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Rapid turbulence approximation on and around a vehicle is necessary for development of 

improved flight simulators for helicopters and aircraft, used both for pilot training and for 

video gaming applications. Predictions of synthetic turbulence methods must have both 

temporally and spatially accurate statistics compared to actual turbulence for the given 

turbulence mean velocity and Reynolds stress tensor. The stochastic vortex structure (SVS) 

method was recently proposed for turbulent flows with interacting particles, and shown to 

generate accurate statistical measures for homogeneous turbulence and for turbulent shear 

flows. Since the velocity in flight simulators is required only on target points near the flight 

vehicle, the current paper modifies the SVS method by (1) moving and rotating the vortex 

structures via stochastic differential equations and (2) introducing vortices only in a 

restricted vortex region surrounding the aircraft. This local stochastic vortex structure 

(LSVS) method decreases the SVS computational speed by several orders of magnitude, 

making it feasible for real-time turbulence computation in flight simulators. The proposed 

method is validated by comparing results for different statistical measures with predictions 

from direct numerical simulation (DNS) of homogeneous turbulence. Sensitivity of the 

different measures with numerical parameters in the LSVS model is examined. 
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Nomenclature 

A = vortex rotation matrix 
b = position vector of vortex blob centroid 
B = vortex blob amplitude vector  
C =  forcing coefficient 
D =  Lagrangian structure function 

ijD  = rate of deformation tensor (symmetric part of velocity gradient) 

VD  = width of the vortex domain 

f = frequency 

Ff  = small-wavenumber forcing vector 
F = force vector in Fourier-transformed Navier-Stokes equations 
k = wavenumber magnitude 
k =  wavenumber vector 

0  = turbulence integral length scale 

L = vortex length 
M =  number of target points 

TM  = number of uniformly-spaced test points on a sphere  

bN  =  number of vortex blobs per vortex structure 

Vn  = number of vortices per unit volume 

VN  = number of vortices 

P = incomplete gamma function 
P = projection operator for Fourier transformed Navier-Stokes equations 
q = turbulence kinetic energy  
r = displacement used for Eulerian structure function 

ijR  = Reynolds stress tensor 

s = displacement vector used in Biot-Savart equation 
s =  magnitude of s 

ns  = dimensionless Eulerian longitudinal structure function of order n 

nS  = Eulerian longitudinal structure function of order n 

t  = time step 
t = time 

nt0  =  time at which nth vortex structure is initiated 

nt  = dimensionless Eulerian longitudinal structure function of order n 

nT  = Eulerian transverse structure function of order n 

LT  = turbulence integral time scale 

0T  = eddy turn-over time scale 

VT  = vortex life time 

0u  = turbulence root-mean-square velocity 

iu  = fluctuation velocity components 

U = mean velocity vector 
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xU  =  translation speed of target points 

ijW  = vorticity tensor (skew-symmetric part of velocity gradient) 

v = vortex translation velocity 
x =  centroid position vector for vortex structure 
y = position vector of target point  
 

321 ,,   = proportionality coefficients (Eq. (2)) 

  = vortex blob overlap coefficient 

n  =  strength of nth vortex 

  = vortex core radius 
  =  rate of turbulence dissipation per unit volume 

E ,,, 321  = Euler parameters 

nζ  = orientation vector of nth vortex  

  =  turbulence Kolmogorov length scale 
  = fluid kinematic viscosity 
d  = Gaussian distributed random variable with variance t  
  = autocorrelation function 

v  = variance of fluctuating velocity 

  = lag time in autocorrelation function 

n  = age of nth vortex structure 

n0  = age of nth vortex at formation 

ω  = vorticity vector  
Ω  =  rotation rate of vortex structure  
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I. Introduction 

 Problems involving synthetic turbulence generation on an object in a turbulent flow are 

important for operation of flight simulators, used for military and commercial pilot training and 

for video gaming applications. Flight in turbulent flow conditions is particularly important in 

activities such as landing a helicopter on a ship [1,2], for which the turbulence structure is 

anisotropic, inhomogeneous and sensitive to the wind direction relative to the ship. In such 

applications, the synthetic turbulence generation must be sufficiently rapid to run in real-time 

and it must be both temporally and spatially consistent with actual turbulence.  

 The turbulent fluctuations on a Lagrangian particle in a turbulent flow can be well 

modeled using a stochastic Lagrangian method (SLM) [3,4], in which a stochastic differential 

equation is solved for each component of the fluctuating velocity field. The SLM approach is a 

rapid and accurate method which is widely used for simulation of turbulence in particulate flows 

[5]. However, while SLM can accurately simulate turbulence time scales, it’s inability to 

accurately generate structural features of turbulence makes SLM unsuitable to this application 

[6]. There are two reasons for this statement. First, in many flight simulator applications, it is 

desired to know the velocity at more than one point around the object. For instance, to compute 

the moments acting on an aircraft one would need to know the fluid velocity field on a small 

stencil of points surrounding the vessel. The correlation between the fluctuating velocities on this 

stencil cannot be accurately generated using an SLM approach because in SLM the stochastic 

forcing at nearby points is not correlated, unlike the case in real turbulence. Since the moments 

depend on the difference in these local velocities, they are very sensitive to errors associated with 

lack of correlation in the SLM approach. Secondly, the turbulence time scales observed by the 
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moving object depend in part on the velocity of the object through the fluid, which in turn 

requires knowledge of the spatial structure of the turbulence. 

