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Splash in a Flash:
Sharpness-aware minimization for efficient liquid splash simulation

Vishrut Jetly , Hikaru Ibayashi and Aiichiro Nakano

Department of Computer Science, University of Southern California

Figure 1: Simulation results with the same number of training epochs. Our training scheme with sharpness-aware minimization quickly
learns physical fluid dynamics (left) while the baseline result (right) with naive training scheme shows numerous unphysical liquid splashes.

Abstract
We present sharpness-aware minimization (SAM) for fluid dynamics which can efficiently learn the plausible dynamics of liquid
splashes. Due to its ability to achieve robust and generalizing solutions, SAM efficiently converges to a parameter set that
predicts plausible dynamics of elusive liquid splashes. Our training scheme requires 6 times smaller number of epochs to
converge and, 4 times shorter wall-clock time. Our result shows that sharpness of loss function has a close connection to the
plausibility of fluid dynamics and suggests further applicability of SAM to machine learning based fluid simulation.

CCS Concepts
• Animation → Fluid simulation; • Methods and Applications → Machine Learning; Neural Nets ; Optimization; • Visual-
ization → Scientific Visualization;

1. Introduction

Owing to the prevailing machine learning techniques, fluid simu-
lation has witnessed drastic performance improvements in recent
years [LJS∗15, UB18]. However, due to large three-dimensional
datasets, the training remains a bottleneck of machine learning
based fluid dynamics (e.g. Table 1 in [KAT∗19]). In this work, we
introduce sharpness-aware minimization (SAM) [FKMN20] to ma-
chine learning based FLIP (MLFLIP) [UHT18] and show that SAM
drastically reduces the training cost while capturing plausible be-
havior of liquid splashes (Fig. 1 and Table 1).

2. Sharpness-aware minimization

Sharpness-aware minimization (SAM) is a training scheme orig-
inally developed for image classification [FKMN20]. We here
summarize the essential of SAM. Given training data (x,y) =

{(x1,y1) , . . . , (xn,yn)}, weight parameters w and loss function
ℓ(·, ·), training algorithms are designed to minimize the training
loss, Lw(x,y) := 1

n ∑
n
i=0 ℓ((xi,yi) ,w). Intuitively, sharpness is the

curvature of loss surface Lw(x,y), which is known to be highly cor-
related to the performances [JNM∗19]. Specifically, SAM defines
sharpness as follows

max
∥ε∥2≤ρ

{Lw+ε (x,y)−Lw(x,y)} , (1)

where ρ is a hyper-parameter. SAM minimizes this sharpness along
with the training loss Lw(x,y) by the following update rule

w=w−η

(
∇wLw(x,y)+ ∇w′Lw′ (x,y)|w′=w+ρ

∇wLw(x,y)
∥∇wLw(x,y)∥

)
,

(2)
as a combination of the first-order gradients of loss function, i.e.,
∇wLw(x,y). In image classification tasks, SAM showed drastic im-
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Figure 2: Neural network layout used in this study. Detachment
classifier determines whether a splash has been formed or not; and
for the inputs which are classified as splash, velocity modification
component of this network predicts the mean and the variance of
the probability distribution for changes in the velocity.

provement of generalization performance and robustness against
noise [FKMN20]. Further, due to its off-the-shelf algorithm design,
SAM has started spreading beyond its scope, including physics
simulation [IiNR∗21].

As a shortcoming, it is known that SAM has twice as heavy time
complexity. But as we show in the following, SAM’s suitable in-
ductive bias overcomes this shortcoming in the training of fluid dy-
namics.

3. MLFLIP with SAM

MLFLIP is a data-driven splash generation model proposed in
[UHT18], which adopts machine learning to predict the locations
of fluid splashes instead of using high resolution FLIP scheme
[ZB05]. MLFLIP procedure consists of several steps: synthetic data
generation; feature engineering; and building suitable neural net-
work architecture followed by training and evaluation. In the fol-
lowing subsections, we provide a detailed description of each step.

Data Generation The training data are generated through multiple
high resolution FLIP simulations. These simulations are initialized
with random values for the number of droplets and their positions
and velocities to ensure sufficient variance in the generated data.
From these simulations, we extract feature vector x consisting of
108 components having 27×3 velocity values and 27×1 level set
values. In all, we have used 106 such samples from 16 simulations
using a grid spacing of 5 mm, with even distribution of both splash-
ing and non-splashing particles for neural network training.

Neural Network Architecture Input to our network is a feature
vector x, which has the information about the flow at a particular
position. From this, the neural network will predict two compo-
nents: 1) detachment classification, which determines whether the
region will detach and form a splash or not; and 2) velocity mod-
ification, which determines the velocity change for a splash with
respect to the fluid motion as shown in Figure 2. To estimate veloc-
ity modification, we predict both mean and variance of the veloci-
ties. The neural network has a separate 64-neuron hidden layer with
10% dropout for each of these prediction values, with tanh as non-
linear activation function, followed by batch normalization layer.

Epochs to converge Wall-clock time

MLFLIP 320 epochs 2144 sec

MLFLIP + SAM (Ours) 50 epochs 569 sec

Table 1: Performance comparison of ML based FLIP
(MLFLIP) [UHT18] without and with SAM optimization. Our
training scheme drastically improves convergences speed both in
number of epochs and wall-clock time while it simulates plausible
liquid splash effect (Fig. 1 left)

These are in turn connected to the single output neuron. Activation
for the detachment classifier output neuron is sigmoid.

Our neural network takes feature vector x = {x1,x2, . . .xn} and
estimates the probability of it being a splash. Hence, we maximize
the likelihood, i.e. minimize the negative log likelihood

Ld(ŷ|x) =−
n

∑
i=1

logP(ŷi|xi) (3)

where ŷ= {ŷ1, ŷ2, . . . , ŷn} are the actual splash indicator values. We
use the cross entropy loss for this classification part of our neural
network. For the velocity change in the droplet, we assume it to
follow a normal distribution relative to the mean flow of fluid.

fv(∆vi|xi)∼N (∆vi|µi,σ
2
i ) (4)

where µi and σ
2
i denote the mean and the variance respectively.

Thus, we minimize the loss function Lv calculated as

Lv(∆v|x) = 1
2

n

∑
i=1

d

∑
j=1

[
(∆vi, j −µi, j)

2

σ2
i, j

+ lnσ
2
i, j

]
(5)

where j is the spatial index.

We apply SAM to the overall loss function Ld +Lv := Lw, using
equation 2. The neural network is trained by minimizing this loss
using Adam optimizer [KB14] with a learning rate of 10−4 and ex-
ponential decay rates of the first moment (β1) and second moment
(β2) as 0.9 and 0.999 respectively. The models were implemented
with Tensorflow (2.5.0) backend [AAB∗15] having GPU support.

4. Results and Future direction

We trained two instances of the neural network: 1) MLFLIP, re-
produced from [UHT18]; and 2) MLFLIP+SAM that utilizes SAM
optimization for MLFLIP. Weights of both neural networks were
initialized with normally distributed random values. The neural net-
works then iteratively learn to capture realistic behavior of the flu-
ids and gradually converge to faithfully represent the underlying
physics of droplet formation. The number of epochs and wall-
clock time taken by both neural networks are shown in Table 1. Op-
timization with SAM helps the model to rapidly converge, achiev-
ing a speedup of 3.76x over MLFLIP while showing visual plau-
sibility (Fig. 1 left). These promising results indicate the potential
of SAM for fluid simulation and as a future direction, we will ex-
plore use of SAM for broader application of fluid dynamics such as
pressure solvers and generative fluid models.
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