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Abstract 

Cable ampacity analysis is generally performed assuming constant worst-state 

environmental conditions, which often correspond to a dry soil condition or to a condition 

with uniform ambient soil moisture content. The characteristic time scale of thermal 

variation in the soil is large, on the order of several weeks, and is similar to the time scale 

between rainfall events in many geographic locations. Intermittent rainfall events 

introduce significant transient fluctuations that influence the thermal conditions and 

moisture content around a buried cable both by increasing thermal conductivity of the 

soil and by increasing the moisture exposure of the cable insulation. This paper reports on 

a computational study of the effect of rainfall events on the thermal and moisture 

transients surrounding a buried cable. The computations were performed with a finite-

difference method using an overset grid approach, with an inner polar grid surrounding 

the cable and an outer Cartesian grid. The thermal and moisture transients observed in 

computations with periodic rainfall events were compared to control computations with a 

steady uniform rainfall. Under periodic rainfall conditions, the temperature and moisture 

fields are observed to approach a limit-cycle condition in which the cable surface 

temperature and moisture content oscillate in time, but with mean values that are 

significantly different than the steady-state values. 
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Nomenclature 

Roman letters 

gA = area of outer grid cell [m2] 

b = cable submergence depth [m] 

Sc  = specific heat of soil [ KJ/kg  ] 

wc  = specific heat of liquid water [ KJ/kg  ] 

C  = effective soil heat capacity [ KJ/m3  ] 

Cw  = heat capacity of water [ KJ/m3  ] 

d = cable diameter [m] 

D = rainfall duration parameter ( LR  / ) [dimensionless] 

TLD = liquid thermal migration coefficient  K/sm 2     

TVD  = vapor thermal migration coefficient  K/sm 2    

TD = total thermal migration coefficient  K/sm 2   

LD  = liquid isothermal diffusivity  /sm 2   

VD  = vapor isothermal diffusivity  /sm 2   

D  = total isothermal diffusivity  /sm 2   

F = dimensionless rainfall period ( LP  / ) [dimensionless] 

outf = heat supply rate to each outer grid cell [W/m3] 

h = convective heat transfer coefficient [W/m2K] 

lvh  = specific enthalpy of vaporization [ J/kg ] 

yx HH ,  = grid size in x and y-directions [m[ 
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I = rainfall intensity parameter ( 0/ KQrain ) [dimensionless] 

eK  = Kersten number [dimensionless] 

K = hydraulic conductivity [m/s] 

L = latent heat of vaporization [J/m3] 

cN = number of outer grid cells which receive a heat supply [dimensionless] 

surfq = cable heat flux per unit depth [W/m2] 

q  = average cable surface heat flux [W/m2] 

Q = net water flux [m/s] 

rainQ = liquid flux due to rainfall, per unit depth [m/s] 

r = radial coordinate [m] 

R = cable radius (= d/2)  [m] 

IR = radius of inner grid [m] 

S = effective saturation ( sat / ) [dimensionless]  

t = time [s] 

T = absolute temperature [K] 

fT = temperature value at fringe point [K] 

0T  = ambient temperature [K] 

surfT = average temperature around cable surface [K] 

x = horizontal coordinate [m] 

y = vertical coordinate [m] 

maxv = maximum liquid velocity magnitude [m/s] 
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v = liquid velocity [m/s] 

 

Greek letters   

  = azimuthal coordinate [dimensionless] 

  = soil porosity [dimensionless]  

  =  effective thermal conductivity of soil  KW/m   

dry  =  thermal conductivity of dry soil  KW/m    

sat  = thermal conductivity of saturated soil  KW/m    

  = moisture content  [dimensionless] 

f = value of moisture content at fringe point [dimensionless] 

sat  = moisture content of saturated soil (=  )  [dimensionless] 

surf = average moisture content around cable surface [dimensionless] 

s  = effective density of soil [ 3kg/m ] 

w  = density of liquid water [ 3kg/m ] 

  = time scale [s] 

C  = convective time scale ( 0/ Kb ) [s] 

D  = diffusive time scale ( 0
2

0 /bC ) [s] 

L  = time scale of daily load variation [s] 

R  = rain duration time scale [s] 

P  = time scale between rain events [s] 

 = dimensionless depth ( by / ) [dimensionless] 
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1. Introduction 

 Determination of the current-carrying capacity (or ampacity) of underground 

electric cables is one of the key factors limiting operation of electric distribution systems, 

particularly in residential areas. Cable lifespan depends in a nonlinear manner on several 

factors, primary among which are insulation temperature, electric stress magnitude, and 

exposure of insulation to moisture (Hyvönen, 2008). The effect of temperature on 

insulation lifespan is often approximated by an exponential (Arrhenius) expression 

(Montanari et al., 2002; Mazzanti, 2007, 2009), so that the peak temperature values have 

a disproportionately large influence on lifespan degradation compared to the average 

temperature value. In order to reduce peak temperatures, ampacity is usually set for cable 

systems based on worst-case environmental conditions, usually consisting of dry 

conditions or conditions with uniform background soil moisture content. Water has a duel 

role on the cable lifespan. On the one hand, the thermal conductivity of soil is 

substantially increased by the presence of water, with an increase of an order of 

magnitude or more between dry and saturated conditions for many soils (Hamdhan and 

Clarke, 2010). As a consequence, the presence of water decreases insulation 

temperatures, which has a favorable effect on cable lifespan. On the other hand, exposure 

to water can give rise to formation of water treeing degradation within the cable 

insulation (Hyvönen, 2008), which over time can lead to deterioration of the insulation 

material and shortening of the cable lifespan.  

 The increasing availability of plug-in electric vehicles (PEVs) is expected to 

substantially increase electric loads in the near future, particularly within residential 

communities where underground cable systems are commonly used (Fernández et al., 
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2011; Webster, 1999; Clement-Nyns et al., 2010). Moreover, the electric load associated 

with PEVs has large stochastic variation, depending on the percentage of a community 

that has electric vehicles. In order to accommodate residential PEVs while minimizing 

the cost of upgrading infrastructure, new charge-control schemes have been proposed to 

better manage electricity availability in distribution systems without exceeding load 

limits (Rezaei et al., 2014).  