   A variety of other synthetic turbulence methods have been developed for estimation of 

inlet and initial conditions for large-eddy simulation and discrete-eddy simulation calculations 

[7-9]. Synthetic turbulence approaches [10,11] represent the turbulence using a random velocity 

field that is constrained to be incompressible and that when averaged, yields mean Reynolds 

stress quantities that are consistent with desired values, e.g., such as those computed using a 

Reynolds-Averaged Navier-Stokes (RANS) simulation method. For convenience, the velocity 

fluctuations are typically assumed to have a normal distribution. Huang et al. [12] showed that 

previous synthetic turbulence methods yield an incorrect energy spectrum, and they proposed a 

new approach to generate a flow field with the correct spectrum. A review of synthetic 

turbulence methods is given by Tabor and Baba-Ahmadi [13], with particular focus on inlet flow 

conditions for large eddy simulation.                         

One shortcoming of existing synthetic turbulence models for simulation of turbulence on 

a moving body is that these models typically do not accurately predict the coherent eddy 

structures of the turbulent flow. The scaling and structure of coherent vortices was examined by 

Jiménez et al. [14] in homogeneous turbulence based on results of high-resolution direct 

numerical simulations (DNS) and by Berlin et al. [15] in a turbulent shear flow using 

experiments with low-temperature helium gas. Both studies found that the turbulent vorticity 

field is dominated by a set of strong (coherent) vortices of finite length and with tubular shape, 

surrounded by a sea of weak random (non-coherent) vorticity. The length and core radius of the 

coherent vortices were found to scale with the Lagrangian integral length scale and the 

Kolmogorov length scale, respectively, and the vortex strength was found to scale with the 
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square root of the microscale Reynolds number. An early theoretical model of turbulence as a 

collection of Burgers vortices was proposed by Townsend [16], and further analyses of the 

statistical properties of this and related vortex systems are given by Refs. [17-21].  Kivotides and 

Leonard [22] report results of a computation in which homogeneous turbulence is represented by 

a set of finite-length vortex structures, and show that this system generates an energy spectrum 

that satisfies the Kolmogorov 3/5k  scaling in the turbulence inertial range. Extensions of the 

vortex filament method were presented by Peter Bernard’s group for turbulent mixing layers 

[23], co-flowing jets [24], and turbulent boundary layers [25], which demonstrated highly 

successful comparisons between the vortex filament representations and data from experimental 

and direct numerical simulations.   

Recent work utilizing a vortex structural representation for turbulent transport of a 

particulate fluid with large number of interacting particles was proposed by Ayyalasomayajula et 

al. [26], who proposed a model in which turbulent eddies are represented by a two-dimensional 

vortex array and a stochastic algorithm is used to vary the strength of each vortex in time. This 

simple model was shown to yields reasonable results for particle acceleration statistics and 

clustering. A three-dimensional stochastic vortex structure (SVS) model was proposed by Sala 

and Marshall [6] for prediction of turbulent particle transport. In this model, the turbulent 

vorticity field is approximated by a set of finite-length, fixed vortex structures which are 

randomly positioned and oriented in the flow field. Unlike the vortex filament method, the SVS 

method does not use the vortex structures to evolve the flow field; rather, they are used as a 

kinematic representation to approximate a subgrid-scale synthetic turbulence to use for particle 

evolution in a flow with a given Reynolds stress distribution. An accelerated version of the SVS 

model was recently developed by Dizaji and Marshall [27] using the fast multipole method. 
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Predictions of the SVS model for particle collision rate were found to be in close agreement with 

DNS predictions of homogeneous turbulence for a wide range of fluid and particulate measures, 

including turbulence energy spectrum, probability density functions for velocity, acceleration 

and vorticity, particle collision rate, and fractal dimension and size distributions of agglomerates 

formed of adhesive particles. The SVS method was applied to particle transport in anisotropic, 

inhomogeneous turbulence by Dizaji et al. [28], which proposed an inverse procedure by which 

the vortex orientations can be specified to yield a given Reynolds stress field. 

 The SVS formulations for particulate flows compute the synthetic fluctuating velocity 

field on all points of a grid covering the computational domain, and then interpolate the fluid 

velocity onto a set of particles transported by the flow. The vortex structures are transported and 

rotated by the induced flow field, obtained by interpolation from the computational grid. While 

this formulation of the SVS method is suitable for simulations of particulate fluids with a large 

number of particles spread out over the flow domain, it requires computation of the fluctuating 

velocity on a large number of grid points and is therefore inefficient for simulating turbulence on 

a small number of target points near a single object traversing the flow field. In the current paper, 

we present a new localized stochastic vortex structure (LSVS) method that is designed for 

rapidly generating synthetic turbulence in the vicinity of a single object traveling through a 

turbulent flow. The LSVS method is described in Section 2 of the paper. In Section 3, we 

validate this method against DNS results for an object in a homogeneous turbulent flow. 

Conclusions are given in Section 4.        
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II. Synthetic Turbulence Simulation with Stochastic Vortex Structures 

 We seek to develop a rapid, statistically-accurate method for constructing a synthetic 

fluctuating fluid velocity field characteristic of that acting on an object traversing a turbulent 

flow. It is assumed that the Reynolds stress distribution in the turbulent flow is known (e.g., via a 

prior RANS simulation), and for convenience it is assumed that the turbulence is statistically 

stationary. In addition to the simulation being rapid, we desire that the synthetic turbulence field 

possess the following properties:  

 that the velocity field be incompressible; 

 that the fluctuating velocity is consistent with the 3/5k  Kolmogorov scaling of the 

power spectrum in the inertial range for homogeneous turbulence; 

 that it is consistent with the observed Gaussian distribution for the probability density 

function (p.d.f.) of the velocity field and with the fat-tail distribution [29] of the p.d.f. of 

the acceleration field; 

  that it correctly predicts the two-point velocity correlation in the turbulent flow; and 

 that Reynolds stress distribution induced by the synthetic fluctuating velocity field is 

consistent with the prescribed Reynolds stress distribution used to initialize the vortex 

structures.   

