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Abstract 

The problem of a suspension droplet falling under gravity was examined for polydisperse 

droplets composed of a mixture of particles with different densities and sizes. The study 

was conducted using both simulations based on oseenlet particle interactions and 

laboratory experiments. It was observed that the hydrodynamic interactions of the 

particles within the suspension droplet allow a polydisperse collection of particles to fall 

as a coherent droplet, even for cases where the difference in particle terminal velocity 

would cause them to quickly separate from each other in the absence of hydrodynamic 

interactions. However, a gradual segregation phenomenon is observed in which 

lighter/smaller particles (with lower terminal velocity) preferentially leave the suspension 

droplet by entering into the droplet tail, whereas heavier/larger particles (with higher 

terminal velocity) remain for longer periods of time within the droplet. When 

computations and experiments are performed for bidisperse mixtures, with two particle 

densities or two particle sizes, a point is eventually reached where all of the 

lighter/smaller particles are ejected into the droplet tail and the droplet continues to fall 

with only the heavier/larger particles.   
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1. Introduction 

 A suspension droplet is a cluster of particles held in suspension in a surrounding 

fluid. If the particle density is different from that of the surrounding fluid, the suspension 

droplet either falls or rises (for heavier or lighter particles, respectively) in the presence 

of a gravitational field. This problem has generated significant interest in the fluid 

mechanics community in part because it is an apparently simple problem that leads to 

highly complex and interesting dynamics and in part because at sufficiently high particle 

concentrations, it is a flow field that is dominated by the hydrodynamic interaction 

between the particles. The problem is relevant to a number of geophysical and 

environmental applications in which clusters of heavy particles generate turbulence as 

they sink in a lighter fluid. For instance, in direct numerical simulations of homogeneous 

turbulence of a particulate fluid under gravity, Elgobashi and Truesdell (1993) found that 

turbulence generation by falling groups of particles was a primary source of turbulence 

generation. Similar physics occurs for buoyant plumes of particles that are lighter than 

the surrounding fluid (Hurley and Physick, 1993). Suspension droplet dynamics is also 

relevant to applications involving smoke inhalation in the human lung. A number of 

investigators have observed that in cases with high particle concentrations, the 

penetration of particles into the lung in inhaled cigarette smoke is significantly greater 

than predicted based on single-particle settling velocities (Martonen, 1992; Phalen et al., 

1994; Robinson and Yu, 2001). One explanation that has been proposed for this 

difference is that smoke particles move through the upper airway region in the form of a 

suspension cloud, where the hydrodynamic interaction of particles within this cloud 

allows the particles to travel more rapidly relative to the surrounding fluid than would be 
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the case for isolated particles. The ability to accurately model the degree of penetration of 

particles into the lung is very important in understanding the health effects of inhaling 

cigarette smoke, as well as related problems of inhalable drug dispersal and silicon dust 

inhalation in construction and mining operations.  

 The dynamics of a small number of settling particles falling under gravity has 

been examined in a number of studies (Bretherton, 1964; Jataweera et al., 1964;  

Hocking, 1964; Vasseur and Cox, 1977; Ekiel-Jeżewska and Felderhof, 2005, 2006a), 

which have lead to identification of different stable and unstable particle configurations. 

As the number of particles increases, dynamical systems approaches become increasingly 

difficult and the problem must instead be approached as one of suspension dynamics, 

although computational approaches continue to solve for the system at the individual 

particle level. The droplet dynamics is typically characterized by two different Reynolds 

numbers, called the droplet Reynolds number /2Re ,HRddd Ur  (also sometimes called 

the cloud Reynolds number) and the particle Reynolds number /2Re Urpp  . Here, pr  

and dr  are the particle and droplet radii, respectively,   is the fluid kinematic viscosity, 

HRdU ,  is a theoretical estimate of the droplet settling velocity based on the initial number 

of particles in the droplet, and U is the settling velocity of an isolated particle in an 

otherwise stagnant fluid.  

