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Abstract
Colloidal particles in the pore spaces within a packed bed move back and forth in
response to an imposed oscillatory flow, such as that associated with an acoustic field.
The diffusive motion of the particles results from intermittent hindering of the oscillatory
motion, which we assume to result from particle filtration by the packed bed pore spaces.
We consider an experimentally-validated stochastic model that entails a series of
transitions between an oscillatory state, where the particle oscillates with the fluid flow,
and a captured state, where the particle is held fixed in the bed. The paper examines
sensitivity of this stochastic model to different parameters and compares the stochastic
model predictions for diffusion coefficient with predictions of an analytical solution
based on continuous-time random walk (CTRW) theory. The results are relevant to
applications such as nanoparticle penetration into biofilms, drug capsule penetration into

human tissue, and microplastic transport within saturated soil.



1. Introduction

Diffusion of particulates immersed in a porous medium occurs in a wide range of
applications. Drug-encapsulated liposomes and nanoparticles are used for targeted drug
delivery to tissues and tumors (Patra et al., 2018; Wilczewska et al., 2012). Nanoparticles
are commonly used for biofilm mitigation, such as in bacteria destruction by infrared-
induced particle heating (Castillo-Martinez et al., 2015; Hu et al., 2017) or by using the
particles as carriers for antibiotic chemicals (Barros et al., 2020; Forier et al., 2014a,
2014b; Li et al., 2015; Cheow et al., 2011; Meeker et al., 2016). On a scale of a 10-
100nm particle, the hydrogel from which a biofilm is formed appears as a porous medium
composed of a network of connected proteins, called extracellular polymeric substances
(EPS), through which colloidal particles can diffuse (Peulen and Wilkinson, 2011).
Colloidal particle transport in groundwater is important for a number of pollution issues,
and is of particular significance in evaluating transport of microplastics in the soil (da
Costa et al., 2019; Hodson et al., 2017; Rillig et al., 2019). Fracking processes used for
oil and natural gas recovery depend on transport of sand and other types of proppant
particles into small cracks in the sub-layer rocks under high water pressure (Liang et al.,
2016).

In a number of these and related applications, experimentalists have observed that
the rate of particle diffusion within the porous medium can be substantially increased by
imposing flow oscillations, e.g., via acoustic waves. In an application dealing with
nanoparticle drug delivery in tumors, ultrasound was shown by a number of investigators
to enhance penetration of drug-encapsulated particles into diseased tissue (Tiukinhoy-

Laing et al., 2006; Paul et al., 2014; Schroeder et al., 2009; Huang, 2008). In a second



application involving nanoparticle mitigation of biofilms, the low-intensity ultrasound
was found to significantly enhance penetration of liposomes into an alginate gel (Ma et
al., 2015a), which is often used as a physical model for the EPS found in biofilms
(Rowley et al., 1990; Smidsréd et al., 1990). In a follow-up study, Ma et al. (2018) made
detailed measurements demonstrating an increase in diffusion coefficient by 74-133%
due to the application of low-intensity ultrasound for 20nm and 100nm diameter particles
diffusing in an agarose hydrogel. In a third application involving diffusion control of
adsorbed molecules and nanoparticles on a surface, tangential mechanical vibrations were
used to generate an oscillating flow field which enhanced diffusion of nanoparticles
settling onto the surface (Ma et al., 2015b).

Diffusion enhancement by acoustic excitation was examined for a packed bed of
glass spheres by Vogler and Chrysikopoulos (2002) for solute diffusion and by Thomas
and Chrysikopoulos (2007) for particle diffusion. Thomas and Chrysikopoulos (2007)
measured concentration of a tracer particle at the bed outlet versus time for cases with a
net flow through the packed bed. Acoustic excitation was observed to decrease the time
required for observation of the concentration peak (i.e., to increase the transport speed of
particles through the bed) by about 7%, but not to significantly change the shape of the
concentration variation function.

A mechanism for diffusion enhancement by an imposed oscillating flow was
examined by Marshall (2016) using a simple one-dimensional stochastic model. The
model demonstrates that the combination of particle oscillation (via an imposed
oscillatory flow field) and random hindering of the particle motion (via particle

interaction with the porous medium) results in a net diffusive process over sufficient time



when averaged over a large number of particles. An expression for the diffusion
coefficient was derived as a function of the parameters of the stochastic model; however,
the model did not relate closely to the physical parameters and geometry of the
application. A detailed experimental study of the motion of an individual particle in a
packed bed of spheres in the presence of an oscillating flow was reported by Marshall et
al. (2021), in which ensemble averages were used together with a variety of statistical
measures to quantify the particle oscillatory motion and hindering by the packed bed.
This paper also presented a new stochastic model that was shown to agree closely with
the statistical measures obtained from experimental data for particle diffusion and
hindering.