The first of these properties is identically satisfied from the use of the Biot-Savart equation to 

compute the induced velocity. The second and third of these properties has been demonstrated 

for the stochastic vortex structure (SVS) method in homogeneous isotropic turbulence by Refs. 

[6, 27], exhibiting excellent agreement between the SVS method predictions and results of direct 

numerical simulations (DNS). The fourth property has not yet been directly established, but hints 

that the SVS method might be consistent with this property are apparent from the results of Ref. 
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[27], who showed that the SVS method correctly predicts the vorticity p.d.f. distribution in 

homogeneous turbulence and that the method also correctly predicts particle collision rate and 

formation of particle agglomerates, all of which depend on accurate prediction of relative 

velocity at two nearby points. We will examine this fourth property further in the present paper. 

The fifth property was examined by Ref. [28], who developed and validated an inverse technique 

that can be used to set vortex orientation and strengths to correctly reproduce a given 

(anisotropic) Reynolds stress field for turbulent shear flows.  

 The previous papers written using the SVS method have focused on flows with large 

number of particles spread throughout the flow field. The SVS method computed the synthetic 

turbulent flow on all points of a Cartesian grid covering the flow, and then this fluctuating fluid 

velocity was interpolated onto the Lagrangian particles. A fast multipole method (FMM) 

developed for acceleration of the velocity calculation in the SVS method proposed for particulate 

flows was designed explicitly for estimating the synthetic velocity throughout the flow field, and 

was found to provide over two orders of magnitude reduction in computational time for the 

velocity field with negligible error [27]. This FMM acceleration method would not be efficient if 

applied to the problem addressed in the current paper, however, in which we desire to estimate 

the synthetic velocity on a small set of points which are closely clustered in space. Similarly, the 

method by which the vortex structures are transported using the computed velocity field on the 

grid covering the flow field would not be efficient for the current problem, as it would 

necessitate computing the fluctuating velocity not only on a small set of clustered points, but 

everywhere over the computational grid. The primary focus of the current paper is to develop a 

new localized stochastic vortex structure (LSVS) model can be used to rapidly generate synthetic 
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velocity fluctuations satisfying the above set of properties on a small set of closely clustered 

target points.    

  

A. Localized Stochastic Vortex Structure Method 

 The stochastic vortex structure model generates the synthetic fluctuating velocity field u 

induced by a collection of vortex structures placed and oriented randomly within the flow field. 

Since in the current paper we are interested only in the fluctuating velocity on a small set of 

clustered target points, located at positions )(tmy , Mm ,...,1 , we are primarily interested in 

vortex structures that are in some sense close to the target points. To accelerate the computation, 

in the LSVS method the vortex structures are introduced only in a vortex domain which 

surrounds the target points (Figure 1). The vortex domain moves within the computational 

domain, such that vortices that move out of one side of the vortex domain are bounced to the 

opposite side of the vortex domain.    

 The distribution of the vortex orientation vector nζ  and the vortex strength n  are 

adjusted according to the specified Reynolds stress field, where n = 1,…, VN  for a system with 

VN  vortex structures. In the simplest version of the SVS method, the vortex structures all have 

the same finite length L and core radius  . The vortex length L is typically assumed to be of the 

order of the turbulence integral length scale /~ 3
00 u , where 0u  is the turbulence root-mean-

square velocity and   is the turbulence dissipation rate [30]. Kambe and Hatakeyama [31] used a 

scaling analysis to show that the vortex core radius   is proportional to the Kolmogorov length 

scale 4/13 )/(   , where   is the kinematic viscosity. This result is in agreement with 

experimental and numerical results [14,15], which yield an estimate  9.3  for the large-scale 
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coherent vortex structures. Each vortex structure has a lifetime VT , which is assumed to be 

proportional to the integral time scale LT . A rough estimate for the integral time is given by the 

eddy-turnover time scale 000 / uT  . Using the scaling estimate /~ 3
00 u  and setting the 

turbulent kinetic energy for homogeneous turbulence as 2
0)2/3( uq  , we can write 

 

 
3

2
0

q
T  . (1)   

 

In the SVS method, the length L, core radius   and life span VT  of the vortex structures can 

therefore be expressed as  

 

 01L ,  2 , 03TTV  , (2) 

 

where 1 , 2  and 3  are proportionality coefficients whose values will be determined by 

comparison of the LSVS predictions with DNS data. 

 The age of a vortex structure, )(tn , is determined starting from an initial age n0  by  

 

nnn tt 00  .  (3) 

 

Here, t is the current time and nt0  denotes the time at which the vortex structure was initiated. 

Vortex structures initiated at the start of the computation are assigned a random initial age by 

setting Vn T/0  equal to a random variable with uniform probability distribution between 0 and 1. 
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For vortex structures introduced later in the calculation, n0  is set equal to zero. When the vortex 

age )(tn  exceeds the specified vortex lifespan VT , the vortex structure is removed and a new 

vortex structure is introduced with random position within the vortex domain. The vortex initial 

strength and orientation is determined by the prescribed Reynolds stress at the new vortex 

location using the inverse method described in Ref. [28]. 

  

B. Motion of Vortex Structures 

 In the SVS method for particulate fluids developed in our previous work [27, 28], each 

vortex structure is translated and rotated by the sum of the mean velocity and the induced 

fluctuating velocity at the vortex endpoints, and then the vortex structure is normalized to the 

prescribed length L at the end of each time step. Since this method for moving the vortex 

structures requires knowledge of the velocity at a large number of points within the vortex 

domain, it is too time-consuming for the objectives of the current localized stochastic vortex 

structure method.  

