model in Equation 3 and 4,
no matter these snapshots will be reused or evaluated, the execution
cost of (1, 2)� is lower than (1, 2)⌫ . Therefore, =5 can be pruned.

After =5 is pruned, all its incoming edges are pruned in conse-
quence. Then during the construction of %>>; (⇠,⇡), =9 will not
be constructed since =5 is its only source of edge from %>>; (⌫,⇠).
Analogously, during the pruning of %>>; (⇠,⇡), we �rst apply edge
pruning for all nodes, then after node pruning, =10 is pruned com-
pared with =8. Table 3 shows the pruning status of each node.

Figure 7(b) shows the pruned graph after the last %>>; (⇠,⇡) is
constructed. In next Section 5.3, we apply our path search algorithm
on such pruned graph to �nd the optimal path.

5.3 Path Search Algorithm
Given a pruned G����� graph⌧ , Algo 1 takes in a G����� graph⌧
and returns the optimal path %̄ with minimum weight as an edge
list . Besides %̄ , it maintains the current minimum weight of paths.

Three utility algorithms are leveraged, G��P����, ����P����
and �������E����. G��P���� returns all the paths in the graph. By
simply applying G��P����, one could �nd all paths in the G�����
graph and selects the optimal one. However, the number of paths
could be exponential in the number of edges, due to multiple out-
going edges from a node. Therefore, we leverage����P���� and

�������E���� to reduce the number of paths to linear and then
�nd the optimal among all candidate paths. ����P���� applies
edge pruning principle to a given node. �������E���� reverses all
edges in the G����� graph⌧ . Due to the limited space, we put these
utility algorithms in our technical report [10].

Algorithm 1 G����� P���S�����
Input: G����� graph ⌧
Output: The optimal path %̄
1: %̄ An empty edge list, minPathWeight +1
2: if ⌧ .64C⇢=3#>34B ().B8I4 = 1 then // case 1
3: 4=3#>34 ⌧ .64C⇢=3#>34B ().64C (0)
4: ����P����(4=3#>34)
5: %̄ G��P����().64C (0)
6: else
7: >=4%0C⌘ true
8: for each 4=3#>34 2 ⌧ .64C⇢=3#>34B () do
9: if 4=3#>34 .64C�=2><8=64⇢364B ().B8I4 > 1 then
10: >=4%0C⌘ false
11: if >=4%0C⌘ = true then // case 2
12: %̄ G��P����().64C (0)
13: else // case 3
14: �������E����(⌧)
15: for each = 2 ⌧ do
16: ����P����(=)
17: for each ?0C⌘ 2 G��P����() do
18: if ?0C⌘.F < <8=%0C⌘,486⌘C then
19: %̄ ?0C⌘
20: <8=%0C⌘,486⌘C %̄ .F
21: else continue
22: return %̄

The main algorithm Algo 1 performs in three cases.
Case 1: One End Node (Line 3-5). If there is only one end node

in the graph as in Figure 7(b), the optimal path can be selected by
simply applying ����P���� to the end node.

When G����� graph has multiple end nodes, Line 8-11 detect
how many paths exist in the graph. If each end node only has
one incoming edge, there is only one path existing in the graph,
otherwise, there are multiple paths.

Case 2: Multiple End Nodes with Only One Path (Line 12).
If there is only one path existing in the graph, G��P���� returns
that path and assign it to %̄ .

Case 3:Multiple EndNodes withMultiple Paths (Line 14-21).
Since a node could have multiple outgoing edges, the number of
paths could be exponential in the number of edges. However, such
exponential number of paths can be reduced by applying our edge
pruning principle reversely. Recall that by applying edge pruning
principle, for each node =, we only maintain one path from all start
nodes to itself by computing its minimum distance to start nodes.
With the full graph, we can also maintain one path from all end
nodes to = by computing its minimum distance to end nodes =.34 .
Therefore, Line 14 reverses all edges in ⌧ . Line 15-16 prune the
incoming edges for each node to maintain its minimum distance
to the end nodes. After that, for each node =, there is only one
G����� path that passes it. Let # be the number of nodes in ⌧ , the
number of possible paths is reduced to$ (#). Line 17-21 enumerate

all paths and selects the optimal one with minimum path weight.
At last, Line 22 returns the optimal path %̄ .

Complexity Analysis. Given a G����� graph ⌧ with # nodes
and) edges, utility algorithms G��P����, ����P���� and ���
�����E���� are all bounded by $ (# +)). In cases 1 and 2, �nding
the optimal path takes $ (<0G{# ,) }). In case 3, the complexity of
reversing edges and edge pruning is $ (# +)). Since each node
only maintains one path, the complexity of enumerating all paths is
$ (#). Putting it all together, the complexity of case 3 is$ (2# +)).
Therefore, the complexity of G����� P���S����� is $ (2# +)).

