

Precise plant genome editing using base editors and prime editors

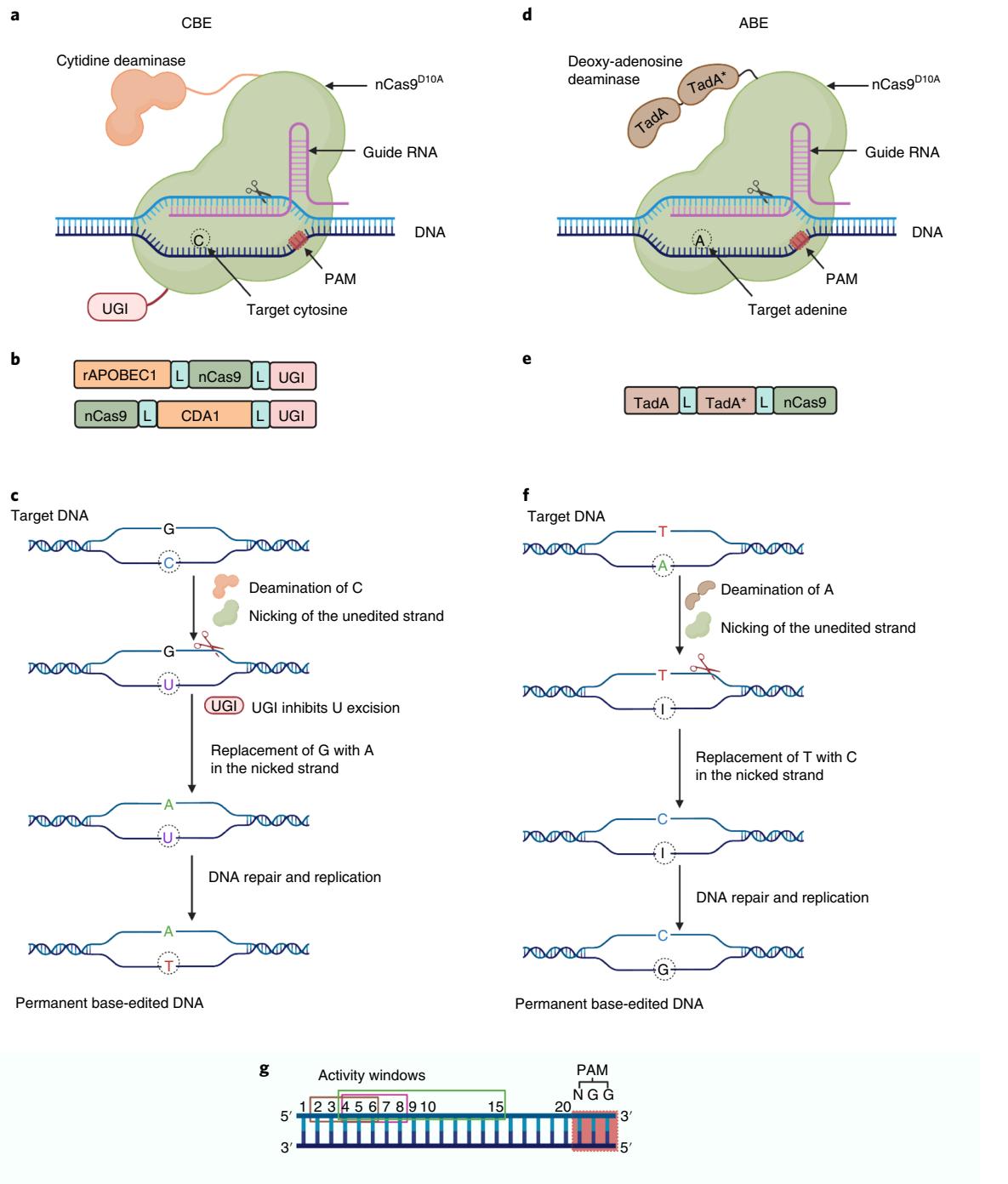
Kutubuddin A. Molla¹✉, Simon Sretenovic¹, Kailash C. Bansal³ and Yiping Qi^{1,2,4}✉

The development of CRISPR-Cas systems has sparked a genome editing revolution in plant genetics and breeding. These sequence-specific RNA-guided nucleases can induce DNA double-stranded breaks, resulting in mutations by imprecise non-homologous end joining (NHEJ) repair or precise DNA sequence replacement by homology-directed repair (HDR). However, HDR is highly inefficient in many plant species, which has greatly limited precise genome editing in plants. To fill the vital gap in precision editing, base editing and prime editing technologies have recently been developed and demonstrated in numerous plant species. These technologies, which are mainly based on Cas9 nickases, can introduce precise changes into the target genome at a single-base resolution. This Review provides a timely overview of the current status of base editors and prime editors in plants, covering both technological developments and biological applications.

A major challenge of our times is learning how to feed a global population that is estimated to reach >9.5 billion people over the next 30 years. To overcome this challenge, the power of inducing precise genetic variation must be harnessed for crop improvement. As RNA-guided sequence-specific nucleases, CRISPR-Cas systems can install genetic variation in target loci of the genomes^{1–3}. We have witnessed an explosion of interest in applying this new technology for basic biology, human therapeutics and agriculture. In the CRISPR-Cas system, Cas nuclease induces a double-stranded break (DSB) at a target site specified by a short single-guide RNA (sgRNA). The target DNA locus (usually 20 nucleotides long) is commonly known as the protospacer sequence. The frequent outcome of a DSB in the genome is the generation of random insertions or deletions (indels) by NHEJ, the predominant DSB repair pathway in plants. Although NHEJ-mediated mutagenesis is highly efficient in plants, it is typically used to generate gene knock-outs and alter promoter or enhancer strength. For developing novel agronomic traits, the precise modification of genomic information is necessary. DSBs in the plant genome can be precisely repaired through the homology-directed repair (HDR) pathway when DNA donor templates are supplied⁴; however, HDR is rarely used in basic research and crop improvement⁵ due to its extremely low efficiency in higher plants. Nevertheless, HDR is a valuable and flexible tool for plant breeding applications that require precise knock-in and complex DNA modifications. Recently, substantial advancements have been made in increasing the efficiency of HDR-mediated editing by different approaches⁶, such as tandem repeat-HDR (TR-HDR)⁷ and transcript-templated HDR (TT-HDR)⁸.

The recent invention of two powerful technologies, base editing and prime editing, has partly overcome such critical barriers of precise genome editing and greatly enhanced crop breeding opportunities. Both base editors (BEs) and prime editors (PEs) install desired changes without the donor DNA and a DSB introduction in the genome. BEs can exhibit about 10-to-100-fold higher efficiency than HDR in obtaining desired mutations^{9,10}. As DSB occurrence is generally low during the editing process, BEs and PEs greatly curb the formation of undesired indels, generating edited plants with

nucleobase precision. However, BEs and PEs, which are dependent on DNA nick formation, may be locally mutagenic in some cases due to the existence of nick repair pathways.


This Review focuses on base editing and prime editing platforms that enable single-nucleotide conversions, small insertions, deletions, sequence replacements and a combination thereof in plant genomes. We first present a comprehensive overview of the available and forthcoming base editing platforms in both nuclear and organelle genomes. We then navigate to recently developed prime editing tools, review their performance in plants and discuss the crucial parameters of enhancing editing efficiency. We also summarize the available web tools for designing, predicting the outcomes and analysing data of base editing and prime editing experiments. Applications of BEs and PEs in basic plant biology and crop improvement are highlighted.

Base editing

Base editing is a new technology for the precise modification of genomes (DNA) or transcriptomes (RNA) of living cells at the single-base resolution. BEs are composed of a catalytically impaired Cas nuclease that is fused to a nucleotide deaminase and, sometimes, to DNA repair proteins. BEs can introduce single-nucleotide variants at desired loci in DNA (nuclear or organellar) or RNA of both dividing and non-dividing cells. Broadly, there are two types of BEs—DNA BEs that directly induce targeted point mutations in DNA, and RNA BEs that convert one ribonucleotide to another in RNA. Currently available DNA BEs can be further categorized into cytosine BEs (CBEs), adenine BEs (ABEs), C-to-G BEs (CGBEs), dual-base editors and organellar BEs. Each of these categories is discussed below.

CBEs. CBEs were the first DNA BEs developed to enable C•G to T•A transitions^{11,12}. The two seminal studies have introduced CBEs with different architectures containing a Cas9 nickase (nCas9, for example, with a D10A mutation) fused to cytidine deaminase and uracil glycosylase inhibitor (UGI)^{11,12} (Fig. 1a,b). Similar to the canonical CRISPR-Cas systems, CBEs are guided to the target

¹Crop Improvement Division, ICAR—National Rice Research Institute, Cuttack, India. ²Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA. ³The Alliance of Bioversity International and the International Centre for Tropical Agriculture, Asia-India, New Delhi, India. ⁴Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA. ✉e-mail: kutubuddin.molla@icar.gov.in; yiping@umd.edu

Fig. 1 | Cytosine and adenine base editing in nuclear DNA. a, A CBE in the DNA context. The target cytosine is indicated (dotted circle). **b**, CBE architectures (N to C terminal) containing cytidine deaminase (peach), nCas9 (green) and UGI (pink). CDA1, sea lamprey cytidine deaminase 1. **c**, Schematic of the mechanism of C-to-T editing by CBEs. The cytosine deaminase converts a target C to U. The generated U•G mismatch can be resolved either by cellular mismatch repair or BER machinery. The nCas9 would make a nick in the guanine (G)-containing unedited DNA strand. The nick activates the removal of G by the cellular mismatch repair pathway and the use of uracil as a template for repair leads to the desired T•A base pair formation. Cellular uracil DNA N-glycosylase (UDG or UNG) removes U from the DNA, ultimately leading to a reversion to the original C•G base pair. UGI protein increases the rate of T•A base-pair generation by safeguarding the U intermediate. **d**, ABE version 7.10 (ABE-7.10) in the DNA context. The target adenine is indicated (dotted circle). **e**, The ABE-7.10 architecture (N to C terminal) containing a heterodimeric deaminase (brown) and nCas9 (green). ABE-7.10 contains one wild-type TadA monomer and one evolved TadA (TadA*) monomer. **f**, The mechanism of A-to-G editing by ABEs. Once the ABE is recruited to the desired genomic locus by gRNA, the target A base is deaminated to inosine (I) and, as a result, an A•T pair becomes an I•T base pair. Although inosine is known to pair with C, A or U during translational mRNA-tRNA pairing, it behaves as G and pairs with C during the replication. The I•T base pair is resolved by cellular mismatch repair or DNA replication. The nCas9 of the ABE nicks the T containing strand to induce the mismatch repair machinery to remove the T and incorporate C opposite to I to form an I•C base pair that eventually becomes a G•C pair as the outcome. **g**, Activity windows of CBEs and ABEs (coloured boxes) over a 20 bp protospacer sequence (the NGG PAM is counted as 21–23). The activity window varies depending on the Cas protein and deaminase variants. L, linker.

genomic region by a sgRNA. Once the sgRNA–CBE complex binds to the target DNA, it generates a single-stranded DNA R-loop¹³. This non-target single-stranded DNA becomes accessible to CBE cytidine deaminase, which catalyses the hydrolytic deamination of an exposed cytosine (C). Deamination and subsequent cellular mismatch repair result in C-to-T base editing outcomes. Uracil (U) base excision repair (BER) hinders this outcome and either regenerates the original base pair or gives rise to an indel¹⁴. UGI subverts BER and increases the likelihood of C-to-T editing^{11,12} (Fig. 1c). Although antibiotics are generally used to select transformants, selecting base-edited cells in a population could be difficult. To overcome the limitation, a surrogate reporter system was established in plants based on the correction of a defective hygromycin-resistance gene¹⁵.

Plant biologists have rapidly adopted CBEs into many plant species, such as *Arabidopsis*^{16–19}, rice^{20–25}, wheat^{26,27}, maize²⁶, tomato^{22,28–30}, potato^{23,28,29,31}, watermelon³², cotton³³, soybean³⁴, apple³⁵, pear³⁵, strawberry³⁶, moss³⁷, poplar³⁸ and rapeseed^{39,40}.

Activity windows. Although the single-stranded DNA in the R loop is exposed during base editing, the whole region may not be equally accessible to the cytidine deaminase. As a result, many cytosine bases are not efficiently edited if they are not present within a particular BE activity window, which is the range of bases within the 20-nucleotide protospacer sequence that is optimally edited by a BE¹⁰ (Fig. 1g). The activity window varies among different BEs and is ~4–10 nucleotides long for most of the Cas9-based BEs. The Cas12a-based CBE exhibited an activity window ranging from 8–13 in the protospacer when the base next to the protospacer-adjacent motif (PAM) 5'-TTTV-3' (where V indicates A, C or G) is counted as 1 (in contrast to Cas9, Cas12 has a 5' PAM)^{10,41}. Several CBE platforms have been developed to extend or shorten the activity windows, which could be beneficial for specific editing requirements^{10,14,42,43} (Table 1). In many cases, a single-nucleotide conversion is desired by base editing. When multiple C bases are present within the activity window, CBEs can convert non-target C nucleotides, a phenomenon known as the bystander editing effect. In the case of protein-coding gene editing, bystander editing can be problematic if it generates nonsynonymous or nonsense mutations. CBEs with minimized bystander editing have been developed by deaminase engineering^{44–46}. Although CBEs with an extended activity window may increase bystander editing, they may be suitable in large-scale mutation applications such as directed evolution and editing of promoters or other *cis*-regulatory elements (CREs).

Cytidine deaminases. The natural diversity of cytidine deaminases could be harnessed to develop base editing tools for specific needs. Although the seminal studies used a rat cytidine deaminase (rAPOBEC1)¹¹ and a *Petromyzon marinus* cytidine deaminase 1 (*PmCDA1*)¹², many other studies reported the successful use of diverse naturally occurring cytidine deaminases in constructing CBEs. For example, human-APOBEC3A-based CBE has been demonstrated in wheat²³, rice^{23,47,48}, strawberry³⁶, potato²³ and rapeseed⁴⁰, whereas APOBEC3B (hA3B) was used for base editing in rice⁴⁹. Although human activation-induced deaminase (hAID) failed to exhibit detectable deaminase activity in vitro, an engineered version, hAID*Δ, lacking a nuclear export signal sequence, displayed substantial base editing efficiency in rice⁵⁰. Other deaminases used in CBE include human APOBEC3G⁴⁶, *Rhinopithecus roxellana* A3F, *Alligator mississippiensis* APOBEC1, *Sus scrofa* APOBEC3B and *Pongo pygmaeus* APOBEC1⁵¹.

Most CBEs are based on the BE3 configuration (Fig. 1a). However, not all CBEs work equally well in plants (Table 1). For example, *PmCDA1*-CBE was found to outperform rAPOBEC1-CBE according to multiple studies^{32–55}. *PmCDA1* was also found to be superior to hAID*Δ for base editing in rice⁵⁶. rAPOBEC1 shows poor base editing efficiency in the GC context^{10,11}. APOBEC3A (A3A),

hAID*Δ and *PmCDA1* showed superiority in targeting a C immediately downstream of a G nucleotide^{10,23,50}. To overcome sequence context limitations and increase editing efficiency at difficult loci, three deaminases—evoAPOBEC1, evoFERNY and evoCDA1—have been evolved⁵⁷. Plant high-efficiency CBEs (PhieCBEs) based on the above three evolved deaminases showed high efficiency in rice, with evoFERNY exhibiting the best performance⁴⁸. Ancestral sequence reconstruction of APOBEC homologues was performed to generate *Anc689* with enhanced expression⁵⁸. *Anc689*-CBE has been reported to enhance C-to-T editing in rice NRT1.1B and SLR1 loci⁵⁹. A highly efficient A3A^{Y130F}-CBE was recently reported to reach up to 100% editing efficiency in poplar³⁸. Base editing efficiency by high-activity CBEs is pretty much on par with the NHEJ mutagenesis efficiency mediated by a Cas nuclease in plants.

Orthologous and engineered Cas proteins for expanding editing scope. One constraint that limits base editing applications is the targeting scope of BEs. Cas9 from *Streptococcus pyogenes* (*SpCas9*) has been the most widely used nuclease in CBEs in plants^{10,20–22,26}. *SpCas9* requires an NGG PAM (where N indicates A, T, G or C), which substantially limits the number of targetable sites. A plethora of orthologous Cas proteins and engineered Cas9 variants with different PAM requirements have been adopted for CBEs, broadening the targeting scope in plants^{43,60}. For example, Cas9 from *Staphylococcus aureus* (*SaCas9*) and from *Streptococcus canis* (*ScCas9*) were successfully incorporated into the CBE architecture to expand base editing to NNGRRT and NNG PAMs (where R indicates G or A), respectively, in rice^{61,62}. VQR-Cas9 and *SaKKH*-Cas9 were used in generating rAPOBEC1-based CBEs that can recognize NGA and NNNRRT PAMs, respectively²⁴. VQR-CBE with *PmCDA1* was used in rice⁶³. Similarly, other studies reported the use of *SaCas9*- and *SaKKH*-Cas9-CBEs with rAPOBEC1 and *PmCDA1* in rice and potato^{61,64}. By grafting the PAM-interacting domain of *Streptococcus macacae* Cas9 (*SmacCas9*) to the *SpCas9*, a hybrid iSpymacCas9 was engineered to recognize 5'-NAAN-3' PAMs⁶⁵, which are more frequent than NGG PAMs in rice, wheat and maize⁵⁶. Two iSpymacCas9 CBE systems with *PmCDA1* and hAID*Δ deaminases were found to be effective in rice^{56,66}. Three new *SpCas9* variants have recently been evolved to recognize NRRH, NRTH and NRCH PAMs⁶⁷ (where H indicates A, C or T), and CBEs based on these variants were demonstrated in rice^{47,68}.