 As an alternative, in the localized stochastic vortex structure method we solve for the 

fluctuating translation velocity v of each vortex structure by solution of a stochastic differential 

equation of the Langevin form  

 

  d
T

q
dt

T

v
dv ii

i

1/2

00

4
= 








      (no sum on i), (4) 

 

 where iq  is the turbulence kinetic energy associated with the thi  velocity component and the 

differential d  is a Gaussian distributed random variable with zero mean and variance equal to 
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the time step t . The initial condition for the vortex fluctuating velocity is  dv vi =,0)(x , 

where /32= iv q  is the velocity variance. Eq. (4) is of the same form as the Thomson [4] 

stochastic Lagrangian model for turbulence fluctuations, and it is commonly used to model 

turbulent fluctuations in particle dispersion processes. The centroid position vector x for each 

vortex structure is obtained by solving 

 

 ii
i Uv

dt

dx
 ,  (5) 

 

where iU  are the components of the prescribed mean velocity vector evaluated at the vortex 

centroid. 

 The rotation rate Ω  of the vortex structures is similarly modeled using a stochastic 

differential equation of the form 

 

  d
T

q
dt

T
d ii

i

1/2

2
000

4
= 














     (no sum on i), (6) 

 

where 0   and 0T  are the turbulence integral length and the eddy turnover time scale defined 

previously. The net rotation rate Ω̂  of the vortex orientation vector is defined by 

 

 ikjjkjijjijii DWD  ̂ , (7) 
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where ijD  and ijW  are the components of the rate of deformation tensor and the vorticity tensor 

of the mean velocity field, defined by 

 

 )(
2

1

i

j

j

i
ij x

U

x

U
D







 , )(
2

1

i

j

j

i
ij x

U

x

U
W







 . (8) 

 

The vortex orientation vector is rotated from its initial value 0ζ  by the rotation 

 

 0ζAζ  . (9) 

 

The rotation matrix A can be written in terms of the Euler parameters 1 , 2 , 3  and E  as 
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where by definition 

 

 122
3

2
2

2
1  E . (11) 

 

The rate of change of the Euler parameters can be expressed in terms of the components of the 

total rotation rate Ω̂  as [32] 
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C. Initial Vortex Structure Orientation 

 Vortex structures are initially placed within the vortex domain at the start of the 

computation, and new vortex structures are also initiated within the vortex domain when an 

existing vortices structure is removed because its age has increased past the allowed vortex 

lifespan. When a new vortex structure is initialized, it is necessary to specify both its strength 

and orientation. The vortex strength must be set to be consistent with the local turbulence kinetic 

energy, and the vortex orientation must be initialized to be consistent with the structure of the 

local prescribed Reynolds stress tensor jiij uuR  , where u is the fluctuating velocity field 

induced by the vortices and an overbar denotes a time average. Dizaji and Marshall [27] note that 

the turbulent kinetic energy can be expressed as a linear function of the product 2Vn , where Vn  

is the number of vortices per unit volume and   is the vortex strength, which is also in 

agreement with the theoretical finding of Saffman [20]. Thus, by selecting a value for Vn  and 

given a prescribed turbulent kinetic energy field, the value of vortex strength can be obtained. 

The effect of number of vortices on the accuracy of the SVS predictions was examined in Refs 

[27, 28], who find that the results generally improve as Vn  increases, but that a value of Vn  
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greater than about 4 (corresponding to about 1000 vortices in a computational domain with 

volume 3)2(  ) is generally sufficient to yield accurate results in comparison to DNS.  

 The orientation distribution of the vortex structures is used to adjust the degree of 

anisotropy of Reynolds stress tensor. We begin by computing a set of 642TM  evenly-spaced 

test points on the surface of a unit sphere by dividing the faces of an icosahedron a prescribed 

number of times and projecting the vertices to the unit sphere. These test points are used to 

generate a set of randomly-oriented unit vectors with uniform probability distribution in three-

dimensional space. For isotropic turbulence, as considered in the current paper, the vortex 

orientation vector is obtained by randomly selecting one of the test points on the unit sphere, and 

then setting the vortex orientation equal to the radial vector to the selected test point. For 

anisotropic turbulence, the vortex structure orientation is set using the inverse procedure 

described by Dizaji et al. [28]. 

 

D. Velocity Calculation 

 The velocity computation is done by first pre-computing the velocity induced by a vortex 

structure of unit strength on the data plane, which is defined as the positive r-z plane relative to 

the axis of the vortex structure (Figure 2). This computation is performed once at the beginning 

of the computation and the results are stored. The induced velocity on the data plane is 

determined by computing the induced velocity normal to the r-z plane of a coordinate system 

that is local to a vortex structure of unit strength, where the vortex center is located at the origin 

of the local coordinate system. The velocity at each point of the grid used to cover the data plane 

is determined by integration of the Biot-Savart integral using a Gaussian vortex blob method 

[33], where the number of vortex blobs bN  used to discretize the vortex structure is set equal to 



 17

)/int( LNb  . The Gaussian radius of the blob is set equal to the vortex structure radius   

and β is a blob overlap coefficient. If the centroid of the ith vortex blob is denoted by ib , 

bNi ,...,1 , the associated vorticity field is given by 
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
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32/3
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i t
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where the blob amplitude iB  is given by zbi NL eB )/( . Substituting (13) into the Biot-Savart 

integral  
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xωs
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
,   (14) 

 

where xxs s , and performing the integration yields the velocity iu  induced by the ith 

vortex blob at a point zr zr eex   on the data plane as  

 

 ),(
4

),(
3

2

2

,
2

3

ii

i

i

i

P
t bxΩ

bx
xu

bx



















 (15) 

 

where P a z( , )  is the incomplete gamma function with limits 0)0,( aP  and 1),( aP .  When 

2/3a  and 2xz   for some real variable x, a convenient expression for the incomplete gamma 

function in terms of the error function erf(x) can be written as [34] 
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 P x x
xe x

( , ) ( )3

2
2 2

2

 


erf


. (16) 

 

The velocity at any point on the data plane is obtained by summing the velocity induced by all 

bN  vortex blobs. 