 In the presence of large fluctuations of the electric load, it is important to have a 

good understanding of other transients imposed on the heat and moisture transfer around 

the cable, the most important of which originate from intermittent rainfall events. Rainfall 

is a key factor in determination of cable temperature and water exposure under actual 

environmental conditions. In many geographic areas around the world, between 25-40 

rainy days during a year account for two-thirds of the total annual precipitation (Sun et 

al., 2006). This range corresponds to a typical average interval of 9-14 days between 

significant rainfall events. The range of time intervals associated with rainfall events is 

therefore similar to the time scale associated with heat transfer in the soil surrounding an 

underground cable (Anders, 1997), with the consequence that the temperature field 

around underground cables in regions with frequent rainfall may be nearly always in a 

transient state, influenced on a short time scale by the daily load variation and on a longer 

time scale by soil moisture variation associated with rainfall. 

There is a substantial literature on prediction of cable ampacity based on thermal 

analysis within cables and the soil surrounding the cables. A survey of steady-state 

analytical methods is given by Neher and McGrath (1957), which has also been extended 

to transient problems (Neher, 1964; Anders and El-Kady, 1992; Liang, 1999; Black and 
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Park, 1983). These analytical models are subject to a number of simplifications, including 

the assumption that the ground surface is an isotherm, that cables are a line source of 

heat, and for transient calculations, that the heat source changes as a series of discrete 

step functions. Numerical solutions for cable thermal fields have been reported using the 

finite-element method (Flatbo, 1973; Kellow, 1981; Nahman and Tanaskovic, 2012), the 

finite-volume method (Freitas et al., 1996), and a boundary-element method (Gela and 

Dai, 1988). Application of overset grid methods to cable thermal analysis were reported 

by Garrido et al. (2003), Vollaro et al. (2011), and Marshall et al. (2013). Overset grid 

methods are well suited for cable heat transfer problems since the characteristic length 

scale for heat transfer varies over a large range, from the cable diameter to the 

submergence depth of the cable.  Problems with soil heterogeneity on cable heat transfer 

were examined by Tarasiewicz et al. (1985) and Hanna et al. (1993), and nonlinear 

effects due to temperature-dependent insulation electrical resistance was examined by 

Kovač  et al. (2006).   

 The effect of moisture variation on underground cable thermal fields was first 

examined computationally by Anders and Radhakrishna (1988) using a finite element 

method, and later by Freitas et al. (1996) using a finite volume method. Both of these 

studies neglect thermal convection caused by fluid velocity associated with moisture 

gradients, and they assume that the ambient moisture level is uniform. Specifically, the 

studies assume that no additional moisture is added to the system at the soil-air interface 

(i.e., no rainfall). A primary observation of these studies is the formation of a local dry 

region surrounding an underground cable, within which the temperature gradient 

associated with the cable thermal field causes moisture to migrate away from the cable. 



 9

The presence of this dry region decreases the soil thermal diffusivity in the region 

surrounding the cable, which in turn increases the cable surface temperature. Moya et al. 

(1999) report an experimental study of heat and moisture transport around a heated 

cylinder in unsaturated soil. The experimental results are found to compare well with 

numerical computations using a finite-volume method. The paper concluded that the 

primary influence of moisture on the cable surface temperature is through the influence 

of moisture on the soil thermal conductivity. This observation might seem to justify the 

common approach of simply prescribing a conservative thermal conductivity value for 

the soil and determining ampacity using only solution of the thermal equation. However, 

one problem with that approach is that cable insulation degradation is sensitive not only 

to thermal conditions, but also to water exposure. Accurate calculation of cable moisture 

exposure in realistic weather conditions is critical in order to adequately characterize 

degradation associated with these two variables.  

 The current paper examines the effect of transients caused by rainfall events on 

the temperature and moisture fields surrounding an underground cable. Of particular 

interest is the effect of a rainfall front on the dry region surrounding the cable, and the 

transients caused by passage of rain fronts at different rainfall intensities, durations, and 

frequencies. A two-dimensional finite-difference model is used to simulate both the 

temperature and moisture fields surrounding an underground cable. The top boundary 

condition for the moisture field at the soil-atmosphere interface is varied to represent 

effect of rainfall of different intensity, duration, and frequency. Unlike most studies of 

combined moisture/thermal cable analysis, we retain the thermal convection term in the 

temperature governing equation to account for the short time scales of the rain front. The 
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significance of the thermal convection term is examined by comparing simulations both 

with and without this term.   

 A summary of the governing equations and boundary conditions, and of the 

computations method used to solve thee equations, is given in Section 2. This section also 

includes results of a grid independence study and an evaluation of the importance of 

thermal convection on the cable surface temperature. The results of the paper are 

presented in Section 3, including comparison of steady-state calculations with constant 

rainfall rate with periodic rainfall cases having rainfall events with different intensity, 

duration, and frequency. Conclusions are given in Section 4. 

 

2. Computational Method 

Governing Equations 

 The governing equations for heat and moisture transfer within the ground are 

given by the coupled system derived by Philip and de Vries (1957) as 
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where ),( tT x  is the temperature field and ),( tx  is the volumetric moisture content. The 

various coefficients in (1)-(2) include the volumetric heat capacity of wet soil C, the 

volumetric heat capacity of water Cw, the water velocity vector v ,  the unsaturated 

hydraulic conductivity K , the soil thermal conductivity  , the latent heat of 
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vaporization of water L, the thermal moisture diffusivity TD , the isothermal moisture 

diffusivity D , and the isothermal vapor diffusivity VD . Equation (1) is derived from 

the conservation of energy, where the second term on the left-hand side represents 

thermal convection by the liquid motion, and on the right-hand side, the first term 

represents thermal diffusion, and the second term represents energy transfer via latent 

heat of the vapor caused by a moisture gradient.  

 Equation (2) is derived from a combination of the continuity equation and an 

extension of Darcy's law to unsaturated media. The continuity equation gives an 

expression for the rate of change of the moisture content as 

 

 0

 Q

t


,   (3) 

 

where Q  is the net water flux (defined to be positive upward), which is equal to the 

product of the water velocity v and the soil porosity  . An equation for Q was derived by 

Philip and de Vries (1957) in terms of the temperature and moisture gradients as  

 

 )(/ yT KDTD evQ    , (4) 

 

where the first and second terms on the right-hand side are associated with transport of 

water by capillary action and the third term is associated with gravitational transport.  

Substituting this expression into the continuity equation (3) gives the moisture balance 

equation (2). Equations (1)-(2) are the same equations used by previous investigators for 
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cable ampacity computation (Anders and Radhakrishna, 1988; Freitas et al., 1996; Moya 

et al., 1999), with the difference that we have also included the thermal convection term 

in order to properly account for the effect of rainfall on the temperature field.  