The *SpCas9* variants xCas9 and *SpCas9*-NG can recognize non-canonical NG PAMs^{69,70}. CBEs based on *SpCas9*-NG were demonstrated in rice^{47,48,54,59,71–74}, potato²⁹ and tomato²⁹ (Table 1). Similarly, CBEs with the xCas9 backbone were used for base editing at NGN PAM sites in rice, albeit with a low efficiency^{71,73–75}. *SpCas9*-NG was also reported to recognize GAT, GAA, CAA, NAC, NTG, NTT and NCG PAMs in plants^{72,73}. In general, CBEs based on *SpCas9*-NG are more efficient than CBEs based on xCas9 for editing NG and other non-canonical PAMs in plants. To further lessen the PAM constraint, two versions of *SpCas9*—namely *SpG* (which recognizes NGN PAMs) and *SpRY* (which recognizes NRN and, with lower efficiency, NYN PAMs (where Y indicates C or T))—were engineered⁷⁶. *SpRY* is therefore a near PAM-less variant⁷⁶. Within a short time, *SpRY* CBEs were demonstrated in rice with variable efficiencies at different PAMs^{25,47,68,77}. Although Cas9 variants with relaxed PAMs greatly expand genome targetability, it is important to note that they are prone to generating additional off-target mutations. Moreover, the PAM-less variant *SpRY* makes the system vulnerable to self-targeting when delivered into plants in the DNA format²⁵.

Cas12-based CBEs could render editing at T-rich PAMs in the future. Cas12a (formerly known as Cpf1) nucleases generally recognize canonical 5'-TTTV-3' PAMs in genome editing^{78,79}. Developing Cas12a nickase seems to be complicated and, therefore, only catalytically inactive Cas12a (dCas12a)-based CBEs were generated for

Table 1 | Features of plant BEs and PEs

Type of genome editing	Tools	PAM	Activity windows	Editing efficiencies in the first generation of transgenic plants	Distinct features of the tools
Cytosine base editing	BE3-SpCas9	NGG	4-8	0.1-43.5% in rice ^{20,26} 10% in maize ²⁶ 1.25% in wheat ²⁶ 26.67-57.78% in cotton ³³ 6-18.2% in soybean ³⁴ 23% in watermelon ³² 1.8% in rapeseed ³⁹	Canonical
	BE3-SaCas9	NNGRRT	5-18	6.3-56.3% in rice ⁶¹	Alternative PAM
	BE3-SaKKH	NNNRRT	1-16	3.6-19.4% in rice ⁶¹	Extended editing window
	BE3-VQR	NGA	8-15	61-71% in rice ²⁴	
	BE3-xCas9	NG	4-8	0-35.7% in rice ⁷¹	Expanded targetability
	BE3-NG	NG	4-8	0-72% in rice ⁷¹	
	BE4-NG	NG	4-8	0-50% in rice ⁴⁸	Expanded targetability High fidelity
	evoBE4max-NG	NG	2-10	0-66.7% in rice ⁴⁸	GC context editing Expanded targetability
	eBE3-SpCas9	NGG	4-8	53.5-88.9% in rice ²¹²	High fidelity
	eBE3-SpRY	NR NY	3-7	0-52.1% in rice ⁴⁷	Expanded targetability High fidelity
	eBE3-SpG	NG	2-8	37.5-87.5% in rice ⁴⁷	
	eBE3-NRRH	NRRH	3-9	33.3-75% in rice ⁴⁷	
	eBE3-NRCH	NRCH	3-9	0-100% in rice ⁴⁷	
	eBE3-NRTH	NRTH	3-9	0-75% in rice ⁴⁷	
	evoFERNY-NG	NG	2-10	40.6-86.3% in rice ⁴⁸	GC context editing Expanded targetability Small size
	Target-AID-SpCas9	NGG, NAG	1-9	38.9-68.8% in rice ⁵³ 0-53.8% in rice ⁶³ 7.7-91.6% in tomato ^{22,30} 0-100% in poplar ³⁸ 1.6-55% in <i>P. patens</i> ³⁷	Canonical Shifted editing window
	Target-AID-NG	NG	1-14	30.4-45% in rice ⁷³ 9-57% in potato ²⁹ 64% in tomato ²⁹	Expanded targetability
	Target-AID-SpRY	NR NY	4-8	10-33.3% in rice ²⁵	
	Target-AID-VQR	NGAG	1-5	0-90% in rice ⁶³	Alternative PAM
	Target-AID-SaCas9	NNGRRT	1-11	0-2.1% in rice ⁶¹	
	Target-AID-SaKKH	NNNRRT	4	0-6.3% in rice ⁶¹	
	Target-AID-iSpyMacCas9	NAAA	2-8	22-31% in rice ⁵⁶	
	Evo-Target-AID-NG	NG	2-12	0-44% in rice ⁴⁸	GC context editing Expanded window Expanded targetability
	eTarget-AID	NGG	1-7	75-85.7% in rice ²¹²	High fidelity
	hAID*Δ-SpCas9 (rBE5)	NGG	3-7	30-57% in rice ⁵⁰	Without UGI GC context editing
	hAID*Δ-NG	NG	4-14	0-37.5% in rice ⁷¹	GC context editing Expanded targetability
	hAID*Δ-ScCas9	NAG	3-7	37% in rice ⁶²	GC context editing Alternative PAM
	hAID*Δ-SpRY	NR NY	3-14	0-34.15% in rice ⁷⁷	GC context editing Expanded targetability
	A3A-SpCas9	NGG	1-17	16.7-22.5% in wheat ²³ 44.1-82.9% in rice ²³ 6.5% in potato ²³ 100% in strawberry ³⁶ 3.17-31.25% in rapeseed ⁴⁰	Wide window GC context editing

Continued

Table 1 | Features of plant BEs and PEs (continued)

Type of genome editing	Tools	PAM	Activity windows	Editing efficiencies in the first generation of transgenic plants	Distinct features of the tools
	A3Amax-NG	NG	3-13	2.9–72.4% in rice ⁴⁸	Expanded targetability
	eA3A-SpRY	NR NY	3-12	2–15% in rice ⁴⁷	High fidelity
	eA3A-SpG	NG	1-18	29.2–77.1% in rice ⁴⁷	
	eA3A-NRRH	NRRH	1-12	25–43.8% in rice ⁴⁷	
	eA3A-NRCH	NRCH	2-15	4.2–35.4% in rice ⁴⁷	
	A3Bctd-BE3	NGG	3-10	High efficiency in rice ⁴⁹	Reduced gRNA-independent off-target effects
	Anc689BE4max-SpCas9	NGG	4-15	71.4–82.8% in rice ⁵⁹	High efficiency
	Anc689BE4max-NG	NG	4-15	17.2–57.1% in rice ⁵⁹	High efficiency Expanded targetability
	A3A-Y130F-CBE	NGG	5-18	19–95.5% in poplar ³⁸ 43.8–72.7% in tomato ⁹³	High efficiency High fidelity
Adenine base editing	ABE7.10-SpCas9	NGG	4-12	2.81–61.3% in rice ^{101,102} 0.4–1.1% in wheat ¹⁰³ 0.7–0.8% in <i>P. patens</i> ³⁷	Canonical
	ABE7.10-SaCas9	NNGRRT	6-14	17–63.2% in rice ^{61,102}	Alternative PAM
	ABE7.10-SaKKH	NNNRRRT	8-10	0–16.1% in rice ⁶¹	
	ABE7.10-iSpyMacCas9	TAAA	9	12.5% in rice ⁵⁶	
	ABE7.10-ScCas9	NAG	5	47.5% in rice ⁶²	
	ABE7.10-VRER	NGCG	5	0–2.6% in rice ²⁴	
	ABE7.10-VQR	NGA	3-10	30–74.3% in rice ²⁴	
	ABE7.9-SpCas9	NGG	4-12	1.34–39% in rice ¹⁰¹	
	ABE7.10-xCas9	NG	6	0–4.8% in rice ⁷¹	Expanded targetability
	ABE7.10-NG	NG	4-8	2–11.9% in rice ⁷¹	
	ABE7.10-S	NGG	1-12	11.1–96.3% in rice ⁷¹	Mini ABE (smaller size)
	ABE7.10-NG-S	NG	5-11	2.9–7.7% in rice ⁷¹	MiniABE Expanded targetability
	ABEmax	NGG	4-8	40.7–48.3% in rice ⁵⁹ 0–95% in poplar ³⁸	Increased efficiency
	ABEmax-NG	NG	4–8	8.3–41.2% in rice ⁵⁹	Increased efficiency Expanded targetability
	ABE8e-SpCas9	NGG	4-8	^a 30–91.67% in rice ¹⁰⁹ 30.95–60.87% in <i>N. benthamiana</i> ¹⁰⁸	High efficiency
	ABE8e-ScCas9	NAG	4-10	^a 27–97.92% in rice ¹⁰⁹	High efficiency Alternative PAM
	ABE8e-SpRY	NR NY	3-10	0–93.75% in rice ^{25,77}	High efficiency Expanded targetability
	ABE8e-SpG	NG	4-12	79.2–100% in rice ⁴⁷	
	ABE8e-NG	NG	4-8	^a 31.25–100% in rice ¹⁰⁹	
	ABE8e-NRTH	NRTH	3-12	100% in rice ⁴⁷	
	ABE8e-NRRH	NRRH	2-11	52–100% in rice ⁴⁷	
	ABE8e-NRCH	NRCH	3-11	87.5–100% in rice ⁴⁷	
	ABE8.17-SpCas9	NGG	6-8	^a 2–31.25% in rice ¹⁰⁹	Increased efficiency
	ABE8.17-ScCas9	NAG	6-8	^a 0–72.92% in rice ¹⁰⁹	Increased efficiency Alternative PAM
	ABE8.17-NG	NG	6-8	^a 0–89.36% in rice ¹⁰⁹	Increased efficiency Expanded targetability

Continued

Table 1 | Features of plant BEs and PEs (continued)

Type of genome editing	Tools	PAM	Activity windows	Editing efficiencies in the first generation of transgenic plants	Distinct features of the tools
Single-base editing	ABE8.20- <i>SpCas9</i>	NGG	4–6	^a 0–58.33% in rice ¹⁰⁹	High efficiency
	ABE8.20- <i>ScCas9</i>	NAG	6–8	^a 0–79.17% in rice ¹⁰⁹	High efficiency Alternative PAM
	ABE8.20-NG	NG	4–6	^a 0–97.87% in rice ¹⁰⁹	High efficiency Expanded targetability
	ABE9- <i>SpCas9</i>	NGG	1–12	56–93.75% in rice ¹⁰⁹	High efficiency
	ABE9- <i>ScCas9</i>	NAG	4–12	^a 41.67–95.83% in rice ¹⁰⁹	High efficiency Alternative PAM
	ABE9-NG	NG	4–10	^a 77–100% in rice ¹⁰⁹	High efficiency Expanded targetability
Dual-base editing	STEME- <i>SpCas9</i> STEME-NG	NGG NG	1–17 (for C) 4–8 (for A)	13.18% in rice ¹²⁵	Simultaneous C-to-T and A-to-G editing
Organellar editing	mtDdCBE	NA	C (3–13) in the TC motif	^a 1.9–24.9% in rapeseed ¹³⁷	TALEN-based C-to-T editing in organellar DNA
	cpDdCBE	NA		^a 0.5–38.4% in lettuce ¹³⁷ ^a 0.1–0.84% in rapesssed ¹³⁷ 64% in rice ¹⁴⁰ 40–100% in <i>Arabidopsis</i> ¹³⁹	
Prime editing	PE2- <i>SpCas9</i>	NGG	+1 to +33 Insertion/ deletion between +1	1.0–31.3% in rice ¹⁵⁰ ^a 0.3–2.0% in rice ¹⁵¹ 0.0–2.6 in rice ¹⁵⁵ ^b 50% in potato ¹⁵⁷	Canonical PE2 strategy
	PE3- <i>SpCas9</i>	NGG	to +6 is more efficient.	2.6–21.8% in rice ¹⁴⁹ 10.4–18.8% in rice ¹⁵⁰ ^a 2.2% in rice ¹⁵¹ 2.2–9.4% in rice ¹⁵² 1.1–1.4% in rice ¹⁵³ 4.8–53.2% in maize ¹⁵⁶ 3.4–6.7% in tomato ¹⁵⁸	Canonical PE3 strategy
	PE3b- <i>SpCas9</i>	NGG		6.3% in rice ¹⁵⁰ 4.8–6.5% in maize ¹⁵⁶	Canonical PE3b strategy
	Surrogate pPE2- <i>SpCas9</i>	NGG		7.3–16.7% in rice ¹⁵⁰	Enhanced screening efficiency of edited plants HPT-ATG selection recovery
	PE3- <i>SpCas9</i> -HPT	NGG		1.7–26.0% in rice ¹⁵³	Enhanced screening efficiency of edited plants
	PE3- <i>SpCas9</i> -paired pegRNAs	NGG		0.12–24.5% in rice ¹⁵⁹	Enhanced efficiency
	PE3- <i>SpG</i> -paired pegRNAs	NG		0.62–2.88% in rice ¹⁵⁹	Enhanced efficiency

For consistency in naming the base editing tools, sometimes we diverged from the nomenclature of original articles. For BEs, deaminases are shown first followed by the Cas proteins used. Activity windows shown here are based on the reported editing events at genomic loci tested. Windows may sometimes vary from target to target. ABEs were named according to the mutated version of TadA used. For base editing activity windows, the PAM (NGG) is counted as 21, 22 and 23 with the first nucleotide in the protospacer as 1. For prime editing windows, the NGG PAM is counted as +4, +5 and +6, with the first nucleotide adjacent to the cleavage site as +1. A3A, human APOBEC3A; A3Bctd, truncated human APOBEC3B; ABE9, ABE8e with the V82S and Q154R mutations in the Tad domain; Anc689BE4max, ancestral sequence reconstructed and codon-optimized deaminase; BE3, BE with rat APOBEC1; BE4, BE3 plus one additional UG; canonical, BEs adopted from the first reports in mammalian system; evo, artificially evolved; hA3A^{Y130F}, human APOBEC3A with the Y130F mutation; Target-AID, BE with sea lamprey *PmCDA*; hAID*Δ, human activation-induced deaminase devoid of nuclear export signal.

^aEfficiencies were measured as transgenic calli. ^bOnly two plants were assayed.

editing in mammalian cells^{41,80}. Although Cas12a and Cas12b have been reported for plant genome editing^{79,81}, Cas12-derived BEs have not yet been reported in plants.

Efforts to decrease gRNA-dependent and -independent off-target editing and other unintended editing. Both the protospacer and the corresponding PAM sequence collectively determine the targeting specificity of a CRISPR–Cas system⁸². However, off-target editing could still occur at potential genomic sequences with close homology to the protospacer in addition to the PAM. These off-target edits are known as guide RNA (gRNA)-dependent off-target effects, which are common to all CRISPR–Cas mediated editing ventures. Base editing is no exception. Potential genome-wide gRNA-dependent off-target sites can be predicted using many

gRNA designing web tools. However, BEs seem to have far fewer gRNA-dependent off-target effects compared with wild-type Cas9 with the same gRNAs^{10,14,42}. This might be partially due to the absence of an editable cytosine in the activity window of the potential genomic off-target sites.

One possibility to reduce the gRNA-dependent off-target effects is to replace wild-type nCas9 with high-fidelity nCas9 variants^{60,83,84}. Recently, three high-fidelity Cas9 variants—*SpCas9*-HF2 (ref. ⁸⁴), *eSpCas9*(1.1) (ref. ⁸³) and *HypaCas9* (ref. ⁸⁵)—have been used in CBEs for base editing in rice^{52,74}. Another strategy for reducing off-target editing is to deliver BEs as ribonucleoprotein complexes (RNPs) or RNA reagents instead of DNA reagents¹⁰. As DNA-based reagents integrate into the genome and show long-term expression, they are likely to increase off-target editing compared with RNP

and RNA reagents, which confer only transient editing activity. The delivery of RNPs and RNA reagents led to efficient on-target base editing with reduced off-target modifications in mammalian cells^{9,86,87}. Although RNPs and RNA reagents have been successfully used for editing with the Cas9 nuclease systems in plants in earlier studies^{88,89}, only a single study reported DNA-free base editing²³. It may help to avoid regulatory hurdles and address public concerns about genetically modified organisms¹⁰. Even if protoplast transfection and biolistic delivery are viable options for delivering RNP- and RNA-based CBEs, regenerating and screening edited plants remain a major bottleneck in these experiments.

Editing by BEs at genomic sites that do not have any sequence similarities with the gRNA is known as gRNA-independent off-target editing. Interestingly, whole-genome sequencing studies showed that CBEs could generate genome-wide gRNA-independent off-target mutations in mouse⁹⁰ and rice⁹¹. These off-target effects are attributed to the function of the deaminase rAPOBEC1. Cytosine deaminases used in CBEs bind to single-stranded DNA^{11,12}. It is indicative that these undesired off-target effects result from the intrinsic affinity of cytidine deaminase to single-stranded DNAs, which exist in genomic regions undergoing replication or transcription. Engineering the deaminase domain or using an alternative deaminase to rAPOBEC1 therefore represents an effective strategy to reduce the off-target effects. This has recently been demonstrated by examining alternate deaminase domains (CDA, AID, A3A, A3B, A3G) and engineered deaminase variants in mammalian cells⁹². The study also confirmed that the gRNA-independent off-target editing activity of CBEs greatly varies with different deaminase domains⁹². Similarly, eight new CBEs have been developed using alternate deaminases (*RrA3F*, *AmAPOBEC1*, *SsAPEBEC3B* and *PpAPOBEC1*) and their engineered variants in mammalian cells⁵¹. Those next-generation CBEs exhibit up to a 45-fold overall reduction in gRNA-independent off-target editing compared with rAPOBEC1 (ref. ⁵¹). Interestingly, an assessment of ten CBE platforms with different deaminases revealed that *PmCDA1*-CBE does not cause detectable genome-wide gRNA-independent off-target editing in rice⁶⁶. In a recent study in tomato, A3A^{Y130F}-BE3 was found to generate slightly higher gRNA-independent single-nucleotide variations and indels compared with the control, although the difference was not statistically significant⁹³. The same study also reported that A3A^{Y130F}-BE3 does not create transcriptome-wide off-target effects⁹³. Note that such off-target effects, if generated, are dwarfed by the plant tissue-culture-induced somaclonal variation.