6 GLORIA OPTIMIZER FOR KLEENE
Given a Kleene sub-pattern SEQ(�,⌫)+ for a workload& = {@1,@2}
shown in Figure 8(a), a transition from ⌫ to �, referred to as feed-
back Kleene transition, is introduced to the template. To this
end, we isolate the cycle from other parts of the template and
build a sub-graph for it, called Kleene sub-graph. Note that the
Kleene sub-graph can be concatenated to an existing G����� sub-
graph of preceding sub-patterns and be extended with subsequent
sub-patterns. We pruned Kleene sub-graph considering both the
concatenation and the extension direction. Our following assump-
tions assure that there is only one direction of concatenation and
extension in a G����� sub-graph. For multiple directions, we refer
to our technical report [10].

Assumptions. To focus on core concepts, we assume that (1) a
Kleene sub-pattern can only be shared by a workload & if all @ 2 &
contains it. and (2) one event type only appears once in a query.
We refer to our technical report [10] for a generalized discussion.

6.1 Flat Kleene Patterns
According to our G����� graph model, two nodes from consecutive
pools are connected. In Figure 8(a), there are edges from nodes in
%>>; (�,⌫) to nodes in %>>; (⌫,�) and vice versa in the template.
These edges create a cycle in the Kleene sub-graph, which corre-
sponds to sharing plans on each transition in the cycle. Figure 8(b)
shows an example path that have di�erent sharing plans, where
CA0=(�,⌫) has sharing plan (1, 2)� and CA0=(⌫,�) has the sharing
plan (1, 2)⌫ . The following Lemma 6.1 proves that such path doesn’t
need to be generated.

L���� 6.1. A cycle path that has nodes with di�erent sharing
plans can be safely pruned.

We now describe the intuition of Lemma 6.1. The full version
of proof can be found in our technical report[10]. Node Generation
Principle (Local Snapshot) reveals sharing bene�ts when the event
type of new snapshots has lower frequency than the old ones. How-
ever, since the cycle structure, the propagation runs in a cycle too,
which involves not only snapshot replacing from high-frequency
event type to low-frequency event type, but also vice versa. In
Figure 8(b), even |�| < |⌫ |, replacing the snapshots of � to ⌫ intro-
duces evaluation for both transitions and is always more expensive
than a consistent sharing with snapshots of �.

Based on Lemma 6.1, we propose our path generation principle.
Path Generation Principle. Given a �at Kleene sub-pattern

SEQ(⇢0, . . . , ⇢:)+ in the template, its G����� sub-graph has : + 1
pools with : pools of SEQ %>>; (⇢8 , ⇢8+1) (0  8 < :) and one pool of

$

�����

�
����

%

(a) Template

(1, 2)B

(1, 2)A

!

!′

(b) A counter ex-
ample of path

!!

!"
100 5

!#

!$
10 100

!%

!&
100 100

Pool(B, A)Pool(A, B)

Path P1 (1, 2)A Path P2 (1, 2)B Path P3 (1), (2)

"′' . % = 10 "′(. % = 10 "′). % = 10

(c) Paths in G����� sub-graph

Figure 8: Gloria sub-graph of �at Kleene pattern for& = {@1,@2 }.
Stream statistics: |� | = 5, |⌫ | = 10
Kleene feedback %>>; (⇢: , ⇢0). A path % in the sub-graph is a cycle
that contains one node from each pool. % is generated only when
all nodes in it are sharing the same Q-set with the same event type
⇢8 (0  8  :) for snapshots. Otherwise, all nodes are not shared.

Example 6.2. Figure 8(c) shows all generated paths following
path generation principle. %1 traverses =1 2 %>>; (�,⌫) and =2 2
%>>; (⌫,�), both sharing Q-set (1, 2) with snapshots of �. %2 shares
Q-set (1, 2) with snapshots of ⌫ and %3 chooses to not share. The in-
coming edges of =1,=2,=3 indicate the paths % 01, %

0
2, and %

0
3 from the

preceding G����� graph, associated with their respective weight.
The outgoing edges of =1,=2, and =3 indicate the extension direc-
tion of the Kleene sub-graph. Each edge is labelled by its weight
per our cost model in Equation 3 and 4. By adding the weights of
edges in the path, we have %1 .F = 105, %2 .F = 110 and %1 .F = 200.

With the weight of path in the Kleene sub-graph as well as the
weight of path in the preceding G����� graph, we can prune the
nodes that are expensive for extension.

Pruning. For each path %8 , there is a path % 08 from the concatena-
tion direction, and a node=: as the source of the extension direction.
We update the distance of =: to start nodes =: .3B as follows:

=: .3B = % 08 .F + %8 .F (6)

By applying node pruning principle on the source nodes, the
optimizer selects the optimal path with minimum weight for future
graph extension.

Example 6.3. Continuing Example 6.2, assume & = {@1,@2} that
both @1,@2 start with �, then =1–=3 is concatenated to a common
start node =&BC . By applying the cost model in Equation 2, % 01 to
% 03 have the same weight 10. As the source nodes of extension,
=1 .3B = 115, =2 .3B = 120 and =3 .3B = 210. According to node
pruning principle, =2 is pruned compared with =1, together with
the whole path %2.