The problems discussed above are examples of a phenomenon called oscillatory
diffusion, in which an imposed oscillatory flow field is observed to enhance the
preexisting molecular diffusion process. A general statistical theory for oscillatory
diffusion was developed by Balakrishnan and Venkataraman (1981b) using a two-state
continuous time random walk (CTRW) theory in which the system switches at random
intervals between an oscillatory state and a constant velocity state. A number of
investigators have also observed enhanced diffusion of particles that move in accord with
the Langevin equation with an imposed potential that varies periodically in either space
or time, or both (Schreier et al., 1998; Gang et al., 1996; Romanczuk et al., 2010).

The objective of the present paper is to present a parametric sensitivity study of
the experimentally-validated stochastic model proposed by Marshall et al. (2021) for
oscillatory diffusion of a particle in a porous bed, and to compare the results of the

stochastic model to the CTRW theory predictions of Balakrishnan and Venkataraman



(1981b). In particular, the CTRW theory provides an explicit analytical solution for
particle diffusion coefficient under oscillatory forcing, which we wish to compare with
numerical predictions of the stochastic model. The stochastic model for oscillatory
diffusion is described in Section 2. A parametric study of the stochastic model and results
of a comparison with the CTRW theory predictions are given in Section 3. Conclusions

are given in Section 4.

2. Stochastic Model for Oscillatory Diffusion

Oscillatory diffusion results from a combination of particle oscillation and
random hindering, which together produce a diffusive particle motion when averaged
over an ensemble of cases (Marshall, 2016). A schematic diagram is shown in Figure 1
comparing a freely oscillating particle (blue) and oscillatory diffusion of a particle in a

porous bed (red), both subject to the same oscillating fluid velocity field v (7). The two
particles are both located at y =0 at the initial time #,. The particles oscillate in phase
until the red particle becomes trapped in a pore space just before time ¢,, so that at time

t, the blue particle is moving downward and the red particle has no velocity. When the

velocity changes sign the red particle becomes unstuck, and both particles travel upward
in the bed. As a result of becoming captured by the bed pore space, the red particle has
displaced upward from the blue particle by time ¢,. The random hindering of the particle
results in a particle displacement that occurs at random times and for random time
intervals. The size of this particle displacement is correspondingly a random amount

between Ay =+4. Over time and when applied to a finite set of particles, these random

displacements lead to a diffusion of the particles away from the initial position y =0.
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Figure 1. Schematic diagram comparing a freely oscillating particle (on left, blue) and
oscillatory diffusion of a particle in a porous bed (on right, red), both subject to the same
oscillating fluid velocity field v, (7).

A simple stochastic model for oscillatory diffusion for particles of diameter d in a

porous bed of beads of diameter d,,, subject to an oscillatory fluid flow was proposed

by Marshall et al. (2021), and the model predictions were shown to agree well with
experimental data. The model assumes that hindering of the particle motion occurs
primarily via particle filtration, in which a particle randomly enters a pore space that is
sufficiently small to temporarily trap the particle until such time as the direction of
velocity changes. It is also assumed that the particle relaxation time scale

t ~=m/3xnd, where m is the particle mass and 7 is the fluid viscosity, is much

part

smaller than the fluid oscillation period ¢, . Under these conditions, the model makes the



assumption that each particle transitions instantaneously between either an oscillatory
State or a captured state.

Following studies on pore size for a variety of types of porous media (Aikawa et
al., 2012; Chunyan et al., 2013; Shi et a., 1991), we assume that the pore size b within the

porous bed is a random variable with a log-normal distribution of the form

b = bmin + dbead eXp(lupore +o Z) : (1)

pore

The value of b, 1is set to the minimum geometrically possible pore size, which is
usually associated with the pore space between three touching co-planar spheres whose
centers form an equilateral triangle, such that b_. /d, , = (243 -3)/320.155.In (1), Z

is a random variable with a standard normal distribution. The adjustable parameters x,,,,

and o, are the mean value and the standard deviation of the natural logarithm of the

pore
exponential function in (1). Plots of the probability density function (P.D.F.) of the pore

size difference ratio (b-b,,,)/d,,, are plotted in Figure 2 for different values of the

min

parameters y,,, and o The value of x,,, is generally negative and the value of

pore *

O ,ore 18 Positive for the cases examined here, and as the value of 4 ,,, decreases or the

pore

value of o increases, the P.D.F. plot exhibits an increasingly large spike for

pore
progressively lower values of Z. The computations in the current paper were performed

with ¢, =-1.8 and o, = 1, which were found to yield a best fit to experimental data

pore

for prediction of particle diffusion rate by Marshall et al. (2021). The P.D.F. plot



corresponding to these values of x,,, and o, is indicated by a heavy dashed black

pore

line in Figure 2.