 The settling of an initially spherical particle suspension droplet under gravity was 

examined by Nitsche and Batchelor (1997) low Reynolds-number clouds using both 

experiments and numerical simulations. The numerical simulations were performed by 

representing each particle by the sum of a stokeslet and a doublet that induce a velocity 

field on all other particles. This computational approach requires that both the droplet and 
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the particle Reynolds numbers are small compared to unity. Nitsche and Batchelor 

observed that the suspension droplet settles significantly more rapidly than would be 

predicted for a cloud of non-interacting particles due to the fluid motion induced by the 

particle settling. They also showed that a reasonable approximation for the suspension 

droplet settling velocity can be obtained from the Hadamard-Rybczyński (HR) solution 

for a spherical droplet of an immiscible fluid immersed in another fluid at low Reynolds 

number (see also Ekiel-Jeżewska et al., 2006b).  

 As the suspension droplet falls downward, a series of transitions in the flow 

pattern takes place (Adachi et al., 1978; Noh and Fernando, 1993). As originally 

described by Adachi et al (1978), the particle cloud in certain cases adopts a toroidal 

shape which breaks up into some number of offspring droplets, where the offspring 

droplets then repeat this process. The evolution of a suspension droplet into a toroidal 

shape is analogous to a similar process that occurs for a droplet of a heavy liquid 

immersed in a lighter liquid (Kojima et al., 1984). These transitions were examined in 

detail both experimentally and using stokeslet-based simulations by Machu et al. (2001) 

and Metzger et al. (2007) for low Reynolds number droplets with spherical particles and 

by Park et al. (2010) for suspensions formed of fibers.  

 Subramanian and Koch (2008) examine different regimes of suspension droplet 

dynamics based on the particle Reynolds number the particle concentration, and the 

droplet size. They argue that for cases where the particle Reynolds number and the 

particle concentration are small, but the droplet Reynolds number is not small, a more 

accurate computational approach is obtained by replacing the stokeslet and the potential 

doublet in the simulation approach of Nitsche and Batchelor with the steady Oseen 
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solution for flow past a sphere. This oseenlet-based approach was used by Pignatel et al. 

(2011), along with experiments, to explore suspension droplet dynamics at finite droplet 

Reynolds numbers. Other computational methods have also been used to examine 

suspension droplet flows. For instance, Bosse et al (2005) approximated the fluid-particle 

interaction force as a distributed body force on a grid, from which they solved for the 

induced flow field using a pseudo-spectral technique. Chen and Marshall (1999) 

employed a vorticity-based method in which the curl of the fluid-particle interaction force 

acts as a source term in the vorticity transport equation. The solution was obtained (in 

two dimensions) using a Lagrangian approach that employed a combination of vortex 

blobs and point particles. A related vorticity-based method was employed in three 

dimensions by Walter and Koumoutsakos (2001), in which a vortex-in-cell method was 

used to compute the velocity field.  

 All of the papers described above consider suspensions formed of monodisperse 

particles, with uniform particle diameter, density, etc. In a polydisperse mixture, with 

variation in particle properties differ, the sedimentation process will generally lead to 

particle segregation due to differences in particle settling velocity. Consequently, the 

particles within a settling polydisperse suspension droplet would rapidly segregate in the 

absence hydrodynamic interaction between the particles. In the presence of 

hydrodynamic interaction, the recirculating flow field within the suspension droplet acts 

to inhibit particle segregation, provided that the heterogeneities between the particles are 

sufficiently small and the particle concentration sufficiently high. Similar inhibition of 

particle segregation in a mixture due to particle hydrodynamic interaction was noted by 

Roeder et al. (1995) in a centrifugal flow field.  



 7

The current paper uses a combination of oseenlet-based simulations and 

laboratory experiments to examine the dynamics of falling polydisperse suspension 

droplets. The simulations and experiments are both subject to a number of limitations, 

and as a consequence cover somewhat different regimes of suspension droplet motion. 