6.2 Nested Kleene Patterns
Nested Kleene patterns introduce nested cycles in the template.
Figure 9(a) shows the partial template of the nested Kleene sub-
pattern SEQ(⇠, SEQ(�,⌫)+,⇡)+ of a workload & = {@1,@2,@3,@4}.
We now prove that the path generation principle still applies to
nested Kleene sub-patterns.

$

��������������������

����������

%

����������
& '

����������

�
�

�
�

(a) Template

!! !"
!!!
!#!

!!"

Path P1 (1, 2, 3, 4)C

12 120

60120

12048

!# !!$
Path P2 (1, 2, 3, 4)A

!% !!&
Path P3 (1, 2, 3, 4)B

!' !!(

Path P3 (1, 2, 3, 4)D

!) !#*

Path P5 (1), (2), (3), (4)

+′!.. = 12	 +′".. = 12	 +′#.. = 12	

+′$.. = 12	 +′%.. = 12	

Pool(A, B)Pool(C, A)

Pool(B, A)
Pool(D, C)Pool(B, D)

(b) Paths in G����� sub-graph

Figure 9: G����� nested Kleene sub-pattern for&={@1,@2,@3,@4 }. Stream statistics: |� | = 5, |⌫ | = 10, |⇠ | = 12, |⇡ | = 4

Node Path 3B
=16 (?) %1 492
=17 (?) %2 252
=18 (?) %3 292
=19 %4 140
=20 %5 1204

Table 4: 3B of nodes.

L���� 6.4. The path generation principle applies to the Kleene
sub-graph of a nested Kleene sub-pattern.

P����. The path of the nested Kleene sub-pattern is a nested
cycle path. According to Lemma 6.1, every cycle in the nested cycle
path has the same sharing plan for each node, therefore, the nested
cycle path has the same sharing plan for every node on it. ⇤

Based on Lemma 6.4, the sub-graph of a nested Kleene sub-
pattern can be constructed and pruned in the same way as the
�at Kleene sub-patterns by applying path generation principle and
node pruning principle.

Example 6.5. Figure 9(b) shows all paths of the nested Kleene
sub-pattern in Figure 9(a). All paths have the same cycle structure
so only %1 is shown in full version, with weight labelled on each
edge. Speci�cally, %1–%4 correspond to sharing& with snapshots of
di�erent event types ⇠,�,⌫,⇡ respectively, and %5 corresponds to
non-sharing. The edge weights are computed per our cost model in
Equation 2, 3 and 4, details can be found in our technical report [10].
We obtain the weights of each path that %1 .F = 480, %2 .F = 240,
%3 .F = 280, %4 .F = 128 and %5 .F = 1192. Assume all queries start
with ⇠ so that % 01–%

0
5 have the same weight 12. Each node =16–=20

obtains its 3B per Equation 6, shown in Table 4. Then we apply node
pruning principle to the nodes in %>>; (⌫,⇡) and prune =16–=18.

Path Search. Given that the paths in the Kleene sub-graph are
cycles, they require minor modi�cation to G��P���� without af-
fecting the main algorithm G����� P���S����� (Algorithm 1).
Speci�cally, Case 1 in G����� P���S����� remains the same since
����P���� only prunes multiple incoming edges for a node, which
does not apply to nodes in the Kleene sub-graph. In case 2, the path
can be directly output even with a cycle in it, since there is only
one path. Case 3 requires that one node is only passed by one path,
which is exactly what a Kleene sub-graph provides. Thus, G�����
P���S����� stays the same. We simply modify G��P���� to detect
if an edge is traversed, so that it accepts cycles in a path. Also, as
the template captures the structure of the path, G��P���� does not
fall into an in�nite loop.

Optimality Discussion. G����� optimizer considers either
sharing all queries or not sharing at all for Kleene sub-pattern. Thus,
when the sub-graph of the Kleene sub-pattern is concatenated to
the whole graph, the opportunities of keeping certain Q-sets in the
concatenated sub-graph are omitted, which may sacri�ce optimal-
ity. However, in a special case when all queries start with the Kleene
sub-pattern, the template starts with the cycle, no existing Q-sets
need to be considered, and G����� �nds the optimal path for the
sub-graph of the Kleene pattern.

7 DISCUSSION
In this section, we sketch out howG����� can be extended to handle
SEQ vs. Kleene sub-patterns, changes in cost models and additional
aggregation functions.

SEQ vs. Kleene Sub-patterns. The sequential node generation
(Sec. 5.1) focuses on the long-term bene�t but introduces opti-
mization dependencies. In particular, SEQ sub-patterns introduce
non-cyclic dependencies and Kleene sub-patterns introduce cyclic
dependencies. The co-existence of non-cyclic and cyclic dependen-
cies brings additional challenges to the sharing optimization. To
solve this problem, we make an assumption in Section 6 that a
Kleene sub-pattern can only be shared by a workload & if it is con-
tained by each @ 2 & , which allows the isolation between the SEQ
and Kleene sub-patterns, as well as the isolation of di�erent Kleene
sub-patterns. Under this assumption, G����� optimizer �nds an
optimized sharing plan for the Kleene sub-patterns, which always
satis�es the cyclic dependencies. Without the above assumption,
sharing can potentially happen to any overlapping part among ar-
bitrary sub-patterns, which introduces tangled dependencies. Thus,
it is left for future work.