P.D.F.
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Figure 2. Probability density function (P.D.F.) for the distribution of pore size difference
(b—=b,,)/ dy,q With different values of the parameters x,,, and o, : (a) distribution

for o,,=1and u,, = -3 (A, blue), =2 (B, red), 0 (C, green) and (b) distribution
for u,,,=-18 and o, =0.5 (A, blue), 1.5 (B, red), 2.0 (C, green). The dashed black
curve is the distribution used for the example computation in the current paper ( u,,,, =
-18, 0, =1.0).

pore

A flow chart of the stochastic model is given in Figure 3. The two possible
particle states - free and captured - are indicated using circles. We start with a particle
with diameter d at the circle indicating the free state, in which the particle moves up and

down in accordance with the fluid velocity v, given by

v, () = o, Asin(wt), )



where A4 is the nominal oscillation amplitude of a fluid element within the porous bed,
fo =1/t,. 1s the flow oscillation frequency, and @, =27f, .. Each time the particle
travels a distance equal to the bead diameter d,, ,, it enters into a new pore space. For
each new pore space that the particle enters, there is assumed to be a random process
during which the pore size b is selected from the log-normal distribution (1). If the new
pore size satisfies the condition d > b, then the particle is considered to be captured by
the pore. If the pore size fails this condition, then the particle remains in the free state and

the cycle will repeat.
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Figure 3. Flow chart of the stochastic model for a particle with diameter d.

A captured particle can be released from the pore when the oscillating fluid

velocity v, changes direction from the value v, which it had when the particle was

captured. However, we observed in our experimental visualizations that captured

particles can sometimes bounce around within a pore and remain trapped for multiple
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cycles of the oscillating flow (Marshall et al., 2021). Release of a captured particle is
therefore represented in the stochastic model via a second probabilistic process, which we
call the particle release process. In this release process, at each time step for which
sign(vf) # sign(vfo) , we select a random number p with uniform probability distribution
between 0 and 1. We also set a prescribed threshold value ¢, such that 0 <#, <1. If the
random number p satisfies p <¢,, the particle is released from the captured state and
reverts back to the free state, so that it again moves with the fluid velocity v, (¢). If the
condition p <t¢, is not satisfied, then the particle remains in the captured state. In order

that the particle behavior is independent of the time step size Az, we set the value of the

threshold as

Zth = ChfoscAt s (3)

where C, is a prescribed release coefficient.

To illustrate this stochastic model, an example showing the model predictions was

examined for a case with oscillatory flow characterized by f, =0.25Hz and 4 =15

mm and with particle and bead diameters given by d =1.3 mm and d,,, =6 mm. The
release coefficient for this example calculation is selected as C, =1. The stochastic

model was used to generate an ensemble of 100 data strings, each of which is a different
run of the model with a different initial condition. The runs were conducted with a step

size of At =0.03s, and each run was carried out to an end time of 7 =100 s.
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An example trace predicted by a single run of the stochastic model for the particle

position y,(z) and velocity v,(¢) is shown in Figure 4. The value of the velocity

alternates between a sinusoidal oscillation (in the free state) and zero (in the captured
state). The particle position also alternates between oscillating in time (in the free state)
and maintaining a constant value (in the captured state). However, since the time at which
this transition occurs is a random variable, the resulting particle motion exhibits a drift in
either the upward or downward direction. A set of 20 traces for particles initiated at

y =0 are shown in Figure 5a, with some traces ending above and some below the initial

location. A probability density function (P.D.F.) of the particle location at dimensionless

time f

ol =25 1is given in Figure 5b, along with a Gaussian curve characteristic of a
typical diffusion process indicated by a solid curve. The two plots in Figure 5 illustrate

that oscillatory diffusion behaves like a diffusion process in which the diffusion

coefficient is enhanced by the imposed acoustic oscillations.
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Figure 4. Plot showing time variation of a sample experimental trace for y,(¢) (bottom,

left-hand axis) and v, (¢) (top, right-hand axis) for the stochastic model.
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Figure 5. Illustration of the diffusive characteristic of the particle motion: (a) traces of 20
particles released from y =0, (b) P.D.F. of particle location for 2000 traces sorted into

50 bins in y/ A, evaluated at time f, ¢=25.

osc

Ensemble-averaged values and time-averaged values of a function f(¢) are
denoted by f,(¢) E< £, (t)> , and fn E< £, (t)>T, respectively, where the averages are

defined by

Ng

> L@, F=(n0), =2 nod, @

£ =(1,0), ENL _

where subscript n denotes the string number, N, is the number of strings forming the

ensemble, and (0,7) is the time interval over which the data is taken. The mean, variance,

13



skew and kurtosis of the particle position are then computed using the ensemble average

as
v =(y,0),, (5a)
Y0 = (13, O=y; O ), (5b)
Yyt O = ([, (0=, OT ) _, (5¢)
Vi = [y, =y,(O1) . (5d)

A plot of the time variation of the particle position variance is given in Figure 6a for the
example computation. The variance is observed to fluctuate about a linear increase in

time, in accord with the diffusion result

yvar(t) = 2DSt7 (6)

valid for small values of ¢ In this equation, D, is the effective diffusion coefficient
obtained from the stochastic model. The ratio of the kurtosis of y,(¢) to the square of the

variance is plotted in Figure 6b. After an initial transient, this plot is observed to oscillate
about the theoretical value of 3 for a normally-distributed process (dashed line).