Specifically, the oseenlet-based computation method (like the stokeslet-based method 

used for vanishing dRe ) is valid only for small particle concentrations and small particle 

Reynolds numbers pRe . In the experiments, we seek to initialize the flow field as a 

sphere of well-mixed polydisperse particles in a stationary liquid bath. A cluster of 

particles placed at the top of the liquid bath is observed to form a structure that 

reasonably resembles this idealization at sufficiently low droplet Reynolds numbers and 

high particle concentrations; however, at low particle concentrations, we have 

experienced difficulty in obtaining a well-mixed spherical structure at the onset of the 

experiments. These limitations force the simulations to focus on low concentration 

clusters and the experiments to focus on high concentration clusters, although both 

approaches have values of the droplet Reynolds number near unity and both are 

conducted at small particle Reynolds numbers. It is of interest that despite the differences 

in particle concentration, both experiments and computations exhibit a similar 

mechanism leading to particle segregation from the suspension droplet.  

 The computational method used in the paper is described in Section 2a, followed 

by a summary of computational results for monodisperse and polydisperse mixtures. We 

have examined a wide assortment of polydisperse mixtures, including bidisperse mixtures 

with two different particle densities, bidisperse mixtures with two different particle sizes, 

and polydisperse mixtures with a distribution of particle size and density. The mechanics 
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in all cases examined are similar, depending only on differences in the particle terminal 

velocity. For brevity, Section 2 focuses on bidisperse mixtures with two different particle 

densities. An experimental investigation is presented in Section 3 for settling of 

suspension clouds with bidisperse particle mixtures with particles of different sizes and 

densities. Conclusions are presented in Section 4. 

  

2. Computational Method and Results 

2.1. Oseenlet Simulation Method for Particle Hydrodynamic Interaction 

 Computation of the particle interactions using stokeslets requires that both the 

particle Reynolds number pRe  and the cloud Reynolds number dRe  be small compared 

to unity. The latter restriction arises from the fact that the Stokes equation is only valid 

within distances from the particle centroid that are small compared to the inertial 

screening length ppr Re/ . A uniformly valid solution for the flow around a particle 

with low particle Reynolds number is given by the Oseen solution (Proudman and 

Pearson, 1957), from which the flow field generated by a spherical particle with radius 

pr  translating with a velocity xSU e  relative to the surrounding fluid at low particle 

Reynolds number can be written in a local spherical coordinate system, with the polar 

axis ( 0 ) coincident with the direction of particle motion, as  
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In this equation, /2Re SpS Ur  is the instantaneous particle Reynolds number based on 

the particle slip velocity uv SU , where v is the particle velocity and u is the fluid 

velocity at the particle centroid (evaluated as if the particle were not present). This 

solution approaches the Stokes solution for flow past a sphere within a region r  

near to the particle, but at large distances r  the velocity field approaches that of a 

potential point source, with decay rate of )/1( 2rO . The fluid emitted from this source is 

recovered in a back-flow region located within a thin wake near   , within which the 

velocity magnitude decays as )/1( rO .  

 The fluid velocity iu  at the centroid of particle i, where i = 1,...,N, is obtained at 

each time step by solution of a matrix equation of the form  

 

 ))(,( jjji
ij

i uvxxWu 


. (2) 

 

The matrix W is obtained using (1) after rotating the local spherical coordinate system 

into a global coordinate frame. Since the particle Stokes number is vey small in the 

current simulations, we adopt the same assumption used by numerous previous 

investigators (Nitsche & Batchelor, 1997; Subramanian & Koch, 2008; Pignatel et al., 

2011) that the particle inertia is negligible, so that the fluid slip velocity SU  is set equal 
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to the particle terminal velocity U in an otherwise stationary fluid (and SRe  and pRe  

become identical).  

 The governing equations for the suspension droplet motion can be non-

dimensionalized by selecting the characteristic fluid length and velocity scales as the 

initial droplet diameter L and the terminal settling speed U of an isolated particle of 

nominal size and density, where the latter is given by  
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and gg R )1(   is the reduced gravitational acceleration and pf  /  is the 

density ratio. For computations with variable size and density particles, it is convenient to 

define a nominal particle density p  and diameter d  by 
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where N is the total number of particles. The nominal particle diameter is specified by 

averaging the square of the diameter to ensure that the average terminal velocity (for an 

isolated particle) will be equal to that for particles whose diameter are equal to the 

nominal value d . For a mixture, the density ratio pf  /  is based on the nominal 

particle density. The Froude number LgU R/Fr   and the Stokes number 
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LUdp  18/St 2  for this flow can be expressed in terms of the particle Reynolds 

number as 

 

 )/(
18

Re
FrSt 2 Ldp


 . (5) 

 

The results plotted in the paper are in terms of dimensionless variables in which all length 

scales are nondimensionalized by the droplet diameter L, all velocity scales are 

nondimensionalized by particle terminal velocity U (computed using (3) with the nominal 

particle diameter and density), and all time scales are nondimensionalized using UL / . 

