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Three commercially-available conductive filaments were evaluated for 3D printing
flexible circuits on paper. While all three filaments were printed successfully, the
resulting conductive traces were found to have significantly different impedances
when characterized by electrochemical impedance spectroscopy. Using a
graphite-doped polylactic acid filament, the flexibility of paper-based conductive
traces was evaluated, methods of integrating common electrical and electronic
components with the conductive traces were demonstrated, and the resistive heating
of the traces was characterized. The ability to 3D print conductive traces on paper
using commercially available materials opens many opportunities for rapid
prototyping of flexible electronics and for integrating electronic circuits with
paper-based microfluidic devices.
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INTRODUCTION

Flexible electronics have many advantages over their ridged counterparts for applications
that require moving parts, light weight, irregular or curved shapes, or constrained
spaces (Palm et al., 2001; Tsutsui & Fujita, 2002; Nathan et al., 2012). Flexible circuits are
typically fabricated by printing conductive inks onto plastic films (Harris, Elias ¢
Chung, 2016; Zardetto et al., 2011), but cellulose-based paper has also been shown to be a
suitable substrate with many inherent advantages for the production of flexible electronics
(Tobjork e Osterbacka, 2011; Eder et al., 2004; Siegel et al., 2010). Paper is inexpensive
(~$10/m?), widely accessible, thin (<200 pm), lightweight (~80 g!mz} and made from
renewable materials (Tobjork ¢ Osterbacka, 2011; Ha rper, 2000; Russo et al., 2011). Several
techniques for fabricating circuits on paper have been developed including metal
evaporation or sputtering (Siegel et al., 2010; Kim & Steckl, 2010; Carvalhal et al., 2010),
photolithography (Eder et al, 2004), screen printing (Kit-Anan et al., 2012; Tan, Ge &
Wang, 2010; Nie et al., 2010; Dungchai, Chailapakul & Henry, 2009), inkjet printing
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(Tobjork e Osterbacka, 2011; Mannerbro et al., 2008; da Costa et al., 2015; Bihar et al,
2017; Yang et al., 2007; Yoon et al., 2011; Kawahara et al., 2013), drawing (Russo et al.,
2011; Santhiago & Kubota, 2013; Santhiago, Henry & Kubota, 2014; Dossi et al., 2014;
Gao, Li & Liu, 2012), and 3D printing (Zhang et al., 2016). Among these techniques, 3D
printing of conductive filaments stands out for its speed, ease of use, precision, and
relatively low set up and operation costs. To date, most publications describing 3D printed
flexible circuits have focused on the preparation of novel conductive filaments. In this
work we evaluate commercially-available conductive filaments for 3D printing flexible
circuits on paper and demonstrate some unique advantages and applications of this
approach.

Additive manufacturing, otherwise known as 3D printing, has revolutionized
prototyping in several fields such as construction (Holt et al, 2019), energy (Gebler,
Schoot Uiterkamp ¢ Visser, 2014), biotechnology (Gross et al., 2014; Schubert,

Langeveld & Donoso, 2014), and healthcare (Yang et al, 2018; Klein, Lu & Wang, 2013;
Ventola, 2014). While there are many types of 3D printing (e.g., material extrusion,

vat photopolymerization, powder bed fusion, material jetting), this work focused on
extrusion-based 3D printing (also known as fused deposition modeling or FDM) due to its
ease of use, low cost (a basic 3D printer can be purchased for ~$200), commercial-
availability, and ability to print directly on paper. These characteristics make this technique
broadly accessible to users who may not have formal training in conventional fabrication
techniques. Two current limitations of extrusion-based 3D printing for the production
of flexible circuits are the relatively low resolution and conductance of the printed traces.
However, continued research in print settings, hardware, and filament formulation will
likely overcome these limitations so that 3D printed flexible circuits could eventually
match the quality associated with more advanced manufacturing techniques.

