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Abstract

I present results for soft anomalous dimensions through three loops for many QCD pro-
cesses. In particular, I give detailed expressions for soft anomalous dimensions in various
processes with electroweak and Higgs bosons as well as single top quarks and top-antitop
pairs.

Copyright N. Kidonakis.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 29-09-2021
Accepted 28-02-2022
Published 22-06-2022

Check for
updates

doi:10.21468/ciPostPhysProc.7.046

1 Introduction

The calculation of higher-order soft-gluon corrections in perturbative QCD requires calcula-
tions of soft anomalous dimensions, ΓS , for the corresponding processes [1]. The current
state-of-the-art for ΓS for many processes is three loops. In this paper, I present results for ΓS
for various processes at hadron colliders. These include processes with W , Z , γ, and H bosons,
as well as single-top and top-pair production, and 2 → 3 processes involving top quarks pro-
duced in association with electroweak or Higgs bosons.

Soft-gluon corrections are very important because they are typically large and they dom-
inate the perturbative corrections for a multitude of processes, especially those involving top
quarks. We consider partonic processes pa + pb → p1 + p2 + · · · and define s = (pa + pb)2,
t = (pa − p1)2, u = (pb − p1)2 and s4 = s + t + u−

P

m2
i . At partonic threshold s4 → 0, and

the soft corrections at order αn
s involve logarithmic terms of the form lnk(s4/M

2)/s4, with M
a hard scale and k ≤ 2n−1. In order to resum these soft corrections in the (differential) cross
section at NLL, NNLL, and N3LL accuracy, we need to calculate soft anomalous dimensions at,
correspondingly, one loop, two loops, and three loops.

If we take transforms of the cross section, with transform variable N , then we can write a
factorized expression as

σab→12···(N) = tr
§

Hab→12··· Sab→12···
� p

s
NµF

�ª

ψa (Na,µF ) ψb (Nb,µF )
Y

Ji (N ,µF ) ,
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where theψ and J functions describe collinear emission from incoming and outgoing partons,
Hab→12··· is a short-distance hard function, and Sab→12··· is a soft function which describes
soft-gluon emission [1] and which satisfies the renormalization group equation

�

µR
∂

∂ µR
+ β(gs)

∂

∂ gs

�

Sab→12··· = −Γ † ab→12···
S Sab→12··· − Sab→12··· Γ ab→12···

S .

The soft anomalous dimension Γ ab→12···
S controls the evolution of the soft function which gives

the exponentiation of logarithms of N in the resummed cross section. For a recent review of
soft anomalous dimensions for many QCD processes, see Ref. [2].

2 Cusp anomalous dimension

The cusp anomalous dimension [3–9] is the simplest type of ΓS and a basic ingredient of calcu-
lations for QCD processes. For eikonal lines with momenta pi and p j we define the cusp angle

θ = cosh−1(pi · p j/
Ç

p2
i p2

j ). The perturbative series is Γcusp =
P∞

n=1(αs/π)n Γ (n)cusp where at one

loop Γ (1)cusp = CF (θ cothθ − 1), at two loops

Γ (2)cusp = K2 Γ
(1)
cusp +

1
2

CF CA

�

1+ ζ2 + θ
2 − cothθ

�

ζ2θ + θ
2 +
θ3

3
+ Li2

�

1− e−2θ
�

�

+ coth2 θ

�

−ζ3 + ζ2θ +
θ3

3
+ θ Li2

�

e−2θ
�

+ Li3
�

e−2θ
�

��

,

and at three loops Γ (3)cusp = K3Γ
(1)
cusp + 2 K2(Γ (2)cusp − K2 Γ

(1)
cusp) + C (3), where K3 and C (3) have long

expressions (see Refs. [2,9] for explicit expressions) and K2 = CA(67/36− ζ2/2)− (5/18)n f .
In the case of the production of heavy-quark pairs, with mass m, we can also write the

above expressions in terms of β = tanh(θ/2) =
p

1− (4m2/s), and denote them by Γ
(n)β
cusp .