 Once the induced velocity of the unit vortex is obtained on the data plane, the induced 

velocity from a vortex structure m at target point y is obtained at subsequent times by 

interpolation from the data plane. This interpolation is performed by centering the data plane at 

the vortex structure centroid mx  and orienting the plane so that it passes through the target point 

y and is tangent to the vortex axis unit vector mζ , as illustrated in Figure 2. Repeating this 

procedure for all vortices in the vortex domain and adding the induced velocity from each yields 

the induced velocity on a selected target point. 

    

III. Validation for Homogeneous Turbulence 

 In this section we examine the induced velocity on a set of target points in a 

homogeneous turbulent flow, comparing measures of the flow fluctuations at the target points 

computed using the LSVS method with predictions obtained from direct numerical simulation 

(DNS) of the turbulent flow.  

 The DNS computations of isotropic, homogeneous turbulence used for validation were 

performed using a pseudo-spectral method on a 1283 triply-periodic grid with second-order 

Adams-Bashforth time stepping and exact integration of the viscous term [35]. In this approach, 
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the spectral Navier-Stokes equations are evolved in time after having been projected onto a 

divergence-free space using the operator ijjiij kkkP  2/  according to the expression 

 

 



   )2exp(

2

1
)exp(

2

3
)exp( 21221 tktkttk nnnn  FFPuu , (17)  

 

where an overbar denotes Fourier transform in three space dimensions, a superscript indicates the 

time step,   is the kinematic viscosity, and k is the wavenumber vector with magnitude k. The 

force vector F on the right-hand side has Fourier transform given by 

 

 FfωuF  , (18) 

 

where Ff  is the small wavenumber forcing term required to maintain the turbulence with 

approximately constant kinetic energy. The velocity field was made divergence-free at each time 

step by taking its Fourier transform and using the spectral form of the continuity equation, given 

by 

 

 0 uk . (19) 

 

Anti-aliasing of the DNS computations was performed using the standard approach of truncating 

the coefficients of the highest 1/3rd wave numbers. The forcing vector was assumed to be 

proportional to the fluid velocity [36, 37], such that 

 



 20

 
crit

crit
F kk

kkC





for       0

for  u
f , (20) 

 

where the coefficient C was set equal to lowEC /0045.0  and uu  
 critkk

lowE
2

1
 is the kinetic 

energy in all modes with wavenumber amplitude critkk  . The current computations were 

performed with 5critk , so that the forcing acts only on the large-scale eddies. Various 

measures of the DNS turbulence are recorded in Table 1. 

 The results of the LSVS computations depend on the values of the proportionality 

coefficients 1 , 2  and 3  defined by (2), the number of vortices VN , the vortex strength  , 

and the width VD  of the vortex domain. It was demonstrated in Ref. [27] that for a given 

computational domain, the value of turbulent kinetic energy is proportional to the product 2VN . 

In the current computations, we set 2502 VN  in order to match the turbulent kinetic energy in 

the DNS and LSVS computations. A ‘standard’ LSVS computation was selected with 512VN  

vortices in a vortex region with half-width 4.2VD  centered on the middle target point. 

Vortices whose centers leave this region were bounced back to the other side of the vortex 

region. In cases with moving target points, the vortex region is translated with the target points. 

The proportionality coefficients for this standard computation were set as 11  , 82  , and 

33   based on fitting with the DNS data. Sensitivity of the predictions to these parameters will 

be discussed.  

 The computations were performed with 101 target points aligned in a straight line parallel 

to the x-axis with separation distance 01.0x  between each point. The time step for both the 
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LSVS and DNS methods was set equal to 005.0t , and both runs were performed for 40,000 

time steps. The LSVS computations (including post-processing) required a CPU time of 

approximately 0.014 s per time step, versus 3.6 s per time step for the DNS computations, 

indicating a speed-up by a factor of over 250 with LSVS versus DNS even on a single-CPU 

workstation. This speed-up would increase dramatically in a highly parallelized computation 

since the vortex-based computations can easily be parallelized by assigning vortices to different 

processors [38], whereas spectral DNS computations are much more difficult to parallelize. The 

speed-up with LSVS would also be much greater for problems with anisotropic turbulence in 

which the highly efficient triply-periodic spectral DNS code cannot be used.  

 A plot of the CPU time for the LSVS computations (not including post-processing) per 

time step per target point is shown as a function of number of vortices in Figure 3. The figure 

shows clearly that the CPU time varies linearly with number of vortices. As an example for 

computations with 512VN  vortices, as used in the validation study in the current paper, the 

LSVS computation requires 38 s per target point per time step. One of the nice features of the 

LSVS method is that there are no stability limitations on the time step. Assuming a frame rate of 

60 Hz (and a corresponding time step of 1/60 s) for the flight simulator, our computations 

indicate that the turbulence field could be computed in real time for up to about 440 target points. 

This example indicates that real-time operation for flight simulators is quite feasible with the 

proposed LSVS synthetic turbulence method, even with running on a standard single-processor 

computer.  

 

A. Stationary Target Points 
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 Computations with stationary target points locations were examined extensively to 

determine accuracy of the SVS approach and sensitivity to the various numerical parameters. 