The autocorrelation function in the height variable y(¢) is given by

p(@) = (At =) AY(@), ) 13,0 (0), (7)
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where 7 is the lag time and the height difference function Ay(#) is defined by

Ay(1) = y(O) =y (). ®)

The autocorrelation for the height variable computed from the stochastic model for the
example problem is plotted in Figure 6¢ as a function of the time lag. For a random walk

process for which the displacement y(¢) has a variance given by (6), the covariance of

y(¢) with itself at times s and ¢ is given by

E[y(s)y(t)] = 2D min(s,?). )

The autocorrelation of a random walk process can then be expressed as a function of the

lag time 7 and the end time 7 of the computation as (Enders, 2004)

_2D(T-7) T
p(z‘)-—zDsT =1 = (10)

For the current example, the dimensionless end time was f, T =25. The theoretical
expression (10) for autocorrelation of a random walk process, indicated by the dashed

line in Figure 6c, is close to the computed autocorrelation function for the stochastic

model for values of the dimensionless lag time up to about f 7 =1. As the lag time

increases further, the slope of the autocorrelation predicted by the stochastic model

becomes somewhat less than that given by the random walk expression (10).
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The power spectrum predicted by the stochastic model for the example problem

predictions is plotted in Figure 6d. The dashed line in the plot is the power law

expression e oc £~ on the log-log plot, which is the theoretical prediction for a random

walk process. This power law gives a close fit to the mean slope of the stochastic model

predictions.
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Figure 6. Plots showing a variety of statistical measures for the stochastic model
predictions for oscillatory diffusion: (a) the ensemble variance and (b) the ratio of the
kurtosis over the variance squared as functions of time; (c) autocorrelation as a function of
lag time, and (d) power spectrum as a function of frequency. Dashed lines indicate (a) best
fit to slope of variance passing through origin, (b) theoretical value for a normally
distributed process, (c¢) theoertical solution (10) for a random walk process, and (d)

e o [~ power law solution for a random walk process.
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3. Parametric Study and Comparison with CTRW Theory

Continuous time random walk (CTRW) is a generalization of the random walk
process in which particles wait for a random time increment before jumping between
states (Montroll and Weiss, 1965; Balakrishnan and Venkataraman, 1981a). This basic
model was generalized by Balakrishnan and Venkataraman (1981b; hereinafter referred
to as BV81b) to the problem of oscillatory diffusion, where it was assumed that particles
fluctuate back and forth between an oscillatory state and a random jump state with

constant velocity v,, and that the transition time between these two states is a random

variable. Assuming that the transitions between these states occurs via a series of
uncorrelated binary decisions (i.e., a set of Bernoulli trials), BV81b concluded that the
holding time distribution for each state would be of the form of a Poisson distribution,

which we denote by p(¢) for the oscillatory state and by ¢(¢) for the random jump state.

In the limit of many state transitions, we assume that these distributions approach the

exponential form

() =exp(-1f,.. /7y), q(t) = exp(-1f,.. /7)), (11)

where 7, and 7, are the dimensionless average holding times in the oscillatory and jump

states, respectively. The oscillatory diffusion examined in the current paper can be
regarded as a special case of that examined in BV81b in which we let the jump velocity

v, =0, so that the particle is stationary (or captured) in the jump state. We henceforth

refer to the jump state of BV81b as the captured state in the current model.
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The hold-up time distribution for particle capture in the stochastic model

predictions is sensitive to the value of the release coefficient C, in (3), which is used to
determine whether to release a particle or retain it in a captured state. Small values of C,
cause particles to remain captured for longer times than do larger values of C,. The

complementary cumulative distribution function (C.C.D.F.) and the probability density
function (P.D.F.) for the hold-up time variable in the captured state are plotted for the

example problem with C, =1 in Figure 7. In this plot, particle capture is identified as
occurring for any time step where the absolute value of the particle velocity v, (¢) is less

than a fraction C,,, of the velocity amplitude v,,, = ®,4, or

|v| <CourVamp - (12)

For the example case shown in Figure 7, we selected C,, =0.1. The C.C.D.F. data in
Figure 7a was fit using the exponential probability distribution (11), which for a semi-
logarithmic plot yields a linear expression that passes through the point (0,1) and has
slope —1/7,. The value of the mean holding-time 7, for the captured state was
determined using a least-square linear regression to the logarithm of the C.C.D.F., which
was selected to give the tails of the distribution equal weight in the fit to the values near
the initial time. This procedure yielded an estimate 7, =1.82 with a coefficient of
determination of > = 0.98, which is indicated by the solid black line in Figure 7. The
uncertainty in the estimate of z, is evaluated using a 95% confidence interval, yielding

upper and lower bounds for the fit line indicated by the dashed lines in Figure 7.

18



The C.C.D.F. and P.D.F for the free oscillation time distribution are plotted in
Figure 8. The best-fit exponential distribution is indicated in these plots by a solid line,
and the 95% confidence interval is indicated by dashed lines. The average holding-time

value for the free oscillation was obtained from the C.C.D.F. data for this example

computation as 7, =1.44, with a coefficient of determination of 7> = 0.96.