 The coefficients  , TD , D , L, C, VD , and K  are functions of the temperature 

and moisture content. Since analytical expressions for these coefficients are difficult to 

obtain, it is common practice to evaluate them using empirical formulas developed for 

specific soil types. In the current study, a representative backfill soil was selected, which 

is identified as Soil III by Anders and Radhakrishna (1988). This soil is described as 

well-graded with course to fine particles, such as is found in a silty sand or a sandy loam. 

The equations used for the coefficients for this soil type are given by Anders and 

Radhakrishna (1988) as 

 

 dryedrysat K   )( ,       

 TVTLT DDD  ,         VL DDD   ,    (5) 

 lvwhL  ,        wwSs ccC   

 

where  1log  SKe , satS  / , and the various coefficients in (5) are given in Table 1. 

The empirical equation for effective thermal conductivity in (5) is restricted to 1.0S . 

When 1.0S , the soil is nearly dry, so we set dry   in the computations.  
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Table 1. Expressions used for the variable coefficients that characterize heat and moisture 
transport in the soil as functions of temperature T (in degrees Kelvin) and relative 
moisture content satS  / . The different coefficients are in SI units, as indicated in the 

nomenclature section.  
 

Variable Parameters  Constant Parameters 

TLD  = )96.2601.8exp( S   45.0sat  

TVD  = )316.23416.1exp(  S   3.0dry  

LD = )19.1806.8exp( S   6.1sat  

VD  = )792.27483.7exp(  S   1800s  

lvh  = T)00237.0(10496.2 6     1000w  

K  = 6610 S   1480Sc  

  4216wc  

 

Computational Approach 

 The numerical computations are performed on both an outer Cartesian grid and on 

an inner polar grid surrounding a single buried cable, as shown in Figure 1. The outer 

grid has boundaries at x  
1

2
Hx  in the horizontal direction, and it extends from the 

ground to a depth y  Hy . The four boundaries of the outer grid are identified by circled 

numbers [1] - [4] in Figure 1. On the bottom boundary [4], the temperature is set to a 

prescribed value 0T  and the moisture content is governed by a flux balance of the form 

 

 
 K
y

D
y
TDT 








.      (6) 
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Figure 1. Schematic diagram of the computational flow domain and the inner (polar) and 
outer (Cartesian) grids, where the cable is identified as a black circle at the center of the 
inner grid, which is submerged a depth b below the ground. The boundaries of the outer 
grid are identified by circled numbers. 
 

 

Zero-flux boundary conditions are used for temperature on the side boundaries [2] and 

[3], so that 0/  xT . The side boundary condition for moisture is again based on the 

flux balance, and is given by  

 

 0







x
D

x
TDT


 . (7) 

 

A convective boundary condition for temperature is used on the top boundary [1], which 

has the form 
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y
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   , (8) 

 

where h is the surface heat transfer coefficient and atmT  is the atmospheric temperature. 

The third term is included along with the tradition convective boundary equation to 

account for the transfer of latent heat by vapor migration. The boundary condition for 

moisture content on the top boundary [1] is  

 

 rainT QK
y

D
y
TD 











, (9) 

 

where )(tQrain  denotes the prescribed time-varying flux of water supply by rain on the 

top boundary.   

 The outer Cartesian grid computations are performed by introducing a heat source 

for grid cells of the outer grid that overlap the cable cross-section. The heat supply rate to 

each outer grid cell, outf , is related to the cable surface heat flux inq  by  

 

 outgcin fANRq 2 , (10) 

 

where R is the cable radius, cN  is the number of outer grid cells which receive a heat 

supply, and gA  is the area of one cell of the outer grid.  

 The outer grid yields an accurate solution for heat and moisture transport in the 

region sufficiently far away from the cable, but it does not satisfy the boundary 
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conditions on the cable surface. In order to obtain a more accurate solution near the cable, 

we use an overset inner grid in an annular region spanning from the cable radius R to the 

outer radius IR  of the inner grid. The center of the inner grid is located a distance b 

below the ground level, where b is called the cable burial depth. Within this inner grid, 

the temperature and moisture content fields are discretized using a polar coordinate 

system ),( r . The inner grid solution satisfies the flux boundary condition in temperature 

and the no-penetration condition for moisture on the cable surface, so that 

 

 inq
r
T





  , 0



r


 on Rr  . (11) 

 

The two grids communicate on the set of grid points on the outer boundary of the inner 

grid ( IRr  ), which are called fringe points. At each time step, we first solve for the 

temperature and moisture fields on the outer grid, and then use a bilinear interpolation to 

set the values of T  and   at the fringe points of the inner grid, denoted by fT  and f . 

The inner solution is then solved using a Dirichlet boundary condition on its outer surface 

of the form 

 

 fTT  , f   on IRr  . (12) 

 

 The governing equations (1)-(2) for temperature and moisture content were solved 

within both the inner and outer grids using a Crank-Nicholson method for the diffusive 

terms and a second-order Adams-Bashforth method for the convective term, with the 
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velocity given by (4). Spatial derivatives were computed using second-order centered 

differences in both grids. The resulting system of equations was solved using a Gauss-

Seidel iteration method, which was written such that computations are performed only 

with non-zero matrix elements. It is noted that (1) approaches a first-order hyperbolic 

equation in the absence of the diffusive terms, for which the numerical method described 

above would not be stable. This numerical instability was not an issue in the current 

computations, however, since the scale of the problem is fairly small (ranging from 

centimeters to tens of meters) and the diffusive terms were consequently sufficiently 

large to suppress the instability. The CFL number xtv  /max  was monitored for all 

computations and did not exceed 0.002. 

 

Dimensionless Parameters 

 The problem depends upon two dominant length scales - the cable diameter d and 

the cable submergence depth b. The cable diameter characterizes small-scale fluctuations 

of temperature and moisture around the cable, such as are associated with power load 

fluctuations during a daily cycle, but the submergence depth is more characteristic of the 

thermal and moisture fields as a whole.  

 Three characteristic time scales in the problem are referred to as the convective 

time scale C , the diffusive time scale D , and the load-variation time scale L . If we 

select b as a characteristic length scale, the convective time  0/  KbC   is the typical 

time required for a rain front to propagate from the ground to the cable location, where 

0K  is characteristic of the velocity scale caused by gravitational drainage. The diffusive 

time 0
2

0 / bCD  , where 00 / C  is a characteristic thermal diffusivity, is representative 
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of the time required for the thermal field to attain a steady state upon change of the cable 

heat flux or of the surrounding moisture field. The load-variation time L  represents the 

period of oscillation of the cable heat load, where we make the common assumption that 

the cable load is periodic on a daily cycle. For typical conditions, C  is on the order of 11 

days, D  is on the order of 20 days, and L  is 1 day. The addition of rain at the top 

boundary introduces other time scales which can be compared to the three time scales 

described above. These additional scales include the rain duration time R  and the period 

between rain events P , both of which are examined in the paper. 