Dimensionless variables are denoted by an asterisk.     

 

2.2. Suspension Droplets with Monodisperse Particles 

 For monodisperse particles, the independent dimensionless parameters of the flow 

include droplet Reynolds number dRe , dimensionless particle diameter Ld / , 

density ratio pf  / , and the initial number of particles 0N  contained within the 

droplet. Several previous studies of monodisperse suspension droplets have been reported 

which detail how the droplet fall velocity and shape change with variation of these 

parameters (Nitsche & Batchelor, 1997; Metzger et al., 2007; Subramanian & Koch, 

2008; Pignatel et al., 2011). An important characteristic noted in this literature is the 

tendency of the falling suspension droplet to develop a tail formed of particles that leak 

away from the droplet near the droplet rear.  
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 Results are reported in the current section for a case with 4.1Re d , 04.0/ Ld , 

3/1 , and 3000 N , which serves as a baseline for the polydisperse droplet 

simulations. The initial particle concentration is given by 019.0)/( 3
00  LdN  and the 

particle Reynolds number is 004.0Re p , so the conditions required for use of the 

oseenlet simulation approach are well satisfied. A time series showing formation of the 

droplet tail for this baseline case is given in figure 1. The suspension droplet initially has 

the form of a sphere, but a tail of trailing particles shed from the rear of the droplet 

gradually develops. The tail grows progressively longer with time since the particles 

within the tail fall at nearly the terminal velocity for an isolated particle, whereas the 

particles within the droplet fall at a much faster speed due to the hydrodynamic 

interaction between the particles. The droplet shape becomes deformed in time, with a 

slight flattening of the ball-like shape in the vertical direction. The fluid velocity field in a 

frame traveling with the droplet is similar to that shown by Pignatel et al. (2011). The 

flow surrounding the droplet has a toroidal structure qualitatively similar to a Hill's 

spherical vortex, with stagnation points at the front and back.  

 The dimensionless fall velocity of the particles within the droplet, *
dU , and the 

current number of particles in the droplet, )(tN , are plotted in figure 2 as functions of 

dimensionless time. In order to allow some deformation of the suspension droplet, we use 

an effective droplet diameter equal to 1.25 to determine which particles are in the droplet, 

which is 25% larger than the nominal droplet diameter. All particles are observed to fall 

within the droplet for a short time at the beginning of the computation (approximately 

5.0* t ), following which formation of the droplet tail leads to a gradual decrease in 
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number of particles within the droplet. The fall velocity reaches a maximum value at 

about 5.0* t , which is also the time at which the particle tail starts to form. The peak 

magnitude of the fall velocity is substantially greater than unity, indicating that the 

suspension droplet falls much faster than an isolated particle. The droplet fall velocity 

decreases for dimensionless times *t  greater than 0.5 as the particles gradually move 

from the droplet into the tail and the tail grows progressively longer.  

 A simple theoretical expression for droplet fall velocity is obtained by treating the 

particle suspension as a droplet of another (immiscible) fluid with effective density d  

and viscosity d . The solution for drag on a fluid droplet suspended in an immiscible 

liquid was given independently by Hadamard (1911) and Rybczynski (1911) as 
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The density difference in (6) can be written in terms of the particle volume concentration 

3 N  within the droplet as )( fpfd   . The effective viscosity is given for 

small concentrations by the Einstein expression 

 

 )1(
2

5  fd . (7) 

 

Linearizing (6) for small concentration values and dividing by the isolated particle fall 

velocity U yields  
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where N is the number of particles in the droplet. A plot of the ratio ])(/[)(
5

6* tNtU d  of 

the computed and theoretical droplet fall velocity as a function of time is given in figure 

2c. The computed value of this ratio is initially close to unity, and then it decreases 

gradually in time to about 0.9. The oscillations in value of this ratio observed in the figure 

are a consequence of shape oscillations of the suspension droplet. The computed velocity 

value shown in figure 2 is close to that obtained both experimentally and computationally 

by Pignatel et al. (2011).  