Time series showing the x-component of the fluctuating velocity field at the first target point for 

both the DNS and LSVS computations are shown in Figure 4. The ratio of kurtosis divided by 

the variance squared is equal to 2.70 and 3.37 for the DNS and LSVS computations, 

respectively, which compares reasonably well with the value 3 for a normally distributed 

stochastic process. The probability density function of the x-component of the fluctuating 

velocity, non-dimensionalized by its root-mean-square value, is plotted in Figure 5. The open 

square symbols are obtained from the LSVS computation and the filled deltas are from the DNS 

computation. As is typical of turbulent velocity fields, both sets of velocity data are reasonably 

well fit by a Gaussian function, given in the figure by a solid line. The power spectrum )( fe  for 

both LSVS and DNS predictions is plotted in Figure 6 as a function of fluctuation frequency f. In 

the inertial range, both sets of data exhibit a good fit to the expected variation 3/5 fe , which 

results from the Kolmogorov power spectrum together with the Taylor frozen turbulence 

assumption [18]. The DNS and LSVS predictions deviate at high frequency (f > 30), which is 

expected as the LSVS assumption of vortex structure of a single size was targeted to capture 

turbulence scaling only within the inertial range. The p.d.f. and spectral plots described above 

were examined for LSVS computations with a wide range of different values of the numerical 

parameters, including the coefficients 1 , 2  and 3  and the number of vortices VN . The 

computed results exhibited little sensitivity to the value of these parameters.   

 The autocorrelation function )(  of the x-component of velocity is defined by  

 

 )(/)()()( 2 tututu   , (21) 
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where )(tu  denotes the fluctuating fluid velocity at the first target point in the x-direction at time 

t and brackets denote a time average over the computational time. The autocorrelation function is 

plotted for the LSVS and DNS data in Figure 7a as a function of the lag time  . The integral 

time scale is defined with respect to the velocity autocorrelation as  

 

  dTL )(
0



 . (22) 

 

The computed integral times scales are obtained from (22) as 2.7 for the DNS predictions and as 

2.2 for the LSVS predictions. The dashed line in Figure 7a indicates the common expression of 

autocorrelation for a stationary Gaussian process [39]   

 

 )/exp()( LT  ,  (23) 

 

which is computed using the DNS integral time scale LT . The approximation (23) is seen to be a 

reasonable fit to both the DNS and LSVS computational data. The second-order Lagrangian 

structure function )(D , defined by  

 

 )(/)]()([)( 22 tututuD   , (24) 

 

is plotted in Figure 7b for both the LSVS and DNS computations. The dashed curve in this plot 

represents the theoretical estimate  
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 )]/exp(1[2)](1[2)( LTD   , (25) 

 

where the expression (23) is used in the second equation of (25). 

 Time variation of the fluid velocity on stationary target points in the LSVS computations 

can occur from three different effects – (1) death of vortices and birth of new vortices, (2) 

translation and rotation of the vortices, and (3) bouncing of vortices that leave one side of the 

vortex region onto the opposite side of the vortex region. Sensitivity of the predicted 

autocorrelation function for LSVS computations at stationary target points is examined in Figure 

8. In Figure 8a, the predicted autocorrelation function is compared for three different values of 

the vortex lifetime, corresponding to 13  , 3 and 5. We see that the autocorrelation function is 

highly sensitive to the value of the prescribed vortex lifetime, with the best match to DNS data 

for 33   (as shown in Figure 7). In Figure 8b, sensitivity of the autocorrelation function to 

vortex motion is evaluated by comparing predictions with full vortex motion to results of a 

computation with no vortex motion and to the results of a computation with vortex translation, 

but no rotation. The autocorrelation function is found to be substantially more sensitive to vortex 

translation than it is to vortex rotation. Finally, in Figure 8c we examine sensitivity of the 

autocorrelation function to vortex bouncing between the sides of the vortex region by comparing 

predictions with and without vortex bouncing. The predictions for the two cases are found to be 

very close, indicating a low level of sensitivity to vortex bouncing for stationary target points, at 

least for the size of the vortex region used in these computations.  

 The Eulerian longitudinal structure function of order n, )(rSn , is defined by  
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 n
n rurS )()(  , (26) 

 

where ),(),()( txutrxuru  . The Eulerian longitudinal structure function was computed as 

a function of offset distance r for orders n = 2, 4, 6, 8, and 10. We found that )(rSn  is almost 

unaffected by change in the vortex lifetime VT , but that it is sensitive to the value of the vortex 

core radius  . For instance, the predicted value of )(rSn  from DNS is compared to LSVS 

predictions in Figure 9 for cases with 42   and 82   on log-log plots. The LSVS results 

with 42   are observed to be significantly higher than the DNS predictions, particularly for 

larger values of n. The LSVS predictions with 82   are in excellent agreement to the DNS 

predictions for all values of n examined.      

 The Eulerian transverse structure function of order n, )(rTn , is defined by  

 

 n
n rvrT )()(  . (27) 

 

Both )(rSn  and )(rTn  can be non-dimensionalized using the n/2 power of the variance 2u , 

and the dimensionless structures functions are denoted as )(rsn  and )(rtn , respectively. For 

isotropic turbulence, Kármán and Howarth [40] showed that the transverse and longitudinal 

structure functions of second order can be related by the expression  
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A plot comparing )(2 rt  to the right-hand side of (28) is shown in Figure 10, where the dashed 

line indicates the theoretical expression (28) for isotropic turbulence. The DNS computation used 

21 target points, whereas 41 target points were used for the LSVS computation. Both 

computations are reasonably close to the theoretical expression, although LSVS is observed to 

deviate from the isotropic theory for vary small or vary large values of r.  

