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Rapid turbulence approximation on and around a vehicle is necessary for development of
improved flight simulators for helicopters and aircraft, used both for pilot training and for
video gaming applications. Predictions of synthetic turbulence methods must have both
temporally and spatially accurate statistics compared to actual turbulence for the given
turbulence mean velocity and Reynolds stress tensor. The stochastic vortex structure (SVS)
method was recently proposed for turbulent flows with interacting particles, and shown to
generate accurate statistical measures for homogeneous turbulence and for turbulent shear
flows. Since the velocity in flight simulators is required only on target points near the flight
vehicle, the current paper modifies the SVS method by (1) moving and rotating the vortex
structures via stochastic differential equations and (2) introducing vortices only in a
restricted vortex region surrounding the aircraft. This local stochastic vortex structure
(LSVS) method decreases the SVS computational speed by several orders of magnitude,
making it feasible for real-time turbulence computation in flight simulators. The proposed
method is validated by comparing results for different statistical measures with predictions
from direct numerical simulation (DNS) of homogeneous turbulence. Sensitivity of the

different measures with numerical parameters in the LSVS model is examined.
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Nomenclature

vortex rotation matrix

position vector of vortex blob centroid

vortex blob amplitude vector

forcing coefficient

Lagrangian structure function

rate of deformation tensor (symmetric part of velocity gradient)
width of the vortex domain

frequency

small-wavenumber forcing vector

force vector in Fourier-transformed Navier-Stokes equations
wavenumber magnitude

wavenumber vector

turbulence integral length scale

vortex length
number of target points
number of uniformly-spaced test points on a sphere

number of vortex blobs per vortex structure
number of vortices per unit volume
number of vortices

incomplete gamma function

projection operator for Fourier transformed Navier-Stokes equations
turbulence kinetic energy

displacement used for Eulerian structure function

Reynolds stress tensor

displacement vector used in Biot-Savart equation
magnitude of s
dimensionless Eulerian longitudinal structure function of order n

Eulerian longitudinal structure function of order »
time step

time

time at which nth vortex structure is initiated
dimensionless Eulerian longitudinal structure function of order n
Eulerian transverse structure function of order »
turbulence integral time scale

eddy turn-over time scale

vortex life time

turbulence root-mean-square velocity

fluctuation velocity components

mean velocity vector



= translation speed of target points

= vorticity tensor (skew-symmetric part of velocity gradient)

= centroid position vector for vortex structure

&

v = vortex translation velocity

X

y position vector of target point

a,, a,, a, = proportionality coefficients (Eq. (2))

B = vortex blob overlap coefficient
I, = strength of nth vortex
0 = vortex core radius
& = rate of turbulence dissipation per unit volume
&, €5, &, N = Euler parameters
§, =  orientation vector of nth vortex
n = turbulence Kolmogorov length scale
v = fluid kinematic viscosity
dé = Gaussian distributed random variable with variance At
p =  autocorrelation function
o, =  variance of fluctuating velocity
7 = lagtime in autocorrelation function
., =  age of nth vortex structure
7,, =  age of nth vortex at formation
(0 vorticity vector
Q rotation rate of vortex structure



I. Introduction

Problems involving synthetic turbulence generation on an object in a turbulent flow are
important for operation of flight simulators, used for military and commercial pilot training and
for video gaming applications. Flight in turbulent flow conditions is particularly important in
activities such as landing a helicopter on a ship [1,2], for which the turbulence structure is
anisotropic, inhomogeneous and sensitive to the wind direction relative to the ship. In such
applications, the synthetic turbulence generation must be sufficiently rapid to run in real-time
and it must be both temporally and spatially consistent with actual turbulence.

The turbulent fluctuations on a Lagrangian particle in a turbulent flow can be well
modeled using a stochastic Lagrangian method (SLM) [3,4], in which a stochastic differential
equation is solved for each component of the fluctuating velocity field. The SLM approach is a
rapid and accurate method which is widely used for simulation of turbulence in particulate flows
[5]. However, while SLM can accurately simulate turbulence time scales, it’s inability to
accurately generate structural features of turbulence makes SLM unsuitable to this application
[6]. There are two reasons for this statement. First, in many flight simulator applications, it is
desired to know the velocity at more than one point around the object. For instance, to compute
the moments acting on an aircraft one would need to know the fluid velocity field on a small
stencil of points surrounding the vessel. The correlation between the fluctuating velocities on this
stencil cannot be accurately generated using an SLM approach because in SLM the stochastic
forcing at nearby points is not correlated, unlike the case in real turbulence. Since the moments
depend on the difference in these local velocities, they are very sensitive to errors associated with

lack of correlation in the SLM approach. Secondly, the turbulence time scales observed by the



moving object depend in part on the velocity of the object through the fluid, which in turn
requires knowledge of the spatial structure of the turbulence.

A variety of other synthetic turbulence methods have been developed for estimation of
inlet and initial conditions for large-eddy simulation and discrete-eddy simulation calculations
[7-9]. Synthetic turbulence approaches [10,11] represent the turbulence using a random velocity
field that is constrained to be incompressible and that when averaged, yields mean Reynolds
stress quantities that are consistent with desired values, e.g., such as those computed using a
Reynolds-Averaged Navier-Stokes (RANS) simulation method. For convenience, the velocity
fluctuations are typically assumed to have a normal distribution. Huang et al. [12] showed that
previous synthetic turbulence methods yield an incorrect energy spectrum, and they proposed a
new approach to generate a flow field with the correct spectrum. A review of synthetic
turbulence methods is given by Tabor and Baba-Ahmadi [13], with particular focus on inlet flow
conditions for large eddy simulation.

