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Abstract 

Colloidal particles in the pore spaces within a packed bed move back and forth in 

response to an imposed oscillatory flow, such as that associated with an acoustic field. 

The diffusive motion of the particles results from intermittent hindering of the oscillatory 

motion, which we assume to result from particle filtration by the packed bed pore spaces. 

We consider an experimentally-validated stochastic model that entails a series of 

transitions between an oscillatory state, where the particle oscillates with the fluid flow, 

and a captured state, where the particle is held fixed in the bed. The paper examines 

sensitivity of this stochastic model to different parameters and compares the stochastic 

model predictions for diffusion coefficient with predictions of an analytical solution 

based on continuous-time random walk (CTRW) theory. The results are relevant to 

applications such as nanoparticle penetration into biofilms, drug capsule penetration into 

human tissue, and microplastic transport within saturated soil.       
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1. Introduction 

 Diffusion of particulates immersed in a porous medium occurs in a wide range of 

applications. Drug-encapsulated liposomes and nanoparticles are used for targeted drug 

delivery to tissues and tumors (Patra et al., 2018; Wilczewska et al., 2012). Nanoparticles 

are commonly used for biofilm mitigation, such as in bacteria destruction by infrared-

induced particle heating (Castillo-Martinez et al., 2015; Hu et al., 2017) or by using the 

particles as carriers for antibiotic chemicals (Barros et al., 2020; Forier et al., 2014a, 

2014b; Li et al., 2015; Cheow et al., 2011; Meeker et al., 2016). On a scale of a 10-

100nm particle, the hydrogel from which a biofilm is formed appears as a porous medium 

composed of a network of connected proteins, called extracellular polymeric substances 

(EPS), through which colloidal particles can diffuse (Peulen and Wilkinson, 2011). 

Colloidal particle transport in groundwater is important for a number of pollution issues, 

and is of particular significance in evaluating transport of microplastics in the soil (da 

Costa et al., 2019; Hodson et al., 2017; Rillig et al., 2019). Fracking processes used for 

oil and natural gas recovery depend on transport of sand and other types of proppant 

particles into small cracks in the sub-layer rocks under high water pressure (Liang et al., 

2016).      

 In a number of these and related applications, experimentalists have observed that 

the rate of particle diffusion within the porous medium can be substantially increased by 

imposing flow oscillations, e.g., via acoustic waves. In an application dealing with 

nanoparticle drug delivery in tumors, ultrasound was shown by a number of investigators 

to enhance penetration of drug-encapsulated particles into diseased tissue (Tiukinhoy-

Laing et al., 2006; Paul et al., 2014; Schroeder et al., 2009; Huang, 2008). In a second 
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application involving nanoparticle mitigation of biofilms, the low-intensity ultrasound 

was found to significantly enhance penetration of liposomes into an alginate gel (Ma et 

al., 2015a), which is often used as a physical model for the EPS found in biofilms 

(Rowley et al., 1990; Smidsrǿd et al., 1990). In a follow-up study, Ma et al. (2018) made 

detailed measurements demonstrating an increase in diffusion coefficient by 74-133% 

due to the application of low-intensity ultrasound for 20nm and 100nm diameter particles 

diffusing in an agarose hydrogel. In a third application involving diffusion control of 

adsorbed molecules and nanoparticles on a surface, tangential mechanical vibrations were 

used to generate an oscillating flow field which enhanced diffusion of nanoparticles 

settling onto the surface (Ma et al., 2015b).          

 Diffusion enhancement by acoustic excitation was examined for a packed bed of 

glass spheres by Vogler and Chrysikopoulos (2002) for solute diffusion and by Thomas 

and Chrysikopoulos (2007) for particle diffusion. Thomas and Chrysikopoulos (2007) 

measured concentration of a tracer particle at the bed outlet versus time for cases with a 

net flow through the packed bed. Acoustic excitation was observed to decrease the time 

required for observation of the concentration peak (i.e., to increase the transport speed of 

particles through the bed) by about 7%, but not to significantly change the shape of the 

concentration variation function.  

 A mechanism for diffusion enhancement by an imposed oscillating flow was 

examined by Marshall (2016) using a simple one-dimensional stochastic model. The 

model demonstrates that the combination of particle oscillation (via an imposed 

oscillatory flow field) and random hindering of the particle motion (via particle 

interaction with the porous medium) results in a net diffusive process over sufficient time 
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when averaged over a large number of particles. An expression for the diffusion 

coefficient was derived as a function of the parameters of the stochastic model; however, 

the model did not relate closely to the physical parameters and geometry of the 

application. A detailed experimental study of the motion of an individual particle in a 

packed bed of spheres in the presence of an oscillating flow was reported by Marshall et 

al. (2021), in which ensemble averages were used together with a variety of statistical 

measures to quantify the particle oscillatory motion and hindering by the packed bed. 

This paper also presented a new stochastic model that was shown to agree closely with 

the statistical measures obtained from experimental data for particle diffusion and 

hindering. 