 

B. Uniformly Translated Target Points 

 Both DNS and LSVS computations were repeated for translating targets, with values of 

the target point mean translation velocity xU  ranging between 0.1 - 0.5, which is equal to 0.5 - 

2.5 times the turbulence root-mean-square velocity 0u . At low values of xU  the temporal 

resolution of the turbulence in the LSVS model controls the model accuracy, similar to the case 

for a stationary target, whereas at high values of xU  the LSVS accuracy is controlled by the 

spatial representation of the turbulence as the target point moves through it. Examination of 

different statistical measures of the predicted LSVS results indicate that target point translation 

has little affect on several of the measures presented in the previous section, including the 

probability density function, the power spectrum, and the Eulerian structure function )(rSn . 

However, the autocorrelation function )(  exhibits significant sensitivity to translation 

velocity.  

 A demonstration of the sensitivity of the autocorrelation to target point translation is 

shown in Figure 11a, in which the autocorrelation function )(  is plotted versus lag time   for 

a series of four LSVS computations with xU  = 0, 0.1, 0.3 and 0.5. The highest translation 

velocity is about 2.5 times the root-mean square velocity 0u  of the turbulent flow. The value 
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autocorrelation function is seen to monotonically decrease as the translation velocity is 

increased. A similar trend is observed in Figure 11b, which plots the integral time scale LT  

obtained from (22) as a function of target point translation velocity xU . The value of LT  is 

monotonically decreases as xU  increases. These observations are consistent with the notion that 

translation of the target point relative to the turbulence increases the frequency of velocity 

fluctuation, thereby decreasing correlation of the velocity with its value at a previous time.      

 

IV. Conclusions 

 There exists a need in simulator technology for rapid, accurate generation of synthetic 

turbulence on an object traveling within the turbulent flow. The method should be able to 

function under a prescribed turbulence mean velocity and Reynolds stress field, and it should 

provide a representation of the turbulence that is both temporally and structurally accurate so as 

to capture the change in fluctuation statistics with object translation speed relative to the 

turbulent flow. A simple method to achieve this aim is proposed in the current paper, based on 

the idea of finite-length vortex structures that are advected and rotated in the flow field via 

solution of stochastic differential equations of the Langevin type. The proposed method is an 

extension of the stochastic vortex structure (SVS) method recently developed for particulate 

flows, which has been demonstrated to provide correct prediction of particle collision rate, as 

well as a wide range of particle dispersion and agglomeration statistics, in both homogeneous 

turbulence and turbulent shear flows. However, the standard SVS method computes the turbulent 

fluctuations on a grid covering the entire computational domain and advects the vortex structures 

by interpolation of the velocity computed on this grid. Even with the use of acceleration methods 

such as the fast multipole method, the standard SVS method is far too slow for simulator 
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applications due to the large number of grid points on which the velocity is computed. The use of 

stochastic differential equations for vortex motion and rotation and of a restricted vortex region 

in the local stochastic vortex structure (LSVS) method developed in the current paper 

dramatically speeds up the synthetic turbulence computation for the flight simulator problem.        

 Predictions of the new LSVS method were validated for a wide range of statistical 

measures by comparison to results for direct numerical simulation (DNS) of homogeneous 

turbulence. Bearing in mind the fact that the proposed LSVS method was developed to achieve a 

rapid synthetic turbulence calculation that can only be expected to be statistically similar to 

actual turbulence, the agreement with DNS predictions was found to be quite encouraging. The 

LSVS predictions yield a probability density function for velocity that is reasonably close to 

DNS predictions. The predicted power spectrum agreed with the DNS results at low frequencies 

(f < 30) and with the expected 3/5~ f  Kolmogorov dependence within the inertial subrange. The 

autocorrelation function, as well as the associated Lagrangian structure function, were shown to 

be sensitive to the vortex lifetime and, to a lesser extent, to vortex translation within the flow 

field. Good agreement of the LSVS results with DNS predictions and with the expected 

exponential decay formula for the autocorrelation was obtained when the vortex lifetime was set 

to approximately three times the eddy turnover time scale. The Eulerian structure function is 

found to be sensitive to the vortex core radius. Excellent agreement between the LSVS results 

and the DNS predictions was obtained by setting the vortex core radius to eight times the 

Kolmogorov length scale.  

 While the results presented in this paper show promise for use of the LSVS method for 

flight simulator synthetic turbulence generation, additional steps are necessary to achieve this 

objective. It is envisioned that a typical simulator application would first involve a computation 
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of the Reynolds-averaged turbulence field, using a standard RANS method, leading to prediction 

of the Reynolds stress tensor within the flow field. The predicted turbulence from the RANS 

computation would be formed both by the ambient atmospheric turbulence and the wake 

turbulence of large-scale bodies present in the simulator (e.g., ships, building, topography), 

where in the latter case it would typically include large-scale wake vortices. The SVS vortices 

responsible for generating the synthetic turbulence fluctuations would then be initialized to 

match the computed (anisotropic) Reynolds stress tensor using the inverse procedure described 

by Dizaji et al. [28]. The same procedure would be used to generate new vortices as existing 

vortices die out during the flow computation. In principle, the same approach could be used for 

unsteady RANS calculations (e.g., in the presence of large-scale wake vortices from large bodies 

in the flow field), and in this case the inverse procedure described by Dizaji et al. [28] would 

need to be updated at each time step.     
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Figure Captions 
 
Figure 1. Schematic diagram showing the computational domain, the set of target points that 
move through the flow field, and the vortex domain in which stochastic vortex structures are 
placed to generate fluctuating turbulence at the target points. 
 
Figure 2. Schematic diagram showing the interpolation procedure used for direct computation of 
the velocity induced by a vortex structure on a target point.  Here L is the length of the vortex 
structure and P identifies the inclined data plane from which the velocity u induced by the vortex 
is interpolated. 
 
Figure 3. CPU time (in s) per time step per target point for the LSVS computation plotted as a 
function of the number of vortex structures.   
 