Conductive filaments for 3D printing are commonly made from thermoplastics, such as
polylactic acid (PLA) or acrylonitrile butadiene styrene (ABS), doped with a conductive
material, such as graphite or copper (Table S1). The three commercially-available
conductive filaments selected for this study represent these typical types of filament and
were Protopasta, a graphite-doped PLA filament (~$0.10/g); BuMat, a graphite-doped ABS
filament (~$0.05/g); and Electrifi, a copper infused polyester filament (~$1.8/g)
(Protopasta, https://www.proto-pasta.com/; BuMat, https://www.bumatusa.com/;
MULTI3D, https://www.multi3dllc.com/). Although conductive filaments have been
demonstrated previously for the fabrication of electronic devices (MacDonald et al., 2014;
Duarte et al., 2017; Leigh et al.,, 2012; Rymansaib et al., 2016; Flowers et al., 2017; Palenzuela
et al., 2018), these filaments have not been evaluated for printing flexible circuits on paper.
The results of this investigation provide a foundation for users who may be interested in
prototyping flexible electronics or integrating electronics with paper-based microfluidic

devices using accessible and relatively inexpensive instrumentation and materials.

MATERIALS AND METHODS

Three commercially-available conductive filaments were evaluated in this study: 2.85-mm
graphite-doped Protopasta PLA filament (0.5-kg spool; Protoplant, Vancouver, WA,
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USA), BuMat Elite Dreamer 1.75-mm conductive ABS filament (1.5-1b spool; BuMat,
Lonay, Switzerland), and 2.85-mm Multi-3D Electrifi copper-infused conductive filament
(0.1-kg spool; Multi3D, Middlesex, NC, USA). The Protopasta and Electrifi filaments were
3D printed using a BCN3D-Sigma R17 dual extrusion printer (2.85-mm filament
compatible; BCN3D Technologies, Barcelona, Spain), and the BuMat filament was 3D
printed using a Creality Ender-3 printer (1.75-mm filament compatible; Shenzhen Creality
3D Technology Co., Shenzhen, China). A non-conductive PLA filament (Back-to-basics
PLA; Protoplant, Vancouver, WA, USA), was also used. Three types of paper were
tested as substrates: Whatman Grade 3 Chr cellulose chromatography paper (Cytiva,
Marlborough, MA, USA), Whatman Grade 1 Chr cellulose chromatography paper (Cytiva,
Marlborough, MA, USA), and 20 Ib. copy paper (Hammermill, Erie, PA, USA).

The printed traces were evaluated using an electrochemical workstation (CH Instruments,
Bee Cave, TX, USA), a digital multimeter (Dr.meter), a single-board microcontroller
(Arduino Uno R3) equipped with an 8-channel 5V solid state relay (SainSmart), and a
thermal camera (FLIR C2).

Circuit designs were created in SolidWorks, imported to BCN3D Cura as STL files for
printer parameter optimization, and translated to GCODE for interpretation by the
printer. A sheet of paper was then secured onto the build plate of the printer using masking
tape. The temperature of the build plate was set to 60 °C. For the BCN3D-Sigma printer, an
automated build plate calibration was carried out before each print to prevent bed
misalignments and x-y axis changes. The build plate’s z-magnitude did not require
recalibration to account for the additional height of the paper (~200 pm). The Creality
printer was calibrated manually. After calibration, the designs were printed on the paper
substrates. To print conductive traces on both sides of a piece of paper, a trace was printed
on one side of the paper as described, then the paper was flipped over, reattached to the
build plate, and a second trace was printed on the other side of the paper.

The electrical properties of traces printed with the three conductive filaments on
Whatman Grade 3 Chr paper were characterized via electrochemical impedance
spectroscopy (EIS) using an electrochemical workstation. The standard traces used for
this study were 30-mm long, 3-mm wide, and 0.6-mm high. Lengths of the traces were
varied from 10 mm to 100 mm in 10-mm increments, widths were varied from 1 mm to
5 mm in 1-mm increments, and heights were varied from 0.2 mm to 1 mm in 0.2-mm
increments. The resolution of the printer was set to 0.2 mm for printing all the traces. EIS
was performed on each trace over the frequency range of 100 Hz-10 kHz. When each
dimension was varied and tested, the other two dimensions were held constant.

To assess the reproducibility of the traces, the resistivities of three generations of traces
(30 mm x 3 mm x 0.6 mm, 10 traces per generation) printed using Protopasta were
determined by measuring the resistance of each trace using a multimeter. Statistical
analysis of the results was performed in JMP (v12.1). A one-way ANOVA was used to
determine if there were any significant differences in trace resistivity across the three
generations of traces.