 The problems discussed above are examples of a phenomenon called oscillatory 

diffusion, in which an imposed oscillatory flow field is observed to enhance the 

preexisting molecular diffusion process. A general statistical theory for oscillatory 

diffusion was developed by Balakrishnan and Venkataraman (1981b) using a two-state 

continuous time random walk (CTRW) theory in which the system switches at random 

intervals between an oscillatory state and a constant velocity state. A number of 

investigators have also observed enhanced diffusion of particles that move in accord with 

the Langevin equation with an imposed potential that varies periodically in either space 

or time, or both (Schreier et al., 1998; Gang et al., 1996; Romanczuk et al., 2010).  

 The objective of the present paper is to present a parametric sensitivity study of 

the experimentally-validated stochastic model proposed by Marshall et al. (2021) for 

oscillatory diffusion of a particle in a porous bed, and to compare the results of the 

stochastic model to the CTRW theory predictions of Balakrishnan and Venkataraman 
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(1981b). In particular, the CTRW theory provides an explicit analytical solution for 

particle diffusion coefficient under oscillatory forcing, which we wish to compare with 

numerical predictions of the stochastic model. The stochastic model for oscillatory 

diffusion is described in Section 2. A parametric study of the stochastic model and results 

of a comparison with the CTRW theory predictions are given in Section 3. Conclusions 

are given in Section 4. 

  

2. Stochastic Model for Oscillatory Diffusion   

 Oscillatory diffusion results from a combination of particle oscillation and 

random hindering, which together produce a diffusive particle motion when averaged 

over an ensemble of cases (Marshall, 2016). A schematic diagram is shown in Figure 1 

comparing a freely oscillating particle (blue) and oscillatory diffusion of a particle in a 

porous bed (red), both subject to the same oscillating fluid velocity field )(tv f . The two 

particles are both located at 0y  at the initial time 0t . The particles oscillate in phase 

until the red particle becomes trapped in a pore space just before time 1t , so that at time 

1t  the blue particle is moving downward and the red particle has no velocity. When the 

velocity changes sign the red particle becomes unstuck, and both particles travel upward 

in the bed. As a result of becoming captured by the bed pore space, the red particle has 

displaced upward from the blue particle by time 2t . The random hindering of the particle 

results in a particle displacement that occurs at random times and for random time 

intervals. The size of this particle displacement is correspondingly a random amount 

between Ay  . Over time and when applied to a finite set of particles, these random 

displacements lead to a diffusion of the particles away from the initial position 0y .   
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Figure 1. Schematic diagram comparing a freely oscillating particle (on left, blue) and 
oscillatory diffusion of a particle in a porous bed (on right, red), both subject to the same 
oscillating fluid velocity field )(tv f .  

 

 A simple stochastic model for oscillatory diffusion for particles of diameter d in a 

porous bed of beads of diameter beadd  subject to an oscillatory fluid flow was proposed 

by Marshall et al. (2021), and the model predictions were shown to agree well with 

experimental data. The model assumes that hindering of the particle motion occurs 

primarily via particle filtration, in which a particle randomly enters a pore space that is 

sufficiently small to temporarily trap the particle until such time as the direction of 

velocity changes. It is also assumed that the particle relaxation time scale 

dmt part 3/ , where m is the particle mass and   is the fluid viscosity, is much 

smaller than the fluid oscillation period osct . Under these conditions, the model makes the 
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assumption that each particle transitions instantaneously between either an oscillatory 

state or a captured state.  

 Following studies on pore size for a variety of types of porous media (Aikawa et 

al., 2012; Chunyan et al., 2013; Shi et a., 1991), we assume that the pore size b within the 

porous bed is a random variable with a log-normal distribution of the form 

 

 )exp(min Zdbb poreporebead   . (1) 

 

The value of minb  is set to the minimum geometrically possible pore size, which is 

usually associated with the pore space between three touching co-planar spheres whose 

centers form an equilateral triangle, such that 155.03/)332(/min beaddb . In (1), Z 

is a random variable with a standard normal distribution. The adjustable parameters pore  

and pore  are the mean value and the standard deviation of the natural logarithm of the 

exponential function in (1). Plots of the probability density function (P.D.F.) of the pore 

size difference ratio beaddbb /)( min  are plotted in Figure 2 for different values of the 

parameters pore  and pore . The value of pore  is generally negative and the value of 

pore  is positive for the cases examined here, and as the value of pore  decreases or the 

value of pore  increases, the P.D.F. plot exhibits an increasingly large spike for 

progressively lower values of Z. The computations in the current paper were performed 

with 8.1pore  and pore  = 1, which were found to yield a best fit to experimental data 

for prediction of particle diffusion rate by Marshall et al. (2021). The P.D.F. plot 
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corresponding to these values of pore  and pore  is indicated by a heavy dashed black 

line in Figure 2.  

 

              
 (a) (b) 
 
Figure 2. Probability density function (P.D.F.) for the distribution of pore size difference 

beaddbb /)( min  with different values of the parameters pore  and pore : (a) distribution 

for  1pore  and pore  = 3  (A, blue), 2  (B, red), 0 (C, green) and (b) distribution 

for pore = 8.1  and  pore  = 0.5 (A, blue), 1.5 (B, red), 2.0 (C, green). The dashed black 

curve is the distribution used for the example computation in the current paper ( pore = 

8.1 , pore  =1.0). 