 Two measures of the length of the particle tail are shown in figure 3 – the root-

mean-square position *
rmsy  of the particles in the y-direction and the ratio 

4/)( *
min

*
max yy  . For particles that are uniformly distributed between *

maxy  and *
miny , 

these two measures would be equal, so the difference between these measures provides 

an indication of the skewness of the particle distribution. The value of *
rmsy  remains close 

to the value for a uniform sphere for 1* t , after which the growth of the droplet tail 

causes *
rmsy  to increase nearly linearly with time. The value of 4/)( *

min
*
max yy   is larger 

than the corresponding value of *
rmsy , as presence of the droplet implies a large number of 

particles with values of *y  near *
miny . Over time, the two measures approach each other 

as an increasing number of the particles are drawn out into the tail region.  

 

2.3. Suspension Droplets with Polydisperse Particles 
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 Computations for a wide range of polydisperse suspension droplets have been 

conducted, including a series of cases with particles of two different sizes, a series with 

particles with two different densities, and many flows with a distribution of both particle 

size and density. All of the cases examined exhibited the same essential physics, which 

seems to depend on the difference in value of particle terminal velocity rather than which 

specific property is varied. For the sake of brevity, the current section presents 

polydisperse suspension droplet results for a representative series of cases where half the 

particles have one density value and the other half have a different density value. The 

particle polydispersity can be characterized by a dimensionless parameter 

ppp  2/12  . A full report of the different computational cases examined is 

given in the thesis by Faletra (2014).  

 We begin by examining the effect of droplet concentration on the segregation 

phenomenon by simulating droplet settling for cases in which the initial number of 

particles 0N  varies between 50 and 1000, where all other parameters are held constant at 

5.0 , 04.0/ Ld , 3/1 , 4.1Re d , and 004.0Re p . A typical case in which 

particle hydrodynamic interaction has a strong effect on inhibiting particle segregation is 

that of 3000 N . The early evolution of the droplet in this case is shown in a time series 

in figure 4. Similar to the simulations for monodisperse particles, the suspension droplet 

falls with nearly a spherical shape with a tail of trailing particles shed from the rear of the 

droplet. As time passes, the tail grows progressively longer because the particles in the 

tail fall at approximately the terminal velocity of an isolated particle, whereas the 

particles in the droplet fall much faster due to the hydrodynamic interaction between the 

particles in the droplet. Due to the strong particle hydrodynamic interactions, some of the 
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light particles are able to remain inside the suspension droplet for a long period of time. 

At the same time, it is clear that the lighter particles have a much higher probability of 

passing into the drolet tail than do the heavier particles, particularly near the start of the 

computation. The heavier particles do eventually start to enter into the tail, but at a lower 

rate than the lighter particles. At long time, a point is reached where all of the light 

particles are removed from the droplet and form a very long tail, after which the rate at 

which particles enter into the tail decreases significantly.  

 For small numbers of particles (e.g., 500 N  or 100), the weak 

hydrodynamic interaction between the particles is insufficient to significantly slow down 

the separation of light and heavy particles that occurs due to the difference in terminal 

velocity. The particles of the two densities separate as two dispersed clouds before the 

suspension droplet has fallen more then a few droplet diameters. A comparison of cases 

with different initial concentration values is given in figure 5, in which the percentage of 

initial particles that remain in the droplet is plotted as a function of time for cases with 

500 N , 100, 300, and 1000. These percentages are shown separately for the light 

particles and the heavy particles. The results for cases with 500 N  and 100 are almost 

the same, and both are typical of cases in which the amount of hydrodynamic interaction 

is too small to significantly inhibit particle segregation. Increase in value of 0N  above 

100 results in delay of the separation of light particles from the droplet and increase in the 

rate of separation of heavy particles from the droplet. The delay in separation of light 

particles is due to the strong recirculating flow surrounding the droplet, which acts to 

suspend particles with different terminal velocities. The increase in rate of transport of 

the heavier particles into the tail for large values of 0N  is opposite to the trends observed 



 17

for leakage rate in monodisperse suspension droplets, for which the leakage rate 

decreases with increase in 0N  (Metzger et al., 2007; Pignatel et al., 2011). We speculate 

that the increase in leakage rate for the polydisperse cases with large  0N  is a 

consequence of the disturbance to the heavy particles caused by relative motion with the 

lighter particles. The cases with large 0N  values are more susceptible to these 

disturbances because the light particles remain in the droplet for a longer time period than 

is the case with smaller values of 0N .  