One shortcoming of existing synthetic turbulence models for simulation of turbulence on
a moving body is that these models typically do not accurately predict the coherent eddy
structures of the turbulent flow. The scaling and structure of coherent vortices was examined by
Jiménez et al. [14] in homogeneous turbulence based on results of high-resolution direct
numerical simulations (DNS) and by Berlin et al. [15] in a turbulent shear flow using
experiments with low-temperature helium gas. Both studies found that the turbulent vorticity
field is dominated by a set of strong (coherent) vortices of finite length and with tubular shape,
surrounded by a sea of weak random (non-coherent) vorticity. The length and core radius of the
coherent vortices were found to scale with the Lagrangian integral length scale and the

Kolmogorov length scale, respectively, and the vortex strength was found to scale with the



square root of the microscale Reynolds number. An early theoretical model of turbulence as a
collection of Burgers vortices was proposed by Townsend [16], and further analyses of the
statistical properties of this and related vortex systems are given by Refs. [17-21]. Kivotides and
Leonard [22] report results of a computation in which homogeneous turbulence is represented by

a set of finite-length vortex structures, and show that this system generates an energy spectrum

that satisfies the Kolmogorov k™" scaling in the turbulence inertial range. Extensions of the
vortex filament method were presented by Peter Bernard’s group for turbulent mixing layers
[23], co-flowing jets [24], and turbulent boundary layers [25], which demonstrated highly
successful comparisons between the vortex filament representations and data from experimental
and direct numerical simulations.

Recent work utilizing a vortex structural representation for turbulent transport of a
particulate fluid with large number of interacting particles was proposed by Ayyalasomayajula et
al. [26], who proposed a model in which turbulent eddies are represented by a two-dimensional
vortex array and a stochastic algorithm is used to vary the strength of each vortex in time. This
simple model was shown to yields reasonable results for particle acceleration statistics and
clustering. A three-dimensional stochastic vortex structure (SVS) model was proposed by Sala
and Marshall [6] for prediction of turbulent particle transport. In this model, the turbulent
vorticity field is approximated by a set of finite-length, fixed vortex structures which are
randomly positioned and oriented in the flow field. Unlike the vortex filament method, the SVS
method does not use the vortex structures to evolve the flow field; rather, they are used as a
kinematic representation to approximate a subgrid-scale synthetic turbulence to use for particle
evolution in a flow with a given Reynolds stress distribution. An accelerated version of the SVS

model was recently developed by Dizaji and Marshall [27] using the fast multipole method.



Predictions of the SVS model for particle collision rate were found to be in close agreement with
DNS predictions of homogeneous turbulence for a wide range of fluid and particulate measures,
including turbulence energy spectrum, probability density functions for velocity, acceleration
and vorticity, particle collision rate, and fractal dimension and size distributions of agglomerates
formed of adhesive particles. The SVS method was applied to particle transport in anisotropic,
inhomogeneous turbulence by Dizaji et al. [28], which proposed an inverse procedure by which
the vortex orientations can be specified to yield a given Reynolds stress field.

The SVS formulations for particulate flows compute the synthetic fluctuating velocity
field on all points of a grid covering the computational domain, and then interpolate the fluid
velocity onto a set of particles transported by the flow. The vortex structures are transported and
rotated by the induced flow field, obtained by interpolation from the computational grid. While
this formulation of the SVS method is suitable for simulations of particulate fluids with a large
number of particles spread out over the flow domain, it requires computation of the fluctuating
velocity on a large number of grid points and is therefore inefficient for simulating turbulence on
a small number of target points near a single object traversing the flow field. In the current paper,
we present a new localized stochastic vortex structure (LSVS) method that is designed for
rapidly generating synthetic turbulence in the vicinity of a single object traveling through a
turbulent flow. The LSVS method is described in Section 2 of the paper. In Section 3, we
validate this method against DNS results for an object in a homogeneous turbulent flow.

Conclusions are given in Section 4.



I1. Synthetic Turbulence Simulation with Stochastic Vortex Structures

We seek to develop a rapid, statistically-accurate method for constructing a synthetic

fluctuating fluid velocity field characteristic of that acting on an object traversing a turbulent

flow. It is assumed that the Reynolds stress distribution in the turbulent flow is known (e.g., via a

prior RANS simulation), and for convenience it is assumed that the turbulence is statistically

stationary. In addition to the simulation being rapid, we desire that the synthetic turbulence field

possess the following properties:

that the velocity field be incompressible;

that the fluctuating velocity is consistent with the £~"° Kolmogorov scaling of the
power spectrum in the inertial range for homogeneous turbulence;

that it is consistent with the observed Gaussian distribution for the probability density
function (p.d.f.) of the velocity field and with the fat-tail distribution [29] of the p.d.f. of
the acceleration field;

that it correctly predicts the two-point velocity correlation in the turbulent flow; and
that Reynolds stress distribution induced by the synthetic fluctuating velocity field is
consistent with the prescribed Reynolds stress distribution used to initialize the vortex

structures.

The first of these properties is identically satisfied from the use of the Biot-Savart equation to

compute the induced velocity. The second and third of these properties has been demonstrated

for the stochastic vortex structure (SVS) method in homogeneous isotropic turbulence by Refs.