If eikonal line i represents a massive quark and eikonal line j a massless quark, then we
have simpler expressions. At one loop Γ

(1)mi
cusp = CF [ln(2pi · p j/(mi

p
s)) − 1/2], at two loops

Γ
(2)mi
cusp = K2 Γ

(1)mi
cusp + (1/4)CF CA(1− ζ3), and at three loops

Γ (3)mi
cusp = K3 Γ

(1)mi
cusp +

1
2

K2CF CA(1− ζ3) + CF C2
A

�

−
1
4
+

3
8
ζ2 −

ζ3

8
−

3
8
ζ2ζ3 +

9
16
ζ5

�

.

If both eikonal lines are massless, then Γmassless
cusp = CF ln(2pi · p j/s)

P∞
n=1(αs/π)n Kn.

3 ΓS for some simple processes

For processes with trivial color structure, the soft anomalous dimension is very simple. In fact
ΓS vanishes for the following: Drell-Yan processes qq̄ → γ∗, qq̄ → Z; W -boson production
via qq̄0 → W±; Higgs production via bb̄ → H and g g → H; electroweak-boson pair pro-
duction qq̄ → γγ, qq̄ → Z Z , qq̄ → W+W−; production of two different electroweak bosons
qq̄ → γZ , qq̄0→W±γ, qq̄0→W±Z; charged Higgs production via bb̄ → H−W+, bb̄ → H+H−,
g g → H+H−.

Also, for Deep Inelastic Scattering (DIS), lq → lq with subprocess qγ∗→ q, we have at one
loop: Γ

(1)qγ∗→q
S = CF ln(−t/s); at two loops: Γ

(2)qγ∗→q
S = K2 CF ln(−t/s); and at three loops:

Γ
(3)qγ∗→q
S = K3 CF ln(−t/s).
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More generally, when all external lines in a process are massless, then Γ
(2)
S is proportional

to Γ
(1)
S [10], but this is not true for processes with massive lines. Furthermore, at three loops

for multi-leg scattering there are contributions from four-parton correlations [11].

4 ΓS for large-pT W , Z , γ, H production

Let V denote a W or Z boson or a photon or a Higgs boson. The soft anomalous dimension
for these processes is a simple function (not a matrix) [12–14] (see also [2]).

For the processes qg → W±q0, qg → Zq, qg → γq, and bg → H b, we have at one loop:
Γ
(1)qg→Vq0

S = CF ln(−u/s) + (CA/2) ln(t/u); at two loops: Γ
(2)qg→Vq0

S = K2 Γ
(1)qg→Vq0

S ; and at

three loops: Γ
(3)qg→Vq0

S = K3 Γ
(1)qg→Vq0

S . The same ΓS also describes the reverse processes such
as γq → qg.

For the processes qq̄0 → W±g, qq̄ → Z g, qq̄ → γg, and bb̄ → H g, we have at one loop:
Γ
(1)qq̄0→V g
S = (CA/2) ln(tu/s2); at two loops: Γ

(2)qq̄0→V g
S = K2 Γ

(1)qq̄0→V g
S ; and at three loops:

Γ
(3)qq̄0→V g
S = K3 Γ

(1)qq̄0→V g
S . The same ΓS also describes the reverse processes such as γg → qq̄.

5 ΓS for single-top production

We continue with results for single-top production [15–19] (see also [2,20].
For single-top t-channel production, Γ bq→tq0

S is a 2×2 matrix [15,18,19]. Using a t-channel
singlet-octet color basis, the matrix elements are at one loop

Γ
(1)bq→tq0

S 11 = CF

�

ln

�

t(t −m2
t )

mts3/2

�

−
1
2

�

, Γ
(1)bq→tq0

S 12 =
CF

2Nc
ln

�

u(u−m2
t )

s(s−m2
t )

�

,

Γ
(1)bq→tq0

S 21 = ln

�

u(u−m2
t )

s(s−m2
t )

�

, Γ
(1)bq→tq0

S 22 =
CA

2

�

ln

�

u(u−m2
t )

mt s3/2

�

−
1
2

�

+
�

CF −
CA

2

�

�

ln

�

t(t −m2
t )

mt s3/2

�

−
1
2
+ 2 ln

�

u(u−m2
t )

s(s−m2
t )