 A set of dimensionless variables are defined using the cable submergence depth b 

as a length scale, the load-variation time L  as the time scale, the average cable surface 

heat flux q , and the ambient temperature 0T .  The resulting dimensionless variables 

(denoted with primes) are defined by  

 

)( 0
0 TT
bq

T 


,  b , Ldttd / , bxx / , byy / , 

0/ Kvv  ,   outout f
q
bf  ,        qqq inin / , 0/ KQQ rainrain   , 

0/ CCC   0/   0/ LLL   0/ VVV DDD  , 

0/ TTT DDD  , 0/  DDD  , 0/  KKK  . (13) 

 

A subscript “0” is used to denote constant nominal values of the coefficients, where these 

nominal values are set equal to the coefficient values under saturated soil conditions 

(obtained from (5) and Table 1 with 1S ).  



 19

 The dimensionless governing equations and boundary conditions contain a 

number of different dimensionless parameters. In the current paper, we hold many of 

these dimensionless parameters constant in order to focus on a small number of 

parameters that characterize the rainfall. Characteristic values of these dimensionless 

parameters are obtained for a typical 5kV distribution cable (e.g., a tape-shielded 5kV 4/0 

AWG aluminum conductor), for which the average cable diameter is 5.2d cm, the 

burial depth is 1b m, and a typical cable surface heat flux is q  = 500 W/m2 for an 

average-size residential community (Marshall et al., 2013). Using a typical value for 

thermal conductivity of fully saturated soil of  W/mK6.10  , we obtain a relationship 

between a change in the dimensionless temperature T   and the dimensional temperature 

T  as TCT  )5.312( . A list of constant dimensionless parameters and the values 

used for these parameters in the current computations is given in Table 2. The 

dimensionless parameters that are allowed to vary in the computations include the rainfall 

intensity, the rainfall duration parameter LRrainD  / , and the dimensionless rainfall 

frequency Lff   .   

 

Grid Independence and Validation 

 A grid independence study was performed to examine sensitivity of the 

computations to number of grid points in the inner and outer grids. Since the focus of the 

study is on effect of soil characteristics and rain on the thermal and moisture exposure of 

a buried cable, the grid independence study examines the effect of grid resolution on the 

average temperature and moisture content on the cable surface as a function of time.  The 
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Table 2. List of dimensionless parameters whose values are held fixed, and their values in 
the current computations.   
 

Parameter Name Equation Typical Value 
 

convH  
0

hb
 

 
2.8 

 
c1 2

0

0

bC
L

 
 

5.2 210  

 
c2 

 

71cc  
 

1.2 1010  
 

c3 b
Dq TL

0

0




 
 

0.16 

 
c4 2

0

b
DL 

 
 

3.5  

 
c5 

L K 0

b
 

 
8.6 210  

 
c6 

0
5 C

c
c ww  

 
0.14 

 
c7 bq

DL V 00  
 

2.4 910  

 
c8 bqD

D

T 0

00 
 

 
22 

 
m1 

00

0

 K
Dq T  

 
1.9 

 
m2 bK

D

0

0



  
 

40 

 

  

test computation used for the grid independence study was conducted for a case where 

the initial temperature field is set equal to the ambient temperature ( 0)0,(  xT ) and the 

initial moisture content was 1.0),( yx . The domain size was Hx /b  5.0 and 

Hy /b  3.0 , with a cable diameter d /b  0.0249 and an inner grid radius RI /b  0.0747. 

The cable surface heat flux was held constant ( 1surfq ) and the rain flux was set at 
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5.0rainQ . The time step was fixed as 002.0t , and the runs were continued out to 

20t . The number of grid points in the inner grid was set such that the grid spacing at 

the outer edge of the inner grid in both the radial and azimuthal directions was similar to 

the grid spacing used in the outer grid. In the grid independence study, the number of 

points in the inner and outer grids were varied in the same proportion. Three different 

grids were examined in the study, with grid point numbers in each direction in the inner 

and outer grids listed in Table 3. Results for the average cable surface temperature and 

moisture content are plotted in Figure 2 as functions of time for each grid. For the finest 

two meshes, the maximum difference in cable surface temperature was 0.5% and the 

maximum difference in moisture content was 1.1%. The computations in the remainder 

of the paper were performed on the medium-resolution mesh B. 

 

   
           (a) (b) 
 
Figure 2. Time variation of the average cable surface temperature and moisture content 
for the grid independence study, for grids A (dash-dot), B (solid), and C (dashed).  
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 The sensitivity of the temperature field to the thermal convection term was 

examined by repeating the computation described above with grid B but with no thermal 

convection term. The prediction for the average dimensionless temperature on the cable 

surface is compared with the result with the thermal convection term in Figure 3. It is 

observed that the results are similar for the runs with and without convection during the 

initial part of the calculation as the cable temperature increases before the rain front 

penetrates to the cable location. At about 4t , the cable temperature abruptly begins 

decreasing, coinciding with the abrupt increase in moisture content observed in Figure 2b 

associated with arrival of the moisture front from the rainfall event at the cable location. 

Following this time, the predictions with and without the convection term in Figure 3 

exhibit significant differences. The most noticeable of these differences is that the cable 

temperature prediction without convection rapidly asymptotes to a constant value 

following arrival of the moisture front, whereas the cable temperature prediction with 

convection exhibits a gradual decrease with time.  

 

 
Figure 3. Comparison of predicted dimensionless average cable surface temperature for a 
case with the thermal convection term (solid line) and without the thermal convection 
term (dashed line) for the same run as shown in Figure 2. 
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3. Results and Discussion 

 Computational results are reported in this section for thermal and moisture fields 

around underground cables with periodic rainfall events. The rainfall intensity, duration, 

and period are all varied in such a way that the average rainfall is held constant, and the 

results are compared to computations with constant average rainfall in order to determine 

the transient effects caused by rainfall events.  

 

Initialization 

 The computations are initialized using two sets of preliminary computations. The 

first preliminary computation is performed with the outer grid only for constant rainfall 

and with no cable present. Since this problem is essentially one-dimensional, the outer 

grid is reduced to 637 points in the y-direction and 11 points in the x-direction for the first 

preliminary computation. The constant rainfall rate is determined by dividing the  

average annual precipitation in different regions by the number of days in a year, and 

then non-dimensionalized to obtain rainQ  , where the overbar denotes average value. 