[6, 27], exhibiting excellent agreement between the SVS method predictions and results of direct

numerical simulations (DNS). The fourth property has not yet been directly established, but hints

that the SVS method might be consistent with this property are apparent from the results of Ref.



[27], who showed that the SVS method correctly predicts the vorticity p.d.f. distribution in
homogeneous turbulence and that the method also correctly predicts particle collision rate and
formation of particle agglomerates, all of which depend on accurate prediction of relative
velocity at two nearby points. We will examine this fourth property further in the present paper.
The fifth property was examined by Ref. [28], who developed and validated an inverse technique
that can be used to set vortex orientation and strengths to correctly reproduce a given
(anisotropic) Reynolds stress field for turbulent shear flows.

The previous papers written using the SVS method have focused on flows with large
number of particles spread throughout the flow field. The SVS method computed the synthetic
turbulent flow on all points of a Cartesian grid covering the flow, and then this fluctuating fluid
velocity was interpolated onto the Lagrangian particles. A fast multipole method (FMM)
developed for acceleration of the velocity calculation in the SVS method proposed for particulate
flows was designed explicitly for estimating the synthetic velocity throughout the flow field, and
was found to provide over two orders of magnitude reduction in computational time for the
velocity field with negligible error [27]. This FMM acceleration method would not be efficient if
applied to the problem addressed in the current paper, however, in which we desire to estimate
the synthetic velocity on a small set of points which are closely clustered in space. Similarly, the
method by which the vortex structures are transported using the computed velocity field on the
grid covering the flow field would not be efficient for the current problem, as it would
necessitate computing the fluctuating velocity not only on a small set of clustered points, but
everywhere over the computational grid. The primary focus of the current paper is to develop a

new localized stochastic vortex structure (LSVS) model can be used to rapidly generate synthetic



velocity fluctuations satisfying the above set of properties on a small set of closely clustered

target points.

A. Localized Stochastic Vortex Structure Method

The stochastic vortex structure model generates the synthetic fluctuating velocity field u
induced by a collection of vortex structures placed and oriented randomly within the flow field.
Since in the current paper we are interested only in the fluctuating velocity on a small set of

clustered target points, located at positions y, (¢), m=1,...,M , we are primarily interested in

vortex structures that are in some sense close to the target points. To accelerate the computation,
in the LSVS method the vortex structures are introduced only in a vortex domain which
surrounds the target points (Figure 1). The vortex domain moves within the computational
domain, such that vortices that move out of one side of the vortex domain are bounced to the
opposite side of the vortex domain.

The distribution of the vortex orientation vector {, and the vortex strength I’ are

n

adjusted according to the specified Reynolds stress field, where n = 1,..., N,, for a system with
N, vortex structures. In the simplest version of the SVS method, the vortex structures all have
the same finite length L and core radius & . The vortex length L is typically assumed to be of the
order of the turbulence integral length scale ¢, ~u,’ /&, where u, is the turbulence root-mean-

square velocity and ¢ is the turbulence dissipation rate [30]. Kambe and Hatakeyama [31] used a

scaling analysis to show that the vortex core radius o is proportional to the Kolmogorov length

1/4

scale 7=(’/&)"*, where v is the kinematic viscosity. This result is in agreement with

experimental and numerical results [14,15], which yield an estimate 6 = 3.9 for the large-scale

10



coherent vortex structures. Each vortex structure has a lifetime 7}, which is assumed to be
proportional to the integral time scale 7, . A rough estimate for the integral time is given by the
eddy-turnover time scale T, =/, /u,. Using the scaling estimate ¢, ~u,’ /¢ and setting the

turbulent kinetic energy for homogeneous turbulence as ¢ = (3/2)u, , we can write

r -2 ()

In the SVS method, the length L, core radius 6 and life span 7, of the vortex structures can

therefore be expressed as
L=a/,, o=a,n, T, =ao,T1,, (2)

where «a,, o, and «; are proportionality coefficients whose values will be determined by

comparison of the LSVS predictions with DNS data.

The age of a vortex structure, 7, (), is determined starting from an initial age z,, by

Tn = z-On +i- tOn : (3)

Here, ¢ is the current time and ¢,, denotes the time at which the vortex structure was initiated.

Vortex structures initiated at the start of the computation are assigned a random initial age by

setting 7, /7, equal to a random variable with uniform probability distribution between 0 and 1.
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For vortex structures introduced later in the calculation, z,, is set equal to zero. When the vortex
age 7,(t) exceeds the specified vortex lifespan 7, the vortex structure is removed and a new

vortex structure is introduced with random position within the vortex domain. The vortex initial
strength and orientation is determined by the prescribed Reynolds stress at the new vortex

location using the inverse method described in Ref. [28].

B. Motion of Vortex Structures

In the SVS method for particulate fluids developed in our previous work [27, 28], each
vortex structure is translated and rotated by the sum of the mean velocity and the induced
fluctuating velocity at the vortex endpoints, and then the vortex structure is normalized to the
prescribed length L at the end of each time step. Since this method for moving the vortex
structures requires knowledge of the velocity at a large number of points within the vortex
domain, it is too time-consuming for the objectives of the current localized stochastic vortex
structure method.