 

 A flow chart of the stochastic model is given in Figure 3. The two possible 

particle states - free and captured - are indicated using circles. We start with a particle 

with diameter d at the circle indicating the free state, in which the particle moves up and 

down in accordance with the fluid velocity fv   given by  

 

 )sin()( 00 tAtv f  ,  (2) 
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where A is the nominal oscillation amplitude of a fluid element within the porous bed, 

oscosc tf /1  is the flow oscillation frequency, and oscf 20  . Each time the particle 

travels a distance equal to the bead diameter beadd , it enters into a new pore space. For 

each new pore space that the particle enters, there is assumed to be a random process 

during which the pore size b is selected from the log-normal distribution (1). If the new 

pore size satisfies the condition bd  , then the particle is considered to be captured by 

the pore. If the pore size fails this condition, then the particle remains in the free state and 

the cycle will repeat.   

 
 

 
Figure 3. Flow chart of the stochastic model for a particle with diameter d.   

 

 A captured particle can be released from the pore when the oscillating fluid 

velocity fv  changes direction from the value 0fv  which it had when the particle was 

captured. However, we observed in our experimental visualizations that captured 

particles can sometimes bounce around within a pore and remain trapped for multiple 
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cycles of the oscillating flow (Marshall et al., 2021). Release of a captured particle is 

therefore represented in the stochastic model via a second probabilistic process, which we 

call the particle release process. In this release process, at each time step for which 

)(sign)(sign 0ff vv  , we select a random number p with uniform probability distribution 

between 0 and 1. We also set a prescribed threshold value ht , such that 10  ht . If the 

random number p satisfies htp  , the particle is released from the captured state and 

reverts back to the free state, so that it again moves with the fluid velocity )(tv f . If the 

condition htp   is not satisfied, then the particle remains in the captured state. In order 

that the particle behavior is independent of the time step size t , we set the value of the 

threshold as  

 

 tfCt oschh   , (3) 

 

where hC  is a prescribed release coefficient.  

 To illustrate this stochastic model, an example showing the model predictions was 

examined for a case with oscillatory flow characterized by 25.0oscf Hz and 15A  

mm and with particle and bead diameters given by 3.1d  mm and 6beadd  mm. The 

release coefficient for this example calculation is selected as 1hC . The stochastic 

model was used to generate an ensemble of 100 data strings, each of which is a different 

run of the model with a different initial condition. The runs were conducted with a step 

size of 03.0t s, and each run was carried out to an end time of 100T s.  
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 An example trace predicted by a single run of the stochastic model for the particle 

position )(ty p  and velocity )(tv p  is shown in Figure 4. The value of the velocity 

alternates between a sinusoidal oscillation (in the free state) and zero (in the captured 

state). The particle position also alternates between oscillating in time (in the free state) 

and maintaining a constant value (in the captured state). However, since the time at which 

this transition occurs is a random variable, the resulting particle motion exhibits a drift in 

either the upward or downward direction. A set of 20 traces for particles initiated at 

0y  are shown in Figure 5a, with some traces ending above and some below the initial 

location. A probability density function (P.D.F.) of the particle location at dimensionless 

time 25tfosc  is given in Figure 5b, along with a Gaussian curve characteristic of a 

typical diffusion process indicated by a solid curve. The two plots in Figure 5 illustrate 

that oscillatory diffusion behaves like a diffusion process in which the diffusion 

coefficient is enhanced by the imposed acoustic oscillations.   
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Figure 4. Plot showing time variation of a sample experimental trace for )(ty p  (bottom, 

left-hand axis) and )(tv p  (top, right-hand axis) for the stochastic model. 

 

     
 (a) (b) 

Figure 5. Illustration of the diffusive characteristic of the particle motion: (a) traces of 20 
particles released from 0y , (b) P.D.F. of particle location for 2000 traces sorted into 

50 bins in Ay / , evaluated at time 25tfosc .  

 

 Ensemble-averaged values and time-averaged values of a function )(tf  are 

denoted by 
EnE tftf )()(   and 

Tnn tff )( , respectively, where the averages are 

defined by  

 

 )(
1

)()(
1

tf
N

tftf n

N

nE
EnE

E




 ,  dttf
T

tff n

T

Tnn )(
1

)(
0
 ,  (4) 

 

where subscript n denotes the string number, EN  is the number of strings forming the 

ensemble, and (0,T) is the time interval over which the data is taken. The mean, variance, 
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skew and kurtosis of the particle position are then computed using the ensemble average 

as 

  
EpE tyty )()(  , (5a) 

 
EEp tytyty 2

var )]()([)(  , (5b) 

 
EEpskew tytyty 3)]()([)(  , (5c) 

 
EEpkurt tytyty 4)]()([)(  . (5d) 

 

A plot of the time variation of the particle position variance is given in Figure 6a for the 

example computation. The variance is observed to fluctuate about a linear increase in 

time, in accord with the diffusion result 

 

 tDty S2)(var  , (6) 

  

valid for small values of t. In this equation, SD  is the effective diffusion coefficient 

obtained from the stochastic model. The ratio of the kurtosis of )(ty p  to the square of the 

variance is plotted in Figure 6b. After an initial transient, this plot is observed to oscillate 

about the theoretical value of 3 for a normally-distributed process (dashed line).  