Computations were performed with 005.0rainQ , 0.01, 0.02, and 0.03, as well as the 

case with no rain ( 0rainQ ). The case with 03.0rainQ  corresponds to a precipitation of 

95 cm/yr, which is typical of Chicago, whereas that with 01.0rainQ  corresponds to a 

precipitation of 32 cm/yr, which is typical of Los Angeles. For simplicity, rainfall is 

spread throughout the year and seasonal variations are ignored. Each computation is 

initialized using a uniform moisture content of 1.00   and temperature set equal to the 

ambient value. The computations are continued until a steady-state condition is achieved 

in the value of moisture content to at least four significant figures. The case with no rain 
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did not achieve a steady-state value even after very long time, but instead decreased very 

slowly with time in a continuous manner. The steady-state moisture profiles for the four 

cases with non-zero values of  rainQ   are plotted as functions of the dimensionless depth 

by /  in Figure 4. The line denoted by 'E' in this figure shows the moisture content 

profile for the case with no rain at a time approximately 10 years after the initial 

condition.  

 

  

 
Figure 4. Steady-state moisture content profiles for cases with (A) 03.0rainQ , (B) 0.02, 

(C) 0.01, (D) 0.005, and (E) 0 as a function of dimensionless depth  . The initial 
moisture profile in the calculations is indicated by a dashed line. For the case with no 
rain, the moisture content moves downward very slowly in time and no steady-state 
profile is observed. The moisture profile shown in E is plotted at a time of approximately 
10 years after the initial condition. The other cases have all converged to steady-state 
profiles within four significant figures in the moisture content.  
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 The second preliminary computation reads in the equilibrium moisture content 

profile for the selected average rainfall rate, and then introduces the cable with a constant 

surface heat flux using both the outer and inner grids with the number of grid points set 

equal to the values stated for grid B in Table 3. In the second preliminary computation, 

the rainfall rate is held constant at the same average value as used for the first 

computation. The computations are continued until both the temperature and moisture 

content fields have achieved steady-state values. The time variation of the average 

temperature and moisture content on the cable surface are plotted in Figure 5 as functions 

of time for the four cases with non-zero rainfall shown in Figure 4, showing the approach 

of the results to a steady-state condition. In Figure 5a, the dimensionless temperature is 

shown on the left-hand y-axis and the corresponding change in dimensional temperature 

(in C ) for the example problem with 2 W/m500q , m 1b , and  W/mK6.10   is 

shown on the right-hand y-axis. 

 
 

Table 3. Number of points in different grids used in grid independence study. 
 
Grid Identification Outer Grid Inner Grid 

 x y r  

A 651 451 37 63 

B 921 637 53 89 

C 1029 711 59 99 
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 (a) (b) 
 
Figure 5. Time variation of the average cable surface (a) temperature and (b) moisture 
content during the second preliminary computation for cases with (A) 03.0rainQ , (B) 

0.02, (C) 0.01, and (D) 0.005. In (a), the dimensionless temperature is shown on the left-
hand y-axis and the corresponding change in dimensional temperature for the example 
problem is shown on the right-hand y-axis. The figure shows the approach of the 
temperature and moisture content fields to a steady state condition. 
 

 The contours of the steady-state temperature and moisture content around the 

cable are plotted for the case with 03.0rainQ  in Figure 6. In this figure, the near-cable 

inner grid is superimposed on the outer grid so that the fields are accurately represented 

both near to and far away from the cable. Contours of the temperature and moisture 

content fields are observed in close-up images to vary smoothly and continuously across 

the two grids. Also, the value of temperature and moisture content is extracted on the 

vertical line 0x , passing through the cable, and plotted in Figure 7 for the four 

different rainfall rates in their steady-state solutions. As expected, the temperature field 

exhibits a local maximum at the cable and decays away from the cable. From Figure 7, 

we observe that the temperature peak value does not differ significantly between the four 

different rainfall rates examined, although the temperature falls off more rapidly with 
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distance away from the cable for the higher rainfall rate case, as is consistent with the 

higher thermal conductivity caused by higher values of moisture content. The moisture 

content exhibits a local minimum near the cable for all four rainfall rates, which 

corresponds to a region in which the moisture content contour lines are locally raised 

upward as they pass over the cable. This effect also persists for some distance below the 

cable. The presence of rainfall causes the region of decreased moisture fraction (i.e., the 

'dry' region) surrounding the cable to become asymmetric, with a sharper moisture 

gradient above the cable than below the cable.    

 

 

 
 

Figure 6. Steady-state (a) dimensionless temperature and (b) moisture content fields at 
the end of the second preliminary computation for the case with 03.0rainQ . 

(a) 

(b) 
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 (a) (b) 
 
Figure 7. Variation of (a) temperature and (b) moisture content on the line 0x  as a 
function of dimensionless depth   for the same four values of rainQ   shown in Figure 5. 

  

Periodic Variation in Rainfall Intensity, Duration, and Frequency 

 The result of the second preliminary computation is used as an initial condition 

for a series of computations examining the effect of rainfall transients on cable thermal 

and moisture exposure. In each of these computations, the rainfall is assumed to occur 

periodically in time, with intensity, duration, and frequency that are consistent with the 

specified average rainfall rate in the preliminary computations. Each set of computations 

is compared with the result of the steady-state computation with constant rainfall rate. We 

focus specifically on two regions, one fairly moist (typical of Chicago, Illinois) and one 

fairly dry (typical of Los Angeles, California). The average dimensionless rainfall rates 

for these two regions are approximately 03.0rainQ  and 0.01, corresponding to 940 and 

325 mm/yr, respectively. According to Sun et al. (2006), 67% of the precipitation occurs 

in 15 days in Los Angeles and in 30 days in Chicago, yielding a dimensionless frequency 

of Lff   of 0.04 and 0.08, respectively. Rainfall intensity varies from about 2.5 
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mm/hr for a light rainfall to between 10-50 mm/hr for a heavy rainfall, with a 

characteristic value of 10 mm/hr for a moderate rainfall. When non-dimensionalized 

using 6
0 10K m/s, the characteristic value of the instantaneous dimensionless rainfall 

intensity, rainQ , is approximately 2.5. Dividing the total annual precipitation by the 

characteristic rainfall intensity (10 mm/hr) times the number of rainy days gives a typical 

rainfall duration of about 2.5 hours, or 1.024/5.2 rainD . Using these characteristic 

values, a listing of computational runs was formulated as shown in Table 4. The first runs 

D1 and M1 are based on the characteristic conditions, runs D2-D3 and M2-M3 vary 

intensity and duration with fixed frequency, runs D4-D5 and M4-M5 vary duration and 

frequency with fixed intensity, and runs D6-D7 and M6-M7 vary intensity and frequency 

with fixed duration.     