As an alternative, in the localized stochastic vortex structure method we solve for the
fluctuating translation velocity v of each vortex structure by solution of a stochastic differential

equation of the Langevin form

12
‘ 4q,
d ‘=—%dt+(%J dg  (nosum on i), *

i
0 0

where ¢, is the turbulence kinetic energy associated with the i” velocity component and the

differential d& is a Gaussian distributed random variable with zero mean and variance equal to
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the time step Ar. The initial condition for the vortex fluctuating velocity is v,(x,0) = o,d¢&,

where o, =,/2¢q,/3 is the velocity variance. Eq. (4) is of the same form as the Thomson [4]

stochastic Lagrangian model for turbulence fluctuations, and it is commonly used to model
turbulent fluctuations in particle dispersion processes. The centroid position vector x for each

vortex structure is obtained by solving

dx.
—=v,+U,, 5
R (5)

where U, are the components of the prescribed mean velocity vector evaluated at the vortex

centroid.
The rotation rate Q of the vortex structures is similarly modeled using a stochastic

differential equation of the form

12
dQ, = —%dt+( 44, ) dé  (no sum on i), (6)

2
0 0~0

where 7/, and 7, are the turbulence integral length and the eddy turnover time scale defined

previously. The net rotation rate Q of the vortex orientation vector is defined by

Q; =Q; + D¢ W6, =Dy ¢ 66 s @

13



where D, and W, are the components of the rate of deformation tensor and the vorticity tensor

of the mean velocity field, defined by

h, W= (G-, ®)

The vortex orientation vector is rotated from its initial value §, by the rotation

(=A-G,. ©)

The rotation matrix A can be written in terms of the Euler parameters ¢,, &,, & and 77, as

1_2(‘922 +532) 2(5152 +53’75) 2(‘9153 _52775)
A= 2(5251 _53775) 1_2(532 +512) 2(5253 +51’75) 5 (10)
2(‘93‘91 +‘9277£) 2(5352 _51775) 1_2(512 +‘922)

where by definition
gl +e;+el+nm =1. (11)

The rate of change of the Euler parameters can be expressed in terms of the components of the

total rotation rate Q as [32]
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_dgl/d[_ 77E§2x_g3£)y+82§22

dé‘z/dt 1 83QX+T7EQ)1_81§22
- 5 (12)

dey/dt —£,Q), +81f2y +1,Q.

dn; /i —-£Q, —52f2y ~£,Q.

C. Initial Vortex Structure Orientation

Vortex structures are initially placed within the vortex domain at the start of the
computation, and new vortex structures are also initiated within the vortex domain when an
existing vortices structure is removed because its age has increased past the allowed vortex
lifespan. When a new vortex structure is initialized, it is necessary to specify both its strength
and orientation. The vortex strength must be set to be consistent with the local turbulence kinetic

energy, and the vortex orientation must be initialized to be consistent with the structure of the

local prescribed Reynolds stress tensor R, =uu,, where u is the fluctuating velocity field
induced by the vortices and an overbar denotes a time average. Dizaji and Marshall [27] note that
the turbulent kinetic energy can be expressed as a linear function of the product n,I"*, where n,
is the number of vortices per unit volume and I' is the vortex strength, which is also in
agreement with the theoretical finding of Saffman [20]. Thus, by selecting a value for n, and
given a prescribed turbulent kinetic energy field, the value of vortex strength can be obtained.

The effect of number of vortices on the accuracy of the SVS predictions was examined in Refs

[27, 28], who find that the results generally improve as n, increases, but that a value of n,
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greater than about 4 (corresponding to about 1000 vortices in a computational domain with
volume (27)’) is generally sufficient to yield accurate results in comparison to DNS.

The orientation distribution of the vortex structures is used to adjust the degree of
anisotropy of Reynolds stress tensor. We begin by computing a set of M, =642 evenly-spaced

test points on the surface of a unit sphere by dividing the faces of an icosahedron a prescribed
number of times and projecting the vertices to the unit sphere. These test points are used to
generate a set of randomly-oriented unit vectors with uniform probability distribution in three-
dimensional space. For isotropic turbulence, as considered in the current paper, the vortex
orientation vector is obtained by randomly selecting one of the test points on the unit sphere, and
then setting the vortex orientation equal to the radial vector to the selected test point. For
anisotropic turbulence, the vortex structure orientation is set using the inverse procedure

described by Dizaji et al. [28].

D. Velocity Calculation

The velocity computation is done by first pre-computing the velocity induced by a vortex
structure of unit strength on the data plane, which is defined as the positive r-z plane relative to
the axis of the vortex structure (Figure 2). This computation is performed once at the beginning
of the computation and the results are stored. The induced velocity on the data plane is
determined by computing the induced velocity normal to the r-z plane of a coordinate system
that is local to a vortex structure of unit strength, where the vortex center is located at the origin
of the local coordinate system. The velocity at each point of the grid used to cover the data plane
is determined by integration of the Biot-Savart integral using a Gaussian vortex blob method

[33], where the number of vortex blobs N, used to discretize the vortex structure is set equal to

16



N, =int(SL/5). The Gaussian radius of the blob is set equal to the vortex structure radius o

h

and S is a blob overlap coefficient. If the centroid of the i vortex blob is denoted by b,

i=1,..,N,, the associated vorticity field is given by

2
B, ,
(’Oi(x5 t) = 72_3/2l53 eXp( 52 ] 5 (13)

where the blob amplitude B, is given by B, =(L/N,) e_. Substituting (13) into the Biot-Savart
integral
sxo(x',1)

u@J)z—ZLI ——?;——dw, (14)

vV

where s = |s| = |x —x'|, and performing the integration yields the velocity u, induced by the "

vortex blob at a point x =re, + ze_ on the data plane as

P 3 "‘_bi‘z
PR

u,(x,t)= :
4zx—b,|

Q, x(x-b,), (15)

where P(a,z) is the incomplete gamma function with limits P(a,0) =0 and P(a,»©)=1. When

2 . . . .
a=3/2 and z =x" for some real variable x, a convenient expression for the incomplete gamma

function in terms of the error function erf(x) can be written as [34]
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2
2xe

N (16)

P(,x7)=erf(x)-

The velocity at any point on the data plane is obtained by summing the velocity induced by all

N, vortex blobs.