C.C.D.F.
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Figure 7. Plots showing results for particle capture time distribution, including: (a) the
complementary cumulative distribution function C.C.D.F. and (b) the probability density
function (P.D.F.). The data (symbols) were computed from the stochastic model for the
example case described in Section 2. The least-square fits (lines) were obtained using the
exponential distribution in Eq. (9) with 7, =1.82.
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Figure 8. Plots showing results for free particle oscillation time distribution, including:
(a) the complementary cumulative distribution function C.C.D.F. and (b) the probability
density function (P.D.F.). The data (symbols) were computed from the stochastic model
for the example case described in Section 2. The least-square fits (lines) were obtained
using the exponential distribution in Eq. (9) with 7, =1.44.

A theoretical expression for the oscillatory contribution to the diffusion
coefficient, denoted by D, , was obtained from the CTRW theory by BV81b, which can

be written in terms of the variables used in the current paper as

A2 4 2.2
D, - f{ T } (13)

2z, |1+4x°z}

This result indicates that the dimensionless diffusion coefficient, D), =D,/ A*f, ., is a
function only of the dimensionless average holding time in the oscillating state, z,,. The

CTRW theory assumes that the particle holding-time has an exponential distribution of

the form (11) for both the captured state and the oscillating state, which is in good

20



agreement with the predictions of our stochastic model (as shown in Figures 7 and 8).
However, there are also several differences between our stochastic model assumptions
and the CTRW theory. One difference is that the stochastic model only allows the
particle to become captured after it has traveled a distance equal to the bead diameter,
whereas the CTRW theory has no minimum travel distance for transition of the particle
state. Secondly, the stochastic model only allows particle release from a captured state
during times where the velocity is opposite in sign to that at which the capture occurred.
No such restriction is found in the CTRW theory.

A parametric study was conducted to test sensitivity of the stochastic model to
various physical and numerical parameters, and to compare predicted diffusion
coefficient values with those of the CTRW theory. The numerical parameters examined

include the dimensionless time step At' = f, At, the velocity cut-off coefficient C

osc cut

used in (12) for assigning a particle to a captured state, and the particle release coefficient

C, in (3). The physical parameters examined include the ratio of oscillation amplitude to
bead diameter 4/d,, ,, the ratio of particle diameter to bead diameter d/d,, ,, and the

pore size parameter o The dimensionless diffusion coefficient D; from the

pore *

stochastic model was computed for each case using the variance data from the model as

1 dy!
D, =L 14
S dr (14

where y/ =y . /A> and t'=f, t are the dimensionless variance and time,

respectively. The derivative in (14) was obtained using a linear fit to the variance data

21



obtained by linear regression. The comparison theoretical value of the dimensionless
diffusion coefficient from CTRW theory, D; , was calculated using (13) with the average
holding time 7, for the free oscillation state extracted from the stochastic model data
using a least-square fit of the exponential C.C.D.F. distribution, as shown in Figure 8.

It is noted that the stochastic model is dependent on the values of a series of
random numbers, and as a consequence the predicted values of the dimensionless

diffusion coefficient obtained from the stochastic model, Dy, are not the same for two

repeated runs of the code, even if all parameter values are the same. We also observe

variation between runs for the value of 7, which therefore results in fluctuations in the

theoretical prediction for D, from (13). In order to quantify the size of the fluctuations in
diffusion coefficient values, we performed two sets of experiments by repeated runs for a
'standard case', for which the dimensionless parameter values are given as follows:

c,, =0.1, C, =1, At"=0.0083, Ald,,, =2.55,

cut

dld,,, =0217, o,,=1, by /d,, =0155, u,, =-18. (15)
which is consistent with the example case described in Section 2. The stochastic model
computation was repeated for these parameter values both 20 times and 100 times. The
mean and standard deviation of the predicted values of D; and D, for each of these sets
of runs are recorded in Table 1. The standard deviation of the stochastic model prediction
is between 10-12% of the mean value, whereas that of the CTRW theory prediction is

between 1-3% of the mean value. Comparison of the mean and standard deviation values
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for the cases with 20 and 100 iterations indicates the sensitivity of these values to number

of iterations.

Table 1. Comparison of the mean and standard deviation of the predictions for
dimensionless diffusion coefficient from the stochastic model and the CTRW theory for
different number of iterations of the model.

Quantity 20 Iterations 100 Iterations
mean standard mean standard
deviation deviation
Stochastic 0.1467 0.0153 0.1523 0.0176
model, Dg
CTRW theory, 0.1562 0.00405 0.1541 0.00219
Dy

In the parametric study, we examine sensitivity of the stochastic model
predictions by varying the first six parameters listed in (15). For each parameter, 20
different values were examined by varying the test parameter value while holding the
remaining parameters constant. Each run was repeated 100 times to obtain mean and
standard deviation for each set of parameter values. Plots showing the predictions for
dimensionless diffusion coefficient from both the stochastic model and the CTRW theory

are shown in Figure 9 for the three stochastic model numerical parameters, C,,, C,, and

cut >
At". In Figure 10, dimensionless diffusion coefficient predictions from the CTRW theory
and the stochastic model are presented for three physical parameters describing the
porous bed, the oscillating flow, and the moving particle. The mean value is indicated in
these plots by a symbol and the standard deviation is indicated by error bars.