 Results are shown in Figures 8-10 for Run D1, characteristic of a dry climate 

(e.g., Los Angeles). The average cable surface temperature and moisture content are 

plotted in Figure 8 as functions of time. The computation is performed over a time 

interval of 600 days, during which 24 rainfall periods occur. Even though the 

computation is initialized at the steady-state condition for the same value of average 

rainfall rate as used in the D1 computation, it is observed that the temperature and 

moisture fields approach a periodic limit-cycle state in which the mean temperature and 

moisture content on the cable surface has very different values than in the steady-state 

condition. The approach of the system from the steady-state solution to a limit-cycle state 

is shown in Figure 9, which plots the dimensionless cable surface temperature as a 

function of the cable surface moisture content. In this limit-cycle condition, the mean 

cable surface dimensionless temperature decreases by about 0.008 and the mean moisture 



 30

content increases by about 0.04 compared to the steady-state solution. The oscillation 

amplitude of the dimensionless cable surface temperature in the limit-cycle state is 

0003.0ampT  and the amplitude of the moisture content on the cable surface is 

0044.0amp .  

 

Table 4. Listing of rainfall conditions used for periodic rainfall computations in 
conditions typical of dry and moist climates. Rainfall is characterized by the 
dimensionless rainfall intensity 0/ KQQ rainrain  , duration LRrainD  / , and frequency 

Lff  . The computational results are listed for the change in the mean values of 

dimensionless temperature and moisture content from the steady-state solutions, surfT   

and surf , and the oscillation amplitude of the dimensionless temperature and moisture 

content in the periodic solution, ampT   and amp . 

 
 
Dry Climate ( 01.0rainQ ) 

Rainfall Characteristics Computational Results 
Run Intensity Duration Freq. 

 
surfT   ampT   surf  amp  

D1 2.5 0.10 0.04 - 0.0081 0.00031 0.040 0.0044 
D2 1.0 0.25 0.04 - 0.0076 0.00029 0.037 0.0041 
D3 5.0 0.05 0.04 - 0.0097 0.00039 0.040 0.0052 
D4 2.5 0.20 0.02 - 0.0085 0.00093 0.042 0.0115 
D5 2.5 0.05 0.08 - 0.0074 0.00009 0.037 0.0015 
D6 5.0 0.10 0.02 - 0.0104 0.00130 0.045 0.0146 
D7 1.25 0.10 0.08 - 0.0067 0.00008 0.033 0.0013 

Moist Climate ( 03.0rainQ ) 

Rainfall Characteristics Computational Results 

Run Intensity Duration Freq. 
 

surfT   ampT   surf  amp  

M1 2.5 0.15 0.08 - 0.0094 0.00038 0.050 0.0060 
M2 1.0 0.375 0.08 - 0.0088 0.00036 0.047 0.0058 
M3 5.0 0.075 0.08 - 0.0082 0.00043 0.044 0.0069 
M4 2.5 0.30 0.04 - 0.0101 0.00111 0.056 0.0145 
M5 2.5 0.075 0.16 -0.0077 0.00012 0.042 0.0020 
M6 5.0 0.15 0.04 -0.0088 0.00127 0.048 0.0170 
M7 1.25 0.15 0.16 -0.0073 0.00011 0.040 0.0021 
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(a) (b) 

 
Figure 8. Oscillation of average dimensionless temperature and moisture content on the 
cable surface as functions of dimensionless time with constant cable heat flux, for Run 
D1. The oscillations observed in the plots are due to periodic rain events. 
 
 
 

 
 
Figure 9. Plot of dimensionless cable surface temperature as a function of cable surface 
moisture content for Run D1, showing the approach of the system to a limit-cycle 
behavior at long time.  
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(a) (b) 

 
Figure 10. Variation of (a) dimensionless temperature and (b) moisture content on the 
line 0x  as a function of the dimensionless depth   for Run D1 at times (A) t 575.2, 
(B) 575.4, (C) 575.8, (D) 577.2, (E) 583.6, and (F) 575 and 600. The same six lines are 
plotted in (a), but the curves nearly overlap.  
 

 Plots showing the variation in temperature and moisture content profiles during a 

periodic rainfall event are given in Figure 10, for a time period ]600,575[t  at which 

the system has achieved a periodic state. The profiles are extracted along the line 0x , 

which passes through the cable at depth 1 . The largest moisture content variation 

occurs near the ground surface ( 0 ) during the first part of the period, during and 

immediately after the rainfall event. The curves in this figure are plotted at times that are 

chosen so as to capture this moisture spike, and hence are preferentially timed for the 

beginning part of the rain period. Profiles are plotted at the same times in Figures 10a and 

10b, but the temperature change due to moisture content variation is sufficiently small 

compared to the steady-state temperature values that the curves nearly lie on top of each 

other in Figure 10a. In Figure 10b, the rainfall is observed to cause a spike in moisture 

content near the ground surface 0 . This rainfall spike rapidly propagates into the soil, 
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and it diffuses and reduces in magnitude as it does so. Several different effects occur to 

influence the moisture content profiles, including downward gravitational drainage, 

upward pulling from the capillary force, diffusive spreading, and repulsion of moisture 

from the cable due to the temperature gradient around the cable. The combination of 

these influences causes the large fluctuation amplitude of the moisture content at the 

ground level ( 0 ), which measures approximately 0.04, to decrease by nearly an order 

of magnitude at the level of the cable ( 1 ). The moisture content fluctuation continues 

to decrease such that there is almost no observable change with time for depths 2 . 

Following the rainfall event, the moisture content profile gradually returns to a curve with 

local maximum at approximately 6.1 . This curve differs significantly in structure 

from the moisture content profile given in Figure 7b for the steady-state case. 

 Contour plots of the moisture content field are shown in Figure 11 for one day 

following a rainfall event in Run D1. The figure is plotted starting at time 575t , by 

which point the system has achieved a periodic state. The initial plot (Figure 11a) is for 

an instance just before the rain begins. The structure of the moisture field has a region of 

high moisture content centered at about 3.1 , with low moisture near both the bottom 

and the top of the computational domain. This high moisture band is the remnant of 

previous rainfalls, which are pulled downward by gravity and upward by capillary action. 