��

,

at two loops

Γ
(2)bq→tq0

S 11 = K2 Γ
(1)bq→tq0

S 11 +
1
4

CF CA(1− ζ3) , Γ
(2)bq→tq0

S 12 = K2 Γ
(1)bq→tq0

S 12 ,

Γ
(2)bq→tq0

S 21 = K2 Γ
(1)bq→tq0

S 21 , Γ
(2)bq→tq0

S 22 = K2 Γ
(1)bq→tq0

S 22 +
1
4

CF CA(1− ζ3) ,

and at three loops

Γ
(3)bq→tq0

S 11 = K3 Γ
(1)bq→tq0

S 11 +
1
2

K2CF CA(1− ζ3) + CF C2
A

�

−
1
4
+

3
8
ζ2 −

ζ3

8
−

3
8
ζ2ζ3 +

9
16
ζ5

�

,

Γ
(3)bq→tq0

S 12 = K3 Γ
(1)bq→tq0

S 12 + X (3)bq→tq0

12 , Γ
(3)bq→tq0

S 21 = K3 Γ
(1)bq→tq0

S 21 + X (3)bq→tq0

21 ,

Γ
(3)bq→tq0

S 22 = K3 Γ
(1)bq→tq0

S 22 +
1
2

K2CF CA(1− ζ3) + CF C2
A

�

−
1
4
+

3
8
ζ2 −

ζ3

8
−

3
8
ζ2ζ3 +

9
16
ζ5

�

+ X (3)bq→tq0

22 ,

where the X (3)bq→tq0

i j denote unknown terms from four-parton correlations in the last three
matrix elements at three loops. It is important to note that due to the color structure of this
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process, only the first three-loop matrix element, Γ (3)bq→tq0

S 11 , contributes to the N3LO soft-gluon
corrections; therefore, the unknown terms in the other three-loop matrix elements do not pose
a problem in deriving N3LO results.

For single-top s-channel production, Γ qq̄0→t b̄
S is also a 2× 2 matrix [15, 16, 19]. Using an

s-channel singlet-octet color basis, we have at one loop

Γ
(1)qq̄0→t b̄
S 11 = CF

�

ln

�

s−m2
t

mt
p

s

�

−
1
2

�

, Γ
(1)qq̄0→t b̄
S 12 =

CF

2Nc
ln

�

t(t −m2
t )

u(u−m2
t )

�

,

Γ
(1)qq̄0→t b̄
S 21 = ln

�

t(t −m2
t )

u(u−m2
t )

�

, Γ
(1)qq̄0→t b̄
S 22 =

CA

2

�

ln

�

t(t −m2
t )

mt s3/2

�

−
1
2

�

+
�

CF −
CA

2

�

�

ln

�

s−m2
t

mt
p

s

�

−
1
2
+ 2 ln

�

t(t −m2
t )

u(u−m2
t )

��

,

at two loops

Γ
(2)qq̄0→t b̄
S 11 = K2 Γ

(1)qq̄0→t b̄
S 11 +

1
4

CF CA(1− ζ3) , Γ
(2)qq̄0→t b̄
S 12 = K2 Γ

(1)qq̄0→t b̄
S 12 ,

Γ
(2)qq̄0→t b̄
S 21 = K2 Γ

(1)qq̄0→t b̄
S 21 , Γ

(2)qq̄0→t b̄
S 22 = K2 Γ

(1)qq̄0→t b̄
S 22 +

1
4

CF CA(1− ζ3) ,

and at three loops

Γ
(3)qq̄0→t b̄
S 11 = K3 Γ

(1)qq̄0→t b̄
S 11 +

1
2

K2CF CA(1− ζ3) + CF C2
A

�

−
1
4
+

3
8
ζ2 −

ζ3

8
−

3
8
ζ2ζ3 +

9
16
ζ5

�

,

Γ
(3)qq̄0→t b̄
S 12 = K3 Γ

(1)qq̄0→t b̄
S 12 + X (3)qq̄0→t b̄

12 , Γ
(3)qq̄0→t b̄
S 21 = K3 Γ

(1)qq̄0→t b̄
S 21 + X (3)qq̄0→t b̄

21 ,

Γ
(3)qq̄0→t b̄
S 22 = K3 Γ

(1)qq̄0→t b̄
S 22 +

1
2

K2CF CA(1− ζ3) + CF C2
A

�

−
1
4
+

3
8
ζ2 −

ζ3

8
−

3
8
ζ2ζ3 +

9
16
ζ5

�

+ X (3)qq̄0→t b̄
22 ,

where the X (3)qq̄0→t b̄
i j denote unknown terms in the last three matrix elements. Again, we note

that only the first three-loop matrix element, Γ
(3)qq̄0→t b̄
S 11 , contributes to the N3LO soft-gluon

corrections.
For associated tW production the soft anomalous dimension is a simple function [15, 17,