Changes in Cost Model. Handling changes in our cost model
can be broken into two parts. The �rst part, including the edge
pruning rule (Sec. 5.2) and the path search algorithm (Sec. 5.3),
concerns the optimization on the weighted G����� graph (once
established). The core of the G����� optimizer is independent of
the cost model since it simply prunes and searches based on the
weighted G����� graph structure. While a di�erent cost model may
change the weights on the edges, it would not a�ect the correct-
ness of the pruning and path search algorithms. The second part,
including the node generation rules (Sec. 5.1) and the node pruning
rule (Sec. 5.2), concerns the construction of the G����� graph. This
part holds independently of the cost model under the assumption
that the shared execution costs are proportional to: (1) the length
of the snapshot expressions, and (2) the number of Q-sets .

Complex Aggregation Functions.Associativity and commuta-
tivity of aggregation functions are at the core of the online aggrega-
tion methods in both traditional databases [17] and streaming sys-
tems [21, 26, 28, 29]. To support non-associative/non-commutative
aggregation functions, existing approaches [13, 34] usually choose
to store all tuples to be aggregated, which may cause the opera-
tor state to grow prohibitively large. To avoid this state explosion,
Flink [3] provides a parameter of an appropriate state time-to-live
(TTL). However, this might a�ect the correctness of the query
result [4]. Custom optimization for aggregation execution of non-
associative/non-commutative functions is an orthogonal and largely
open problem in the literature. We thus leave this for future work.

8 EXPERIMENTAL EVALUATION
8.1 Experimental Setup
Environment. We implemented G����� in Java with OpenJDK
16.0.1 on Ubuntu 14.04 with 16-core 3.4GHz CPU and 128GB of
RAM. Our code is available online [9]. Each experiment reports the
average of 15 runs.

Data Sets. We evaluate G����� using three real-world data sets.
• NASDAQ Stock data set (Stock) [5] contains stock price his-

tory of 20 years. Each record represents an event with a company
identi�er, timestamp (minutes), open and close price, highest and
lowest price and trading volume. Event types correspond to the
3258 unique company identi�ers.

• New York City Taxi data set (Taxi) [8] contains 2.63 billion
yellow taxi trip records in NYC in 2019-2020. Each record is an
event that carries timestamp (seconds), vendor id, pick-up and
drop-o� location identi�er, passenger number, trip distance and
total price. The 217 unique pick-up locations are used as event
types.

• Dublin Bus GPS data set (Bus) [1] consists of GPS records of
buses in Dublin collected by Dublin City Council in 2013. Each
record is a timestamped tuple (microseconds) with line id, vehicle
journey id, congestion indicator, coordinates and delay time. The
vehicle journey id is the event type which has 4368 unique values.

Event Trend Aggregation Queries. To evaluate the e�ective-
ness of G����� on di�erent query workloads, we generate three
types of workloads on each data set.

• SEQ workload focuses on SEQ patterns. Queries in this work-
load have di�erent shareable SEQ patterns, group-by, predicates,
and aggregates (e.g., COUNT(*), AVG, SUM, etc.). Window sizes are
powers of 5 minutes. Windows slide every 5 minutes.

• Kleene workload has queries with one shareable �at or nested
Kleene and di�erent SEQ sub-patterns. The length of shareable
Kleene sub-patterns ranges from 2 to 10; and the number of nested
Kleene sub-patterns ranges from 1 to 5. The group-by, predicate,
window and aggregate settings are the same as SEQ workload.

• Mixed workload is introduced to evaluate how our G�����
performs on such realistic workloads, where the above SEQ and
Kleene queries appear in one workload. The ratio of Kleene and SEQ
queries ranges from 1:6 to 1:2.

Methodology. We evaluate the G����� Optimizer and the exe-
cution of plans it generates. We compare our G����� Optimizer to
the following two alternate optimization approaches:

• Greedy Optimizer (Greedy). For each pool, the Greedy optimizer
considers the transition sharing plan with minimum incoming edge
weight (Sec. 5.1), thus may miss sharing bene�ts. With respect to
node generation, it applies node generation principle (Reuse) for
sharing, or chooses not to share, based on incoming edge weight.
As it only generates one node for each pool, Greedy returns the
workload sharing plan directly without pruning or path search.

• G����� Optimizer without Pruning (NoPrune). To evaluate the
e�ectiveness of pruning rules, we compare the G����� Optimizer
with and without our pruning rules (Sec. 5.2). The later generates
a full G����� graph as in Figure 7(a) that includes all cycle paths
in 9(b). This is expensive to construct. After construction, the path
search algorithm generates an optimized workload sharing plan.