The region surrounding the cable is observed to be drier than surrounding regions at the 

same level, as evidenced by a downward deflection of the moisture contour lines.  This 

structure differs significantly from that shown in Figure 6b for the steady-state 

simulation. At time 2.575t  (Figure 11b), the rain event has recently ended and a 

region with high moisture content is observed at the top of the figure. This region of high 
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moisture content propagates downward with time in Figures 11c-f, eventually overtaking 

the dry region around the cable. Over longer time, the high-moisture region from the 

previous rainfall will move downward and merge into the high-moisture region located 

just below the cable, so that by the end of the period at 600t , the moisture field looks 

the same as shown in Figure 11a. 

   

   
 
Figure 11. Contour plot of the moisture content for a time interval of one day following a 
rain storm, for Run D1. The plots are made at dimensionless times (a) 575t , (b) 
575.2, (c) 575.4, (d) 575.6, (e) 575.8, and (f) 576.  

(a) (b) 

(c) (d) 

(e) (f) 
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 Results are presented in Figures 12 and 13 for Run M1, characteristic of a 

moderately moisture climate (e.g, Chicago). The trends in the data are qualitatively the 

same as was observed under drier conditions in Figures 8 and 10. The cable surface 

temperature and moisture content transition from the steady-state solution to approach a 

limit-cycle state. The mean dimensionless cable surface temperature decreases by about 

0.0094 and the mean cable surface moisture content increases by about 0.050 in this 

limit-cycle state compared to the values in the steady-state solution. The fluctuations in 

dimensionless surface temperature and moisture content during each rainfall cycle occur 

with amplitude 0004.0ampT  and 006.0amp , which are slightly larger than the values 

observed for Run D1. The temperature profile in Figure 13a is not significantly affected 

by the moisture variation, but the moisture profile in Figure 13b exhibits a large spike 

near the upper surface during and immediately after the rainfall event, with the moisture 

content increasing by approximately 0.1 at 0  during each rainfall cycle. As was the 

case with Run D1, the fluctuation in moisture content decays rapidly with depth, 

decreasing by about an order of magnitude by the level of the cable. The moisture content 

is observed to settle in the later part of each period to the same hump-type profile as 

noted in Figure 10b for Run D1, for which the moisture content is a maximum at an 

intermediate depth.   
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 (a) (b) 
 
Figure 12. Oscillation of average dimensionless temperature and moisture content on the 
cable surface as functions of dimensionless time with constant cable heat flux, for Run 
M1. The oscillations observed in the plots are due to periodic rain events. 
 
 

 
 
 (a) (b) 
 
Figure 13. Variation of (a) dimensionless temperature and (b) moisture content on the 
line 0x  as a function of the dimensionless depth   for Run M1 at times (A) 
t 587.6, (B) 587.8, (C) 588.0, (D) 588.4, and (E) 590.0, and (F) 587.5 and 600. The 

same six lines are plotted in (a), but they nearly overlap.  
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 The system response for Runs D2-D7 and M2-M7 were qualitatively similar to 

that described above for Runs D1 and M1. In all cases with periodic rainfall, the cable 

surface temperature and moisture content approach a periodic limit-cycle condition in 

which the mean cable surface temperature decreases and the mean cable surface moisture 

content increases compared to the steady-state solutions. A listing of the change in 

dimensionless cable surface temperature and moisture content and the amplitude of 

oscillation of these values in the limit-cycle state is given in Table 4 for Runs D1-D7 and 

M1-M7. The results in this table exhibit a strong dependence of the oscillation amplitude 

on the rain frequency, but a weaker dependence on rainfall intensity and duration 

(provided the total rainfall amount is fixed).  

Figure 14 plots the computed oscillation amplitude for the dimensionless cable 

surface temperature and the cable moisture content as functions of dimensionless 

frequency f   for all of the conditions examined. The oscillation amplitude values for the 

moist conditions (Runs M1-M7) are substantially greater than for the dry conditions 

(Runs D1-D7). The amplitudes for the cable surface temperature and moisture content 

decrease as the rainfall frequency increases. Since the total annual rainfall amount for the 

dry and moist conditions is fixed, higher frequency cases correspond to conditions with 

frequent rainfall events containing small amounts of precipitation, whereas low frequency 

cases correspond to conditions with infrequent rainfall events that contain large amounts 

of precipitation. It is noted that the oscillation amplitude is rather small for both the cable 

surface temperature and the moisture content. For instance, for the example problem with 

burial depth 1b m and average cable heat flux q  = 500 W/m2, the largest oscillation 

amplitude values for the cable surface temperature and moisture content in the 
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computations conducted were C4.0  and 0.017, respectively. By comparison, the 

temperature field obtained by Marshall et al. (2013) for the same example case oscillated 

due to the daily power load variation with amplitude of C9.3 , or an order of magnitude 

larger than the rain-related oscillation amplitude. 

Plots are shown in Figure 15 for the difference between the dimensionless cable 

surface temperature and the cable surface moisture content in the periodic limit-cycle 

condition and the initial values for the steady-state case, denoted by meanT   and mean . 

The dimensionless cable surface temperature decreases with periodic rainfall by an 

amount between 0.006 and 0.011, where the magnitude of the temperature change 

decreases with increase in the rainfall frequency. The cable surface moisture content 

increases with periodic rainfall by an amount ranging between 0.033 and 0.056, where 

the change in moisture content also decreases with increase in rainfall frequency. Again 

using our example problem with 1b m and q  = 500 W/m2, the change in mean cable 

surface temperature under the periodic rainfall condition corresponds to a decrease of 

C 5.30.2 .     
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 (a) (b) 
 
Figure 14. Amplitude of average cable surface (a) dimensionless temperature and (b) 
moisture content fluctuations with periodic rain events as functions of dimensionless 
frequency. Results are for the moist condition (triangles, dashed line) and the dry 
condition (circles, solid line) listed in Table 4. The curves are exponential fits to the data. 
 
 
 

      
 
 (a) (b) 
 
Figure 15. Change in mean values of the average cable surface (a) dimensionless 
temperature and (b) moisture content with periodic rain events as functions of 
dimensionless frequency. Results are for the moist condition (triangles, dashed line) and 
the dry condition (circles, solid line) listed in Table 4. The curves are exponential fits to 
the data. 
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4. Conclusions 

 A study of the effect of periodic rainfall events on the surface temperature and 

moisture exposure of a buried electric cable was conducted using numerical simulations. 