Notably, two studies used a method named the orthogonal R-loop assay to rapidly evaluate the propensity of a BE to trigger gRNA-independent off-target deamination^{51,92}. Using this method, Jin et al. screened 25 truncated variants of human APOBEC3B (hA3Bctd) and developed two new CBE variants—A3Bctd-VHM-BE3 and A3Bctd-KKR-BE3—that exhibit markedly reduced gRNA-independent off-target editing in rice cells⁴⁹. As whole-genome sequencing and subsequent analysis are expensive and time consuming, the orthogonal R-loop assay could be advantageous for evaluating the gRNA-independent off-target effects of new CBEs.

Few earlier studies reported CBE-induced unintended editing in the protospacer sequence and indel formations in plants, ranging from 0–10% (refs. ^{10,20}). Recent studies showed up to 38% and 16% indel formation in tomato and rice, respectively, by A3A^{Y130F}-BE3 at different protospacers^{66,93}. Uracil in the genome, induced by the CBE, is treated as an error, and removed by uracil DNA glycosylase (UDG), forming an abasic site. Subsequent repair by error-prone polymerase incorporates random bases causing unintended conversions, such as C-to-G and C-to-A¹⁰. High deaminase activity, active cellular UDG and nicking by nCas9 may sometimes cause DSBs, resulting in indel formation. Although a canonical CBE contains a single UGI to subvert UDG, increasing the UGI number improved

editing efficiency and reduced indel formation⁹⁴. Plant CBEs were designed with four or five copies of UGI to improve editing efficiency and purity^{47,61,66,95}.

Recently, a method called Detect-seq was applied to capture out-of-spacer editing and target-strand editing by CBEs in human cells⁹⁶. Such off-target effects have not been detected or documented in plants, suggesting that they are at most rare events. Nevertheless, the off-target effects and other unintended edits, if they occur, are not so problematic for crop improvement applications. If any of such off-target mutations are deleterious, they can be segregated away through conventional breeding¹⁰.

AFIDs. Although Cas9-nuclease-generated indels can be predicted using machine learning⁴, reliably deleting a larger genomic fragment is difficult. APOBEC–Cas9 fusion-induced deletion systems (AFIDs) were recently developed to achieve predictable large deletions within the protospacer sequence in rice and wheat genomes⁹⁷. AFIDs consist of a fusion of cytidine deaminase, Cas9, uracil DNA glycosylase (UNG) and apurinic/apyrimidinic site lyase (AP lyase) in N-to-C-terminal sequence. AFIDs can induce deletions from the Cas9 cleavage sites to the 5' deaminated C bases in the protospacer sequence⁹⁷. Once a C base is converted to U by cytidine deaminase, UNG removes the U and forms an AP site. AP lyase then removes the AP site and generates a nick. Cas9 generates a DSB, usually at 3 bp upstream of the PAM sequence⁴. The AP-lyase-mediated nick and Cas9-induced DSB give rise to predictable deletions of the intervening region. The preliminary AFID system (AFID-3) was designed with APOBEC3A, and it was further improved with an engineered APOBEC3B (A3Bctd)⁹⁷. The enhanced version (eAFID-3) works better when the target C is preceded by T (lies in a TC motif)⁹⁷. AFIDs have been applied to generate predictable deletion in effector-binding elements of SWEET promoters, miRNA genes and *cis*-acting elements⁹⁷. Even though strategies such as paired gRNAs and nickases and TevCas9 dual nuclease have previously been reported to induce large deletions^{98,99}, AFIDs is potentially a robust deletion tool for plant biology and crop improvement. It could be assumed that a deaminase reported having a 5' shifted editing window would be suitable for generating even larger deletions.

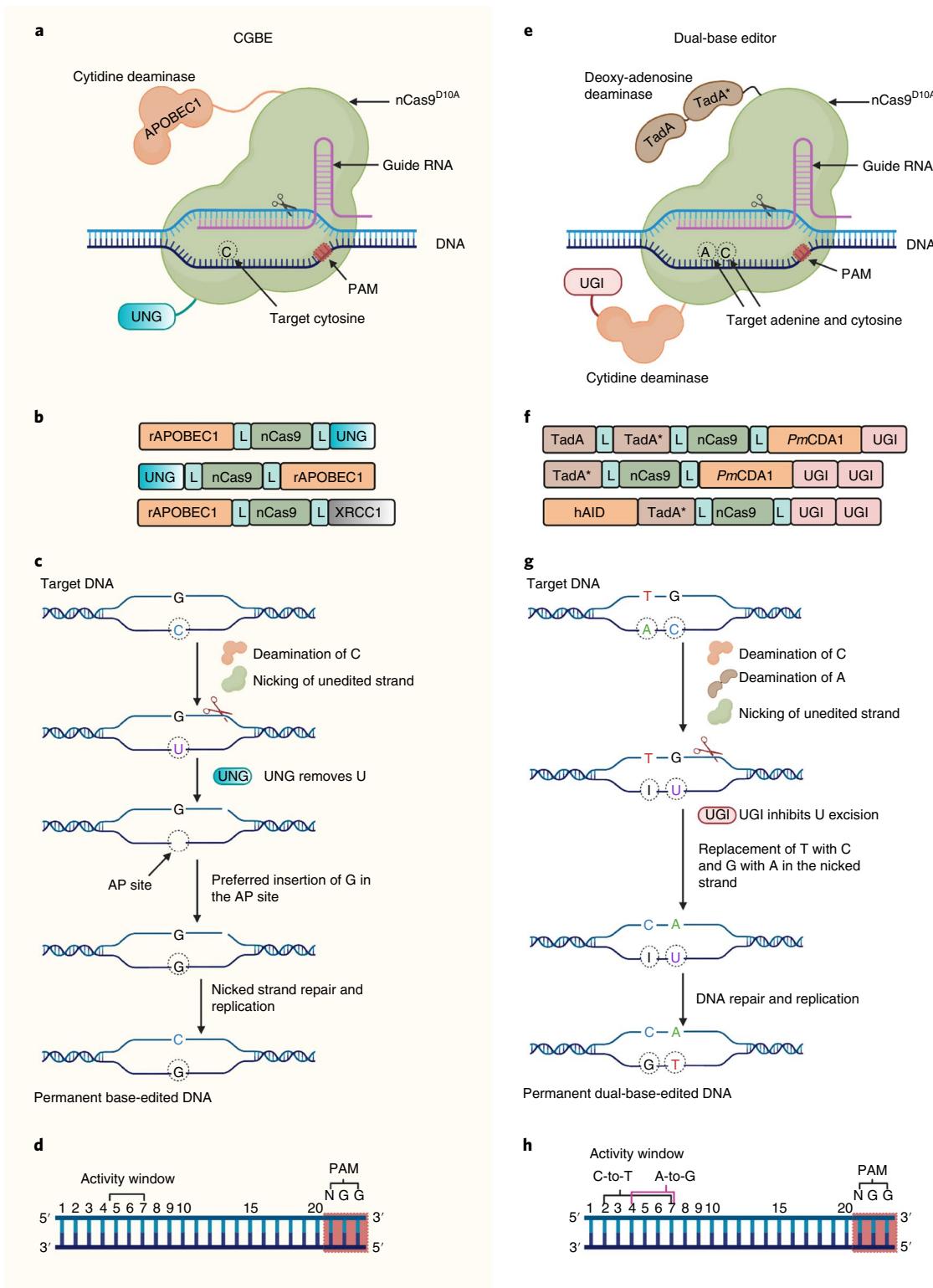
ABEs. Theoretically, inferred from CBEs, a combination of adenine deaminase and nCas9 would give rise to ABEs for converting an A•T base pair to a G•C base pair. However, none of the reported naturally occurring adenine deaminases work on DNA¹⁰⁰. By directed evolution and protein engineering, Gaudelli et al. evolved a transfer RNA (tRNA) adenosine deaminase (Tada) variant that works on a single-stranded DNA substrate¹⁰⁰. A total of 14 mutations were installed in TadA to develop the engineered version (TadA*)¹⁰⁰. As TadA acts as a dimer to catalyse deamination, a heterodimeric protein with a wild-type TadA non-catalytic monomer and an engineered catalytic monomer (TadA*) was devised^{42,100}. The fusion of this heterodimer (TadA-TadA*) with nCas9 generated ABEs that efficiently converted A to G in mammalian cells with high purity^{10,100} (Fig. 1d,e). In contrast to uracil excision repair, cellular inosine excision repair is weak and was not found to impede the A•T to G•C conversion^{10,100}. Thus, no additional glycosylase inhibitor protein was used to develop ABEs¹⁰⁰ (Fig. 1f).

Like CBEs, ABEs were swiftly adopted and demonstrated in various plants, including rice^{101–106}, wheat¹⁰³, *Arabidopsis*¹⁰⁷, *Brassica napus*¹⁰⁷, *Nicotiana benthamiana*¹⁰⁸, poplar³⁸ and moss³⁷.

ABEs based on orthologous and engineered Cas9 variants. Similar to CBEs, ABEs were developed using Cas9 variants with alternative PAM compatibility^{10,42,43} (Table 1). *SaCas9*-ABE, which can recognize NNGRRT PAM sequences, was reported in rice^{61,102}. *ScCas9*-ABE has been shown to be effective in NNG genomic sites in rice^{62,109}.

*Sa*KKH-Cas9, VRER-Cas9 and VQR-Cas9, which can recognize NNNRRT, NGCG and NGA PAM sequences, respectively, were also used to develop ABEs for rice^{24,61,110}. Alternative ABEs have been generated by adopting NRRH-, NRCH- and NRTH-Cas9 variants⁴⁷. *Sp*Cas9-NG has been adopted to create NG PAM-targeting ABEs in plants^{59,69,71,72,74,111}. Moreover, ABEs have recently been developed using *Sp*RY for nearly PAM-less A-to-G editing in rice^{25,47,68,77,112}. There have been no reports on Cas12a-based ABE for editing T-rich PAMs until recently an evolved deaminase was found to be compatible with Cas12a in mammalian cells¹¹³. However, the same has not yet been reported in plants. Nevertheless, iSpyMacCas9 was recently integrated into the ABE architecture to offer adenine base editing at A-rich PAM sites in rice⁵⁶.

Adenosine deaminases in ABEs. Naturally occurring single-stranded-DNA-editing adenosine deaminases do not seem to exist^{10,42}. Gaudelli et al. initially reported four different highly active ABEs-ABE6.3, ABE7.8, ABE7.9 and ABE7.10 (ref. ¹⁰⁰). Although ABE7.10 was used most commonly in plants^{101–104,107}, base editing with ABE6.3 (ref. ¹⁰⁷), ABE7.8 (ref. ¹⁰⁷) and ABE7.9 (ref. ¹⁰¹) was also reported. For increasing expression levels of the ABE-deaminase domain (TadA-TadA* dimer), codon optimization and addition of a bipartite nuclear localization signal were effective in mammalian cells⁵⁸. This variant is known as ABEmax and has outperformed ABE7.10 in a recent study in rice⁵⁹. Although earlier reports on ABEs in mammalian and plant cells described the use of the TadA-TadA* heterodimer^{10,42}, the latest studies demonstrated that the wild-type TadA monomer is not required for ABE activity in mammalian cells^{113–115} and rice^{109,116,117}. This miniABE, comprising TadA* monomer fused to nCas9, even showed improved editing efficiency compared with the heterodimer ABE7.10 (refs. ^{109,116}). These studies indicate that intraconstruct TadA-TadA* heterodimerization may not be required for ABE activity^{113–116}. However, those studies do not rule out the possibilities of *in trans* TadA*8-TadA*8 dimer formation¹¹⁵. Indeed, a high-resolution cryo-electron microscopy structure of substrate-bound miniABE (with a single TadA domain) confirmed that the TadA*8 domain dimerizes in *trans* during deamination¹¹⁸.


In two recent studies, ABE7.10 was further evolved to generate eighth-generation ABEs, ABE8.20 and ABE8e, with substantially increased deamination kinetics^{113,115}. ABE8e has been quickly adapted for high-efficiency base editing (up to 100%) in rice^{25,47,77,109,117} and *N. benthamiana*¹⁰⁸. ABE8e was found to outperform ABE8.20 in rice¹⁰⁹. ABE8e was combined with two additional mutations, V82S and Q154R, to construct ABE9 for high efficiency base editing in rice¹⁰⁹.

Activity windows of ABEs. Among the originally reported ABE variants, ABE7.10 favourably edits the target A located at the protospacer position 4–9 (counting the NGG PAM as 21–23), whereas ABE6.3, ABE7.8 and ABE7.9 may offer higher efficiency if the target A is at position 8–10 (Fig. 1g)¹⁰⁰. In rice, ABE7.9 was shown to perform better than ABE7.10 for the target A at position 7 of the protospacer¹⁰¹. The same study reported ABE7.10-mediated editing in an extended window at position 12 of the protospacer¹⁰¹. Similarly, another report showed editing at position 10 of the protospacer by ABE7.10 (ref. ¹⁰²). In rice, *Sa*Cas9-ABE7.10 showed a favourable activity window ranging from position 4–14 of protospacer, whereas VQR-Cas9-ABE7.10 exhibited activity window at protospacer position 3–10 (ref. ²⁴). In mammalian cells, activity windows for ABE8e varied with Cas proteins: position 4–8 for *Sp*Cas9; 3–14 for *Sa*Cas9; and 4–14 for LbCas12a¹¹³. However, in rice protoplasts, Cas9-ABE8e exhibited editing ability at the third to fourteenth base, whereas *Sp*RY-ABE8e showed variable activity at protospacer position 3–10 (ref. ²⁵). Another study with *Sp*RY-ABE8e reported that the activity window ranges from protospacer position 4–9 (ref. ⁷⁷). It is evident that activity windows depend on the Cas proteins and deaminase variants used (Table 1).

gRNA-dependent and -independent off-target and other unintended editing. Compared with CBEs, ABEs generate cleaner products, probably due to a weaker cellular inosine excision repair than uracil excision repair¹⁰. ABE-treated rice and wheat plants did not exhibit any undesired edits at both on- and off-target genomic sites^{102,103}. However, a recent study reported unintended proximal base editing (G to A and A to T) in rice plants treated with ABE¹⁰¹. Similarly, another study showed ABE-mediated cytosine conversion¹¹⁹. No off-target effects were detected in rice plants edited with eCas9-ABE²⁴. The development of more high-fidelity Cas protein-based ABEs is warranted to minimize gRNA-dependent off-target editing. Although ABEs have higher fidelity than CBEs, they are similar in causing bystander editing if additional targetable A is present in the activity window. For example, an earlier report in rice showed the generation of nonsynonymous mutations due to ABE-induced bystander editing¹⁰¹. In contrast to CBEs, ABEs do not generate genome-wide gRNA independent off-target editing in rice⁹¹. The rate of ABE-induced genome-wide single-nucleotide variants is insignificant compared with the rate of spontaneous mutations⁹¹.

C-to-G and C-to-A transversion BEs. CBEs and ABEs can install C-to-T (G-to-A in the complementary strand) and A-to-G (T-to-C in the complementary strand) mutations, respectively. Collectively, they empower us to achieve 4 out of 12 possible base substitutions and catalyse only base transitions (pyrimidine to pyrimidine and purine to purine). To further expand the base editing toolkit for base transversion, four independent groups recently described the development of new base-editing platforms that are capable of C-to-G editing in mammalian cells and C-to-A editing in bacterial cells^{120–123} (Fig. 2a–c). These studies have recently been reviewed¹²⁴. The CGBEs consist of a UNG fused to nCas9 (nCas9^{D10A}) and cytidine deaminase rAPOBEC1 (ref. ¹²¹) or rAPOBEC1 (R33A)¹²⁰. In bacterial cells, a similar platform containing hAID in place of rAPOBEC1 yielded C-to-A conversion¹²¹. C is deaminated to U by a cytidine deaminase. UNG generates an apurinic/apyrimidinic (AP) site by removing U. Subsequent error-prone polymerase activity probably incorporates G and A at the AP site in mammalian and bacterial cells, respectively, resulting in base transversion editing. Further investigation is warranted to discover why mammalian cells prefer G and bacterial cells prefer A insertion at the AP site. Another CGBE was developed by fusing X-ray repair cross-complementing protein 1 (XRCC1) to APOBEC1–nCas9 (ref. ¹²²). In this case, a cellular UNG removes the U generated by APOBEC1 and crenates the AP site. Next, XRCC1, a BER protein, aids the preferred incorporation of a G at the AP site resulting in a C-to-G outcome. Recently, ten CGBE platforms with different DNA repair proteins have been extensively characterized in a library of >10,000 target sites in the mammalian genome¹²³.