We also evaluate the execution costs of the optimized sharing
plans generated by G����� optimizer by comparing those with the
following methods:

• Sharing plans generated by a Greedy Optimizer.
• G����[27], a state-of-the-art non-shared method supporting

online aggregation over nested Kleene patterns.
•H�����[26], a state-of-the-art shared online aggregationmethod

equipped with a dynamic optimizer for �at Kleene patterns on
bursty streams.

Metrics. For query optimization, we measure the Optimization
Time in milliseconds as the average time di�erence between the
time of receiving the input workload versus producing the sharing
plan. This includes the duration of template construction, graph
construction, and path search. PeakMemory is the maximal memory
consumed during graph construction and path search.

For query execution, we use Latency in seconds as average time
di�erence between time of producing aggregation results for a
query and arrival time of last relevant event. Throughput is the
average number of events processed by all queries per second.

8.2 G����� Optimization Evaluation
SEQ Workload. To evaluate the e�ectiveness of pruning rules on
SEQ patterns, we measure the optimization time of the three op-
timizers on Bus and Taxi data sets in Figure 10 while varying the
number of queries in the SEQ workload from 40 to 200. On both
data sets, G����� optimizer consistently outperforms NoPrune by
a factor of 5 to 7, and is slower than Greedy by 1.2 order of mag-
nitude. While the Greedy optimizer is the fastest among the three,
it cannot guarantee the quality of the selected plan. In contrast,
both NoPrune and G����� optimizer return the optimal sharing
plan for our workloads. Compared to NoPrune, G����� pruning
rules reduce the optimization time signi�cantly. Such time savings
come from both graph construction and path search. During graph
construction, the pruning rules reduce the number of nodes in a
pool, thus reducing number of generated nodes in succeeding pools
(Sec. 5.2). Given the resulting graph is much smaller, path search
runs faster to �nd the optimal path. In summary, G����� optimizer
e�ciently produces the same optimized sharing plan as NoPrune.

KleeneWorkload. To evaluate the e�ectiveness of pruning rules
on Kleene patterns, we compare three optimizers on the Kleene
workload with 100 queries while varying the length of Kleene sub-
patterns from 2 to 10 (Figure 11). G����� consistently outperforms
Greedy and NoPrune optimizers. Since Greedy optimizer only main-
tains one node in each pool, it is the fastest. As the length of Kleene
sub-patterns increases, the performance di�erence between G�����
and NoPrune increases from 2-fold to 13-fold.

Such performance di�erence is primarily due to the path consis-
tency property in Lemma 6.1. It ensures that the increasing length
of Kleene pattern does not increase the number of cycle sharing
plans. Hence for a given Kleene workload, the size of the generated
sub-graph for Kleene sub-patterns is always small, leading to negli-
gible optimization time increase. In contrast, the NoPrune optimizer
does not prune any candidate cycle sharing plans. Even though the
number of cycle sharing plans is growing linearly, with the follow-
ing SEQ sub-patterns, the size of G����� graph could still grow
exponentially in the worst case. This is consistent with the SEQ

(a) Bus data set (b) Taxi data set
Figure 10: Varying # queries (SEQ).

(a) Bus data set (b) Taxi data set
Figure 11: Varying length of Kleene sub-patterns (Kleene).

(a) Bus data set (b) Taxi data set
Figure 12: Varying # queries (Mixed).

(a) Bus data set (b) Taxi data set
Figure 13: Varying percent of Kleene queries (Mixed).

(a) Latency (Bus) (b) Throughput (Bus) (c) Latency (Stock) (d) Throughput (Stock)

Figure 14: Execution with di�erent sharing plans (Mixed).

workload. Pruning expensive nodes early on prevents the graph
from exploding, bene�ting graph construction and path search.

Mixed Workload. Figure 12 compares the three optimizers on
mixed workloads with a SEQ-to-Kleene ratio as 6:1 with a varying
number of queries. Again, G����� optimizer outperforms NoPrune
optimizer by 5-fold, while being slower than Greedy optimizer by 1
order of magnitude. In Figure 13, we compare the three optimizers
on a mixed workload with 100 queries. We vary the percentage of
Kleene queries from 10% to 60%. As the number of Kleene queries
increases, the G����� optimizer outperforms NoPrune optimizer by
6-fold to 1.2 order of magnitude. More precisely, when the percent-
age of Kleene queries increases from 10% to 40%, the optimization
time of NoPrune drops since the Kleene queries reduces the percent
of SEQqueries which lower optimization complexity for SEQ queries.
Since the portion of Kleene queries is still low, the optimization
complexity for Kleene queries is also limited. When the percentage
of Kleene queries is larger than 40%, the optimization time is domi-
nated by optimizing the shared Kleene queries. In contrast, thanks
to the pruning rule applied to the Kleene sub-graph (Sec. 6), the
optimization time of G����� optimizer decreases as the percent
of Kleene queries increases. Our G����� optimizer only consumes
25% memory of the NoPrune optimizer on both data sets. Due to
the limited space, we place the results on memory consumption
into our technical report[10].