Figure 9a shows that the predicted diffusion coefficient values from the stochastic

model and the CTRW theory agree well under the standard model conditions listed in
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(15), and that neither of these predicted diffusion coefficient values change significantly

as the value of C,,; is varied from 0 - 0.4. We recall that C_,, is used in the criterion (12)

to determine when a particle transitions from a free state to a captured state in the
stochastic model. The reported results indicate that the model predictions are not
sensitive to the value of this velocity cut-off coefficient.

The second numerical parameter examined was the dimensionless time step Af'.
Sensitivity of predicted diffusion coefficient to Ar' is examined in Figure 9b, which
shows that both the CTRW theory and the stochastic model predictions have little
sensitivity to this parameter when A¢' is greater than about 0.005. However, for
computations with Az' much smaller than this value, the stochastic model predictions
exhibit a small increase in diffusion coefficient while the CTRW theory exhibits a very
large increase. The difference between the CTRW predictions and the stochastic model
predictions for small values of Af' is associated with the fact that the stochastic model is
only allowed to make a decision for whether or not a particle is captured after the particle
has traveled a distance equal to a multiple of the bead diameter, whereas the CTRW
theory makes this decision at every time step. The ratio of distance traveled by the

particle to bead diameter can be estimated using the velocity amplitude w,4 from (2) for
the maximum velocity as

& __V Ar—o@rar—y. (16)

dbead f osc " bead bead
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In terms of this parameter, breakdown in agreement between the stochastic model and the

CTRW theory coincides in Figure 9b with the condition

At'—2— <0.015. (17)

bead

The final numerical parameter examined was the particle release coefficient C,,
which is used in the expression (3) to determine the value of the release threshold ¢, used

to determine if a particle is released from a captured state. The results in Figure 9c
indicate that the CTRW theory predicts a nearly linear increase in the diffusion

coefficient with C,. The CTRW theoretical prediction agrees closely with the stochastic
model prediction for C, <1.8, but above this value the stochastic model prediction
begins to flatten out. These results indicate that C, is the primary numerical parameter

that influences the predictions of the stochastic model.
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Figure 9. Sensitivity study of the dimensionless diffusion coefficient predictions for the
stochastic model (red triangles) and the CTRW theory (black squares) as functions of
three different numerical parameters: (a) C,,, (b) At', and (c) C,. Symbols represent the
mean value and error bars represent the standard deviation of 100 repeated computations
for each point.
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It would be expected that physical parameters, such as the particle and bead
diameters, the frequency and amplitude of oscillation, and the pore size distribution of the
underlying porous medium, would influence the resulting particle diffusion. From these
variables, we selected three dimensionless physical parameters to examine sensitivity of

the predicted dimensionless diffusion coefficient. The first parameter, A/d,,,,

represents the ratio of the maximum amplitude of particle displacement to the bead
diameter. Based on the criterion (17) with the dimensionless time step given in (15), we
would expect the stochastic model predictions to begin deviating from the CTRW theory

for A/d,,,, <1.8, which agrees well with the results in Figure 10a. Because the particle

can only change from a freely oscillating state to a captured state in the stochastic model

if it travels a distance greater than d, ,, the diffusion coefficient predicted by the

stochastic model, shown in Figure 10a, reduces to zero when the maximum distance of

particle displacement (24) is less than d,,, (or A/d,,,, <1/2).

The stochastic model predictions are highly sensitive to the value of the ratio

dld,,, of the particle diameter to the bead diameter. If d/d,,, <b, . /d,,, =0.155,

the particles will always be smaller than the pore size and pass through the pore without
hold-up, with the consequence that the diffusion coefficient will vanish. We note that the
current stochastic model is based on the assumption that particle capture occurs only
from filtration, and it does not include effects of particle adhesion or other forms of

hindering. On the other hand, as d/d,,, gets large, the likelihood of the particle

encountering a pore that is smaller than the particle becomes progressively smaller. This

results in a condition where the particle becomes continually captured by the surrounding
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beads, with rapid decrease in diffusion coefficient. As a result of these two
considerations, we see in Figure 10b that the diffusion coefficient predicted by the

stochastic model has a fairly narrow peak at about d/d,,, =0.2, and reduces rapidly

when d/d,,, is either larger or smaller than this peak value. The location of the peak

bea
value and the narrowness of the profile will be dependent primarily on the parameters

U, and o, that govern the assumed pore size distribution. In the region with highest

pore
diffusion coefficient value within this peak region, the CTRW theory predictions are
close to those of the stochastic model; however, the CTRW theory does not provide an

accurate prediction for values of d/d,,, outside of this peak region.

bea

The final physical parameter examined is o which as shown in Figure 2

pore >
influences the shape of the pore size distribution. The diffusion coefficient predictions for

computations with different values of o is shown in Figure 10c. For small values of

pore

O ,ore » the pore size distribution has a very narrow peak, and hence only a narrow range of

d/d,,, values exhibit significant diffusion. As o, increases, the pore size distribution

pore
widens, and significant diffusion coefficient values are observed for a larger interval of

d/d,,, values. For the value of d/d,,, listed in (15), we observe a significant

decrease in the diffusion coefficient predicted by the stochastic model for o, less than

pore

about 0.9. For values of o above this value, the diffusion coefficient exhibits small

pore

sensitivity to o, . and the predictions of CTRW theory and of the stochastic model are

pore

reasonably close.