Once the induced velocity of the unit vortex is obtained on the data plane, the induced
velocity from a vortex structure m at target point y is obtained at subsequent times by
interpolation from the data plane. This interpolation is performed by centering the data plane at

the vortex structure centroid x,, and orienting the plane so that it passes through the target point
y and is tangent to the vortex axis unit vector §,, as illustrated in Figure 2. Repeating this

procedure for all vortices in the vortex domain and adding the induced velocity from each yields

the induced velocity on a selected target point.

I11. Validation for Homogeneous Turbulence
In this section we examine the induced velocity on a set of target points in a
homogeneous turbulent flow, comparing measures of the flow fluctuations at the target points
computed using the LSVS method with predictions obtained from direct numerical simulation
(DNS) of the turbulent flow.
The DNS computations of isotropic, homogeneous turbulence used for validation were
performed using a pseudo-spectral method on a 128° triply-periodic grid with second-order

Adams-Bashforth time stepping and exact integration of the viscous term [35]. In this approach,
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the spectral Navier-Stokes equations are evolved in time after having been projected onto a

. . _ 2 . .
divergence-free space using the operator B, =k.k; / k™ — &, according to the expression
u"! =u" exp(—vk*At)+ At P- BF” exp(—vk>At)— %F’H exp(—2vk2At)} 5 (17)

where an overbar denotes Fourier transform in three space dimensions, a superscript indicates the
time step, v is the kinematic viscosity, and k is the wavenumber vector with magnitude £. The

force vector F on the right-hand side has Fourier transform given by

|

=uxo+f,, (18)

where f, is the small wavenumber forcing term required to maintain the turbulence with

approximately constant kinetic energy. The velocity field was made divergence-free at each time

step by taking its Fourier transform and using the spectral form of the continuity equation, given

by

k-w=0. (19)

Anti-aliasing of the DNS computations was performed using the standard approach of truncating
the coefficients of the highest 1/3" wave numbers. The forcing vector was assumed to be

proportional to the fluid velocity [36, 37], such that
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Cu fork<k,,
, (20)
0 fork>k

crit

fF:{

. 1 — . o
where the coefficient C was set equal to C =0.0045/F,  and E, = 5 z u-u is the kinetic
k<k,;

energy in all modes with wavenumber amplitude k <k_,. The current computations were

crit *

performed with k_. =5, so that the forcing acts only on the large-scale eddies. Various

measures of the DNS turbulence are recorded in Table 1.
The results of the LSVS computations depend on the values of the proportionality

coefficients «,, a, and «a; defined by (2), the number of vortices N, , the vortex strength T,
and the width D, of the vortex domain. It was demonstrated in Ref. [27] that for a given
computational domain, the value of turbulent kinetic energy is proportional to the product N,T">.
In the current computations, we set N, I'> = 250 in order to match the turbulent kinetic energy in
the DNS and LSVS computations. A ‘standard’ LSVS computation was selected with N, =512
vortices in a vortex region with half-width D, =2.4 centered on the middle target point.

Vortices whose centers leave this region were bounced back to the other side of the vortex
region. In cases with moving target points, the vortex region is translated with the target points.

The proportionality coefficients for this standard computation were set as «, =1, a, =8, and
o, =3 based on fitting with the DNS data. Sensitivity of the predictions to these parameters will

be discussed.
The computations were performed with 101 target points aligned in a straight line parallel

to the x-axis with separation distance Ax =0.01 between each point. The time step for both the

20



LSVS and DNS methods was set equal to Az =0.005, and both runs were performed for 40,000
time steps. The LSVS computations (including post-processing) required a CPU time of
approximately 0.014 s per time step, versus 3.6 s per time step for the DNS computations,
indicating a speed-up by a factor of over 250 with LSVS versus DNS even on a single-CPU
workstation. This speed-up would increase dramatically in a highly parallelized computation
since the vortex-based computations can easily be parallelized by assigning vortices to different
processors [38], whereas spectral DNS computations are much more difficult to parallelize. The
speed-up with LSVS would also be much greater for problems with anisotropic turbulence in
which the highly efficient triply-periodic spectral DNS code cannot be used.

A plot of the CPU time for the LSVS computations (not including post-processing) per
time step per target point is shown as a function of number of vortices in Figure 3. The figure
shows clearly that the CPU time varies linearly with number of vortices. As an example for

computations with N, =512 vortices, as used in the validation study in the current paper, the

LSVS computation requires 38 ps per target point per time step. One of the nice features of the
LSVS method is that there are no stability limitations on the time step. Assuming a frame rate of
60 Hz (and a corresponding time step of 1/60 s) for the flight simulator, our computations
indicate that the turbulence field could be computed in real time for up to about 440 target points.
This example indicates that real-time operation for flight simulators is quite feasible with the
proposed LSVS synthetic turbulence method, even with running on a standard single-processor

computer.