19]. At one loop

Γ
(1)bg→tW
S = CF

�

ln

�

m2
t − t

mt
p

s

�

−
1
2

�

+
CA

2
ln

�

u−m2
t

t −m2
t

�

,

at two loops

Γ
(2)bg→tW
S = K2 Γ

(1)bg→tW
S +

1
4

CF CA(1− ζ3) ,

and at three loops

Γ
(3)bg→tW
S = K3 Γ

(1)bg→tW
S +

1
2

K2CF CA(1− ζ3) + CF C2
A

�

−
1
4
+

3
8
ζ2 −

ζ3

8
−

3
8
ζ2ζ3 +

9
16
ζ5

�

.

The same soft anomalous dimension applies for the process bg → tH−, and for the FCNC
processes, via anomalous top-quark couplings, qg → tZ , qg → tZ 0, and qg → tγ.
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6 ΓS for top-antitop pair production

We continue with soft anomalous dimension matrices for t t̄ production [1, 7, 21, 22] (see
also [2,20]).

For top-antitop pair production via the qq̄ → t t̄ channel, Γ qq̄→t t̄
S is a 2× 2 matrix and we

use an s-channel singlet-octet color basis. At one loop for qq̄ → t t̄

Γ
(1)qq̄→t t̄
S 11 = Γ (1)βcusp , Γ

(1)qq̄→t t̄
12 =

CF

CA
ln

�

t −m2
t

u−m2
t

�

, Γ
(1)qq̄→t t̄
21 = 2 ln

�

t −m2
t

u−m2
t

�

,

Γ
(1)qq̄→t t̄
22 =

�

1−
CA

2CF

�

Γ (1)cusp + 4CF ln

�

t −m2
t

u−m2
t

�

−
CA

2

�

1+ ln

�

sm2
t (t −m2

t )
2

(u−m2
t )4

��

,

and at two loops

Γ
(2)qq̄→t t̄
S 11 = Γ (2)βcusp , Γ

(2)qq̄→t t̄
12 =

�

K2 − CA Nβ2
�

Γ
(1)qq̄→t t̄
12 , Γ

(2)qq̄→t t̄
21 =

�

K2 + CA Nβ2
�

Γ
(1)qq̄→t t̄
21 ,

Γ
(2)qq̄→t t̄
22 = K2Γ

(1)qq̄→t t̄
22 +

�

1−
CA

2CF

�

�

Γ (2)βcusp − K2Γ
(1)β
cusp

�

+
1
4

C2
A(1− ζ3) ,

where

Nβ2 =
1
4

ln2
�

1− β
1+ β

�

+
(1+ β2)

8β

�

ζ2 − ln2
�

1− β
1+ β

�

− Li2

�

4β
(1+ β)2

��

.

At three loops for qq̄ → t t̄ we can write the last matrix element as

Γ
(3)qq̄→t t̄
S 22 = K3 Γ

(1)qq̄→t t̄
S 22 +

�

1−
CA

2CF

�

�

Γ (3)βcusp − K3Γ
(1)β
cusp

�

+
1
2

K2C2
A(1− ζ3)

+ C3
A

�

−
1
4
+

3
8
ζ2 −

ζ3

8
−

3
8
ζ2ζ3 +

9
16
ζ5

�

+ X (3)qq̄→t t̄
22 ,

where X (3)qq̄→t t̄
22 denotes unknown three-loop contributions from four-parton correlations. The

other matrix elements are also not fully known at three loops, but they have an analogous
structure to that at two loops (essentially, replace (2)’s by (3)’s in the superscripts as well as
replace K2’s by K3’s, and add X terms for unknown contributions).

For top-antitop pair production via the g g → t t̄ channel, Γ g g→t t̄
S is a 3× 3 matrix, and we

use a color basis c1 = δabδ12, c2 = dabc T c
12, c3 = i f abc T c

12. We have

Γ
g g→t t̄
S =









Γ
g g→t t̄
S 11 0 Γ

g g→t t̄
S 13

0 Γ
g g→t t̄
S 22 Γ

g g→t t̄
S 23

Γ
g g→t t̄
S 31 Γ

g g→t t̄
S 32 Γ

g g→t t̄
S 22









.