Figure 4. Time series showing the fluctuating fluid velocity at the central target point for (a) 
DNS and (B) LSVS methods. 
 
Figure 5. Probability density function for the x-component of velocity at the central target point, 
obtained for LSVS (open squares), DNS (filled deltas), and a best-fit Gaussian curve. 
 
Figure 6. Power spectrum as a function of frequency for the LSVS (red) and DNS (blue) data. 
The inertial-range 3/5~ f  dependence is indicated using a dashed line. 
 
Figure 7. Plots showing (a) the autocorrelation )(  and (b) the Lagrangian structure function 

)(D  as functions of the lag time   for LSVS (open squares), DNS (filled deltas) and for the 
exponential empirical estimates (dashed line) given by Eqs. (23) and (25). 
 
Figure 8. Plots examining sensitivity of the autocorrelation function predicted by the LSVS 
method to (a) vortex lifetime [with proportionality coefficient values 13   (A, red line), 3 (B, 

blue line), and 5 (C, green line)], (b) vortex motions [comparing case B to computations with no 
vortex motion (D, solid black line) and to computations with translation but no vortex rotation 
(E, dashed line)], and (c) vortex bouncing [comparing case B to a computation with no vortex 
bouncing (F, orange line)].   
 
Figure 9. Eulerian longitudinal structure function )(rSn  as a function of offset distance r for 

LSVS (lines) and DNS (symbols), with order 2n  (red line, squares), 4 (blue line, deltas), 6 
(green line, gradients), 8 (orange line, diamonds), and 10 (black line, circles). Plots show 
sensitivity to the vortex core proportionality parameter, with (a) 42   and (b) 82  . 
 
Figure 10. Plot comparing the second-order Eulerian transverse structure function )(2 rt  to the 
right-hand side of Eq. (28) for the DNS computation (deltas) and for an LSVS computation 
(circles). The theoretical expression for isotropic turbulence is indicated by a dashed line.   
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Figure 11. Plot showing (a) the autocorrelation function and (b) the corresponding integral time 
scale on translated target points from LSVS computations. The target point translation velocity is 
given by 0xU   (A, red line), 0.1 (B, green line), 0.3 (C, blue line) and 0.5 (D, black line). 
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Table 1. Scaling variables charaterizing the fluid turbulence in the DNS computation. 
 

Turbulent kinetic energy, q  0.084 Taylor microscale,   0.23 
Root-mean square velocity 
fluctuation, 0u  0.24 

Microscale Reynolds 
number, Re 

56 

Mean dissipation rate,   0.016  Integral length, 0  0.86 
Kinematic viscosity,    0.001  Eddy turnover time, 0T  3.6 
Kolmogorov length scale,   0.016 Integral time, T  2.8 
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Figure 1. Schematic diagram showing the computational domain, the set of target points that 
move through the flow field, and the vortex domain in which stochastic vortex structures are 
placed to generate fluctuating turbulence at the target points. 

 

 

 

  
Figure 2. Schematic diagram showing the interpolation procedure used for direct computation of 
the velocity induced by a vortex structure on a target point.  Here L is the length of the vortex 
structure and P identifies the inclined data plane from which the velocity u induced by the vortex 
is interpolated. 
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Figure 3. CPU time (in s) per time step per target point for the LSVS computation plotted as a 
function of the number of vortex structures.   
 
 
 

          
 

(a) (b) 
 
Figure 4. Time series showing the fluctuating fluid velocity at the central target point for (a) 
DNS and (B) LSVS methods. 
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Figure 5. Probability density function for the x-component of velocity at the central target point, 
obtained for LSVS (open squares), DNS (filled deltas), and a best-fit Gaussian curve. 
 

 
 

 
 

Figure 6. Power spectrum as a function of frequency for the LSVS (red) and DNS (blue) data. 
The inertial-range 3/5~ f  dependence is indicated using a dashed line. 
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 (a) (b) 
 
Figure 7. Plots showing (a) the autocorrelation )(  and (b) the Lagrangian structure function 

)(D  as functions of the lag time   for LSVS (open squares), DNS (filled deltas) and for the 
exponential empirical estimates (dashed line) given by Eqs. (23) and (25). 
 
 
 

    
 (a) (b) (c) 
 
Figure 8. Plots examining sensitivity of the autocorrelation function predicted by the LSVS 
method to (a) vortex lifetime [with proportionality coefficient values 13   (A, red line), 3 (B, 

blue line), and 5 (C, green line)], (b) vortex motions [comparing case B to computations with no 
vortex motion (D, solid black line) and to computations with translation but no vortex rotation 
(E, dashed line)], and (c) vortex bouncing [comparing case B to a computation with no vortex 
bouncing (F, orange line)].   
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 (a) (b) 
 
Figure 9. Eulerian longitudinal structure function )(rSn  as a function of offset distance r for 

LSVS (lines) and DNS (symbols), with order 2n  (red line, squares), 4 (blue line, deltas), 6 
(green line, gradients), 8 (orange line, diamonds), and 10 (black line, circles). Plots show 
sensitivity to the vortex core proportionality parameter, with (a) 42   and (b) 82  . 
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Figure 10. Plot comparing the second-order Eulerian transverse structure function )(2 rt  to the 
right-hand side of Eq. (28) for the DNS computation (deltas) and for an LSVS computation 
(circles). The theoretical expression for isotropic turbulence is indicated by a dashed line.   
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 (a) (b) 
 
Figure 11. Plot showing (a) the autocorrelation function and (b) the corresponding integral time 
scale on translated target points from LSVS computations. The target point translation velocity is 
given by 0xU   (A, red line), 0.1 (B, green line), 0.3 (C, blue line) and 0.5 (D, black line). 