A. Stationary Target Points

21



Computations with stationary target points locations were examined extensively to
determine accuracy of the SVS approach and sensitivity to the various numerical parameters.
Time series showing the x-component of the fluctuating velocity field at the first target point for
both the DNS and LSVS computations are shown in Figure 4. The ratio of kurtosis divided by
the variance squared is equal to 2.70 and 3.37 for the DNS and LSVS computations,
respectively, which compares reasonably well with the value 3 for a normally distributed
stochastic process. The probability density function of the x-component of the fluctuating
velocity, non-dimensionalized by its root-mean-square value, is plotted in Figure 5. The open
square symbols are obtained from the LSVS computation and the filled deltas are from the DNS
computation. As is typical of turbulent velocity fields, both sets of velocity data are reasonably

well fit by a Gaussian function, given in the figure by a solid line. The power spectrum e( f) for
both LSVS and DNS predictions is plotted in Figure 6 as a function of fluctuation frequency f. In
the inertial range, both sets of data exhibit a good fit to the expected variation e oc £ which
results from the Kolmogorov power spectrum together with the Taylor frozen turbulence
assumption [18]. The DNS and LSVS predictions deviate at high frequency (f > 30), which is
expected as the LSVS assumption of vortex structure of a single size was targeted to capture
turbulence scaling only within the inertial range. The p.d.f. and spectral plots described above
were examined for LSVS computations with a wide range of different values of the numerical
parameters, including the coefficients «,, a, and «; and the number of vortices N,. The
computed results exhibited little sensitivity to the value of these parameters.

The autocorrelation function p(7) of the x-component of velocity is defined by

p(2) = (uyu(t + ) {u* (@), 21)
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where u(¢) denotes the fluctuating fluid velocity at the first target point in the x-direction at time
¢ and brackets denote a time average over the computational time. The autocorrelation function is
plotted for the LSVS and DNS data in Figure 7a as a function of the lag time 7. The integral

time scale is defined with respect to the velocity autocorrelation as

T, =| p(r)dr. (22)

S ey 8

The computed integral times scales are obtained from (22) as 2.7 for the DNS predictions and as
2.2 for the LSVS predictions. The dashed line in Figure 7a indicates the common expression of

autocorrelation for a stationary Gaussian process [39]

p(r) =exp(=7/T,), (23)

which is computed using the DNS integral time scale 7, . The approximation (23) is seen to be a

reasonable fit to both the DNS and LSVS computational data. The second-order Lagrangian

structure function D(7), defined by

D(z) = ([u(t +7) ~u@®] ) /(1 (1)), (24)

is plotted in Figure 7b for both the LSVS and DNS computations. The dashed curve in this plot

represents the theoretical estimate
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D(r) = 2[1 - p(0)] = 2[1 —exp(=7 /T, )], (25)

where the expression (23) is used in the second equation of (25).

Time variation of the fluid velocity on stationary target points in the LSVS computations
can occur from three different effects — (1) death of vortices and birth of new vortices, (2)
translation and rotation of the vortices, and (3) bouncing of vortices that leave one side of the
vortex region onto the opposite side of the vortex region. Sensitivity of the predicted
autocorrelation function for LSVS computations at stationary target points is examined in Figure
8. In Figure 8a, the predicted autocorrelation function is compared for three different values of

the vortex lifetime, corresponding to a; =1, 3 and 5. We see that the autocorrelation function is

highly sensitive to the value of the prescribed vortex lifetime, with the best match to DNS data

for a, =3 (as shown in Figure 7). In Figure 8b, sensitivity of the autocorrelation function to

vortex motion is evaluated by comparing predictions with full vortex motion to results of a
computation with no vortex motion and to the results of a computation with vortex translation,
but no rotation. The autocorrelation function is found to be substantially more sensitive to vortex
translation than it is to vortex rotation. Finally, in Figure 8¢ we examine sensitivity of the
autocorrelation function to vortex bouncing between the sides of the vortex region by comparing
predictions with and without vortex bouncing. The predictions for the two cases are found to be
very close, indicating a low level of sensitivity to vortex bouncing for stationary target points, at

least for the size of the vortex region used in these computations.

The Eulerian longitudinal structure function of order n, S, (r), is defined by
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S, (r) = (Au(r)"). (26)

where Au(r) =u(x+r,t)—u(x,t). The Eulerian longitudinal structure function was computed as
a function of offset distance r for orders n = 2, 4, 6, §, and 10. We found that S, () is almost
unaffected by change in the vortex lifetime 7, but that it is sensitive to the value of the vortex
core radius J. For instance, the predicted value of S, (r) from DNS is compared to LSVS
predictions in Figure 9 for cases with a, =4 and «a, =8 on log-log plots. The LSVS results
with a, =4 are observed to be significantly higher than the DNS predictions, particularly for
larger values of n. The LSVS predictions with &, =8 are in excellent agreement to the DNS

predictions for all values of » examined.

The Eulerian transverse structure function of order n, T, (r), is defined by

T, (r)=(Av(r)"). (27)

Both S, (r) and 7, () can be non-dimensionalized using the n/2 power of the variance <u2> ,

and the dimensionless structures functions are denoted as s,(r) and ¢, (r), respectively. For

isotropic turbulence, Karman and Howarth [40] showed that the transverse and longitudinal

structure functions of second order can be related by the expression

r 0s,(r)

5 or (28)

t,(r)=s,(r)+
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A plot comparing ¢,(r) to the right-hand side of (28) is shown in Figure 10, where the dashed

line indicates the theoretical expression (28) for isotropic turbulence. The DNS computation used
21 target points, whereas 41 target points were used for the LSVS computation. Both
computations are reasonably close to the theoretical expression, although LSVS is observed to

deviate from the isotropic theory for vary small or vary large values of r.