 The autocorrelation function in the height variable )(ty  is given by 

 

 )(/)()()( var tytyty
ET

  , (7) 

 



 15

where   is the lag time and the height difference function )(ty  is defined by 

  

 )()()( tytyty E . (8) 

 

The autocorrelation for the height variable computed from the stochastic model for the 

example problem is plotted in Figure 6c as a function of the time lag. For a random walk 

process for which the displacement )(ty  has a variance given by (6), the covariance of 

)(ty  with itself at times s and t is given by 

 

 ),min(2)]()([ tsDtysyE  . (9) 

 

The autocorrelation of a random walk process can then be expressed as a function of the 

lag time   and the end time T of the computation as (Enders, 2004) 

 

 
TTD

TD

S

S 
 


 1

2

)(2
)( . (10) 

 

For the current example, the dimensionless end time was 25Tfosc . The theoretical 

expression (10) for autocorrelation of a random walk process, indicated by the dashed 

line in Figure 6c, is close to the computed autocorrelation function for the stochastic 

model for values of the dimensionless lag time up to about 1oscf . As the lag time 

increases further, the slope of the autocorrelation predicted by the stochastic model 

becomes somewhat less than that given by the random walk expression (10).    



 16

 The power spectrum predicted by the stochastic model for the example problem  

predictions is plotted in Figure 6d. The dashed line in the plot is the power law 

expression 2 fe  on the log-log plot, which is the theoretical prediction for a random 

walk process. This power law gives a close fit to the mean slope of the stochastic model 

predictions. 

 

Figure 6. Plots showing a variety of statistical measures for the stochastic model 
predictions for oscillatory diffusion: (a) the ensemble variance and (b) the ratio of the 
kurtosis over the variance squared as functions of time; (c) autocorrelation as a function of 
lag time, and (d) power spectrum as a function of frequency. Dashed lines indicate (a) best 
fit to slope of variance passing through origin, (b) theoretical value for a normally 
distributed process, (c) theoertical solution (10) for a random walk process, and (d) 

2 fe  power law solution for a random walk process.    

(b) 

(c) 

(a) 

(d) 



 17

3. Parametric Study and Comparison with CTRW Theory   

 Continuous time random walk (CTRW) is a generalization of the random walk 

process in which particles wait for a random time increment before jumping between 

states (Montroll and Weiss, 1965; Balakrishnan and Venkataraman, 1981a). This basic 

model was generalized by Balakrishnan and Venkataraman (1981b; hereinafter referred 

to as BV81b) to the problem of oscillatory diffusion, where it was assumed that particles 

fluctuate back and forth between an oscillatory state and a random jump state with 

constant velocity 0v , and that the transition time between these two states is a random 

variable. Assuming that the transitions between these states occurs via a series of 

uncorrelated binary decisions (i.e., a set of Bernoulli trials), BV81b concluded that the 

holding time distribution for each state would be of the form of a Poisson distribution, 

which we denote by )(tp  for the oscillatory state and by )(tq  for the random jump state. 

In the limit of many state transitions, we assume that these distributions approach the 

exponential form  

 

 )/exp()( 0osctftp  , )/exp()( 1osctftq  , (11) 

 

where 0  and 1  are the dimensionless average holding times in the oscillatory and jump 

states, respectively. The oscillatory diffusion examined in the current paper can be 

regarded as a special case of that examined in BV81b in which we let the jump velocity 

00 v , so that the particle is stationary (or captured) in the jump state. We henceforth 

refer to the jump state of BV81b as the captured state in the current model.    
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 The hold-up time distribution for particle capture in the stochastic model 

predictions is sensitive to the value of the release coefficient hC  in (3), which is used to 

determine whether to release a particle or retain it in a captured state. Small values of hC  

cause particles to remain captured for longer times than do larger values of hC . The 

complementary cumulative distribution function (C.C.D.F.) and the probability density 

function (P.D.F.) for the hold-up time variable in the captured state are plotted for the 

example problem with 1hC  in Figure 7. In this plot, particle capture is identified as 

occurring for any time step where the absolute value of the particle velocity )(tv p  is less 

than a fraction cutC  of the velocity amplitude Av oamp  , or  

 

 ampcutvCv  . (12) 

 

For the example case shown in Figure 7, we selected 1.0cutC . The C.C.D.F. data in 

Figure 7a was fit using the exponential probability distribution (11), which for a semi-

logarithmic plot yields a linear expression that passes through the point (0,1) and has 

slope 1/1  . The value of the mean holding-time 1  for the captured state was 

determined using a least-square linear regression to the logarithm of the C.C.D.F., which 

was selected to give the tails of the distribution equal weight in the fit to the values near 

the initial time. This procedure yielded an estimate 82.11   with a coefficient of 

determination of 98.02 r , which is indicated by the solid black line in Figure 7. The 

uncertainty in the estimate of 1  is evaluated using a 95% confidence interval, yielding 

upper and lower bounds for the fit line indicated by the dashed lines in Figure 7.   
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 The C.C.D.F. and P.D.F for the free oscillation time distribution are plotted in 

Figure 8. The best-fit exponential distribution is indicated in these plots by a solid line, 

and the 95% confidence interval is indicated by dashed lines. The average holding-time 

value for the free oscillation was obtained from the C.C.D.F. data for this example 

computation as 44.10  , with a coefficient of determination of 96.02 r .  