27



0.3 AR A L 05 . . . i
025} (@) | (b) ()
e 02} b {1 o4} ]
1
02F o 4 ’
D T Dlosst ,03f ]
0151 1.5.%5?9??‘3@!@?;“}?@?8@@ 1 D
% dp 6 < ¢ 01} 3 b a
0.1 L H 0.2
i B, ¥
3 E 1108%%higegeecn0
00sf * § O55r i g, | 0af i 88440 |
) “BENg g, &
0 -} I i i I I 0 L L L L 1 ;al ; : |
o 1 2A /;’ 4 5 6 0 0.1 0.621/(;,3 04 05 06 ) e
bead bead Opore

Figure 10. Parametric study of the dimensionless diffusion coefficient predictions for the
stochastic model (red triangles) and the CTRW theory (black squares) as functions of
three physical parameters: (a) 4/d,,,,,(b) d/d,,,, ,and (c) o Symbols represent the

mean value and error bars represent the standard deviation of ;{Si) repeated computations
for each point.
4. Conclusions

A study has been performed of the effect of acoustic forcing on enhancement of
diffusion of colloidal particles suspended in a rigid porous bed composed of fixed
spheres. The combination of particle oscillation induced by acoustic forcing and random
hindering due to interaction with the porous bed produces a type of particle random walk.
This combination leads to particle diffusion in the bed via a process known as oscillatory
diffusion. The effective diffusion coefficient associated with this process increases with
amplitude of the acoustic forcing.

A stochastic model was developed to describe the oscillatory diffusion process for
particles in a porous bed in which the particle transitions back and forth between a freely
oscillating state and a captured state. A particle that is initially freely oscillating can
become captured if it moves into a pore space that is smaller than the particle diameter,
where the pore size is assumed to be a log-normally distributed random variable.

However, the particle only moves into a new pore space once it has moved a distance
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equal to the nominal diameter of the beads making up the porous bed, which places a
limit on the frequency that particle state transition can occur. Once a particle is captured,
it can transition back to the freely oscillating state during the particle release process,
which occurs only when the sign of the velocity is opposite that at which the initial
capture occurred. Particle release is allowed to occur when the value of a uniformly-
distributed random variable is less than a threshold value. Example computations using
this stochastic model exhibit many of the theoretical characteristics of random walk
processes, such as a linearly increasing variance, a ratio of kurtosis to square of variance
close to 3.0, and a power spectrum that is inversely proportional to the square of the
frequency. The hold-up times for both the capture state and the freely-oscillating state are
found to be well fit by exponential probability distributions.

The oscillatory diffusion process was described in terms of a continuous time
random walk (CTRW) process by Balakrishnan and Venkataraman (1981b) and includes
an analytical solution for the particle diffusion coefficient; however, some of the
assumptions made in development of this CTRW theory are not consistent with the

physical processes involved for particles in a porous bed. After being non-

dimensionalized by A’f.

0S¢ 2

where A4 is the particle oscillation amplitude in the porous

bed and f

osc

is the oscillation frequency, the dimensionless diffusion coefficient was
found to depend only on the dimensionless particle average hold-up time 7, in the freely

oscillating state.
A parametric study of the stochastic model sensitivity was performed by varying
three dimensionless numerical parameters that control the stochastic model and three

dimensionless physical parameters describing properties of the particle, the porous bed,

29



and the acoustic forcing. The numerical parameters examined included the velocity cut-

off parameter C,,,, the dimensionless time step At', and the coefficient of the release

cut >

threshold C,. The dimensionless diffusion coefficient predicted by the stochastic model

was not sensitive to the first two of these parameters, but the predictions were sensitive to

the value of C,. We obtained good agreement with the experimental data of Marshall et
al. (2021) for a value C, =1, but the optimal value of this parameter could vary on a

case-by-case basis. The physical parameters examined included the ratio of the oscillation

amplitude to the bead diameter 4/d,,,,, the ratio of particle diameter to bead diameter

dl/d,,,, and the parameter o, of the pore size distribution. The stochastic model

pore

predictions for diffusion coefficient were found to decrease rapidly when A4/d,,, was
less than about 2 and to approach zero at 4/d,,,, = 0.5. This result was a consequence of

the physical restriction that particles were not allowed to select a new pore size (and
hence to change states) until they traveled at least one bead diameter. The stochastic

model predictions were not very sensitive to this parameter for values of 4/d,,,, above

2. Similarly, the stochastic model predictions yield diffusion coefficient approaching zero

as the pore size parameter o decreases from 1 to 0.5, but relatively little sensitivity to

pore

this parameter for values of o above 1. The stochastic model exhibited high

pore

sensitivity to d/d,,,, , with diffusion coefficient decreasing for both high values of this

parameter (for which the particles are too large to fit in most of the pore spaces) and low

values of this parameter (for which the particles are smaller than the minimum pore size
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and there is no hindering in the filtration-based model). The maximum diffusion

coefficient was observed for d/d,,,, =0.2.