 Cases in which the suspension droplet dynamics is dominated by hydrodynamic 

interaction between the particles are of particular interest, since these cases provide an 

illustration of the ability of hydrodynamic interaction to inhibit particle segregation. To 

explore such problems further, results are reported for a series of computations with 

different values of  , but with all other parameters fixed to the same values as used for 

the simulation shown in figure 4. The average particle fall velocity *** / dtdyv aveave   is 

plotted as a function of time in figure 6a for values of   ranging between 0.1 and 0.9. 

This velocity is computed separately for the light and heavy particles, which are plotted 

in figure 6a using dashed and solid curves, respectively. The fall velocity of all particles 

reaches a maximum value at about 4.0* t , with roughly the same value for both light 

and heavy particles. The value of *
avev  decreases with time after this peak value is 

achieved, which is associated with the decrease in number of particles in the droplet as a 

result of tail formation. Because the light particles have a greater tendency to move into 

the tail than do the heavy particles, the average fall velocity of the light particles 

decreases with time more quickly than for the heavy particles. Since the isolated particle 
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fall velocity (and hence also the fall velocity of particles in the tail) decreases with 

decrease in particle density n , the average fall velocity of the light particles in figure 6a 

decreases as  increases. For the case with 9.0 , the light particles have lower density 

than the surrounding fluid and the long-time value of *
avev  for these particles is negative 

(indicating that the particles rise upward in the fluid). The fall velocity for the heavy 

particles is observed to have a similar value for all values of  examined. 

 The degree of particle spread in the vertical direction is quantified using the root-

mean-square position of the particles in the y-direction, *
rmsy , which is plotted as a 

function of time in figure 6b. Small values of *
rmsy  can be achieved either if particles all 

remain in the droplet or if particles are quickly removed from the droplet and pass into 

the tail. The largest values of *
rmsy  occur when particles move very slowly from the 

droplet into the tail. The rate of passage of the light particles from the droplet into the tail 

can be quantified by plotting the percentage of the initial light particles that remain in the 

droplet as a function of time, shown in figure 6c. The results indicate a monotonic 

increase in the segregation rate as the value of   increases.  

 By observing the difference in the value of *
rmsy  for the heavy and light particles 

in figure 6b, we can infer the different extent to which the two types of particles have 

become spread out into the droplet tail. For the case with 1.0 , there is only a slight 

difference in density between the two particles types, and the values of *
rmsy  in figure 6b 

consequently remain fairly close to each other, with the *
rmsy  values for the lighter 

particles slightly higher due to their greater tendency to pass into the droplet tail. Cases 

with    values ranging from 0.3 to 0.9 exhibit very different values of *
rmsy  between the 
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two particle types. For the heavy particles, particles with densities closest to the nominal 

density (small  ) have the smallest values of *
rmsy , and particles with higher densities 

(larger  ) have larger values of *
rmsy . A similar trend holds during the initial part of the 

calculation for the lighter particles. However, as time progresses the value of *
rmsy  for the 

light particles is observed to asymptote to a nearly constant value. Both this asymptotic 

value and the time at which this flattening of the *
rmsy  curve occurs decrease as   

increases. In this asymptotic state, all of the lighter particles have been removed from the 

droplet and passed into the tail. Since all of the light particles in the tail fall at 

approximately the same speed, the value of  *
rmsy  for the light particles remains 

approximately constant in this state.  