To evaluate the flexibility of the conductive traces printed on paper, traces were bent or
rolled manually. In one experiment, traces were bent manually to a 90° angle, and the
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resistance of the traces was measured before and after bending using multimeter connected
to the trace using alligator clips. In a second exerpiment, traces were subjected to manual
bending cycles until they fractured.

Hydrophobic patterns were incorporated into the paper substrates by wax printing
(Fig. S1). Patterns were designed in Adobe Illustrator (CS5 v15.1.0) and printed on one
side of Whatman Grade 1 Chr paper using a solid ink printer (Phaser 8650; Xerox,
Rochester, NY, USA). Traces were then 3D printed on the opposite side of the paper so
that the wax would not prevent adhesion of the filament. After 3D printing, the circuits
were placed circuit side up in a digital convection oven set to 195 °C for 1 min to melt the
wax into the paper.

To characterize resistive heating, traces printed using Protopasta on Whatman
Grade 3 Chr paper were connected to a solid state relay with a load voltage of 120 VAC.
The amount of power transferred from the relay to the trace was controlled by pulse
width modulation, which was manipulated by changing the relay’s duty cycle using a
single-board microcontroller (Fig. 52). Duty cycles in the range of 0.5% to 21% were tested.
The temperature of the traces was monitored continuously using a thermal camera and
was recorded once it equilibrated. The traces were suspended in air throughout the

experiments.

RESULTS AND DISCUSSION

All three conductive filaments were successfully 3D printed onto paper substrates to
produce flexible circuits (Fig. 1). The first time a filament was printed on a paper substrate,
extensive optimization of print settings was required to obtain reproducible prints. While
the settings will vary depending on the printer, materials, downstream use, and print
complexity, we found that an infill density in the range of 75-90%, a retraction distance
in the range of 0.5-1.0 mm, a print speed in the range of 50-70 mm/s, and a print
acceleration of 4,000 mm/s> worked best for our applications. There are several
open-source platforms that can assist with print quality optimization such as Simplify3D
and MatterHackers (SIMPLIFY 3D, https://www.simplify3d.com/; MatterHackers,
https://www.matterhackers.com/). The BCN3D printer, which is more sophisticated and
expensive (~$3,000) than the Creality printer, was more conveinent to work with.
Nevertheless, the Creality printer produced adequate traces, demonstrating that even an
inexpensive 3D printer (~$200) can be used for making flexible circuits on paper.

The strongest adhesion between filament and paper, for all three filaments, was
observed for Whatman Grade 3 Chr paper, so this paper was used for the characterization
experiments. We hypothesize that the higher surface roughness of Whatman Grade 3 Chr
paper compared to the other two types of paper was the main reason for the stronger
adhesion of the filament. Traces printed on Whatman Grade 1 Chr paper and copy paper
detached frequently when the paper was bent or folded. Copy paper was also torn
frequently by the print head as it moved across the surface of the paper during printing.

Comparing the three filaments, we found that BuMat’s print quality was adequate (i.e.,
defined edges, consistent infill pattern, and slight variability in topography along the top of
the trace) but the filament was not as conductive as Protopasta or Electrifi (Fig. 1B).
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Figure 1 Conductive filaments printed on paper. (A) Example of a flexible circuit 3D printed on paper
using Protopasta filament. (B) Impedance vs frequency plots for traces printed with the three filaments.
All traces were 30-mm long, 3-mm wide and 0.6-mm high. A solid copper wire (22 AWG, 30-mm long)
was also tested for comparison. Full-size &l DOI: 10.7717/peerj-matsci.21/fig-1

The Electrifi filament was the most conductive, but it was challenging to work with because
of the extensive print optimization that was required and the raw filament brittleness,
which led to many mechanical difficulties (e.g., print-head clogging, motor jam, snapped
filament in Bowden tube, etc.). The challenges with the raw filament may be due to the
filament’s preference for a direct-drive extrusion printer rather than the Bowden tube
feeding delivery system we used with the BCN3D printer (Flowers ef al, 2017; Roy et al.,
2017). Protopasta was the most convenient filament to work with since the traces were
reproducible, well-defined, and moderately conductive. It should be noted that
commercially-available filaments can vary from batch to batch. Therefore, print settings
may need to be optimized for each new roll of filament, and the electrical properties of
conductive traces may change when a new roll of filament is used.