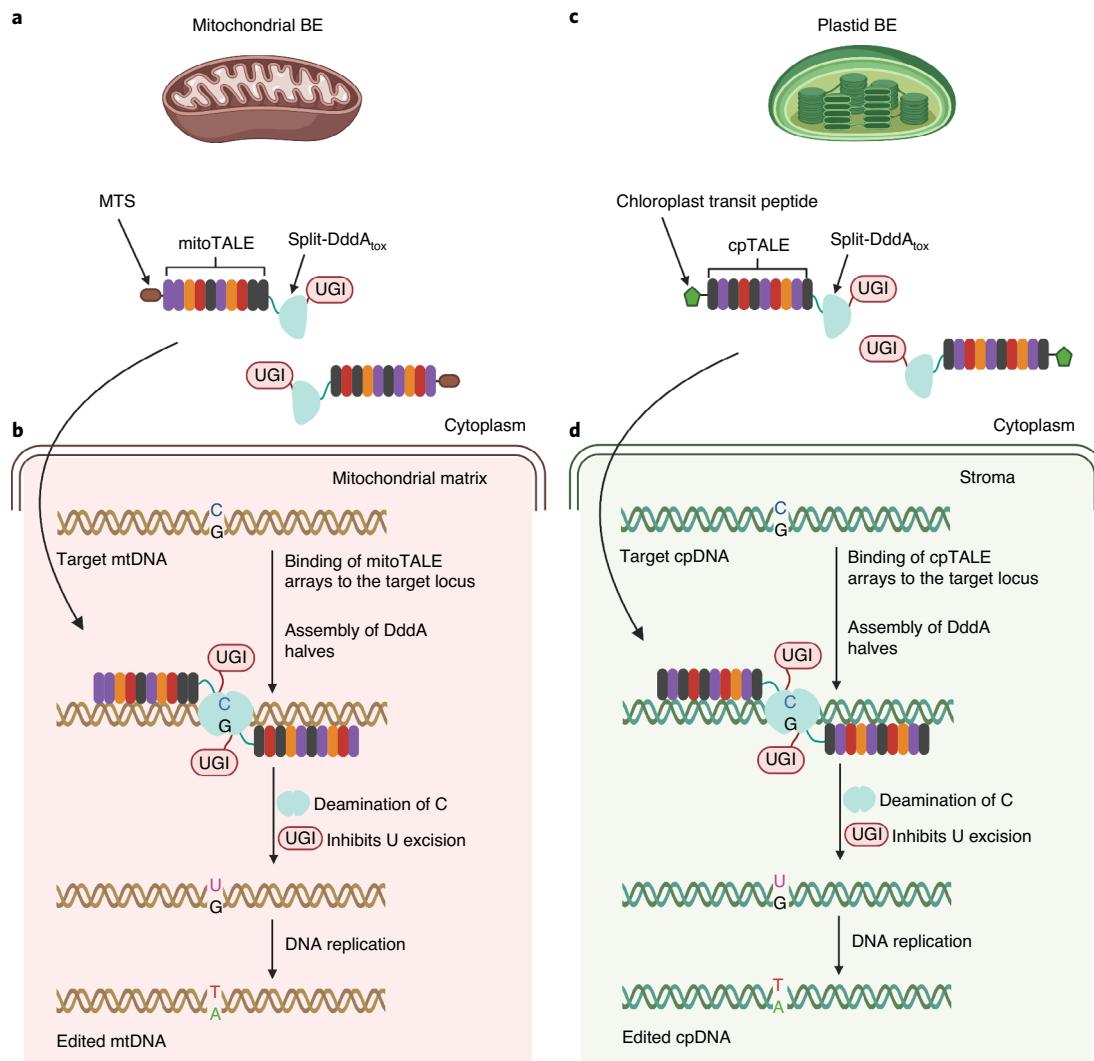
CGBE editing efficiency was highly target dependent, ranging from 3% to 70% (refs. ^{120–122}). Current CGBE platforms have an exceptionally narrow activity window with a high preference for protospacer position 6, while weaker editing efficiency for cytosines at positions 5 and 7 was observed^{120–123} (Fig. 2d). However, at one target site, C at position 9 was substantially edited by CGBEs¹²³. As rAPOBEC1 inherently does not prefer a GC sequence, the CGBE platforms exhibited very low to negligible editing if a G precedes the target C. When the target C is flanked by A and/or T bases, it is highly likely that C will be edited by CGBEs^{120,123}. To overcome these limitations, varying linker length, engineered or alternative cytidine deaminase and Cas9 could be beneficial¹²⁴. Although CGBEs are yet to be demonstrated in plant systems, they represent a useful tool for installing precise transversion mutations in plant genomes with reduced bystander effect. Despite that the UNG–nCas9–AID BE showed more than 80% C-to-A editing efficiency in *Escherichia coli*¹²¹, a C-to-A base editor remains elusive in eukaryotes.

Fig. 2 | C-to-G and dual (simultaneous C-to-T and A-to-G) base editing in nuclear DNA. **a**, A CGBE in the DNA context. The target cytosine is indicated (dotted circle). **b**, CGBE architectures (N to C terminal) containing cytidine deaminase (peach), nCas9 (green) and uracil DNA N-glycosylase (UNG) (sea green). **c**, The mechanism of CGBE is shown. Once the target C is deaminated to U by cytidine deaminase, UNG removes the U to generate an AP site. Nicking the non-edited strand by nCas9, preferred insertion of G at the AP site and subsequent repair/replication events ultimately convert a C•G base pair to a G•C. **d**, CGBE optimally edits at position 6 of the protospacer (counting the NGG PAM as 21–23). C bases at positions 5 and 7 are edited with reduced efficiency. **e**, A dual-base editor for concurrent installation of C-to-T and A-to-G mutations. The target C and A are indicated (dotted circles). **f**, Schematic of dual-base editor architectures composed of adenosine deaminase (brown), nCas9 (green), cytidine deaminase (peach) and UGI. **g**, The mode of action of dual-base editors is similar to individual CBE and ABE operation. Simultaneous deamination of C and A is carried out by cytidine and adenosine deaminase, respectively. nCas9 nicks in the non-edited strand and UGI protects from U removal. **h**, Activity windows for C-to-T and A-to-G editing overlap. The PAM is highlighted (red). TadA, wild-type TadA from *E. coli*; TadA*, evolved TadA*.

Dual-base editors. None of the above-mentioned BEs can reliably perform simultaneous conversions of two different types of nucleotides in the same protospacer sequence. To this end, recent studies have reported dual-base editors by fusing both cytidine and adenosine deaminases to a single Cas protein^{125–129} (Fig. 2e,f). Dual-base editors concurrently introduce C-to-T and A-to-G substitutions into the target genomic region (Fig. 2g,h). The platforms such as synchronous programmable adenine and cytosine editor (SPACE), A&C-BEmax, Target-ACEmax, and adenine and cytosine BE (ACBE) were generated for mammalian cells, whereas saturated targeted endogenous mutagenesis editors (STEMEs) were developed for plants^{125–129}. The adenosine deaminase component of SPACE consists of monomeric TadA*, whereas other four platforms contained TadA-TadA* heterodimer. Out of four different architectures tested, STEME1 with the APOBEC3A-TadA-TadA*(7.10)-nCas9-UGI configuration exhibited the highest dual-base editing efficiency¹²⁵. STEME1 showed C-to-T editing activity within protospacer position 1–17 and A-to-G conversion within position 4–8. STEMEs were successfully used for the directed evolution of the ACC gene for herbicide tolerance in rice¹²⁵. Note that the indel percentage was not found to be increased compared with the single-base editors^{125–127,129}. Interestingly, the SWISS platform has been developed to simultaneously induce adenine base editing, cytosine base editing and indel formation at different targets in plant genomes¹³⁰. Undeniably, these dual-base editors would be beneficial for installing multinucleotide variants, protein engineering, CRE engineering, cell lineage tracing, directed evolution and saturation mutagenesis.

Organellar BEs. Two organelles, mitochondria and plastids, contain their own genomes, which are vital to organelle biogenesis, energy production and cellular metabolism. Tools for editing organellar DNA have long been sought for organellar genetics. Although the CRISPR–Cas-derived BEs described above are highly effective for nuclear genome manipulation, it is difficult to repurpose them for organellar DNA editing due to the lack of effective means to transport sgRNAs through the double-layered membranes of mitochondria or plastids. However, an all-protein-based system would work as an organellar genome editor using the existing protein import machinery of chloroplast and mitochondria. Programmable DNA-binding proteins such as zinc fingers (ZFs) and transcription-activator-like effectors (TALEs) are suitable for this purpose.

mtDNA base editing. An interesting recent study reported a first-of-its-kind BE—DddA-derived cytosine BE (DdCBE)—for C-to-T conversion in human mitochondrial DNA (mtDNA)¹³¹. The DdCBE architecture consists of a mitochondrial targeting signal (MTS), a TALE array, a DddA cytidine deaminase and a UGI (Fig. 3a). Cytidine deaminases in nuclear CBEs usually act on single-stranded DNA, transiently generated in the Cas9-mediated R-loop structure. Although a TALE array fused to an MTS sequence can be targeted to mtDNA, TALEs are incapable of unwinding double-stranded DNA and cannot provide single-stranded DNA substrates for cytidine deaminases. Remarkably, Mok et al. discovered a deaminase from Gram-negative bacterium *Burkholderia cenocepacia*, DddA, that deaminates cytosines in double-stranded DNA¹³¹. As DddA is cytotoxic to mammalian cells, the DddA domain was cleaved into two inactive halves. Similar to the Fok1 monomer assembly in transcription activator-like effector nucleases (TALENs)¹³², the left TALE array and right TALE array were fused with an inactive DddA half (Fig. 3a). DddA would be functional only once both halves reconstitute adjacently to the target DNA (Fig. 3b). Other than mitigating cytotoxicity, splitting DddA has another advantage of minimizing off-target editing effects.


Optimized DdCBE displayed 4.6–49% editing efficiency across five different human mitochondrial genes¹³¹. Factors that

potentially impact the efficiency include the following: TALE design, spacing regions between two Split-DdCBE halves, the position of the target C from the TALE-binding site and the sequence context of the target C^{131,133}. Note that DdCBE has a substrate preference for 5'-TC-3' in its current form. To be edited by DdCBE, a T must precede the target C. To further expand the scope of mtDNA editing, exploring the natural diversity of double-stranded DNA cytidine deaminases or engineering DdCBE to alter its sequence preference would be useful. In principle, such DdCBE systems should also work for mitochondrial DNA base editing in plants. Compared with animals, plant mitochondrial genomes are complex, dynamic and larger in size¹³⁴. They consist of repeats, large introns and non-coding regions of which the function remains unclear. Variants of plant mtDNA were associated with abnormal growth phenotypes and cytoplasmic male sterility¹³⁴, which are of high value in crop breeding. Previously, mtDNA editing has been achieved by mitochondria-targeted TALENs in rice and rapeseeds¹³⁵, as well as in *Arabidopsis*¹³⁶. It is exciting to note that a recent study reported successful DdCBE-mediated base editing in the mitochondrial genome with up to 25% efficiency in rapeseed calli¹³⁷.

Plastid DNA base editing. Following a similar strategy, plastid BEs, especially chloroplast BEs, could be prepared using chloroplast transit peptide (Fig. 3c,d). Alternatively, DNA could be directly delivered into plastids using a gene gun¹³⁸. Three independent groups swiftly adopted Split-DddA to generate chloroplast BEs (cp-DdCBEs) for editing plastomes of lettuce¹³⁷, rapeseed¹³⁷, *Arabidopsis*¹³⁹ and rice¹⁴⁰. Plastomes were base-edited in lettuce and rapeseed protoplasts with 30% and 15% efficiency, respectively¹³⁷. The same report described DNA-free base editing with DdCBE mRNA in lettuce chloroplasts. Interestingly, a cp-DdCBE-induced streptomycin-resistant mutation in the 16S rRNA gene in lettuce protoplasts was maintained in regenerated calli after cell division¹³⁷. A single plant cell may contain many chloroplasts and it is therefore not easy to obtain homoplasmic substitutions. Interestingly, cp-DdCBE showed 64% editing efficiency with near homoplasmic substitutions in T_0 regenerated rice plants¹⁴⁰. Similarly, cp-DdCBE has induced high efficiency of homoplasmic mutations in T_1 transgenic *Arabidopsis* plants¹³⁹. The study in *Arabidopsis* showed that the cp-DdCBE-induced mutations were inheritable¹³⁹. The plastid BEs are poised to stimulate plastid genetics research and engineering to improve photosynthesis, yield, nutritional quality, and herbicide or stress tolerance.

RBEs. Editing individual nucleobases in the RNA transcriptome enables modifications in protein sequences without permanent changes in the genome. Once modifications are installed in the RNA sequence, they are not further processed by the cell¹⁴. Two types of RNA BEs (RBEs) have been reported to date for transcriptome modifications.

RBE for A-to-I editing. Taking advantage of the RNA targeting ability of Cas13 without any PAM requirements, the RNA editing for programmable A-to-I replacement (REPAIR) system has been recently developed¹⁴¹. A catalytically dead Cas13b enzyme from *Prevotella* sp. was tethered to the deaminase domain of adenosine deaminase acting on RNA type 2 (ADAR2) containing a hyperactivating mutation E488Q to construct the REPAIR version 1 (REPAIRv1) (Fig. 4a). During the cellular splicing and translation, inosine is read as guanosine and, therefore, many existing G-to-A mutations could be corrected using REPAIR^{10,141}. REPAIRv1 displayed on average 28% editing efficiency at 33 sites in human cells¹⁴¹. The study also revealed that the REPAIR system achieves higher editing with 50-nucleotide gRNA compared with 30-nucleotide gRNA. The binding of the gRNA with the target RNA results in a double-stranded RNA,

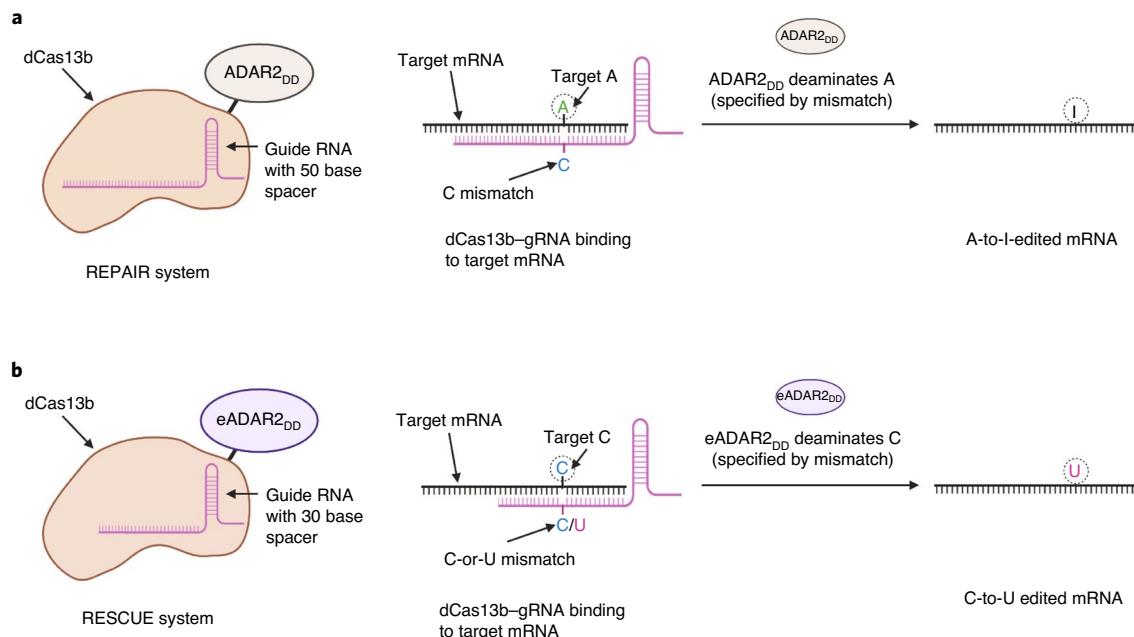


Fig. 3 | Base editing in organellar DNA. **a**, The architecture of the mitochondrial BE DdCBE. DdCBE is split into two parts, each of which consists of an MTS, a TALE array for binding to specific mtDNA, an inactive half (Split-DddA_{tox}) of bacterial cytidine deaminase that works on double-stranded DNA and a UGI. **b**, DdCBE acts similarly to a CBE. The MTS transports the two halves into the mitochondrial matrix. Two TALE arrays bind to the target DNA sequence and bring the two inactive halves into proximity. After reconstitution of active DddA_{tox}, it performs deamination of C in double-stranded DNA. The rest of the mechanism is similar to CBE acting on nuclear DNA. **c**, Plastid (chloroplast in this example) BE is split into two segments. Each segment contains a chloroplast transit peptide, a TALE array that binds to target chloroplast DNA (cpDNA), an inactive Split-DddA_{tox}, and a UGI. **d**, The mechanism of chloroplast BE is similar to mitochondrial BE. The assembly of DddA halves is mediated by the binding of two separate TALE arrays specific to the adjacent chloroplast DNA sequence. DddA, *B. cenocephacia* double-stranded DNA deaminase A; mitoTALE, TALE array targeting mitochondrial DNA; cpTALE, TALE array targeting chloroplast DNA.

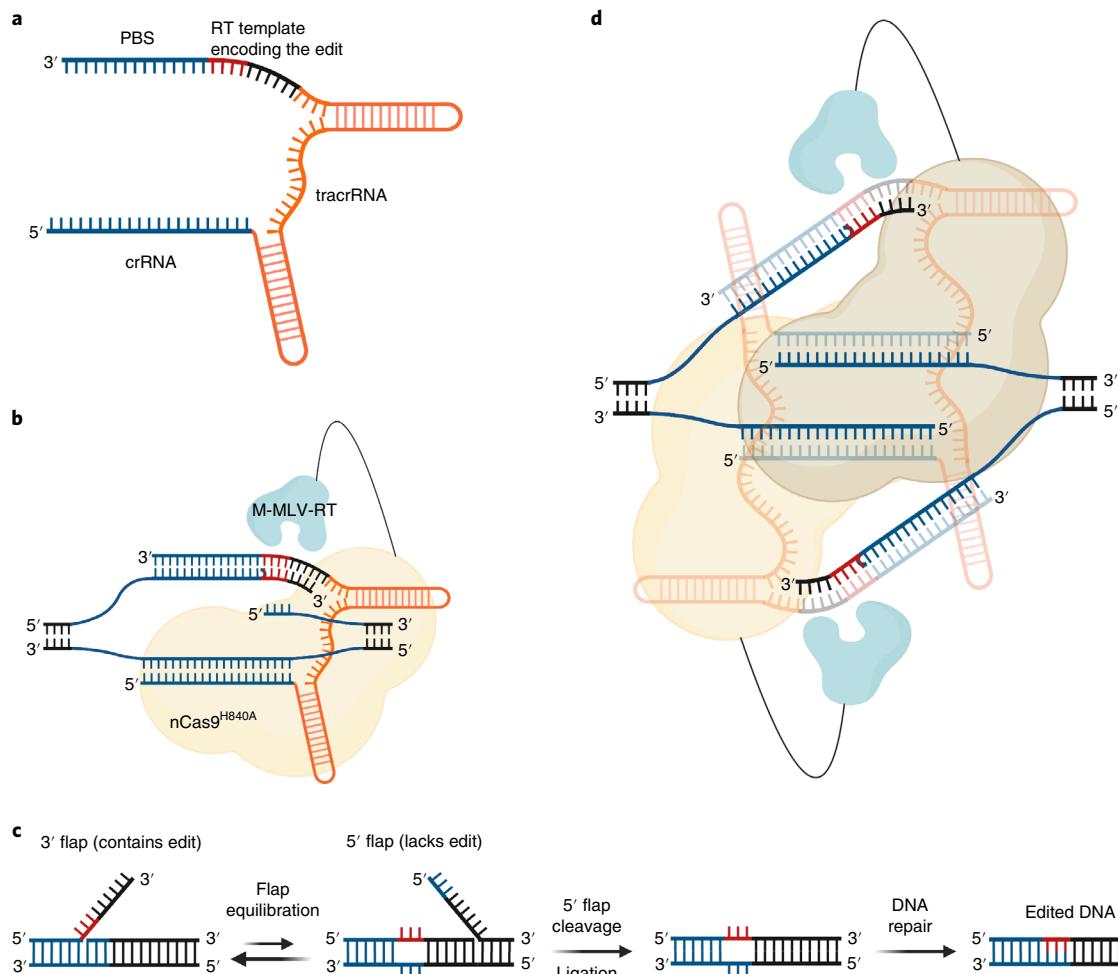
fulfilling the substrate requirement of ADAR2. A mismatched cytidine was incorporated into the gRNA opposite to the target adenine to be edited for increasing A-to-I editing efficiency¹⁴¹. In contrast to most of the BEs discussed in the sections above, REPAIRv1 had no sequence context preference surrounding the targeted A and could theoretically edit every A in the RNA.