 

 (a) (b)  

Figure 7. Plots showing results for particle capture time distribution, including: (a) the 
complementary cumulative distribution function C.C.D.F. and (b) the probability density 
function (P.D.F.). The data (symbols) were computed from the stochastic model for the 
example case described in Section 2. The least-square fits (lines) were obtained using the 
exponential distribution in Eq. (9) with 82.11  . 
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 (a) (b)  
 
Figure 8. Plots showing results for free particle oscillation time distribution, including: 
(a) the complementary cumulative distribution function C.C.D.F. and (b) the probability 
density function (P.D.F.). The data (symbols) were computed from the stochastic model 
for the example case described in Section 2. The least-square fits (lines) were obtained 
using the exponential distribution in Eq. (9) with 44.10  .  

 

 A theoretical expression for the oscillatory contribution to the diffusion 

coefficient, denoted by TD , was obtained from the CTRW theory by BV81b, which can 

be written in terms of the variables used in the current paper as  

 

 










2
0

2

2
0

2

0

2

41

4

2 



osc

T
fA

D . (13) 

 

This result indicates that the dimensionless diffusion coefficient, oscTT fADD 2/ , is a 

function only of the dimensionless average holding time in the oscillating state, 0 . The 

CTRW theory assumes that the particle holding-time has an exponential distribution of 

the form (11) for both the captured state and the oscillating state, which is in good 
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agreement with the predictions of our stochastic model (as shown in Figures 7 and 8). 

However, there are also several differences between our stochastic model assumptions 

and the CTRW theory. One difference is that the stochastic model only allows the 

particle to become captured after it has traveled a distance equal to the bead diameter, 

whereas the CTRW theory has no minimum travel distance for transition of the particle 

state. Secondly, the stochastic model only allows particle release from a captured state 

during times where the velocity is opposite in sign to that at which the capture occurred. 

No such restriction is found in the CTRW theory.  

 A parametric study was conducted to test sensitivity of the stochastic model to 

various physical and numerical parameters, and to compare predicted diffusion 

coefficient values with those of the CTRW theory. The numerical parameters examined 

include the dimensionless time step tft osc , the velocity cut-off coefficient cutC  

used in (12) for assigning a particle to a captured state, and the particle release coefficient 

hC  in (3). The physical parameters examined include the ratio of oscillation amplitude to 

bead diameter beaddA / , the ratio of particle diameter to bead diameter beaddd / , and the 

pore size parameter pore . The dimensionless diffusion coefficient SD   from the 

stochastic model was computed for each case using the variance data from the model as 

 

  
td

yd
DS 


 var

2

1
. (14) 

 

where 2
var / Ayyvan   and tft osc  are the dimensionless variance and time, 

respectively. The derivative in (14) was obtained using a linear fit to the variance data 
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obtained by linear regression. The comparison theoretical value of the dimensionless 

diffusion coefficient from CTRW theory, TD , was calculated using (13) with the average 

holding time 0  for the free oscillation state extracted from the stochastic model data 

using a least-square fit of the exponential C.C.D.F. distribution, as shown in Figure 8. 

 It is noted that the stochastic model is dependent on the values of a series of 

random numbers, and as a consequence the predicted values of the dimensionless 

diffusion coefficient obtained from the stochastic model, SD , are not the same for two 

repeated runs of the code, even if all parameter values are the same. We also observe 

variation between runs for the value of 0 , which therefore results in fluctuations in the 

theoretical prediction for TD  from (13). In order to quantify the size of the fluctuations in 

diffusion coefficient values, we performed two sets of experiments by repeated runs for a 

'standard case', for which the dimensionless parameter values are given as follows: 

 

 1.0cutC , 1hC , 0083.0t , 55.2/ beaddA , 

 217.0/ beaddd , 1pore , 155.0/min beaddb , 8.1pore . (15)  

 

which is consistent with the example case described in Section 2. The stochastic model 

computation was repeated for these parameter values both 20 times and 100 times. The 

mean and standard deviation of the predicted values of SD  and TD  for each of these sets 

of runs are recorded in Table 1. The standard deviation of the stochastic model prediction 

is between 10-12% of the mean value, whereas that of the CTRW theory prediction is 

between 1-3% of the mean value. Comparison of the mean and standard deviation values 
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for the cases with 20 and 100 iterations indicates the sensitivity of these values to number 

of iterations.  

 

Table 1. Comparison of the mean and standard deviation of the predictions for 
dimensionless diffusion coefficient from the stochastic model and the CTRW theory for 
different number of iterations of the model. 
 