The dimensionless diffusion coefficient predicted by the stochastic model was
compared with the analytical solution from the CTRW theory. We note that the equation
for diffusion coefficient from the CTRW theory still requires us to estimate the average

hold-up time in the free oscillation state, 7,, from the stochastic model. Regions

exhibiting agreement and disagreement of the stochastic model predictions with the
CTRW theory were identified and explained. A major shortcoming of the CTRW theory
is that it exhibits no dependence on the particle or pore sizes, whereas this dependence is
built into the stochastic model by the mechanism to decide that a particle is captured if its
size is larger than the pore size. Regions of parameter space in which the CTRW theory
did not agree well with the stochastic model were traced to the physical requirement that
a particle must travel a bead diameter before it can pass into a new pore space. This
restriction is enforced in the stochastic model, but not in the CTRW theory.

The major limitation of applicability of the stochastic model proposed in the
current work is the fact that particle hindering was assumed to occur based only on
consideration of particle filtration. This choice was made because the experimental data
from Marshall et al. (2021) used to validate the model used relatively large particles (in
the millimeter size range), for which adhesion forces are small relative to viscous drag.
However, many of the applications for which we hope to apply the model (as listed in
Section 1) involve particles in the nanometer size range, for which adhesion forces would

be expected to be important. Extension of this model to include effects of adhesion both
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in the particle capture process and in determination of the particle release time is a key

objective of future work in this area.
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.Figure Captions

Figure 1. Schematic diagram comparing a freely oscillating particle (blue) and oscillatory
diffusion of a particle in a porous bed (red), both subject to the same oscillating fluid
velocity field v, (7).

Figure 2. Probability density function (P.D.F.) for the distribution of pore size difference
(b—=byn)/ g With different values of the parameters x,,, and o, (a) distribution
for o,,=1and u,, = -3 (A, blue), =2 (B, red), 0 (C, green) and (b) distribution

=0.5 (A, blue), 1.5 (B, red), 2.0 (C, green). The dashed black
curve is the distribution used for the example computation in the current paper ( u,,,,, =

~18, o =1.0).

min

for u,,,=-18 and o

pore

pore
Figure 3. Flow chart of the stochastic model for a particle with diameter d.

Figure 4. Plot showing time variation of a sample experimental trace for y,(¢) (bottom,

left-hand axis) and v, (¢) (top, right-hand axis) for the stochastic model.

Figure 5. Illustration of the diffusive characteristic of the particle motion: (a) traces of 20
particles released from y =0, (b) P.D.F. of particle location for 2000 traces sorted into

50 binsin y/ A, evaluated at time f, t=25.

DSC

Figure 6. Plots showing a variety of statistical measures for the stochastic model
predictions for oscillatory diffusion: (a) the ensemble variance and (b) the ratio of the
kurtosis over the variance squared as functions of time; (c) autocorrelation as a function
of lag time, and (d) power spectrum as a function of frequency. Dashed lines indicate (a)
best fit to slope of variance passing through origin, (b) theoretical value for a normally
distributed process, (c) theoertical solution (10) for a random walk process, and (d)

e o £~ power law solution for a random walk process.

Figure 7. Plots showing results for particle capture-time distribution, including: (a) the
complementary cumulative distribution function C.C.D.F. and (b) the probability density
function (P.D.F.). The data (symbols) were computed from the stochastic model for the
example case described in Section 2. The least-square fits (lines) were obtained using the
exponential distribution in Eq. (9) with 7, =1.82.

Figure 8. Plots showing results for free particle oscillation time distribution, including:
(a) the complementary cumulative distribution function C.C.D.F. and (b) the probability
density function (P.D.F.). The data (symbols) were computed from the stochastic model
for the example case described in Section 2. The least-square fits (lines) were obtained
using the exponential distribution in Eq. (9) with 7, =1.44.
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Figure 9. Sensitivity study of the dimensionless diffusion coefficient predictions for the
stochastic model (red triangles) and the CTRW theory (black squares) as functions of
three different numerical parameters: (a) C,,, (b) At', and (c) C,. Symbols represent the

mean value and error bars represent the standard deviation of 100 repeated computations
for each point.

cut

Figure 10. Parametric study of the dimensionless diffusion coefficient predictions for the
stochastic model (red triangles) and the CTRW theory (black squares) as functions of
three physical parameters: (a) 4/d,,,,,(b) d/d,,,,and (c) o Symbols represent the

pore *
mean value and error bars represent the standard deviation of 100 repeated computations
for each point.
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