However, REPAIRv1 exhibited substantial transcriptome-wide off-target editing, which was independent of dCas13b and attributed to the activity of the deaminase domain (ADAR2_{DD})¹⁴¹. The fusion of a double mutant ADAR2_{DD}(E488Q/T375G) to dCas13b resulted in an improved version, REPAIRv2, which reduced the off-target editing by 900-fold relative to REPAIRv1 (ref. ¹⁴¹). Mutations that increase specificity sometimes compromise on-target efficiency. The REPAIRx platform has recently been developed for A-to-I editing in RNA, which has the specificity level of REPAIRv2 and the efficiency level of REPAIRv1 (ref. ¹⁴²).

RBE for C-to-U editing. Learning from the REPAIR system, a fusion of naturally occurring RNA cytosine deaminase to dCas13b would theoretically give rise to an RBE platform for C-to-U editing. However, the high affinity of RNA cytosine deaminase for every cytosine present in single-stranded RNA is problematic and could generate a high level of transcriptome-wide off-target editing. Abudayyeh et al. therefore used directed evolution to engineer ADAR2_{DD}, which behaves like a cytosine deaminase acting on double-stranded RNA¹⁴³. The fusion of this evolved enzyme to dCas13 resulted in the platform called RNA editing for specific C-to-U exchange (RESCUE) (Fig. 4b). Interestingly, RESCUE is capable of both adenosine and cytidine deamination. Thus, RESCUE could be used for multiplex A-to-I and C-to-U editing in RNA by supplying a pre-crRNA guide array as Cas13 can self-process the pre-crRNA. RESCUE was optimally active with a 30-nucleotide gRNA harbouring a C or U mismatch opposite to the

Fig. 4 | Base editing in RNA. **a**, A-to-I editing in RNA by the REPAIR system. The REPAIR architecture contains a deactivated Cas13b fused to ADAR2. REPAIR is targeted to mRNA (black) by a gRNA with a 50-nucleotide spacer (purple). The target A is specified by an induced A-C mismatch in the mRNA-gRNA duplex. **b**, C-to-U editing in RNA using the RESCUE platform. RESCUE is composed of a deactivated Cas13b fused to an engineered ADAR2 variant (eADAR2). The RESCUE platform works optimally with a gRNA with 30-nucleotide spacer. The target C is specified by an induced C-C or C-U mismatch in the mRNA-gRNA duplex.

target C¹⁴³. The additional incorporation of a S375A mutation in RESCUE architecture yielded a highly specific version, RESCUE-S, which maintained ~76% on-target C-to-U editing with reduced off-target conversion.


Although organellar RNA editing is a known phenomenon in plants, the nuclear RNA editing system is unknown or poorly explored¹⁴⁴. While none of the RBEs has been experimentally demonstrated yet in plant cells, these tools could open a new avenue in plant RNA biology and crop engineering.

Prime editing

The mechanism of prime editing. Although BEs are powerful in introducing point mutations with high efficiency, they cannot generate precise indels and barely avoid bystander mutations. By contrast, PEs can introduce all 12 possible transition and transversion mutations and small indels, as well as combinations thereof with favourable intended editing to byproduct indel ratios¹⁴⁵. They are versatile, precise genome editing tools that directly write new genetic information into a specified DNA target site using a Cas9 nickase (nCas9; H840A) fused to an engineered reverse transcriptase (RT). The RT is programmed with a prime editing gRNA (pegRNA) that specifies the target site and encodes the desired edit¹⁴⁵. PegRNA is a modified sgRNA with 3' extension of the RT template and primer-binding site (PBS) sequences (Fig. 5a). The nCas9 (catalytically impaired Cas9 harbouring a H840A mutation) is used to nick the editing strand of the double-stranded DNA target. Next, the nicked strand is used for priming the reverse transcription of an edit-encoding extension (RT template) on the pegRNA directly into the target site¹⁴⁵ (Fig. 5b). This results in a branched intermediate consisting of two competing single-stranded DNA flaps. The 3' flap contains the edited sequence, whereas the 5' flap contains the unedited sequence. The 5' flap is preferentially cleaved by structure-specific endonucleases such as FEN1 (ref. ¹⁴⁶) or 5' exo-nucleases such as Exo1 (ref. ¹⁴⁷) in mammalian cells. Ligation of the 3' flap incorporates the edited DNA strand into the heteroduplex

DNA containing one edited strand and one unedited strand. Finally, to resolve the heteroduplex, DNA repair machinery permanently installs the desired edit by copying the information from the edited strand to the complementary strand (Fig. 5c).

PEs. Anzalone et al., in their seminal paper, introduced three versions of prime editing systems¹⁴⁵. Prime editor 1 (PE1) harbours Cas9^{H840A} nickase with a C-terminal fusion of a wild-type Moloney murine leukaemia virus RT (M-MLV-RT). Prime editor 2 (PE2) incorporates the engineered M-MLV-RT pentamutant (D200N/L603W/T330P/T306K/W313F) with increased thermostability, processivity, DNA–RNA substrate affinity and inactivated RNase H activity (Fig. 5b). Compared with PE1, PE2 has about threefold improved editing efficiency in human cell lines¹⁴⁵. Prime editor 3 (PE3) involves nicking the non-edited strand to stimulate DNA repair machinery and therefore further increases the editing efficiency in human cells by twofold to fourfold compared with PE2. The PE3 strategy involves the double nicking of two pairing DNA strands, which could generate a DSB, leading to indel formation due to NHEJ repair. To reduce this outcome, a variant of the PE3 system, prime editor 3b (PE3b), has been introduced. PE3b uses a nicking gRNA with a protospacer that matches the edited strand but not the original allele. PE3b resulted in a thirteenfold decrease in the average number of indels compared with PE3 in human cell lines without compromising editing efficiency¹⁴⁵. Prime editing has been demonstrated in multiple mammalian cell lines with varying efficiencies¹⁴⁵. For example, PE3 installed point mutations at positions 12–33 (relative to the start of the protospacer) with ~40% efficiency at the human *HEK3* locus. Furthermore, PE3 created 1 bp and 3 bp deletions at ~30% efficiency and generated 5–80 bp deletions at even higher efficiencies (52–78%)¹⁴⁵. Prime editing has been demonstrated in rice^{148–155}, wheat¹⁴⁹, maize¹⁵⁶, potato¹⁵⁷, *Arabidopsis*¹⁵⁴, *N. benthamiana*¹⁵⁴ and tomato¹⁵⁸. Surprisingly, in plants, PE3 or PE3b generally do not yield higher editing efficiencies than PE2 (refs. ^{148–151,157}). Overall, PE2- and PE3-mediated editing efficiencies reported in plants

Fig. 5 | Prime editing. **a**, pegRNA consists of CRISPR RNA (crRNA), transactivating crRNA (tracrRNA), a RT template and a PBS. crRNA guides the PE to the target site, tracrRNA renders nCas9^{H840A} nickase active, the RT template encodes the desired edit and the PBS primes the reverse transcription. **b**, PE, a ribonucleoprotein consisting of pegRNA, nCas9^{H840A} nickase and C-terminally fused M-MLV-RT located at the target site within the genomic DNA. nCas9-mediated R-loop enables the nicked exposed single DNA strand to be primed and extended with M-MLV-RT. **c**, The mechanism that leads to the permanent incorporation of the desired edit into targeted region of the double-stranded DNA. Reverse transcription produces a branched intermediate consisting of two competing single-stranded DNA flaps. The 5' flap containing the non-edited sequence is preferentially cleaved and the 3' flap containing the desired edit is ligated and forms heteroduplex DNA. DNA repair mechanisms enable the permanent installation of the edit into double-stranded DNA. **d**, The dual pegRNA strategy used at the same target site and encoding the same edit in *trans* for prime editing with the aim of enhancing the prime editing efficiency.

ranged from almost zero to a few per cent, far lower than the efficiencies reported in the original human study¹⁴⁵. A surrogate PE2 system has been developed in rice to enrich prime-edited cells to enhance screening efficiency¹⁵⁰.

Before being widely used by plant biologists, prime editing efficiency needs further improvement. It seems that the design of pegRNAs should be tailored for each target site independently. The RT template and PBS within a pegRNA present many possible design choices to optimize the efficiency of a desired edit. Typically, only a few RT template and PBS combinations would support optimal prime editing efficiencies. In general, RT templates should be between 10–20 nucleotides long, while the PBS should be approximately 13 nucleotides long but can span from about 7–17 nucleotides in length¹⁴⁵. The melting temperature (T_m) is important for the stability of DNA–RNA hybrids. A recent study showed that the PBS T_m strongly influenced prime editing efficiency and recommended to use a PBS T_m of $\sim 30^\circ\text{C}$ for obtaining maximal efficiency¹⁵⁹. Although an earlier attempt was not successful¹⁴⁹, exploring more RTs and optimizing their expression may

still represent a sound strategy to improve prime editing in plants. Furthermore, prime editing efficiency may be improved if we gain further understanding of the plant DNA repair mechanisms favouring incorporation of the desired prime editing outcomes in plants. Although PEs also have relatively narrow editing windows centred around the PAM site¹⁴⁵, this limitation on targeting scope could be overcome with the use of orthogonal and engineered Cas9 proteins with altered PAM requirements, as demonstrated with CBEs and ABEs. Thus, low prime editing efficiency is the major bottleneck for its wide applications in plants. Interestingly, a recent study developed strategies to boost PE efficiency in rice ranging from 2.9-fold to 17.4-fold¹⁵⁹, including using paired pegRNAs encoding the same edits in *trans* (Fig. 5d) and designing a PBS with a T_m of 30°C (ref. ¹⁵⁹). At first glance, having two pegRNAs in proximity might present a steric hindrance problem. However, the paired pegRNA approach yielded higher prime editing efficiency compared with that of a single pegRNA approach, which could be due to the dual-pegRNA-mediated simultaneous editing in both DNA strands¹⁵⁹.

The targeting specificity of prime editing. As PEs need three tiers of specific DNA hybridization—namely pegRNA spacer-target DNA for binding to the genomic target, pegRNA PBS-target DNA for initiating reverse transcription and RT-product-target DNA for flap resolution—the off-target effects of PEs are theoretically highly limited¹⁴⁵. A recent comprehensive study showed that PEs generate low frequencies (0.00–0.23%) of pegRNA-dependent off-target editing in rice¹⁶⁰. The authors analysed whole-genome sequences of 29 PE-edited plants and confirmed that PEs do not induce genome-wide pegRNA-independent off-target edits¹⁶⁰. As PEs ectopically express the RT enzyme, it is imaginable that PEs might lead to RT-mediated undesirable alteration. The same study revealed that prime editing does not alter the copy number of retrotransposons and telomere structure and does not cause pegRNA insertion into the rice genome¹⁶⁰.

Computational tools for base editing and prime editing

Conventional CRISPR–Cas-mediated knockout experiments require a relatively straightforward gRNA design. Predicting the efficiency and mutation outcome for a gRNA has been possible using machine learning and deep learning^{4,161}. However, designing gRNAs for base editing and pegRNAs for prime editing seems to be more complicated. The activity windows for BEs and PEs are distinct; BEs generally favour a PAM distal activity window, whereas PEs prefer a PAM proximal activity window. Owing to its built-in complexity, pegRNA design can be especially tricky.

Tools for base editing. In recent years, several web tools have been developed to assist in gRNA design^{162–164}, selecting guides^{164–166} and BEs¹⁶⁷, and predicting editing efficiencies^{165,166} and outcomes^{165,166} of CBEs and ABEs (Table 2). Interestingly, a recent study has developed a data-driven model for predicting editing outcomes of CGBEs¹²³. Similar to knockout experiments, in silico prediction of Cas-dependent off-targets for base editing gRNAs can be performed using any plant-specific web tools, such as CRISPR-PLANT v2 (ref. ¹⁶⁸) and CRISPR-P 2.0 (ref. ¹⁶⁹). Targeted deep sequencing is considered to be a reliable method for measuring base editing efficiency in a population of cells. Web tools have been developed to analyse the base conversion ratio from deep-sequencing of PCR amplicons^{162,170}, which is more expensive and time-consuming than Sanger sequencing. As a consequence, the EditR and BEAT programs were generated to quantify base editing from Sanger sequencing^{171,172}, albeit with lower sensitivity. Note that most of the currently available tools for base editing gRNA design, efficiency and outcome prediction mainly support mammalian genomes. Plant species-specific base editing gRNAs can be designed using BE-designer¹⁶². Ideally, more plant genome-specific base editing tools need to be developed to assist plant investigators.

Tools for prime editing. Similarly, several online pegRNA design tools have been developed to accommodate the PE2, PE3 and PE3b versions of PEs, including PlantPegDesigner¹⁵⁹, pegFinder¹⁷³, PrimeDesign¹⁷⁴, Primeedit¹⁷⁵, PINE-CONE¹⁷⁶ and multicrispr¹⁷⁷ (Table 2). The availability of these tools with a user-friendly interface greatly simplified the intricate design of pegRNAs and therefore contributed to a broader accessibility of the prime editing technology. Although all of the listed pegRNA design tools except for PlantPegDesigner were developed for the mammalian systems, they can also be used for plants. However, plant researchers and breeders could benefit tremendously from plant-specific tools such as PlantPegDesigner, especially if specific pegRNA design features are essential for improved editing efficiency in plants.

Applications of base editing and prime editing in plants

BE- and PE-based genetic modifications. Base editing and prime editing technologies have tremendous potential to assist plant

Table 2 | Web tools developed for base editing and prime editing experiments

Tools	Functions	Reference
BE-Hive	Base editing (with CBEs and ABEs) genotypic outcomes and efficiency	165
CGBE-Hive	CGBE editing efficiency and purity prediction	123
CBE_efficiency	Cytosine base editing efficiency,	166
ABE_efficiency	adenine base editing efficiency,	
DeepCBE	frequency of CBE editing outcomes and	
DeepABE	frequency of ABE editing outcomes	
EditR	Quantification of base editing from Sanger sequencing	171
CRISPR-CBE1	Designing of gRNAs for CBE-mediated gene inactivation	163
BE-FF	Identifying suitable BEs to correct wrong amino acids introduced by point mutations in human	167
beditor	Designing gRNA libraries and selecting the best sets of gRNAs	164
BE-Designer	sgRNA designing tool for CRISPR BEs	162
BE-Analyzer	and analysing base editing outcomes from next-generation sequencing data	
BEAT	Base-editing event quantification from Sanger sequencing data in batch	172
CRISPResso2	Analysing base editing outcomes from next-generation sequencing data	170
pegFinder	Design of pegRNAs	173
PrimeDesign	Design of pegRNAs	174
Primeedit	Design of pegRNAs for human pathogenic variants	175
PINE-CONE	Design of pegRNAs	176
multicrispr	Design of pegRNAs	177
PnB Designer	Design of prime and BE gRNAs	213
PlantPegDesigner	Design of pegRNA and paired pegRNA	159

biologists in various basic investigations (Fig. 6). As each target locus might require a unique activity window and PAM compatibility, an enriched toolbox of BEs and PEs offers researchers exceptional opportunities to apply these powerful technologies for diverse needs. We highlight below a few of the distinct types of genomic alterations that could be achieved with BEs and PEs in plant research.

Installing nonsynonymous mutations. The currently available BE tools empower us to execute 6 types of base swapping (4 transitions and 2 transversions) out of 12 possible substitutions (Fig. 6a). Out of 61 codons for amino acids, 49 are targetable by CBEs, ABEs and CGBEs for nonsynonymous substitutions. By contrast, PE tools enable all 12 types of substitutions and small indels in the genome (Fig. 6a,b), although with lower efficiency. Together base editing and prime editing represent a unique opportunity for research communities to precisely alter amino acid residues in targeted protein sequences for the study of functional genomics. They could also facilitate in identifying conserved amino acids of biological significance¹⁰.

Enabling molecular diversity and directed evolution. Plant genetics and breeding is fundamentally centred on linking genotypes to phenotypes. By increasing molecular diversity, proteins with novel

chemical and physical properties could be generated. Directed evolution is one such powerful approach for increasing genetic or molecular diversity¹⁷⁸. Although the conventional CRISPR-Cas9 approach has been used for directed evolution in plants¹⁷⁹, CRISPR-Cas9-induced frameshift mutations are mostly useless, especially when they are not viable and heritable¹⁸⁰. This problem is addressed by BE-mediated directed evolution as they, in principle, generate in-frame mutations (Fig. 6c). CBE architectures devoid of UGI were reported to yield diverse outcomes such as C to A, C to T and C to G, and have been used for directed evolution in mammalian cells^{181,182}. Similarly, both CBEs and ABEs with gRNA libraries covering the coding sequence of rice acetolactate synthase (OsALS) gene have been applied for directed evolution^{25,66,183}. CBE-mediated targeted evolution of rice *EPSPS* for herbicide tolerance was reported⁶⁶. Recently developed dual-base editors^{125–129} (discussed in an earlier section), which can generate simultaneous A-to-G and C-to-G mutations, are better suited for directed evolution. For example, the STEME platform has been used for directed evolution of the acetyl coenzyme A carboxylase (OsACC) gene to gain herbicide resistance in rice¹²⁵. With 20 gRNAs spanning a DNA region encoding 56 amino acid residues of the ACC protein, STEME achieved near-saturated mutagenesis, which helped to create de novo OsACC herbicide-resistant variants¹²⁵.