B. Uniformly Translated Target Points

Both DNS and LSVS computations were repeated for translating targets, with values of
the target point mean translation velocity U ranging between 0.1 - 0.5, which is equal to 0.5 -
2.5 times the turbulence root-mean-square velocity u,. At low values of U_ the temporal
resolution of the turbulence in the LSVS model controls the model accuracy, similar to the case

for a stationary target, whereas at high values of U_ the LSVS accuracy is controlled by the

spatial representation of the turbulence as the target point moves through it. Examination of
different statistical measures of the predicted LSVS results indicate that target point translation
has little affect on several of the measures presented in the previous section, including the
probability density function, the power spectrum, and the Eulerian structure function S, (7).
However, the autocorrelation function p(7) exhibits significant sensitivity to translation

velocity.
A demonstration of the sensitivity of the autocorrelation to target point translation is

shown in Figure 11a, in which the autocorrelation function p(7) is plotted versus lag time 7 for
a series of four LSVS computations with U, = 0, 0.1, 0.3 and 0.5. The highest translation

velocity is about 2.5 times the root-mean square velocity u, of the turbulent flow. The value
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autocorrelation function is seen to monotonically decrease as the translation velocity is

increased. A similar trend is observed in Figure 11b, which plots the integral time scale T,
obtained from (22) as a function of target point translation velocity U . The value of 7, is
monotonically decreases as U increases. These observations are consistent with the notion that

translation of the target point relative to the turbulence increases the frequency of velocity

fluctuation, thereby decreasing correlation of the velocity with its value at a previous time.

IV. Conclusions

There exists a need in simulator technology for rapid, accurate generation of synthetic
turbulence on an object traveling within the turbulent flow. The method should be able to
function under a prescribed turbulence mean velocity and Reynolds stress field, and it should
provide a representation of the turbulence that is both temporally and structurally accurate so as
to capture the change in fluctuation statistics with object translation speed relative to the
turbulent flow. A simple method to achieve this aim is proposed in the current paper, based on
the idea of finite-length vortex structures that are advected and rotated in the flow field via
solution of stochastic differential equations of the Langevin type. The proposed method is an
extension of the stochastic vortex structure (SVS) method recently developed for particulate
flows, which has been demonstrated to provide correct prediction of particle collision rate, as
well as a wide range of particle dispersion and agglomeration statistics, in both homogeneous
turbulence and turbulent shear flows. However, the standard SVS method computes the turbulent
fluctuations on a grid covering the entire computational domain and advects the vortex structures
by interpolation of the velocity computed on this grid. Even with the use of acceleration methods

such as the fast multipole method, the standard SVS method is far too slow for simulator
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applications due to the large number of grid points on which the velocity is computed. The use of
stochastic differential equations for vortex motion and rotation and of a restricted vortex region
in the local stochastic vortex structure (LSVS) method developed in the current paper
dramatically speeds up the synthetic turbulence computation for the flight simulator problem.
Predictions of the new LSVS method were validated for a wide range of statistical
measures by comparison to results for direct numerical simulation (DNS) of homogeneous
turbulence. Bearing in mind the fact that the proposed LSVS method was developed to achieve a
rapid synthetic turbulence calculation that can only be expected to be statistically similar to
actual turbulence, the agreement with DNS predictions was found to be quite encouraging. The
LSVS predictions yield a probability density function for velocity that is reasonably close to
DNS predictions. The predicted power spectrum agreed with the DNS results at low frequencies

(f< 30) and with the expected ~ /"> Kolmogorov dependence within the inertial subrange. The

autocorrelation function, as well as the associated Lagrangian structure function, were shown to
be sensitive to the vortex lifetime and, to a lesser extent, to vortex translation within the flow
field. Good agreement of the LSVS results with DNS predictions and with the expected
exponential decay formula for the autocorrelation was obtained when the vortex lifetime was set
to approximately three times the eddy turnover time scale. The Eulerian structure function is
found to be sensitive to the vortex core radius. Excellent agreement between the LSVS results
and the DNS predictions was obtained by setting the vortex core radius to eight times the
Kolmogorov length scale.

While the results presented in this paper show promise for use of the LSVS method for
flight simulator synthetic turbulence generation, additional steps are necessary to achieve this

objective. It is envisioned that a typical simulator application would first involve a computation
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of the Reynolds-averaged turbulence field, using a standard RANS method, leading to prediction
of the Reynolds stress tensor within the flow field. The predicted turbulence from the RANS
computation would be formed both by the ambient atmospheric turbulence and the wake
turbulence of large-scale bodies present in the simulator (e.g., ships, building, topography),
where in the latter case it would typically include large-scale wake vortices. The SVS vortices
responsible for generating the synthetic turbulence fluctuations would then be initialized to
match the computed (anisotropic) Reynolds stress tensor using the inverse procedure described
by Dizaji et al. [28]. The same procedure would be used to generate new vortices as existing
vortices die out during the flow computation. In principle, the same approach could be used for
unsteady RANS calculations (e.g., in the presence of large-scale wake vortices from large bodies
in the flow field), and in this case the inverse procedure described by Dizaji et al. [28] would

need to be updated at each time step.
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Figure Captions

Figure 1. Schematic diagram showing the computational domain, the set of target points that
move through the flow field, and the vortex domain in which stochastic vortex structures are
placed to generate fluctuating turbulence at the target points.