When characterizing the electrical properties of traces printed on paper, we observed
the trends that would be expected (Fig. 2 and Fig. 53). Impedance increased with increasing
trace length and decreased with increasing trace height and width (Figs. 2A-2C).

By changing the width and height of the traces, it should be possible to control the
impedance of traces with different lengths. There was no significant difference in resistivity
across three different generations of traces printed with Protopasta (F = 0.256, df = 2.27,
p = 0.776), which suggests that it should be possible to print reproducible circuits using
this filament (Fig. 2D).

3D printed circuits on paper are flexible, but the flexibility of the circuits decreases as
the height of the printed trace increases (Fig. 3A). We observed minimal changes in
resistance when traces were bent or rolled (Figs. 3B-3E). When traces were bent to a
90° angle, the resistance increased momentarily but then equilibrated back to within
0-0.2 kQ of the original resistance (Fig. 54). We also found that traces printed on paper
using Protopasta could be bent multiple times (=20 bending cycles for traces with a height
of 0.2 mm) before fracturing, although traces with a height of 1 mm fractured after
only two bending cycles. For geometrically constrained systems, the flexible circuits could
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Figure 2 Characterization of Protopasta traces printed on Whatman Grade 3 Chr paper. (A) Effect of
trace height on impedance. All traces were 30-mm long and 3-mm wide. (B) Effect of trace width on
impedance. All traces were 30-mm long and 0.6-mm high. (C) Effect of trace length on impedance.
All traces were 3-mm wide and 0.6-mm high. (D) Reproducibility of printed traces across three gen-
erations (10 traces/generation). All traces were 30-mm long, 3-mm wide and 0.6-mm high. No significant
differences in resistivity were observed (F = 0.256, df = 2.27, p = 0.776).

Full-size &l DOL: 10.7717/peerj-matsci.21/fig-2

be rolled up or folded. In addition, printing on both sides of the paper substrate allows for
the production of multi-sided flexible electronics (Figs. 3D and 3E). The paper acts as
an insulator, so conductive traces printed on opposite sides of a piece of paper are
electrically isolated from each other.

A unique capability of 3D printing is the ability to fabricate conductive structures in
various shapes and integrate them with other conductive or non-conductive structures
(Fig. 4 and Fig. S5). A simple demonstration of this capability is the production of
overlapping circuits. Using the BCN3D-Sigma printer’s dual extrusion system, we printed
conductive traces going under and over slabs of non-conductive PLA, which served as an
insulating layer and electrically isolated the conductive traces (Figs. 4A and 4B). These
layered structures may be useful in the production of complex circuit networks.
Additionally, it is possible to print features that facilitate interfacing the paper-based
circuits with other electrical components. For example, nodules printed at the beginning of
conductive traces can serve as simple connection points for alligator clips (Fig. 4C). A
sufficiently thick trace of conductive PLA (typically 21 mm) can also be used as a hot melt
adhesive to glue common electrical components such as LEDs, resistors or metal wires
directly to the printed circuit (Figs. 4D and 4E). Heating the printed circuit on a hot-plate
to 60-65 °C softens the conductive PLA so that electrical components can be inserted
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Figure 3 Flexibility of 3D printed traces on paper. (A) Protopasta (cPLA) printed with various heights
and flexed. (B) and (C) Printed electrodes could be bent at both the smallest (B) and largest (C) heights
tested without any significant change in resistance. (D) Rolled one-sided and two-sided circuits.
(E) Rolled two-sided circuit powering an LED. Full-size &l DOI: 10.7717/ peerj-matsci.21/fig-3

without cracking or damaging it. Upon cooling to room temperature, the electrical
components become fixed in place. Since this process is reversible, the electrical
components can be easily recovered by reheating the circuit. Finally, it is also possible to
print more than one type of conductive filament to harness the capabilities of the different
filaments in one circuit. We demonstrated a combination of Electrifi and Protopasta,
where the Protopasta elements could function as resistors (Fig. S6).