20 Iterations 100 Iterations Quantity 
mean standard 

deviation 
mean standard 

deviation 
Stochastic 
model, SD  

0.1467 0.0153 0.1523 0.0176 

CTRW theory, 

TD  
0.1562 0.00405 0.1541 0.00219 

 

 In the parametric study, we examine sensitivity of the stochastic model 

predictions by varying the first six parameters listed in (15). For each parameter, 20 

different values were examined by varying the test parameter value while holding the 

remaining parameters constant. Each run was repeated 100 times to obtain mean and 

standard deviation for each set of parameter values. Plots showing the predictions for 

dimensionless diffusion coefficient from both the stochastic model and the CTRW theory 

are shown in Figure 9 for the three stochastic model numerical parameters, cutC , hC , and 

t  . In Figure 10, dimensionless diffusion coefficient predictions from the CTRW theory 

and the stochastic model are presented for three physical parameters describing the 

porous bed, the oscillating flow, and the moving particle. The mean value is indicated in 

these plots by a symbol and the standard deviation is indicated by error bars. 

 Figure 9a shows that the predicted diffusion coefficient values from the stochastic 

model and the CTRW theory agree well under the standard model conditions listed in 
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(15), and that neither of these predicted diffusion coefficient values change significantly 

as the value of cutC  is varied from 0 - 0.4. We recall that cutC  is used in the criterion (12) 

to determine when a particle transitions from a free state to a captured state in the 

stochastic model. The reported results indicate that the model predictions are not 

sensitive to the value of this velocity cut-off coefficient.  

 The second numerical parameter examined was the dimensionless time step 't . 

Sensitivity of predicted diffusion coefficient to 't  is examined in Figure 9b, which 

shows that both the CTRW theory and the stochastic model predictions have little 

sensitivity to this parameter when 't  is greater than about 0.005. However, for 

computations with 't  much smaller than this value, the stochastic model predictions 

exhibit a small increase in diffusion coefficient while the CTRW theory exhibits a very 

large increase. The difference between the CTRW predictions and the stochastic model 

predictions for small values of 't  is associated with the fact that the stochastic model is 

only allowed to make a decision for whether or not a particle is captured after the particle 

has traveled a distance equal to a multiple of the bead diameter, whereas the CTRW 

theory makes this decision at every time step. The ratio of distance traveled by the 

particle to bead diameter can be estimated using the velocity amplitude A0  from (2) for 

the maximum velocity as 
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In terms of this parameter, breakdown in agreement between the stochastic model and the 

CTRW theory coincides in Figure 9b with the condition 

 

  015.0
beadd
At . (17) 

 

 The final numerical parameter examined was the particle release coefficient hC , 

which is used in the expression (3) to determine the value of the release threshold ht  used 

to determine if a particle is released from a captured state. The results in Figure 9c 

indicate that the CTRW theory predicts a nearly linear increase in the diffusion 

coefficient with hC . The CTRW theoretical prediction agrees closely with the stochastic 

model prediction for 8.1hC , but above this value the stochastic model prediction 

begins to flatten out. These results indicate that hC  is the primary numerical parameter 

that influences the predictions of the stochastic model.   

 

   
 
Figure 9. Sensitivity study of the dimensionless diffusion coefficient predictions for the 
stochastic model (red triangles) and the CTRW theory (black squares) as functions of 
three different numerical parameters: (a) cutC , (b) t  , and (c) hC . Symbols represent the 

mean value and error bars represent the standard deviation of 100 repeated computations 
for each point.  

(a) (b) (c) 
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 It would be expected that physical parameters, such as the particle and bead 

diameters, the frequency and amplitude of oscillation, and the pore size distribution of the 

underlying porous medium, would influence the resulting particle diffusion. From these 

variables, we selected three dimensionless physical parameters to examine sensitivity of 

the predicted dimensionless diffusion coefficient. The first parameter, beaddA / , 

represents the ratio of the maximum amplitude of particle displacement to the bead 

diameter. Based on the criterion (17) with the dimensionless time step given in (15), we 

would expect the stochastic model predictions to begin deviating from the CTRW theory 

for 8.1/ beaddA , which agrees well with the results in Figure 10a. Because the particle 

can only change from a freely oscillating state to a captured state in the stochastic model 

if it travels a distance greater than beadd , the diffusion coefficient predicted by the 

stochastic model, shown in Figure 10a, reduces to zero when the maximum distance of 

particle displacement (2A) is less than beadd  (or 2/1/ beaddA ). 

 The stochastic model predictions are highly sensitive to the value of the ratio 

beaddd /  of the particle diameter to the bead diameter. If 155.0// min  beadbead dbdd , 

the particles will always be smaller than the pore size and pass through the pore without 

hold-up, with the consequence that the diffusion coefficient will vanish. We note that the 

current stochastic model is based on the assumption that particle capture occurs only 

from filtration, and it does not include effects of particle adhesion or other forms of 

hindering. On the other hand, as beaddd /  gets large, the likelihood of the particle 

encountering a pore that is smaller than the particle becomes progressively smaller. This 

results in a condition where the particle becomes continually captured by the surrounding 
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beads, with rapid decrease in diffusion coefficient. As a result of these two 

considerations, we see in Figure 10b that the diffusion coefficient predicted by the 

stochastic model has a fairly narrow peak at about 2.0/ beaddd , and reduces rapidly 

when beaddd /  is either larger or smaller than this peak value. The location of the peak 

value and the narrowness of the profile will be dependent primarily on the parameters 

pore  and pore  that govern the assumed pore size distribution. In the region with highest 

diffusion coefficient value within this peak region, the CTRW theory predictions are 

close to those of the stochastic model; however, the CTRW theory does not provide an 

accurate prediction for values of beaddd /  outside of this peak region.  