As BEs cannot currently perform many transversion mutations, BE-mediated random mutagenesis may not be all-inclusive and may overlook many mutations endowing the desired trait. Recently, a prime-editing-library-mediated saturation mutagenesis (PLSM) method identified 16 types of herbicide-resistance-conferring mutations, including several new ones¹⁵⁵. PegRNA libraries with all possible combinations of substitutions at six different target residues in OsACC1 enabled a more comprehensive screening by PLSM than that which is achievable with BEs¹⁵⁵. Alternatively, variants of a target gene could be made and evaluated in *E. coli* by random mutagenesis and then the best variant could be reproduced in plants by BE or PE tools.

Editing CREs. CREs are non-coding DNA sequences that regulate gene expression. Editing CREs will not only offer insights into their function but also provide an effective approach to fine-tune gene expression. CRISPR-Cas9 has been used for promoter editing to introduce quantitative trait variation in tomato^{184,185}, rice¹⁸⁶ and maize¹⁸⁷. It was also recently applied to edit intronic enhancers in *Arabidopsis*¹⁸⁸. Interestingly, editing upstream open reading frames (uORFs) using CRISPR-Cas9 could improve protein translation in *Arabidopsis* and lettuce¹⁸⁹. Editing the uORF of FvebZIPs1.1 in strawberry using a CBE resulted in a continuum of sugar content³⁶. With high precision, BEs and PEs will open tremendous opportunities to discover new CREs and manipulate known CREs to alter gene expression (Fig. 6d).

Generating and correcting premature stop codons. Canonical CRISPR-Cas9-mediated gene knockout depends on the generation of premature stop codons from frameshift-inducing indels, which does not represent the most straightforward way for introducing stop codons. Interestingly, CBEs can generate premature stop codons at pre-defined triplets to knock out gene function (Fig. 6e). They can precisely convert four codons—CAG, CGA, CAA and TGG—into stop codons (TAA, TAG and TGA)¹⁰. Similarly, CGBEs can generate two premature stop codons from TCA and TAC codons¹²⁴ (Fig. 6e). In total, six codons can be altered by currently available BEs to generate stop codons. CBEs were used to generate stop codons in many plant species, such as tomato³⁰, wheat²³, rice^{22,190} and rapeseed¹⁹¹. Another interesting strategy to silence a gene could be to mutate the start codon (ATG) to ACG or GTG by ABE, as demonstrated recently¹⁹². In principle, introducing stop codons into early exons should be more reliable than introducing start codon mutations for knocking out protein-coding genes as some genes may have alternative start sites.

By contrast, ABEs can correct mutations that cause premature stop codons (Fig. 6e). Stop codons could be reverted to tryptophan (TGG), glutamine (CAA, CAG) and arginine (CGA) codons¹⁰. In rice, an early stop codon in the GFP coding sequence has been corrected by an ABE to restore GFP fluorescence¹⁰³. Theoretically, CGBEs can perform the reversal of TAG and TGA stop codons by targeting the coding strand (Fig. 6e).

Modulating RNA splicing. For canonical eukaryotic mRNA splicing, splice donor (GT) and splice acceptor (AG) sites are required, and both can be disrupted by base editing (Fig. 6f). The donor site is editable with CBEs, ABEs and CGBEs by targeting the coding strand, whereas the acceptor site can be altered with ABEs (targeting non-coding strand), as well as CBEs and CGBEs (targeting coding strand). BEs can therefore induce mis-splicing, eventually leading to exon skipping, alternative splicing or intron retention¹⁰. Null mutants were generated in *Arabidopsis* and rice using this approach^{18,19}. BE-mediated modulation of mRNA splicing is another way to disrupt the function of intron-containing genes. Similarly, PEs could also enable gene silencing by interfering with mRNA splicing. A similar approach could help in the study of the function of long non-coding RNAs¹⁹³.

Altering miRNAs or miRNA target sites. MicroRNAs (miRNAs) bind to untranslated regions or coding sequences in target mRNAs. PEs can modify the miRNA-encoding gene sequence to generate customized miRNAs to match new target mRNAs. The tailored miRNAs could be repurposed to silence new targets, including the plant's endogenous genes or even genes in pests and pathogens¹⁹⁴ (Fig. 6g). PEs can also be used for introducing multiple synonymous mutations at miRNA-binding sites to destroy the homology with the miRNA and make the gene resistant to miRNA-mediated negative regulation (Fig. 6h). This strategy would result in enhanced gene expression. A recent study showed that BE-induced mutations in miRNA target sites in rice *SPL14* and *SPL16* genes elevated their expression twofold to fivefold⁶⁶. miRNA–mRNA binding can also occur with a few mismatches. PEs are better suited in this regard compared with BEs for making an mRNA resistant to the miRNA by introducing multiple silent mutations.

BEs and PEs in crop improvement. Single-nucleotide variants and small indels have often been associated with mono- and polygenic agronomic traits and are crucial for crop improvements. With the availability of BE and PE tools, it became feasible to install those variants for rapidly developing superior crop varieties. Even though the base editing and prime editing technologies have numerous potential applications in improving yields, stress resistance, herbicide tolerance, resource use efficiency and quality of a diverse range of crops, here we discuss the applications that have been mostly experimentally demonstrated (Fig. 7).

Engineering herbicide resistance. Herbicide-resistant crops are highly desirable in modern agriculture for easily and effectively managing weeds. Until recently, the development of herbicide-resistant crops relied on screening a large population of randomly mutagenized seeds or making transgenic plants expressing foreign genes. However, BEs and PEs offer a more effective and attractive way to develop herbicide resistance by precisely editing the endogenous genes coding for enzymes targeted by the herbicides. Naturally occurring point mutations in the target genes are known to confer resistance to the herbicides. BEs and PEs have been used to precisely install those naturally occurring point mutations (Fig. 7a). For example, BE-mediated acetolactate synthase (ALS) editing was achieved in rice^{22,66,183,195}, *Arabidopsis*¹⁹⁶, maize¹⁹⁷, wheat²⁷, watermelon³² and rapeseed³⁹ to confer resistance to imidazolinone and sulfonylurea herbicides without a fitness penalty. Similar to ALS,

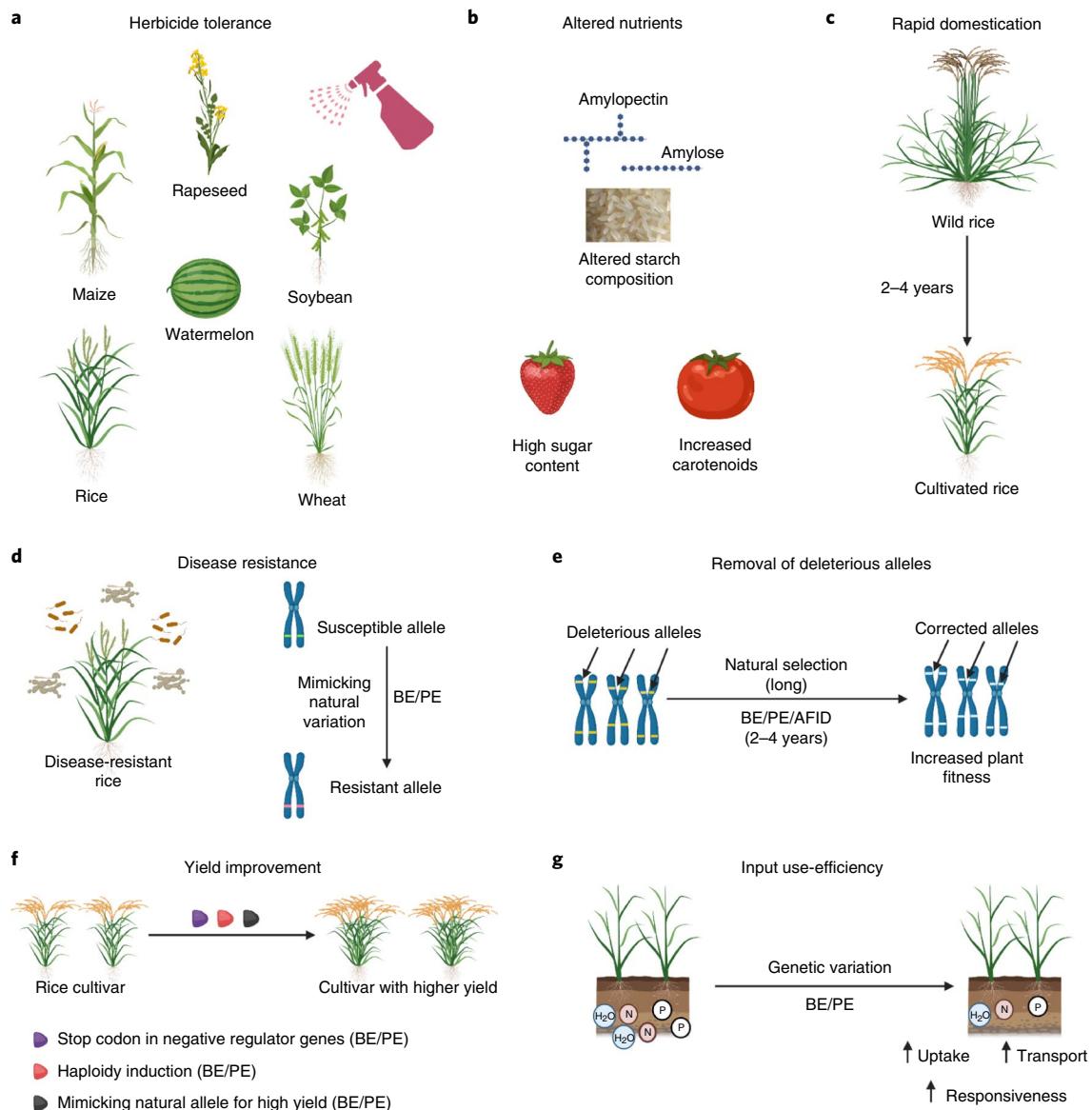


Fig. 6 | Base editing and prime editing applications for different kinds of genetic modifications. **a**, Four types of transition and two types of transversion mutations are possible with the currently available BE tools. The C-to-A BE (CABE) is applicable only in bacterial cells. PEs can perform all 12 possible types of base alterations. **b**, PE tools perform precise small insertions and deletions. AFID generates predictable deletions. **c**, A CBE architecture that lacks UGI generates diversifying edits from target C bases. A dual-base editor is better for generating molecular diversity and directed evolution. **d**, BEs and PEs targeted to enhancer and promoter regions modify CREs to alter gene expression. **e**, BEs and PEs can be used for creating and correcting early stop codons—CBEs and CGBEs together can artificially generate early stop codons by modifying codons for five amino acids. ABEs and CGBEs transmute premature stop codons to sense codons. PEs are applicable to execute all possible correction and creation of stop codons. **f**, The splice donor, acceptor and branch point can be edited using BE and PE tools for modifying splicing. **g**, miRNA genes could be modified by prime editing to customize miRNA and repurpose it to silence any endogenous target gene. **h**, PEs can be used to introduce multiple mutations to the miRNA-binding sites of a target gene sequence. For a protein-coding sequence, synonymous mutations need to be installed. The resultant mRNA from the edited gene will be resistant to miRNA-mediated negative regulation. This would enhance gene expression. Q, glutamine; R, arginine; S, serine; W, tryptophan; Y, tyrosine; UTR, untranslated region.

several other crucial metabolic genes are targeted by herbicides. Base editing of rice ACCase for haloxyfop-R-methyl^{103,198}, wheat ACCase for quizalofop²⁷, rice Tuba2 for trifluralin^{109,199}, rice EPSPS for glyphosate⁶⁶, rice GS2 for glufosinate¹⁰⁹ and *Arabidopsis* CESAs for C17 (ref. ²⁰⁰) resistance have been reported.

Similarly, crucial amino acid residues in the ALS and ACC1 enzymes have been altered using prime editing in rice to develop resistance to bispyribac sodium and haloxyfop-R-methyl herbicide, respectively^{151,155}. The ability of BE and PE tools to generate transgene-free herbicide tolerance traits by modifying one or a few bases in endogenous genes makes them enormously appealing to researchers and breeders.

Modulating nutritional composition. The nutritional attribute is a vital factor that determines consumer preference for food crops. The eating and cooking quality of rice largely depends on its amylose content. The waxy gene controls the biosynthesis of amylose. CBE-induced base editing was used to fine-tune amylose content in rice by altering three crucial amino acid residues of WAXY protein²⁰¹ (Fig. 7b). Similarly, CBE-mediated editing of the amylose biosynthesis gene in potato was reported³¹. For fruit, the taste is the key factor for consumer choice, although it is neglected in modern yield-directed breeding programs. Sugar content largely contributes to the taste of fruits. Interestingly, CBE-mediated editing at the uORF of a transcription factor gene, *ZIPs1.1*, generated strawberry

Fig. 7 | Examples of crop improvement by base editing and prime editing. Although BEs and PEs are applicable to numerous crop improvement strategies, only a few are highlighted here based on the already demonstrated examples. **a**, BEs and PEs can be used to modify amino acids in enzymes that are targeted by herbicides. **b**, Nutrient composition is altered by modifying biosynthetic pathway genes, splice sites or uORFs. **c**, Domestication genes are edited with BEs and PEs in wild relatives of crop species. **d**, BEs and PEs can be used to modify a susceptible allele into a resistant allele. **e**, The BE, PE and AFID systems can substantially reduce the time required for the removal of deleterious alleles. **f**, Endogenous genes are targeted by BEs and PEs for yield increment. **g**, BEs and PEs can be used to introduce variation into genes that are responsible for nutrient uptake, transport and utilization.

lines with higher sugar content³⁶. Tomato mutants generated by a CBE displayed enhanced accumulation of total carotenoids in fruits and pericarp³⁰. Thus, BEs and PEs hold great promise in modulating the nutritional compositions of food crops by fine adjustment in their DNA sequence.

Aiding rapid *de novo* crop domestication. Historically, it takes hundreds or even thousands of years to transform a wild plant species into domesticated crops. Domestication has been mostly productivity oriented and has caused severe loss of genetic diversity. In the wake of climate change and the increasing demand for food, harnessing that lost diversity could have a profound role in climate resilience and global food security. Remarkably, the application of CRISPR–Cas9 has accelerated the domestication of wild tomato

(*Solanum pimpinellifolium*) and ground cherry (*Physalis pruinosa*) through the editing of multiple known domestication genes^{202–204}. In a recent effort to domesticate *Oryza alata*, a tetraploid wild rice species, a BE has been used to obtain a gain-of-function mutation in the *OaIPA1* gene²⁰⁵ (Fig. 7c). Note that any genome editing application requires genomic information of the plant and established genetic transformation methods. When it comes to wild species, these two factors become a major bottleneck. Yu et al. generated utilizable genome information and standardized genetic transformation protocol of *O. alata* before attempting any editing²⁰⁵. Nevertheless, it gives much hope that we would be able to substantially reduce the time required for domestication of a crop by using precise genome editing technologies such as BEs and PEs with the help of whole-genome sequencing and genome annotation.

Engineering disease resistance. Breeding for disease resistance usually requires introgression of a resistance gene from a resistant source to a susceptible one. Plant susceptibility (*S*) genes help in the establishment of pathogens and could negatively modulate host defences²⁰⁶. Disruption of those genes should enhance resistance. The host eukaryotic translation initiation factors (eIFs) such as eIF4E and eIF4G are vital to virus infections²⁰⁷. Previously, CRISPR–Cas9-mediated genetic knockout of *eIF4E* or *eIF4G* was applied to create resistance to turnip mosaic virus in *Arabidopsis* and tungro spherical virus in rice, as well as broad-spectrum virus resistance in cucumber²⁰⁷. Similarly, *S*-gene knockout strategies can be used for developing resistance against fungal and bacterial pathogens²⁰⁸. However, the creation of null alleles of *S* genes may not be most desirable due to the potential fitness cost of losing a functional gene in the plant genome. Learning from a naturally occurring eIF4E virus-resistance allele in *Pisum sativum*, Bastet et al. introduced a C-to-T point mutation into the sequence encoding *AteIF4E1* for a N176K substitution, which successfully resulted in the generation of potyvirus (CIYVV)-resistant *Arabidopsis* lines¹⁷. Interestingly, recessive Pi36 and Pid2 (blast R genes) alleles were converted to dominant resistant alleles in rice with a CBE^{47,50}. *OsFLS2*, a flagellin-sensing receptor kinase gene, was base-edited to convert a phosphorylation-blocking residue into a phosphorylation-mimicking residue⁵⁰ (Fig. 7d).

Removing deleterious mutations. Conventional breeding is lengthy and may incorporate undesirable traits along with the desired trait gene, a phenomenon known as linkage drag. Many plant genes are allelic in nature and some variants contain deleterious mutations, which differ in single or a few bases. Those deleterious point mutations and small variations could be precisely removed using BEs and PEs to rapidly alter a harmful allele into a beneficial one without any linkage drag (Fig. 7e).

Increasing yield and nutrient use efficiency. Improving crop yield with a minimal eco-footprint is the need of the hour to meet the global food demand sustainably. CBE-mediated introduction of early stop codons in three rice genes (*GS3*, *GW2* and *GN1a*), which are known to regulate grain parameters negatively, resulted in an increased grain length and grain width⁶⁶. Similarly, a causal point mutation in the *OsSPL14* gene, which is responsible for defining ideal plant architecture and improving rice grain yield, was installed by ABEs^{24,102}. Haploid induction is highly valuable in plant breeding applications for varietal improvement. For developing haploid inducer lines, wheat *MTL* loss-of-function mutants were generated using a CBE²³. Crops with increased input use-efficiency could substantially reduce the ecological impact of agriculture. A single-nucleotide variation in *OsNRT1.1B*, which is associated with high nitrogen use-efficiency, has been installed by a CBE⁵⁹. It is indicative that both BEs and PEs could be beneficial in breeding applications focused on improving yield and input use-efficiency (Fig. 7f,g).