At one loop for g g → t t̄

Γ
(1)g g→t t̄
S 11 = Γ (1)βcusp , Γ

(1)g g→t t̄
S 13 = ln

�

t −m2
t

u−m2
t

�

, Γ
(1)g g→t t̄
S 31 = 2 ln

�

t −m2
t

u−m2
t

�

,

Γ
(1)g g→t t̄
S 22 =

�

1−
CA

2CF

�

Γ (1)βcusp +
CA

2

�

ln

�

(t −m2
t )(u−m2

t )

s m2
t

�

− 1

�

,

Γ
(1)g g→t t̄
S 23 =

CA

2
ln

�

t −m2
t

u−m2
t

�

, Γ
(1)g g→t t̄
S 32 =

(N2
c − 4)

2Nc
ln

�

t −m2
t

u−m2
t

�

,
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and at two loops

Γ
(2)g g→t t̄
S 11 = Γ (2)βcusp , Γ (2)g g→t t̄

S 13 =
�

K2 − CANβ2
�

Γ
(1)g g→t t̄
S 13 , Γ (2)g g→t t̄

S 31 =
�

K2 + CANβ2
�

Γ
(1)g g→t t̄
S 31 ,

Γ
(2)g g→t t̄
S 22 = K2 Γ

(1)g g→t t̄
S 22 +

�

1−
CA

2CF

�

�

Γ (2)βcusp − K2Γ
(1)β
cusp

�

+
1
4

C2
A(1− ζ3) ,

Γ
(2)g g→t t̄
S 23 = K2 Γ

(1)g g→t t̄
S 23 , Γ

(2)g g→t t̄
S 32 = K2 Γ

(1)g g→t t̄
S 32 .

At three loops for g g → t t̄, we can write the 22 matrix element as

Γ
(3)g g→t t̄
S 22 = K3 Γ

(1)g g→t t̄
S 22 +

�

1−
CA

2CF

�

�

Γ (3)βcusp − K3Γ
(1)β
cusp

�

+
1
2

K2C2
A(1− ζ3)

+ C3
A

�

−
1
4
+

3
8
ζ2 −

ζ3

8
−

3
8
ζ2ζ3 +

9
16
ζ5

�

+ X (3)g g→t t̄
22 ,

where X (3)g g→t t̄
22 denotes unknown three-loop contributions from four-parton correlations. The

other matrix elements are, again, also not fully known at three loops, but they have an analo-
gous structure to that at two loops.

7 ΓS for tqH, tqZ , tqγ, tqW production

We consider processes bq → tq0H as well as bq → tq0Z , bq → tq0γ, bq → tqW−, qq → tq0W+.
We use a t-channel singlet-octet color basis, and we further define s0 = (p1+p2)2, t 0 = (pb−p2)2,
u0 = (pa− p2)2. All these processes have the same soft anomalous dimension matrix [23]. We
have at one loop

Γ
(1) bq→tq0H
S 11 = CF

�

ln

�

t 0(t −m2
t )

mts3/2

�

−
1
2

�

,

Γ
(1) bq→tq0H
S 12 =

CF

2Nc
ln

�

u0(u−m2
t )

s(s0 −m2
t )

�

, Γ
(1) bq→tq0H
S 21 = ln

�

u0(u−m2
t )

s(s0 −m2
t )

�

,

Γ
(1) bq→tq0H
S 22 = CF

�

ln

�

t 0(t −m2
t )

mts3/2

�

−
1
2

�

−
1
Nc

ln

�

u0(u−m2
t )

s(s0 −m2
t )

�

+
Nc

2
ln

�

u0(u−m2
t )

t 0(t −m2
t )