Figure 2. Schematic diagram showing the interpolation procedure used for direct computation of
the velocity induced by a vortex structure on a target point. Here L is the length of the vortex
structure and P identifies the inclined data plane from which the velocity u induced by the vortex
is interpolated.

Figure 3. CPU time (in ps) per time step per target point for the LSVS computation plotted as a
function of the number of vortex structures.

Figure 4. Time series showing the fluctuating fluid velocity at the central target point for (a)
DNS and (B) LSVS methods.

Figure 5. Probability density function for the x-component of velocity at the central target point,
obtained for LSVS (open squares), DNS (filled deltas), and a best-fit Gaussian curve.

Figure 6. Power spectrum as a function of frequency for the LSVS (red) and DNS (blue) data.
The inertial-range ~ £ dependence is indicated using a dashed line.

Figure 7. Plots showing (a) the autocorrelation p(7) and (b) the Lagrangian structure function
D(7) as functions of the lag time = for LSVS (open squares), DNS (filled deltas) and for the
exponential empirical estimates (dashed line) given by Eqgs. (23) and (25).

Figure 8. Plots examining sensitivity of the autocorrelation function predicted by the LSVS
method to (a) vortex lifetime [with proportionality coefficient values a, =1 (A, red line), 3 (B,
blue line), and 5 (C, green line)], (b) vortex motions [comparing case B to computations with no
vortex motion (D, solid black line) and to computations with translation but no vortex rotation
(E, dashed line)], and (c) vortex bouncing [comparing case B to a computation with no vortex
bouncing (F, orange line)].

Figure 9. Eulerian longitudinal structure function §,(r) as a function of offset distance r for

LSVS (lines) and DNS (symbols), with order n =2 (red line, squares), 4 (blue line, deltas), 6
(green line, gradients), 8 (orange line, diamonds), and 10 (black line, circles). Plots show
sensitivity to the vortex core proportionality parameter, with (a) o, =4 and (b) «, =8.

Figure 10. Plot comparing the second-order Eulerian transverse structure function #,(r) to the

right-hand side of Eq. (28) for the DNS computation (deltas) and for an LSVS computation
(circles). The theoretical expression for isotropic turbulence is indicated by a dashed line.
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Figure 11. Plot showing (a) the autocorrelation function and (b) the corresponding integral time
scale on translated target points from LSVS computations. The target point translation velocity is
givenby U_ =0 (A, red line), 0.1 (B, green line), 0.3 (C, blue line) and 0.5 (D, black line).
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Table 1. Scaling variables charaterizing the fluid turbulence in the DNS computation.

Turbulent kinetic energy, g 0.084 Taylor microscale, 4 0.23
Root-mean square velocity Microscale Reynolds

fluctuation, u, 0.24 number, Re;, >6
Mean dissipation rate, & 0.016 Integral length, 7, 0.86
Kinematic viscosity, v 0.001 Eddy turnover time, 7T} 3.6
Kolmogorov length scale, 0.016 Integral time, 7, 2.8
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Figure 1. Schematic diagram showing the computational domain, the set of target points that
move through the flow field, and the vortex domain in which stochastic vortex structures are
placed to generate fluctuating turbulence at the target points.
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Figure 2. Schematic diagram showing the interpolation procedure used for direct computation of
the velocity induced by a vortex structure on a target point. Here L is the length of the vortex
structure and P identifies the inclined data plane from which the velocity u induced by the vortex
is interpolated.
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Figure 3. CPU time (in ps) per time step per target point for the LSVS computation plotted as a
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Figure 4. Time series showing the fluctuating fluid velocity at the central target point for (a)
DNS and (B) LSVS methods.
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Figure 7. Plots showing (a) the autocorrelation p(r) and (b) the Lagrangian structure function
D(r) as functions of the lag time 7 for LSVS (open squares), DNS (filled deltas) and for the
exponential empirical estimates (dashed line) given by Egs. (23) and (25).
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Figure 8. Plots examining sensitivity of the autocorrelation function predicted by the LSVS
method to (a) vortex lifetime [with proportionality coefficient values o, =1 (A, red line), 3 (B,
blue line), and 5 (C, green line)], (b) vortex motions [comparing case B to computations with no
vortex motion (D, solid black line) and to computations with translation but no vortex rotation
(E, dashed line)], and (c) vortex bouncing [comparing case B to a computation with no vortex
bouncing (F, orange line)].
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Figure 9. Eulerian longitudinal structure function S, (r) as a function of offset distance r for

LSVS (lines) and DNS (symbols), with order n =2 (red line, squares), 4 (blue line, deltas), 6
(green line, gradients), 8 (orange line, diamonds), and 10 (black line, circles). Plots show
sensitivity to the vortex core proportionality parameter, with (a) o, =4 and (b) , =8.
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Figure 10. Plot comparing the second-order Eulerian transverse structure function ¢,(r) to the

right-hand side of Eq. (28) for the DNS computation (deltas) and for an LSVS computation
(circles). The theoretical expression for isotropic turbulence is indicated by a dashed line.
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Figure 11. Plot showing (a) the autocorrelation function and (b) the corresponding integral time
scale on translated target points from LSVS computations. The target point translation velocity is
givenby U_=0 (A, red line), 0.1 (B, green line), 0.3 (C, blue line) and 0.5 (D, black line).
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