Conclusions

The plant genome editing revolution has provided numerous opportunities for functional genetic studies and crop breeding that have not been seen before^{209,210}. The precise genome editing technologies such as BEs and PEs described in this Review are still under rapid evolution for improved efficiency, enhanced specificity and capability, and refined editing purity. These emerging technologies have been demonstrated in a growing number of plant species with diverse applications. BEs and PEs would certainly help to develop superior varieties with enhanced yields, improved nutritional composition, wide adaptability across environments and increased agricultural input use-efficiencies.

Tissue-culture-based genetic transformation techniques are predominantly used to deliver the editing reagents and regenerate

edited plants. Tissue culture is efficient for only a limited number of species and genotypes²¹¹. Overcoming the bottlenecks of reagent transformation and regeneration would ensure a broader application of BEs and PEs for crop improvement. For realizing the full potential of BEs and PEs, social acceptance and ease of regulations of crops generated through these new breeding tools are vital. The fruits of these technologies would be visualized quicker in the countries that apply product-based regulatory approaches compared with countries that are proponents of process-based regulations. Undoubtedly, the development and deployment of these technologies will continue to open unprecedented research fronts in plant science and crop breeding.

Received: 25 April 2021; Accepted: 26 July 2021;
Published online: 13 September 2021

References

1. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. *Science* **337**, 816–822 (2012).
2. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas Systems. *Science* **339**, 819–823 (2013).
3. Xie, K. & Yang, Y. RNA-guided genome editing in plants using a CRISPR–Cas system. *Mol. Plant* **6**, 1975–1983 (2013).
4. Molla, K. A. & Yang, Y. Predicting CRISPR/Cas9-induced mutations for precise genome editing. *Trends Biotechnol.* **38**, 136–141 (2020).
5. Huang, T. K. & Puchta, H. CRISPR/Cas-mediated gene targeting in plants: finally a turn for the better for homologous recombination. *Plant Cell Rep.* **38**, 443–453 (2019).
6. Zhang, Y. & Qi, Y. Diverse systems for efficient sequence insertion and replacement in precise plant genome editing. *BioDesign Res.* **2020**, 8659064 (2020).
7. Lu, Y. et al. Targeted, efficient sequence insertion and replacement in rice. *Nat. Biotechnol.* **38**, 1402–1407 (2020).
8. Li, S. et al. Precise gene replacement in rice by RNA transcript-templated homologous recombination. *Nat. Biotechnol.* **37**, 445–450 (2019).
9. Yeh, W. H., Chiang, H., Rees, H. A., Edge, A. S. B. & Liu, D. R. In vivo base editing of post-mitotic sensory cells. *Nat. Commun.* **9**, 2184 (2018).
10. Molla, K. A. & Yang, Y. CRISPR/Cas-mediated base editing: technical considerations and practical applications. *Trends Biotechnol.* **37**, 1121–1142 (2019).
11. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. *Nature* **533**, 420–424 (2016).
12. Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. *Science* **353**, aaf8729 (2016).
13. Jiang, F. et al. Structures of a CRISPR–Cas9 R-loop complex primed for DNA cleavage. *Science* **351**, 867–871 (2016).
14. Porto, E. M., Komor, A. C., Slaymaker, I. M. & Yeo, G. W. Base editing: advances and therapeutic opportunities. *Nat. Rev. Drug Discov.* **19**, 839–859 (2020).
15. Xu, W. et al. Discriminated sgRNAs-based SurroGate system greatly enhances the screening efficiency of plant base-edited cells. *Mol. Plant* **13**, 169–180 (2019).
16. Chen, Y. et al. CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in *Arabidopsis*. *Sci. China Life Sci.* **60**, 520–523 (2017).
17. Bastet, A. et al. Mimicking natural polymorphism in eIF4E by CRISPR–Cas9 base editing is associated with resistance to potyviruses. *Plant Biotechnol. J.* **17**, 1736–1750 (2019).
18. Li, Z., Xiong, X., Wang, F., Liang, J. & Li, J. F. Gene disruption through base editing-induced messenger RNA missplicing in plants. *N. Phytol.* **222**, 1139–1148 (2019).
19. Xue, C., Zhang, H., Lin, Q., Fan, R. & Gao, C. Manipulating mRNA splicing by base editing in plants. *Sci. China Life Sci.* **61**, 1293–1300 (2018).
20. Li, J., Sun, Y., Du, J., Zhao, Y. & Xia, L. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. *Mol. Plant* **10**, 526–529 (2017).
21. Lu, Y. & Zhu, J. K. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. *Mol. Plant* **10**, 523–525 (2017).
22. Shimatani, Z. et al. Targeted base editing in rice and tomato using a CRISPR–Cas9 cytidine deaminase fusion. *Nat. Biotechnol.* **35**, 441–443 (2017).
23. Zong, Y. et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. *Nat. Biotechnol.* **36**, 950–953 (2018).
24. Hua, K., Tao, X. & Zhu, J. K. Expanding the base editing scope in rice by using Cas9 variants. *Plant Biotechnol. J.* **17**, 499–504 (2019).

25. Ren, Q. et al. PAM-less plant genome editing using a CRISPR-SpRY toolbox. *Nat. Plants* **7**, 25–33 (2021).

26. Zong, Y. et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. *Nat. Biotechnol.* **35**, 438–440 (2017).

27. Zhang, R. et al. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. *Nat. Plants* **5**, 480–485 (2019).

28. Veillet, F. et al. Transgene-free genome editing in tomato and potato plants using *Agrobacterium*-mediated delivery of a CRISPR/Cas9 cytidine base editor. *Int. J. Mol. Sci.* **20**, 402 (2019).

29. Veillet, F. et al. Expanding the CRISPR toolbox in *P. Patens* using SpCas9-NG variant and application for gene and base editing in solanaceae crops. *Int. J. Mol. Sci.* **21**, 1024 (2020).

30. Hunziker, J. et al. Multiple gene substitution by Target-AID base-editing technology in tomato. *Sci. Rep.* **10**, 20471 (2020).

31. Veillet, F. et al. The *Solanum tuberosum* GBSSI gene: a target for assessing gene and base editing in tetraploid potato. *Plant Cell Rep.* **38**, 1065–1080 (2019).

32. Tian, S. et al. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. *Plant Cell Rep.* **37**, 1353–1356 (2018).

33. Qin, L. et al. High-efficient and precise base editing of C•G to T•A in the allotetraploid cotton (*Gossypium hirsutum*) genome using a modified CRISPR/Cas9 system. *Plant Biotechnol. J.* **18**, 45–56 (2020).

34. Cai, Y. et al. Target base editing in soybean using a modified CRISPR/Cas9 system. *Plant Biotechnol. J.* **18**, 1996–1998 (2020).

35. Malabarba, J. et al. New strategies to overcome present CRISPR/Cas9 limitations in apple and pear: efficient dechimerization and base editing. *Int. J. Mol. Sci.* **22**, 319 (2021).

36. Xing, S. et al. Fine-tuning sugar content in strawberry. *Genome Biol.* **21**, 230 (2020).

37. Guyon-Debast, A. et al. A blue-print for gene function analysis through base editing in the model plant *Physcomitrium (Physcomitrella) patens*. *New Phytol.* **230**, 1258–1272 (2021).

38. Li, G., Srtenovic, S., Eisenstein, E., Coleman, G. & Qi, Y. Highly efficient C-to-T and A-to-G base editing in a *Populus* hybrid. *Plant Biotechnol. J.* **19**, 1086–1088 (2021).

39. Wu, J. et al. Engineering herbicide-resistant oilseed rape by CRISPR/Cas9-mediated cytosine base-editing. *Plant Biotechnol. J.* **18**, 1857–1859 (2020).

40. Cheng, H. et al. Base editing with high efficiency in allotetraploid oilseed rape by A3A-PBE system. *Plant Biotechnol. J.* **19**, 87–97 (2021).

41. Li, X. et al. Base editing with a Cpf1-cytidine deaminase fusion. *Nat. Biotechnol.* **36**, 324–327 (2018).

42. Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. *Nat. Rev. Genet.* **19**, 770–788 (2018).

43. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. *Nat. Biotechnol.* **38**, 824–844 (2020).

44. Gehrke, J. M. et al. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. *Nat. Biotechnol.* **36**, 977–982 (2018).

45. Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. *Nat. Biotechnol.* **35**, 371–376 (2017).

46. Liu, Z. et al. Precise base editing with CC context-specificity using engineered human APOBEC3G-nCas9 fusions. *BMC Biol.* **18**, 111 (2020).

47. Li, J. et al. Genome editing mediated by SpCas9 variants with broad non-canonical protospacer-adjacent motif compatibility in plants. *Mol. Plant* **14**, 352–360 (2021).

48. Zeng, D. et al. PhieCBEs: plant high-efficiency cytidine base editors with expanded target range. *Mol. Plant* **13**, 1666–1669 (2020).

49. Jin, S. et al. Rationally designed APOBEC3B cytosine base editors with improved specificity. *Mol. Cell* **79**, 728–740 (2020).

50. Ren, B. et al. Improved base editor for efficiently inducing genetic variations in rice with CRISPR/Cas9-guided hyperactive hAID mutant. *Mol. Plant* **11**, 623–626 (2018).

51. Yu, Y. et al. Cytosine base editors with minimized unguided DNA and RNA off-target events and high on-target activity. *Nat. Commun.* **11**, 2052 (2020).

52. Xu, W. et al. Multiplex nucleotide editing by high-fidelity Cas9 variants with improved efficiency in rice. *BMC Plant Biol.* **19**, 511 (2019).

53. Tang, X. et al. Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing. *Plant Biotechnol. J.* **17**, 1431–1445 (2019).

54. Endo, M. et al. Genome editing in plants by engineered CRISPR–Cas9 recognizing NG PAM. *Nat. Plants* **5**, 14–17 (2019).

55. Zhang, C. et al. Expanding the base editing scope to GA and relaxed NG PAM sites by improved xCas9 system. *Plant Biotechnol. J.* **18**, 884–886 (2020).

56. Srtenovic, S. et al. Expanding plant genome-editing scope by an engineered iSpyMacCas9 system that targets A-rich PAM sequences. *Plant Commun.* **2**, 100101 (2020).

57. Thuronyi, B. W. et al. Continuous evolution of base editors with expanded target compatibility and improved activity. *Nat. Biotechnol.* **37**, 1070–1079 (2019).

58. Koblan, L. W. et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. *Nat. Biotechnol.* **36**, 843–848 (2018).

59. Wang, M. et al. Optimizing base editors for improved efficiency and expanded editing scope in rice. *Plant Biotechnol. J.* **17**, 1697–1699 (2019).

60. Molla, K. A., Karmakar, S. & Islam, M. T. In *CRISPR-Cas Methods. Springer Protocols Handbooks* (eds Islam, M. T. et al.) (Humana, 2020); https://doi.org/10.1007/978-1-0716-0616-2_1

61. Qin, R. et al. Developing a highly efficient and wildly adaptive CRISPR-SaCas9 toolset for plant genome editing. *Plant Biotechnol. J.* **18**, 706–708 (2020).

62. Wang, M. et al. Targeted base editing in rice with CRISPR/ScCas9 system. *Plant Biotechnol. J.* **18**, 1645–1647 (2020).

63. Wu, Y. et al. Increasing cytosine base editing scope and efficiency with engineered Cas9-PMCD1 fusions and the modified sgRNA in rice. *Front. Genet.* **10**, 379 (2019).

64. Veillet, F., Kermarrec, M. P., Chauvin, L., Chauvin, J. E. & Nogué, F. CRISPR-induced indels and base editing using the *Staphylococcus aureus* Cas9 in potato. *PLoS ONE* **15**, e0235942 (2020).

65. Chatterjee, P. et al. A Cas9 with PAM recognition for adenine dinucleotides. *Nat. Commun.* **11**, 2474 (2020).

66. Ren, Q. et al. Improved plant cytosine base editors with high editing activity, purity, and specificity. *Plant Biotechnol. J.* <https://doi.org/10.1111/pbi.13635> (2021).

67. Miller, S. M. et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs. *Nat. Biotechnol.* **38**, 471–481 (2020).

68. Zhang, C. et al. Expanding base editing scope to near-PAMless with engineered CRISPR-Cas9 variants in plant. *Mol. Plant* **14**, 191–194 (2020).

69. Nishimatsu, H. et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. *Science* **361**, 1259–1262 (2018).

70. Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. *Nature* **556**, 57–63 (2018).

71. Hua, K., Tao, X., Han, P., Wang, R. & Zhu, J. K. Genome engineering in rice using Cas9 variants that recognize NG PAM sequences. *Mol. Plant* **12**, 1003–1014 (2019).

72. Ren, B. et al. Cas9-NG greatly expands the targeting scope of the genome-editing toolkit by recognizing NG and other atypical PAMs in rice. *Mol. Plant* **12**, 1015–1026 (2019).

73. Zhong, Z. et al. Improving plant genome editing with high-fidelity xCas9 and non-canonical PAM-targeting Cas9-NG. *Mol. Plant* **12**, 1027–1036 (2019).

74. Zeng, D. et al. Engineered Cas9 variant tools expand targeting scope of genome and base editing in rice. *Plant Biotechnol. J.* **18**, 1348–1350 (2020).

75. Li, J. et al. Plant genome editing using xCas9 with expanded PAM compatibility. *J. Genet. Genomics* **46**, 277–280 (2019).

76. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. *Science* **368**, 290–296 (2020).

77. Xu, Z. et al. SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition. *Genome Biol.* **22**, 6 (2021).

78. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. *Cell* **163**, 759–771 (2015).

79. Zhang, Y. et al. Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. *Nat. Commun.* **12**, 1944 (2021).

80. Kleinstiver, B. P. et al. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. *Nat. Biotechnol.* **37**, 276–282 (2019).

81. Ming, M. et al. CRISPR-Cas12b enables efficient plant genome engineering. *Nat. Plants* **6**, 202–208 (2020).

82. Zhang, X. H., Tee, L. Y., Wang, X. G., Huang, Q. S. & Yang, S. H. Off-target effects in CRISPR/Cas9-mediated genome engineering. *Mol. Ther. Nucleic Acids* **4**, e264 (2015).

83. Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. *Science* **351**, 84–88 (2016).

84. Kleinstiver, B. P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. *Nature* **529**, 490–495 (2016).

85. Chen, J. S. et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. *Nature* **550**, 407–410 (2017).

86. Rees, H. A. et al. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. *Nat. Commun.* **8**, 15790 (2017).

87. Gao, X. et al. Treatment of autosomal dominant hearing loss by *in vivo* delivery of genome editing agents. *Nature* **553**, 217–221 (2018).

88. Woo, J. W. et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. *Nat. Biotechnol.* **33**, 1162–1164 (2015).

89. Liang, Z. et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. *Nat. Commun.* **8**, 14261 (2017).

90. Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. *Science* **364**, 289–292 (2019).

91. Jin, S. et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. *Science* **364**, 292–295 (2019).

92. Doman, J. L., Raguram, A., Newby, G. A. & Liu, D. R. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. *Nat. Biotechnol.* **38**, 620–628 (2020).

93. Randall, L. B. et al. Genome- and transcriptome-wide off-target analyses of an improved cytosine base editor. *Plant Physiol.* **kiab264** <https://doi.org/10.1109/plphys.2021.3064120> (2021).

94. Komor, A. C. et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. *Sci. Adv.* **3**, eaao4774 (2017).

95. Qin, R. et al. Increasing fidelity and efficiency by modifying cytidine base-editing systems in rice. *Crop J.* **8**, 396–402 (2020).

96. Lei, Z. et al. Detect-seq reveals out-of-protospacer editing and target-strand editing by cytosine base editors. *Nat. Methods* **18**, 643–651 (2021).

97. Wang, S. et al. Precise, predictable multi-nucleotide deletions in rice and wheat using APOBEC-Cas9. *Nat. Biotechnol.* **38**, 1460–1465 (2020).

98. Schiml, S., Fauser, F. & Puchta, H. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in *Arabidopsis* resulting in heritable progeny. *Plant J.* **80**, 1139–1150 (2014).

99. Wolfs, J. M. et al. Biasing genome-editing events toward precise length deletions with an RNA-guided TevCas9 dual nuclease. *Proc. Natl Acad. Sci. USA* **113**, 14988–14993 (2016).

100. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. *Nature* **551**, 464–471 (2017).

101. Molla, K. A., Shih, J. & Yang, Y. Single-nucleotide editing for *zebra3* and *wsl5* phenotypes in rice using CRISPR/Cas9-mediated adenine base editors. *aBIO TECH* **1**, 106–118 (2020).

102. Hua, K., Tao, X., Yuan, F., Wang, D. & Zhu, J. K. Precise A-T to G-C base editing in the rice genome. *Mol. Plant* **11**, 627–630 (2018).

103. Li, C. et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. *Genome Biol.* **19**, 59 (2018).

104. Yan, F. et al. Highly efficient A-T to G-C base editing by Cas9-guided tRNA adenosine deaminase in rice. *Mol. Plant* **11**, 631–634 (2018).

105. Hao, L. et al. CRISPR/Cas9-mediated adenine base editing in rice genome. *Rice Science* **26**, 125–128 (2019).

106. Li, J. et al. Optimizing plant adenine base editor systems by modifying the transgene selection system. *Plant Biotechnol. J.* **18**, 1495–1497 (2020).

107. Kang, B.-C. et al. Precision genome engineering through adenine base editing in plants. *Nat. Plants* **4**, 427–431 (2018).

108. Wang, Z. et al. ABE8e with polycistronic tRNA-grRNA expression cassette Significantly improves adenine base editing efficiency in *Nicotiana benthamiana*. *Int. J. Mol. Sci.* **22**, 5663 (2021).

109. Yan, D. et al. High-efficiency and multiplex adenine base editing in plants using new TadA variants. *Mol. Plant* **14**, 722–731 (2021).

110. Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. *Nature* **523**, 481–485 (2015).

111. Negishi, K. et al. An adenine base editor with expanded targeting scope using SpCas9-NGV1 in rice. *Plant Biotechnol. J.* **17**, 1476–1478 (2019).

112. Ren, J. et al. Expanding the scope of genome editing with SpG and SpRY variants in rice. *Sci. China Life Sci.* <https://doi.org/10.1007/s11427-020-1883-5> (2021).

113. Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. *Nat. Biotechnol.* **38**, 883–891 (2020).

114. Grünwald, J. et al. CRISPR DNA base editors with reduced RNA off-target and self-editing activities. *Nat. Biotechnol.* **37**, 1041–1048 (2019).

115. Gaudelli, N. M. et al. Directed evolution of adenine base editors with increased activity and therapeutic application. *Nat. Biotechnol.* **38**, 892–900 (2020).

116. Hua, K. et al. Simplified adenine base editors improve adenine base editing efficiency in rice. *Plant Biotechnol. J.* **18**, 770–778 (2020).

117. Wei, C. et al. Efficient generation of homozygous substitutions in rice in one generation utilizing an rABE8e base editor. *J. Integr. Plant Biol.* <https://doi.org/10.1111/jipb.13089> (2021).

118. Lapinaite, A. et al. DNA capture by a CRISPR-Cas9-guided adenine base editor. *Science* **369**, 566–571 (2020).

119. Kim, H. S., Jeong, Y. K., Hur, J. K., Kim, J. S. & Bae, S. Adenine base editors catalyze cytosine conversions in human cells. *Nat. Biotechnol.* **37**, 1145–1148 (2019).

120. Kurt, I. C. et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. *Nat. Biotechnol.* **39**, 41–46 (2021).

121. Zhao, D. et al. Glycosylase base editors enable C-to-A and C-to-G base changes. *Nat. Biotechnol.* **39**, 35–40 (2021).

122. Chen, L. et al. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. *Nat. Commun.* **12**, 1384 (2021).

123. Koblan, L. W. et al. Efficient C•G-to-G•C base editors developed using CRISPR screens, target-library analysis, and machine learning. *Nat. Biotechnol.* <https://doi.org/10.1038/s41587-021-00938-z> (2021).

124. Molla, K. A., Qi, Y., Karmakar, S. & Baig, M. J. Base editing landscape extends to perform transversion mutation. *Trends Genet.* **36**, 899–901 (2020).

125. Li, C. et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. *Nat. Biotechnol.* **38**, 875–882 (2020).

126. Grünwald, J. et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. *Nat. Biotechnol.* **38**, 861–864 (2020).

127. Zhang, X. et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. *Nat. Biotechnol.* **38**, 856–860 (2020).

128. Sakata, R. C. et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. *Nat. Biotechnol.* **38**, 865–869 (2020).

129. Xie, J. et al. ACBE, a new base editor for simultaneous C-to-T and A-to-G substitutions in mammalian systems. *BMC Biol.* **18**, 131 (2020).

130. Li, C. et al. SWISS: multiplexed orthogonal genome editing in plants with a Cas9 nuclease and engineered CRISPR RNA scaffolds. *Genome Biol.* **21**, 141 (2020).

131. Mok, B. Y. et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. *Nature* **583**, 631–637 (2020).

132. Voytas, D. F. Plant genome engineering with sequence-specific nucleases. *Annu. Rev. Plant Biol.* **64**, 327–350 (2013).

133. Aushev, M. & Herbert, M. Mitochondrial genome editing gets precise. *Nature* **583**, 521–522 (2020).

134. Gualberto, J. M. & Newton, K. J. Plant mitochondrial genomes: dynamics and mechanisms of mutation. *Annu. Rev. Plant Biol.* **68**, 225–252 (2017).

135. Kazama, T. et al. Curing cytoplasmic male sterility via TALEN-mediated mitochondrial genome editing. *Nat. Plants* **5**, 722–730 (2019).

136. Arimura, S. I. et al. Targeted gene disruption of ATP synthases 6-1 and 6-2 in the mitochondrial genome of *Arabidopsis thaliana* by mitoTALENs. *Plant J.* **104**, 1459–1471 (2020).

137. Kang, B. et al. Chloroplast and mitochondrial DNA editing in plants. *Nat. Plants* **7**, 899–905 (2021).

138. Bock, R. Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. *Annu. Rev. Plant Biol.* **66**, 211–241 (2015).

139. Nakazato, I. et al. Targeted base editing in the plastid genome of *Arabidopsis thaliana*. *Nat. Plants* **7**, 906–913 (2021).

140. Li, R. et al. High-efficiency plastome base-editing in rice with TAL cytosine deaminase. *Mol. Plant* **184**, 107229 (2020).

141. Cox, D. B. T. et al. RNA editing with CRISPR-Cas13. *Science* **358**, 1019–1027 (2017).

142. Liu, Y. et al. REPAIRx, a specific yet highly efficient programmable A>I RNA base editor. *EMBO J.* **39**, e104748 (2020).

143. Abudayyeh, O. O. et al. A cytosine deaminase for programmable single-base RNA editing. *Science* **365**, 382–386 (2019).

144. Takenaka, M., Zehrmann, A., Verbitskiy, D., Härtel, B. & Brennicke, A. RNA editing in plants and its evolution. *Annu. Rev. Genet.* **47**, 335–352 (2013).

145. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. *Nature* **576**, 149–157 (2019).

146. Liu, Y., Kao, H. I. & Bambara, R. A. Flap endonuclease 1: a central component of DNA metabolism. *Annu. Rev. Biochem.* **73**, 589–615 (2004).

147. Keijzers, G., Bohr, V. A. & Rasmussen, L. J. Human exonuclease 1 (EXO1) activity characterization and its function on flap structures. *Biosci. Rep.* **35**, e00206 (2015).

148. Tang, X. et al. Plant prime editors enable precise gene editing in rice cells. *Mol. Plant* **13**, 667–670 (2020).

149. Lin, Q. et al. Prime genome editing in rice and wheat. *Nat. Biotechnol.* **38**, 582–585 (2020).

150. Xu, R. et al. Development of plant prime-editing systems for precise genome editing. *Plant Commun.* **1**, 100043 (2020).

151. Butt, H. et al. Engineering herbicide resistance via prime editing in rice. *Plant Biotechnol. J.* **18**, 2370–2372 (2020).

152. Li, H., Li, J., Chen, J., Yan, L. & Xia, L. Precise modifications of both exogenous and endogenous genes in rice by prime editing. *Mol. Plant* **13**, 671–674 (2020).

153. Xu, W. et al. Versatile nucleotides substitution in plant using an improved prime editing system. *Mol. Plant* **13**, 675–678 (2020).

154. Wang, L. et al. Spelling changes and fluorescent tagging with prime editing vectors for plants. *Front. Genome Ed.* **3**, 617553 (2021).

155. Xu, R., Liu, X., Li, J., Qin, R. & Wei, P. Identification of herbicide resistance OsACC1 mutations via in planta prime editing-library screening in rice. *Nat. Plants* **7**, 888–892 (2021).

156. Jiang, Y. Y. et al. Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize. *Genome Biol.* **21**, 257 (2020).

157. Veillet, F. et al. Prime editing is achievable in the tetraploid potato, but needs improvement. Preprint at *bioRxiv* <https://doi.org/10.1101/2020.06.18.159111> (2020).

158. Lu, Y. et al. Precise genome modification in tomato using an improved prime editing system. *Plant Biotechnol. J.* **19**, 415–417 (2020).

159. Lin, Q. et al. High-efficiency prime editing with optimized, paired pegRNAs in plants. *Nat. Biotechnol.* **39**, 923–927 (2021).

160. Jin, S. et al. Genome-wide specificity of prime editors in plants. *Nat. Biotechnol.* <https://doi.org/10.1038/s41587-021-00891-x> (2021).

161. Wang, J., Zhang, X., Cheng, L. & Luo, Y. An overview and metanalysis of machine and deep learning-based CRISPR gRNA design tools. *RNA Biol.* **17**, 13–22 (2020).

162. Hwang, G. H. et al. Web-based design and analysis tools for CRISPR base editing. *BMC Bioinform.* **19**, 542 (2018).

163. Haopeng Yu, Wu, Z., Chen, X., Ji, Q. & Tao, S. CRISPR-CBEI: a designing and analyzing tool kit for cytosine. *mSystems* **5**, e00350-20 (2020).

164. Dandage, R., Després, P. C., Yachie, N. & Landry, C. R. Beditor: a computational workflow for designing libraries of guide RNAs for CRISPR-mediated base editing. *Genetics* **212**, 377–385 (2019).

165. Arbab, M. et al. Determinants of base editing outcomes from target library analysis and machine learning. *Cell* **182**, 463–480 (2020).

166. Song, M. et al. Sequence-specific prediction of the efficiencies of adenine and cytosine base editors. *Nat. Biotechnol.* **38**, 1037–1043 (2020).

167. Rabinowitz, R., Abadi, S., Almog, S. & Offen, D. Prediction of synonymous corrections by the BE-FF computational tool expands the targeting scope of base editing. *Nucleic Acids Res.* **48**, W340–W347 (2020).

168. Minkenberg, B., Zhang, J., Xie, K. & Yang, Y. CRISPR-PLANT v2: an online resource for highly specific guide RNA spacers based on improved off-target analysis. *Plant Biotechnol. J.* **17**, 5–8 (2019).

169. Liu, H. et al. CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. *Mol. Plant* **10**, 530–532 (2017).

170. Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. *Nat. Biotechnol.* **37**, 224–226 (2019).

171. Kluesner, M. G. et al. EditR: a method to quantify base editing from Sanger sequencing. *CRISPR J.* **1**, 239–250 (2018).

172. Xu, L., Liu, Y. & Han, R. BEAT: a Python program to quantify base editing from Sanger sequencing. *CRISPR J.* **2**, 223–229 (2019).

173. Chow, R. D., Chen, J. S., Shen, J. & Chen, S. A web tool for the design of prime-editing guide RNAs. *Nat. Biomed. Eng.* **5**, 190–194 (2021).

174. Hsu, J. Y. et al. PrimeDesign software for rapid and simplified design of prime editing guide RNAs. *Nat. Commun.* **12**, 8–13 (2021).

175. Morris, J., Rahamim, J., Guo, X. & Sanjana, N. Automated design of CRISPR prime editors for thousands of human pathogenic variants. Preprint at *bioRxiv* <https://doi.org/10.1101/2020.05.07.083444> (2020).

176. Standage-Beier, K., Tekel, S. J., Brafman, D. A. & Wang, X. Prime editing guide RNA design automation using PINE-CONE. *ACS Synth. Biol.* **10**, 422–427 (2021).

177. Bhagwat, A. M. et al. Multicrispr: gRNA design for prime editing and parallel targeting of thousands of targets. *Life Sci. Alliance* **3**, e202000757 (2020).

178. Gionfriddo, M., De Gara, L. & Loreto, F. Directed evolution of plant processes: towards a green (r)evolution? *Trends Plant Sci.* **24**, 999–1007 (2019).

179. Butt, H. et al. CRISPR directed evolution of the spliceosome for resistance to splicing inhibitors. *Genome Biol.* **20**, 73 (2019).

180. Zhang, Y. & Qi, Y. CRISPR enables directed evolution in plants. *Genome Biol.* **20**, 83 (2019).

181. Ma, Y. et al. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. *Nat. Methods* **12**, 1029–1035 (2016).

182. Hess, G. T. et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. *Nat. Methods* **12**, 1036–1042 (2016).

183. Kuang, Y. et al. Base-editing-mediated artificial evolution of *OsALS1* in *planta* to develop novel herbicide-tolerant rice germplasms. *Mol. Plant* **13**, 565–572 (2020).

184. Rodríguez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E. & Lippman, Z. B. Engineering quantitative trait variation for crop improvement by genome editing. *Cell* **171**, 470–480 (2017).

185. Wang, X. et al. Dissecting *cis*-regulatory control of quantitative trait variation in a plant stem cell circuit. *Nat. Plants* **7**, 419–427 (2021).

186. Zeng, D. et al. Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5'UTR-intron editing improves grain quality in rice. *Plant Biotechnol. J.* **18**, 2385–2387 (2020).

187. Liu, L. et al. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. *Nat. Plants* **7**, 287–294 (2021).

188. Meng, F. et al. Genomic editing of intronic enhancers unveils their role in fine-tuning tissue-specific gene expression in *Arabidopsis thaliana*. *Plant Cell* **33**, 1997–2014 (2021).

189. Zhang, H. et al. Genome editing of upstream open reading frames enables translational control in plants. *Nat. Biotechnol.* **36**, 894–900 (2018).

190. Komatsu, A., Otake, M., Shimatani, Z. & Nishida, K. Production of herbicide-sensitive strain to prevent volunteer rice infestation using a CRISPR-Cas9 cytidine deaminase fusion. *Front. Plant Sci.* **11**, 925 (2020).

191. Hu, L. et al. Precision genome engineering through cytidine base editing in rapeseed (*Brassica napus* L.). *Front. Genome Ed.* **2**, 605768 (2020).

192. Wang, X. et al. Efficient gene silencing by adenine base editor-mediated start codon mutation. *Mol. Ther.* **28**, 431–440 (2020).

193. Gapinske, M. et al. CRISPR-SKIP: programmable gene splicing with single base editors. *Genome Biol.* **19**, 107 (2018).

194. Maori, E., Galanty, Y., Pignocchi, C., GARCIA, A. C. & Meir, O. Modifying the specificity of plant non-coding RNA molecules for silencing gene expression. US patent 16/648,748 (2020).

195. Shimatani, Z. et al. Herbicide tolerance-assisted multiplex targeted nucleotide substitution in rice. *Data Brief* **20**, 1325–1331 (2018).

196. Dong, H. et al. Generation of imidazolinone herbicide resistant trait in *Arabidopsis*. *PLoS ONE* **15**, e0233503 (2020).

197. Li, Y. et al. Precise base editing of non-allelic acetolactate synthase genes confers sulfonylurea herbicide resistance in maize. *Crop J.* **8**, 449–456 (2020).

198. Liu, X. et al. A CRISPR-Cas9-mediated domain-specific base-editing screen enables functional assessment of ACCase variants in rice. *Plant Biotechnol. J.* **18**, 1845–1847 (2020).

199. Liu, L. et al. Developing a novel artificial rice germplasm for dinitroaniline herbicide resistance by base editing of *OsTubA2*. *Plant Biotechnol. J.* **19**, 5–7 (2021).

200. Hu, Z. et al. Genome editing-based engineering of *cesa3* dual cellulose-inhibitor-resistant plants. *Plant Physiol.* **180**, 827–836 (2019).

201. Xu, Y. et al. Fine-tuning the amylose content of rice by precise base editing of the *Wx* gene. *Plant Biotechnol. J.* **19**, 11–13 (2021).

202. Zsögön, A. et al. De novo domestication of wild tomato using genome editing. *Nat. Biotechnol.* **36**, 1211–1216 (2018).

203. Lemmon, Z. H. et al. Rapid improvement of domestication traits in an orphan crop by genome editing. *Nat. Plants* **4**, 766–770 (2018).

204. Li, T. et al. Domestication of wild tomato is accelerated by genome editing. *Nat. Biotechnol.* **36**, 1160–1163 (2018).

205. Yu, H. et al. A route to de novo domestication of wild allotetraploid rice. *Cell* **184**, 1156–1170 (2021).

206. Van Schie, C. C. N. & Takken, F. L. W. Susceptibility genes 101: how to be a good host. *Annu. Rev. Phytopathol.* **52**, 551–581 (2014).

207. Mushtaq, M. et al. Tweaking genome-editing approaches for virus interference in crop plants. *Plant Physiol. Biochem.* **147**, 242–250 (2020).

208. Langner, T., Kamoun, S. & Belhaj, K. CRISPR crops: plant genome editing toward disease resistance. *Annu. Rev. Phytopathol.* **56**, 479–512 (2018).

209. Zhang, Y., Malzahn, A. A., Sretenovic, S. & Qi, Y. The emerging and uncultivated potential of CRISPR technology in plant science. *Nat. Plants* **5**, 778–794 (2019).

210. Gao, C. Genome engineering for crop improvement and future agriculture. *Cell* **184**, 1621–1635 (2021).

211. Nasti, R. A. & Voytas, D. F. Attaining the promise of plant gene editing at scale. *Proc. Natl. Acad. Sci. USA* **118**, e2004846117 (2021).

212. Qin, R. et al. Increasing fidelity and efficiency by modifying cytidine base-editing systems in rice. *Crop J.* **8**, 396–402 (2020).

213. Siegner, S. M., Karasu, M. E., Schröder, M. S., Kontarakis, Z. & Corn, J. E. PnB Designer: a web application to design prime and base editor guide RNAs for animals and plants. *BMC Bioinform.* **22**, 101 (2021).

Acknowledgements

Owing to space limitations, we could not cite all of the related literature and we apologize to the authors whose work was not cited in this Review. This work was supported by the National Science Foundation Plant Genome Research Program grants (award nos IOS-1758745 and IOS-2029889), the US Department of Agriculture Biotechnology Risk Assessment Grant Program competitive grants (award nos 2018-33522-28789 and 2020-33522-32274), Emergency Citrus Disease Research and Extension Program (award no. 2020-70029-33161), Agriculture and Food Research Initiative Agricultural Innovations Through Gene Editing Program (award no. 2021-67013-34554), Foundation for Food & Agriculture Research grant (award no. 593603), Maryland Innovation Initiative Funding (award no. 1120-012_2) and Syngenta to Y.Q. K.A.M. acknowledges funding from the Indian Council of Agricultural Research (ICAR), New Delhi, in the form of the Plan Scheme—‘Incentivizing Research in Agriculture’ project and support from the Director, NRRI. S.S. is a Foundation for Food & Agriculture Research Fellow, with matching funds provided by Inari Agriculture. The content of this publication is solely the responsibility of the authors and does not necessarily represent the official views of these funding agencies. Figures were created using the BioRender tool.

Author contributions

Y.Q. led the project planning. K.A.M., S.S., K.C.B. and Y.Q. wrote the manuscript. K.A.M. and S.S. prepared the figures and tables. All of the authors read and approved the final manuscript.

Competing interests

Y.Q. is a consultant for Inari Agriculture and CTC Genomics, companies that use genome editing tools in plants. The other authors declare no competing interests.

Additional information

Correspondence should be addressed to Kutubuddin A. Molla or Yiping Qi.

Peer review information *Nature Plants* thanks Paul Hooykaas, Pengcheng Wei and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© Springer Nature Limited 2021