8.3 G����� Runtime Evaluation
To assess the quality of sharing plans byG�����, we evaluate several
mixed workloads over Bus and Stock data sets in Figure 14. G����
executor runs each query independently without any sharing. The
Greedy and G����� sharing plans are those returned by Greedy and
G����� optimizers, respectively. In this experiment, we measure
the latency and throughput. We vary the number of queries in the
workload from 12 to 120 with a �xed SEQ-to-Kleene ratio as 6:1.

We measure throughput in Figures 14(b) and 14(d). G����� shar-
ing plan outperforms Greedy and G���� plans by 10-fold and 3-fold,
respectively. This performance gain is due to G�����’s selection of
sharing opportunities. Speci�cally, G���� plans are not shared, and
Greedy optimizer fails to harvest all bene�cial sharing opportunities
since it aggressively reuses existing snapshots instead of consider
introducing new ones. G����� optimizer evaluates costs and ben-
e�ts of di�erent selections of snapshots and picks the bene�cial
ones. This way, G����� optimizer discards expensive while keeping
bene�cial plans. When the query number increases from 12 to 120,
the execution latency of G����� plan achieves 77-91% and 68-93%
speed-up compared to Greedy and G���� plans, respectively.

We observe that G���� outperforms (Figures 14(c)) or performs
similarly (Figure 14(a)) to Greedy sharing plan. This emphasizes the
drawback of the greedy strategy and the importance of optimization.
If no sharing is the local optima for a transition, then the Greedy

(a) Simple and Complex workload (b) Varying complex query percentage

Figure 15: Gloria versus Hamlet.
plan performs similar to G����. If the Greedy optimizer selects
an event type with high frequency for snapshots, these snapshots
will be reused for many following transitions. The overhead of
summing long snapshot expressions could outweigh the bene�t
of sharing – akin to a non-bene�cial sharing scenario. In contrast,
G����� optimizer can detect this situation and apply node generation
principle (Merging) or node generation principle (Local Snapshot) to
stop non-bene�cial sharing.

G����� vs. H�����. For a fair comparison between H�����
and G�����, we follow H�����’s bursty stream assumption and
use bursty streams. To examine the optimization of H����� and
G�����, we generate a simple and a complex workload [11], which
both contain 100 queries. In the simple workload, all predicates are
the same. Each query is a sequence pattern of length 3, with a Kleene
operator on a single event type (e.g., SEQ(A, B+, C)). In the complex
workload, each query is also a �at query, with a Kleene operator on
a single event type, of length 8 with di�erent predicates.

In Figure 15(a), we measure the latency of the two methods for
both simple and complex workloads, while varying the burst sizes
of the stream. With an increasing burst size, the latency of both
methods decreases on both workloads, because reaching to pre-
decessors becomes less expensive in a bigger burst of the same
event type. The experiment result shows that H����� wins on the
simple workload, but G����� consistently outperforms H����� by
a factor of 3 over the complex workload. With respect to the sharing
plan optimization, G����� analyzes all the sharing opportunities,
meanwhile H����� only optimizes for the Kleene sub-pattern like
⌫+. Therefore, G����� is able to harvest more optimization op-
portunities embedded in the longer patterns. With respect to the
execution, when all predicates are the same in the simple workload,
H�����’s shared execution processes the burst as a batch, without
interruption. However, in the complex workload scenario with dif-
ferent predicates, H����� deteriorates directly to a non-sharing
plan if many snapshots will be created. However, G����� follows
the optimized sharing plan, which is guaranteed to be cheaper than
a non-sharing plan.

We further measure the latency of these two methods on the
bursty stream with a burst size of 100, varying the percentage of
complex queries in the workload in Figure 15(b). Similarly, H�����
outperforms G����� when there is no complex queries. With the
percentage increases from 20% to 100%, thanks to the global G�����
static optimizer, G����� outperforms H����� by 30% to 3-fold.

9 RELATEDWORK
Complex Event Processing Systems. CEP have gained popular-
ity in the recent years [2, 3, 6, 7]. Some approaches use a Finite State

Automaton (FSA) as an execution framework for pattern match-
ing [12, 14, 35, 36]. Others employ tree-based models [24]. Some
approaches study lazy match detection [22], compact event graph
encoding [25], and join plan generation [20]. We refer to the recent
survey [15] for further details.

Online Event Trend Aggregation.A broad variety of optimiza-
tion techniques have been introduced to minimizing processing
time and resource consumption of event trend aggregation [27,
28, 30, 36]. A-Seq [30] introduces online aggregation of event se-
quences, i.e., sequence aggregation without sequence construction.
G���� [27] extends A-Seq by Kleene closure. Cogra [28] further
generalizes online trend aggregation by various event matching se-
mantics. However, none of these approaches address the challenges
of multi-query workloads, which is our focus.