Cases with different rainfall intensity, duration, and frequency were compared to a 

steady-state case with the same annual precipitation amount. Computations were 

conduced for two values of the annual precipitation, one typical of a relatively moist 

climate and one typical of a dry climate. In the steady-state condition, the computations 

indicate formation of a relatively dry region surrounding the cable in which the moisture 

content decreases by about 2-5% compared to the value that it would have had without 

the cable present. Under periodic rainfall conditions, the cable surface temperature and 

moisture content transition to a limit-cycle behavior with values that oscillate periodically 

in time with the rainfall frequency. Of particular interest is the observation that the mean 

values of the cable surface temperature and moisture content in this limit-cycle condition 

are significantly different from the steady-state values, with the mean cable surface 

temperature decreasing and the moisture content increasing in value under the limit-cycle 

condition relative to the steady-state condition. Both the oscillation amplitudes and the 

change in mean values relative to the steady-state condition are observed to depend 

primarily on the rainfall frequency and on the annual precipitation amount, such that the 

absolute values of these quantities decrease as the rainfall frequency or the annual 

precipitation amount increase. While the computed values of the oscillation amplitude of 

the cable surface temperature are rather small, measuring C4.0  or less in the current 

computations, the change in the mean cable surface temperature between the steady-state 

and limit-cycle conditions is found to be large, measuring as high as C5.3  in the current 
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computations. Similarly, the largest computed value of the oscillation amplitude of the 

moisture content (0.017) is small compared to the largest computed value of the change 

in mean cable surface moisture content between the limit-cycle and steady-state 

conditions (0.056).  

 The results of the current study have shown that periodic rainfall conditions result 

in fundamentally different moisture and temperature fields around an underground cable 

compared to what would be observed under rainfall steady-state conditions. Not only do 

the moisture content and temperature values oscillate periodically in time when exposed 

to periodic rainfall events, but the time-averaged values of the moisture content and 

temperature also change significantly in this periodic case compared to their steady-state 

values. The change in the mean values causes decreased values of the cable surface 

temperature, but increased values of the cable surface moisture content. As a 

consequence, steady-state computations over-estimate the temperature-related 

degradation of the cable insulation but under-estimate the moisture-related insulation 

degradation.      
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Figure Captions 
 
Figure 1. Schematic diagram of the computational flow domain and the inner (polar) and 
outer (Cartesian) grids, where the cable is identified as a black circle at the center of the 
inner grid, which is submerged a depth b below the ground. The boundaries of the outer 
grid are identified by circled numbers. 
 
Figure 2. Time variation of the average cable surface temperature and moisture content 
for the grid independence study, for grids A (dash-dot), B (solid), and C (dashed).  
 
Figure 3. Comparison of predicted dimensionless average cable surface temperature for a 
case with the thermal convection term (solid line) and without the thermal convection 
term (dashed line) for the same run as shown in Figure 2. 
 
Figure 4. Steady-state moisture content profiles for cases with (A) 03.0rainQ , (B) 0.02, 

(C) 0.01, (D) 0.005, and (E) 0 as a function of dimensionless depth  . The initial 
moisture profile in the calculations is indicated by a dashed line. For the case with no 
rain, the moisture content moves downward very slowly in time and no steady-state 
profile is observed. The moisture profile shown in E is plotted at a time of approximately 
10 years after the initial condition. The other cases have all converged to steady-state 
profiles within four significant figures in the moisture content.  
 
Figure 5. Time variation of the average cable surface (a) temperature and (b) moisture 
content during the second preliminary computation for cases with (A) 03.0rainQ , (B) 

0.02, (C) 0.01, and (D) 0.005. In (a), the dimensionless temperature is shown on the left-
hand y-axis and the corresponding change in dimensional temperature for the example 
problem is shown on the right-hand y-axis. The figure shows the approach of the 
temperature and moisture content fields to a steady state condition. 
 
Figure 6. Steady-state (a) dimensionless temperature and (b) moisture content fields at 
the end of the second preliminary computation for the case with 03.0rainQ . 

 
Figure 7. Variation of (a) temperature and (b) moisture content on the line 0x  as a 
function of dimensionless depth   for the same four values of rainQ   shown in Figure 5. 

 
Figure 8. Oscillation of average dimensionless temperature and moisture content on the 
cable surface as functions of dimensionless time with constant cable heat flux, for Run 
D1. The oscillations observed in the plots are due to periodic rain events. 
 
Figure 9. Plot of dimensionless cable surface temperature as a function of cable surface 
moisture content for Run D1, showing the approach of the system to a limit-cycle 
behavior at long time.  
 
Figure 10. Variation of (a) dimensionless temperature and (b) moisture content on the 
line 0x  as a function of the dimensionless depth   for Run D1 at times (A) t 575.2, 
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(B) 575.4, (C) 575.8, (D) 577.2, (E) 583.6, and (F) 575 and 600. The same six lines are 
plotted in (a), but the curves nearly overlap.  
 
Figure 11. Contour plot of the moisture content for a time interval of one day following a 
rain storm, for Run D1. The plots are made at dimensionless times (a) 575t , (b) 
575.2, (c) 575.4, (d) 575.6, (e) 575.8, and (f) 576.  
 
Figure 12. Oscillation of average dimensionless temperature and moisture content on the 
cable surface as functions of dimensionless time with constant cable heat flux, for Run 
M1. The oscillations observed in the plots are due to periodic rain events. 
 
Figure 13. Variation of (a) dimensionless temperature and (b) moisture content on the 
line 0x  as a function of the dimensionless depth   for Run M1 at times (A) 
t 587.6, (B) 587.8, (C) 588.0, (D) 588.4, and (E) 590.0, and (F) 587.5 and 600. The 

same six lines are plotted in (a), but they nearly overlap.  
 
Figure 14. Amplitude of average cable surface (a) dimensionless temperature and (b) 
moisture content fluctuations with periodic rain events as functions of dimensionless 
frequency. Results are for the moist condition (triangles, dashed line) and the dry 
condition (circles, solid line) listed in Table 4. The curves are exponential fits to the data. 
 
Figure 15. Change in mean values of the average cable surface (a) dimensionless 
temperature and (b) moisture content with periodic rain events as functions of 
dimensionless frequency. Results are for the moist condition (triangles, dashed line) and 
the dry condition (circles, solid line) listed in Table 4. The curves are exponential fits to 
the data. 
 
 
 
 
 
 
 
 
 
 
 
 
 