�

,

at two loops

Γ
(2) bq→tq0H
S 11 = K2 Γ

(1) bq→tq0H
S 11 +

1
4

CF CA(1− ζ3) , Γ
(2) bq→tq0H
S 12 = K2 Γ

(1) bq→tq0H
S 12 ,

Γ
(2) bq→tq0H
S 21 = K2 Γ

(1) bq→tq0H
S 21 , Γ

(2) bq→tq0H
S 22 = K2 Γ

(1) bq→tq0H
S 22 +

1
4

CF CA(1− ζ3) ,

and at three loops

Γ
(3)bq→tq0H
S 11 = K3 Γ

(1)bq→tq0H
S 11 +

1
2

K2CF CA(1− ζ3) + CF C2
A

�

−
1
4
+

3
8
ζ2 −

ζ3

8
−

3
8
ζ2ζ3 +

9
16
ζ5

�

,

Γ
(3)bq→tq0H
S 12 = K3 Γ

(1)bq→tq0H
S 12 + X (3)bq→tq0H

12 , Γ
(3)bq→tq0H
S 21 = K3 Γ

(1)bq→tq0H
S 21 + X (3)bq→tq0H

21 ,

Γ
(3)bq→tq0H
S 22 = K3 Γ

(1)bq→tq0H
S 22 +

1
2

K2CF CA(1− ζ3) + CF C2
A

�

−
1
4
+

3
8
ζ2 −

ζ3

8
−

3
8
ζ2ζ3 +

9
16
ζ5

�

+ X (3)bq→tq0H
22 ,

where the X (3)bq→tq0H
i j denote unknown terms in the last three matrix elements which, however,

do not contribute to the soft-gluon corrections at N3LO.
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We next consider the processes qq̄0→ t b̄H as well as qq̄0→ t b̄Z , qq̄0→ t b̄γ, qq̄ → t b̄W−,
qq̄0→ tq̄00W+, which all have the same soft anomalous dimension matrix [23], and we use an
s-channel singlet-octet color basis. We have at one loop

Γ
(1)qq̄0→t b̄H
S 11 = CF

�

ln

�

s0 −m2
t

mt
p

s

�

−
1
2

�

,

Γ
(1)qq̄0→t b̄H
S 12 =

CF

2Nc
ln

�

t 0(t −m2
t )

u0(u−m2
t )

�

, Γ
(1)qq̄0→t b̄H
S 21 = ln

�

t 0(t −m2
t )

u0(u−m2
t )

�

,

Γ
(1)qq̄0→t b̄H
S 22 = CF

�

ln

�

s0 −m2
t

mt
p

s

�

−
1
2

�

−
1
Nc

ln

�

t 0(t −m2
t )

u0(u−m2
t )

�

+
Nc

2
ln

�

t 0(t −m2
t )

s(s0 −m2
t )

�

,

at two loops

Γ
(2)qq̄0→t b̄H
S 11 = K2 Γ

(1)qq̄0→t b̄H
S 11 +

1
4

CF CA(1− ζ3) , Γ
(2)qq̄0→t b̄H
S 12 = K2 Γ

(1)qq̄0→t b̄H
S 12 ,

Γ
(2)qq̄0→t b̄H
S 21 = K2 Γ

(1)qq̄0→t b̄H
S 21 , Γ

(2)qq̄0→t b̄H
S 22 = K2 Γ

(1)qq̄0→t b̄H
S 22 +

1
4

CF CA(1− ζ3) ,

and at three loops

Γ
(3)qq̄0→t b̄H
S 11 = K3 Γ

(1)qq̄0→t b̄H
S 11 +

1
2

K2CF CA(1− ζ3) + CF C2
A

�

−
1
4
+

3
8
ζ2 −

ζ3

8
−

3
8
ζ2ζ3 +

9
16
ζ5

�

,

Γ
(3)qq̄0→t b̄H
S 12 = K3 Γ

(1)qq̄0→t b̄H
S 12 + X (3)qq̄0→t b̄H

12 , Γ
(3)qq̄0→t b̄H
S 21 = K3 Γ

(1)qq̄0→t b̄H
S 21 + X (3)qq̄0→t b̄H

21 ,

Γ
(3)qq̄0→t b̄H
S 22 = K3 Γ

(1)qq̄0→t b̄H
S 22 +

1
2

K2CF CA(1− ζ3) + CF C2
A

�

−
1
4
+

3
8
ζ2 −

ζ3

8
−

3
8
ζ2ζ3 +

9
16
ζ5

�

+ X (3)qq̄0→t b̄H
22 ,

where the X (3)qq̄0→t b̄H
i j denote unknown terms in the last three matrix elements which, however,

do not contribute to the soft-gluon corrections at N3LO.

8 Conclusion

Soft anomalous dimensions are fundamental in describing soft-gluon emission in QCD pro-
cesses. In this contribution, I presented results for soft anomalous dimensions for many pro-
cesses through three loops. These results are needed in calculations of high-order corrections.
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