An inherent limitation of paper as a substrate for flexible circuits is its hydrophilicity.
If an aqueous solution came into contact with a paper-based circuit, capillary forces
would spread the solution across the entire circuit, which could damage the structural
integrity of paper, weaken the adhesion between the conductive trace and the paper, or
short the circuit. An obvious solution to this problem would be to make the paper
hydrophobic prior to 3D printing the circuit, however, we found that the conductive
filaments adhered poorly to paper that had been made hydrophobic using wax.
We overcame this problem by applying a technique known as wax printing that is used to
fabricate paper-based microfluidic devices (Carrilho, Martinez ¢ Whitesides, 2009).
In wax printing, wax is printed onto one side of a sheet of paper, and then the paper is
heated to reflow the wax so that it penetrates through the thickness of the paper creating
patterns of hydrophobic barriers and hydrophilic channels. We found that it was possible
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Figure 4 Applications of 3D printed circuits. (A) Crossing conductive traces with a non-conductive
PLA insulation layer between them. (B) Criss-crossing conductive traces powering an LED at various
points in the circuit. LED brightness visually decreases with increasing distance from the +5V power
supply due to the resistance of the traces. (C) Conductive nodule for interfacing with external electronic
components such as alligator clips. (D) Direct integration of an LED into a Protopasta circuit. (E) Direct
integration of copper wire into a Protopasta circuit.  Full-size Kl DOIL: 10.7717/peerj-matsci.21/fig-4

to create hydrophobic paper-based circuits by printing wax on one face of the paper, then
3D printing the circuit on the other face of the paper, and finally heating the paper in an
oven to reflow the wax (Fig. S1). This process maintained good adhesion between the
filament and the paper, and, in principle, could also be used to integrate 3D printed circuits
with paper-based microfluidic devices.

Another potential concern with using 3D printed circuits on paper is that, for
applications requiring high current flow, the circuits could generate enough heat to
damage the circuit. As would be expected, running current through Protopasta traces
does lead to resistive heating, but we found that the paper substrate provides structural
stability to the circuit allowing the traces to reach higher temperatures before deforming
compared to freestanding traces (Fig. S7). Traces printed on paper could withstand
temperatures up to 78 °C without warping or detaching from the paper, whereas
freestanding traces started to warp at temperatures around 60 °C. We also found that
the temperature of a given trace could be controlled by changing either the duty cycle or
the dimensions of the trace (Fig. 5). These results suggest 3D printed traces could be
used as resistive heaters for applications requiring controlled temperatures such as
isothermal DNA amplification (Chang et al., 2012). Since paper is a relatively good
insulator, paper-based 3D printed traces allow for localized and targeted heating (Uetani ¢
Hatori, 2017).
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Figure 5 Characterization of Protopasta traces as resistive heaters. (A) Plot of temperature of the trace
as a function of its height. All traces were 40-mm long and 5-mm wide, and the microcontroller was
programmed to a 5% duty cydle. The data were fit with a linear trendline (Temperature = 32.94 (Height)
+29.06, R> = 0.965). (B) Plot of temperature of traces with various heights as a function of % duty cycle.
All traces were 30-mm long and 3-mm wide. The data were fit with linear trendlines (0.3 mm: Tem-
perature = 2.17 (% Duty Cycle) + 28.10, R® = 0.99. 0.5 mm: Temperature = 3.71 (% Duty Cycle) + 31.38,
R® =0.99. 0.7 mm: Temperature = 5.82 (% Duty Cycle) + 32.81, R* = 0.99). Actual temperatures may
vary with different batches of filament, so additional calibration may be required for applications
requiring specific temperatures. Full-size Eal DOL: 10.7717/peerj-matsci.21/fig-5

CONCLUSIONS

We characterized three commercially-available conductive filaments for 3D printing
flexible circuits on paper. The conductive PLA filament Protopasta gave the most
reproducible traces and was the easiest to work with. Using this filament, we were able to
fabricate a variety of flexible circuits and demonstrate simple ways of integrating common
electrical components into these circuits. Conductive filaments can also be used to 3D
print resistive heaters on paper that can achieve stable temperatures in the range of 30 to
78 °C and could be integrated with paper-based microfluidic devices for applications that
require heating. Electronic circuits are an integral part of modern technologies, and the
ability to make prototypes of electronic circuits rapidly, cost-effectively, and using
commercially-available materials will expand the range of users who can develop and
benefit from these technologies.
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