CEP Multi-query Optimization. Following the principles in
relational database systems [33], pattern sharing for CEP have at-
tracted considerable attention. RUMOR [18] de�nes rules for merg-
ing queries in NFA-based RDBMS and stream systems. E-Cube [23]
inserts sequence queries into a hierarchy based on concept and
pattern re�nement relations. SPASS [31] estimates the bene�t of
sharing for event sequence construction using intra-query and
inter-query event correlations. MOTTO [37] applies merge, decom-
position, and operator transformations to re-write pattern match-
ing queries. Kolchinsky et al. [21] combine sharing and pattern
reordering optimizations for NFA-based and tree-based query plans.
Recently, H����� [26] adaptively makes sharing decisions at run
time based on the current stream properties for �at Kleene queries.

However, these approaches [21, 31, 37] do not all support online
aggregation of event sequences, i.e., they instead construct all event
sequences prior to their aggregation. This degrades query perfor-
mance. To the best of our knowledge, S����� [29], Muse [32],
and H����� [26] are the only solutions that support shared online
aggregation. However, S����� does not support Kleene closure,
MCEP and C���� [21, 28] only support sharing �at Kleene patterns
with one single event type. H����� only considers sharing oppor-
tunities among a special case Kleene sub-pattern, namely, one that
is �at and only contains a single event type. These assumptions
result in sub-optimal sharing plans for event trend aggregation
queries, as sharing opportunities can be missed.

10 CONCLUSION
G����� introduces a graph-based sharing optimizer for event trend
aggregation. We transform the sharing plan search space into a
G����� graph andmap the event trend aggregation sharing problem
to a path search problem. We propose e�ective pruning rules to
reduce the size of the G����� graph during its construction. We
propose an e�cient path search algorithm to �nd a high-quality
sharing plan in linear time. Our experiments demonstrate that the
sharing plan produced by the G����� optimizer achieves signi�cant
performance gains compared to state-of-the-art approaches.

ACKNOWLEDGMENTS
This work is supported by NSF grants IIS-1815866 and IIS-1852498.

REFERENCES
[1] Dublin Bus. https://data.smartdublin.ie/dataset/dublin-bus-gps-sample-data-

from-dublin-city-council-insight-project/resource/00c65697-9ed6-43cb-a2b7-
9e20cf323cb3.

[2] Esper. http://www.espertech.com/.
[3] Flink. https://�ink.apache.org/.
[4] Flink Docs. https://nightlies.apache.org/�ink/�ink-docs-release-1.14/docs/dev/

table/sql/queries/group-agg/.
[5] Historical stock data. http://www.eoddata.com.
[6] Microsoft StreamInsight. https://technet.microsoft.com/en-us/library/ee362541%

28v=sql.111%29.aspx.
[7] Oracle Stream Analytics. https://www.oracle.com/middleware/technologies/

stream-processing.html.
[8] Uni�ed New York City taxi and Uber data. https://www1.nyc.gov/site/tlc/about/

tlc-trip-record-data.page.
[9] Gloria code. https://github.com/LeiMa0324/Gloria, 2022.
[10] Gloria: Graph-based sharing optimizer of multi-query event trend aggre-

gation. https://github.com/LeiMa0324/Gloria/blob/master/Gloria_Technical_
Report.pdf, 2022. Technical report.

[11] Gloria vs. hamlet experiment workloads. https://github.com/LeiMa0324/
Gloria/tree/master/src/main/resources/stock/GloriaVSHamletWorkload/
MixWorkload, 2022.

[12] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. E�cient pattern matching
over event streams. In SIGMOD, pages 147–160, 2008.

[13] A. Arasu and J. Widom. Resource sharing in continuous sliding-window aggre-
gates. In VLDB, pages 336–347, 2004.

[14] A. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, and W. White. Cayuga:
A general purpose event monitoring system. In CIDR, pages 412–422, 2007.

[15] N. Giatrakos, E. Alevizos, A. Artikis, A. Deligiannakis, and M. Garofalakis. Com-
plex event recognition in the Big Data era: A survey. PVLDB, 29(1):313–352,
2020.

[16] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pel-
low, and H. Pirahesh. Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals. Data Min. Knowl. Discov., pages 29–53, 1997.

[17] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In Proceedings
of the 1997 ACM SIGMOD international conference on Management of data, pages
171–182, 1997.

[18] M. Hong, M. Riedewald, C. Koch, J. Gehrke, and A. Demers. Rule-based multi-
query optimization. In EDBT, pages 120–131, 2009.

[19] M. Klazar. Bell numbers, their relatives, and algebraic di�erential equations. J.
Comb. Theory, Ser. A, 102(1):63–87, 2003.

[20] I. Kolchinsky and A. Schuster. Join query optimization techniques for complex
event processing applications. In PVLDB, pages 1332–1345, 2018.

[21] I. Kolchinsky and A. Schuster. Real-time multi-pattern detection over event
streams. In SIGMOD, pages 589–606, 2019.

[22] I. Kolchinsky, I. Sharfman, and A. Schuster. Lazy evaluation methods for detecting
complex events. In DEBS, pages 34–45, 2015.

[23] M. Liu, E. Rundensteiner, K. Green�eld, C. Gupta, S. Wang, I. Ari, and A. Mehta.
E-Cube: Multi-dimensional event sequence analysis using hierarchical pattern
query sharing. In SIGMOD, pages 889–900, 2011.