  The final physical parameter examined is pore , which as shown in Figure 2 

influences the shape of the pore size distribution. The diffusion coefficient predictions for 

computations with different values of pore  is shown in Figure 10c. For small values of 

pore , the pore size distribution has a very narrow peak, and hence only a narrow range of 

beaddd /  values exhibit significant diffusion. As pore  increases, the pore size distribution 

widens, and significant diffusion coefficient values are observed for a larger interval of 

beaddd /   values. For the value of beaddd /   listed in (15), we observe a significant 

decrease in the diffusion coefficient predicted by the stochastic model for pore  less than 

about 0.9. For values of pore  above this value, the diffusion coefficient exhibits small 

sensitivity to pore  and the predictions of CTRW theory and of the stochastic model are 

reasonably close.    
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Figure 10. Parametric study of the dimensionless diffusion coefficient predictions for the 
stochastic model (red triangles) and the CTRW theory (black squares) as functions of 
three physical parameters: (a) beaddA / , (b) beaddd / , and (c) pore . Symbols represent the 

mean value and error bars represent the standard deviation of 100 repeated computations 
for each point.  
 

4. Conclusions 

 A study has been performed of the effect of acoustic forcing on enhancement of 

diffusion of colloidal particles suspended in a rigid porous bed composed of fixed 

spheres. The combination of particle oscillation induced by acoustic forcing and random 

hindering due to interaction with the porous bed produces a type of particle random walk. 

This combination leads to particle diffusion in the bed via a process known as oscillatory 

diffusion. The effective diffusion coefficient associated with this process increases with 

amplitude of the acoustic forcing.  

 A stochastic model was developed to describe the oscillatory diffusion process for 

particles in a porous bed in which the particle transitions back and forth between a freely 

oscillating state and a captured state. A particle that is initially freely oscillating can 

become captured if it moves into a pore space that is smaller than the particle diameter, 

where the pore size is assumed to be a log-normally distributed random variable. 

However, the particle only moves into a new pore space once it has moved a distance 

(a) (b) (c) 
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equal to the nominal diameter of the beads making up the porous bed, which places a 

limit on the frequency that particle state transition can occur. Once a particle is captured, 

it can transition back to the freely oscillating state during the particle release process, 

which occurs only when the sign of the velocity is opposite that at which the initial 

capture occurred. Particle release is allowed to occur when the value of a uniformly-

distributed random variable is less than a threshold value. Example computations using 

this stochastic model exhibit many of the theoretical characteristics of random walk 

processes, such as a linearly increasing variance, a ratio of kurtosis to square of variance 

close to 3.0, and a power spectrum that is inversely proportional to the square of the 

frequency. The hold-up times for both the capture state and the freely-oscillating state are 

found to be well fit by exponential probability distributions. 

 The oscillatory diffusion process was described in terms of a continuous time 

random walk (CTRW) process by Balakrishnan and Venkataraman (1981b) and includes 

an analytical solution for the particle diffusion coefficient; however, some of the 

assumptions made in development of this CTRW theory are not consistent with the 

physical processes involved for particles in a porous bed. After being non-

dimensionalized by oscfA2 , where A is the particle oscillation amplitude in the porous 

bed and oscf  is the oscillation frequency, the dimensionless diffusion coefficient was 

found to depend only on the dimensionless particle average hold-up time 0  in the freely 

oscillating state.  

 A parametric study of the stochastic model sensitivity was performed by varying 

three dimensionless numerical parameters that control the stochastic model and three 

dimensionless physical parameters describing properties of the particle, the porous bed, 
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and the acoustic forcing. The numerical parameters examined included the velocity cut-

off parameter cutC , the dimensionless time step 't , and the coefficient of the release 

threshold hC . The dimensionless diffusion coefficient predicted by the stochastic model 

was not sensitive to the first two of these parameters, but the predictions were sensitive to 

the value of hC . We obtained good agreement with the experimental data of Marshall et 

al. (2021) for a value 1hC , but the optimal value of this parameter could vary on a 

case-by-case basis. The physical parameters examined included the ratio of the oscillation 

amplitude to the bead diameter beaddA / , the ratio of particle diameter to bead diameter 

beaddd / , and the parameter pore  of the pore size distribution. The stochastic model 

predictions for diffusion coefficient were found to decrease rapidly when beaddA /  was 

less than about 2 and to approach zero at 5.0/ beaddA . This result was a consequence of 

the physical restriction that particles were not allowed to select a new pore size (and 

hence to change states) until they traveled at least one bead diameter. The stochastic 

model predictions were not very sensitive to this parameter for values of beaddA /  above 

2. Similarly, the stochastic model predictions yield diffusion coefficient approaching zero 

as the pore size parameter pore  decreases from 1 to 0.5, but relatively little sensitivity to 

this parameter for values of pore  above 1. The stochastic model exhibited high 

sensitivity to beaddd / , with diffusion coefficient decreasing for both high values of this 

parameter (for which the particles are too large to fit in most of the pore spaces) and low 

values of this parameter (for which the particles are smaller than the minimum pore size 
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and there is no hindering in the filtration-based model). The maximum diffusion 

coefficient was observed for 2.0/ beaddd .    