[24] Y. Mei and S. Madden. ZStream: A cost-based query processor for adaptively
detecting composite events. In SIGMOD, pages 193–206, 2009.

[25] O. Poppe, C. Lei, S. Ahmed, and E. Rundensteiner. Complete event trend detection
in high-rate streams. In SIGMOD, pages 109–124, 2017.

[26] O. Poppe, C. Lei, L. Ma, and E. A. Rundensteiner. To share, or not to share online
event trend aggregation overbursty event streams. In SIGMOD, pages 1452–1464,
2021.

[27] O. Poppe, C. Lei, E. A. Rundensteiner, and D. Maier. Greta: Graph-based real-time
event trend aggregation. In VLDB, pages 80–92, 2017.

[28] O. Poppe, C. Lei, E. A. Rundensteiner, and D. Maier. Event trend aggregation
under rich event matching semantics. In SIGMOD, pages 555–572, 2019.

[29] O. Poppe, A. Rozet, C. Lei, E. A. Rundensteiner, and D. Maier. Sharon: Shared
online event sequence aggregation. In ICDE, pages 737–748, 2018.

[30] Y. Qi, L. Cao, M. Ray, and E. A. Rundensteiner. Complex event analytics: Online
aggregation of stream sequence patterns. In SIGMOD, pages 229–240, 2014.

[31] M. Ray, C. Lei, and E. A. Rundensteiner. Scalable pattern sharing on event streams.
In SIGMOD, pages 495–510, 2016.

[32] A. Rozet, O. Poppe, C. Lei, and E. A. Rundensteiner. Muse: Multi-query event
trend aggregation. In CIKM, page 2193–2196, 2020.

[33] T. K. Sellis. Multiple-query optimization. ACM Trans. Database Syst., 13(1):23–52,
1988.

[34] K. Tangwongsan, M. Hirzel, S. Schneider, and K.-L. Wu. General incremental
sliding-window aggregation. Proceedings of the VLDB Endowment, 8(7):702–713,
2015.

[35] E. Wu, Y. Diao, and S. Rizvi. High-performance Complex Event Processing over
streams. In SIGMOD, pages 407–418, 2006.

[36] H. Zhang, Y. Diao, and N. Immerman. On complexity and optimization of expen-
sive queries in CEP. In SIGMOD, pages 217–228, 2014.

[37] S. Zhang, H. T. Vo, D. Dahlmeier, and B. He. Multi-query optimization for complex
event processing in SAP ESP. In ICDE, pages 1213–1224, 2017.

https://data.smartdublin.ie/dataset/dublin-bus-gps-sample-data-from-dublin-city-council-insight-project/resource/00c65697-9ed6-43cb-a2b7-9e20cf323cb3
https://data.smartdublin.ie/dataset/dublin-bus-gps-sample-data-from-dublin-city-council-insight-project/resource/00c65697-9ed6-43cb-a2b7-9e20cf323cb3
https://data.smartdublin.ie/dataset/dublin-bus-gps-sample-data-from-dublin-city-council-insight-project/resource/00c65697-9ed6-43cb-a2b7-9e20cf323cb3
http://www.espertech.com/
https://flink.apache.org/
https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/dev/table/sql/queries/group-agg/
https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/dev/table/sql/queries/group-agg/
http://www.eoddata.com
https://technet.microsoft.com/en-us/library/ee362541%28v=sql.111%29.aspx
https://technet.microsoft.com/en-us/library/ee362541%28v=sql.111%29.aspx
https://www.oracle.com/middleware/technologies/stream-processing.html
https://www.oracle.com/middleware/technologies/stream-processing.html
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://github.com/LeiMa0324/Gloria
https://github.com/LeiMa0324/Gloria/blob/master/Gloria_Technical_Report.pdf
https://github.com/LeiMa0324/Gloria/blob/master/Gloria_Technical_Report.pdf
https://github.com/LeiMa0324/Gloria/tree/master/src/main/resources/stock/GloriaVSHamletWorkload/MixWorkload
https://github.com/LeiMa0324/Gloria/tree/master/src/main/resources/stock/GloriaVSHamletWorkload/MixWorkload
https://github.com/LeiMa0324/Gloria/tree/master/src/main/resources/stock/GloriaVSHamletWorkload/MixWorkload

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Gloria Query Model
	2.2 Event Trend Aggregation Sharing Problem

	3 Gloria System
	3.1 Gloria Framework Overview
	3.2 Gloria Executor

	4 Gloria Graph Model
	5 Gloria Optimizer
	5.1 Node Generation
	5.2 Progressive Gloria Graph Pruning
	5.3 Path Search Algorithm

	6 Gloria Optimizer for Kleene
	6.1 Flat Kleene Patterns
	6.2 Nested Kleene Patterns

	7 DISCUSSION
	8 EXPERIMENTAL EVALUATION
	8.1 Experimental Setup
	8.2 Gloria Optimization Evaluation
	8.3 Gloria Runtime Evaluation

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