 The dimensionless diffusion coefficient predicted by the stochastic model was 

compared with the analytical solution from the CTRW theory. We note that the equation 

for diffusion coefficient from the CTRW theory still requires us to estimate the average 

hold-up time in the free oscillation state, 0 , from the stochastic model. Regions 

exhibiting agreement and disagreement of the stochastic model predictions with the 

CTRW theory were identified and explained. A major shortcoming of the CTRW theory 

is that it exhibits no dependence on the particle or pore sizes, whereas this dependence is 

built into the stochastic model by the mechanism to decide that a particle is captured if its 

size is larger than the pore size. Regions of parameter space in which the CTRW theory 

did not agree well with the stochastic model were traced to the physical requirement that 

a particle must travel a bead diameter before it can pass into a new pore space. This 

restriction is enforced in the stochastic model, but not in the CTRW theory.  

 The major limitation of applicability of the stochastic model proposed in the 

current work is the fact that particle hindering was assumed to occur based only on 

consideration of particle filtration. This choice was made because the experimental data 

from Marshall et al. (2021) used to validate the model used relatively large particles (in 

the millimeter size range), for which adhesion forces are small relative to viscous drag. 

However, many of the applications for which we hope to apply the model (as listed in 

Section 1) involve particles in the nanometer size range, for which adhesion forces would 

be expected to be important. Extension of this model to include effects of adhesion both 
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in the particle capture process and in determination of the particle release time is a key 

objective of future work in this area.     
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.Figure Captions 
 
 
Figure 1. Schematic diagram comparing a freely oscillating particle (blue) and oscillatory 
diffusion of a particle in a porous bed (red), both subject to the same oscillating fluid 
velocity field )(tv f .  

 
Figure 2. Probability density function (P.D.F.) for the distribution of pore size difference 

beaddbb /)( min  with different values of the parameters pore  and pore : (a) distribution 

for  1pore  and pore  = 3  (A, blue), 2  (B, red), 0 (C, green) and (b) distribution 

for pore = 8.1  and  pore  = 0.5 (A, blue), 1.5 (B, red), 2.0 (C, green). The dashed black 

curve is the distribution used for the example computation in the current paper ( pore = 

8.1 , pore  =1.0). 

 
Figure 3. Flow chart of the stochastic model for a particle with diameter d.   
 
Figure 4. Plot showing time variation of a sample experimental trace for )(ty p  (bottom, 

left-hand axis) and )(tv p  (top, right-hand axis) for the stochastic model. 

 
Figure 5. Illustration of the diffusive characteristic of the particle motion: (a) traces of 20 
particles released from 0y , (b) P.D.F. of particle location for 2000 traces sorted into 

50 bins in Ay / , evaluated at time 25tfosc .  

 
Figure 6. Plots showing a variety of statistical measures for the stochastic model 
predictions for oscillatory diffusion: (a) the ensemble variance and (b) the ratio of the 
kurtosis over the variance squared as functions of time; (c) autocorrelation as a function 
of lag time, and (d) power spectrum as a function of frequency. Dashed lines indicate (a) 
best fit to slope of variance passing through origin, (b) theoretical value for a normally 
distributed process, (c) theoertical solution (10) for a random walk process, and (d) 

2 fe  power law solution for a random walk process.    
 
Figure 7. Plots showing results for particle capture-time distribution, including: (a) the 
complementary cumulative distribution function C.C.D.F. and (b) the probability density 
function (P.D.F.). The data (symbols) were computed from the stochastic model for the 
example case described in Section 2. The least-square fits (lines) were obtained using the 
exponential distribution in Eq. (9) with 82.11  . 
 
Figure 8. Plots showing results for free particle oscillation time distribution, including: 
(a) the complementary cumulative distribution function C.C.D.F. and (b) the probability 
density function (P.D.F.). The data (symbols) were computed from the stochastic model 
for the example case described in Section 2. The least-square fits (lines) were obtained 
using the exponential distribution in Eq. (9) with 44.10  .  
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Figure 9. Sensitivity study of the dimensionless diffusion coefficient predictions for the 
stochastic model (red triangles) and the CTRW theory (black squares) as functions of 
three different numerical parameters: (a) cutC , (b) t  , and (c) hC . Symbols represent the 

mean value and error bars represent the standard deviation of 100 repeated computations 
for each point.  
 
Figure 10. Parametric study of the dimensionless diffusion coefficient predictions for the 
stochastic model (red triangles) and the CTRW theory (black squares) as functions of 
three physical parameters: (a) beaddA / , (b) beaddd / , and (c) pore . Symbols represent the 

mean value and error bars represent the standard deviation of 100 repeated computations 
for each point.  
 
 
 
 
 