 There are numerous mixing and segregation indices used in the literature, many of 

which are adopted for specific problems (Li and McCarthy, 2005; Jain et al., 2005).  A 

mixing index proposed for DEM simulations by Amar et al. (2002) would seem to be 

applicable for the problem addressed in the current paper. In this paper, a generalized 

mean mixing index is defined for a given coordinate direction (say, y) as 
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where refy  is taken as the minimum value of y occupied by any of the particles. The 

numerator of (10) is a sum over all iN  particles of type i, whereas the denominator is a 

sum over all totN  particles in the system. A value of G equal to 1 indicates that particle 
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type i  is distributed within the solution domain in a similar manner to all of the other 

particles. A value of G less than 1 indicates that particles of type i  tend to have lower 

value of y than the average value for the entire particle set, and a value greater than 1 

indicates that particles of type i tend to have higher values of y than the average value for 

the entire particle set.  

 The mixing measure lightG  for the light particles is plotted as a function of time for 

different values of   in figure 6d. The initial value of lightG  is equal to unity for all cases, 

indicating that the initial condition is well mixed. For small values of *t , the value of 

lightG  increases with time as the lighter particles preferentially segregate into the droplet 

tail. At some point around 5.1* t , a maximum value of lightG  is attained, after which the 

mixing measure gradually decreases for the remainder of the computation as the heavier 

particles begin to enter into the droplet tail in larger numbers. For 5.0 , the value of 

the mixing measure is found to exhibit a marked increase with increase in  , indicating 

that the extent of particle segregation becomes substantially greater as the density 

difference between the particles increases. The trend breaks down for 5.0 , where we 

notice that the three cases with 5.0 , 0.7, and 0.9 all have similar values of the mixing 

measure.  

      

3. Experimental Method and Results 

3.1. Experimental Method 

 A series of experiments were conducted in which a particle suspension droplet 

settles in a container filled with a transparent fluid. A diagram of the experimental set-up 



 21

is given in figure 7. The vessel used in the experiments has inner cross sectional 

dimensions of 9 cm by 9 cm, and was filled with the working fluid to a height of 28 cm. 

The fluid used in the experiments consisted of a mixture of water-soluble UCONN oil 

and water to create a fluid with a kinematic viscosity of 610174  m2/s and a density of 

0.95 g/cm3. The container was lit from the side with white light from four 6400K 

fluorescent tubes. A ruler with millimeter scale spanning the container height was 

attached to the other side, and the container was placed in front of a black background. 

The video camera used to capture the images of the falling droplet was a Sony HDR-

SR12 with a frame rate of 30 frames per second.  

 Combinations of four different types of spherical particles were used in the 

experiments, the characteristics of which are given in table 1. The particle size 

distributions were measured using a digital imaging system (Image Pro Plus 6.0, Media 

Cybernetics), where the diameter given in the table is the mean diameter and the 

uncertainty stated is equal to one standard deviation, with sample sizes between 70-100 

particles. The particle density was calculated by measuring the mass of a sample of 

particles and dividing it by the measured volume of the same sample. The mass was 

measured with a scale that has a precision of 0001.0  grams, and the volume was 

measured by putting the sample into a graduated cylinder with a 0.2 ml scale and adding 

a known volume of water into the graduated cylinder. The error in the density value that 

is given is calculated using the standard error propagation equation from the known 

uncertainty of the mass and volume measurements. The measured values of both the 

particle diameters and densities were found to be consistent with manufacturer specified 

values. The terminal settling velocity of each particle is determined by measuring the 
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position and time from a series of time-stamped photos pulled from a video of the falling 

particle, with a time precision of 03.0 s and a length precision of 1 mm. The average 

particle velocity is calculated by averaging the velocity from 20 samples, and the 

uncertainty is equal to one standard deviation from the mean. 

 The particle suspension was formed by first measuring out the two sets of 

particles to be used in the given experiment. The particle number ratio 21 / NN  for all of 

the experiments was set equal to 1. To estimate particle number, tweezers were used to 

count out 100 particles of each particle type, and the mass of the 100 particles was 

recorded with an accuracy of 0001.0 grams. Using these values, the number of particles 

in a sample was obtained by measuring the sample’s mass and dividing by the mass per 

particle. Once an equal number of particles of each type were measured, both sets of 

particles were put in a small closable container and the container was vigorously shaken. 

The particles were then put into a syringe with a 4 mm diameter opening and, with the 

syringe extended to leave empty space for mixing, the syringe was vigorously shaken to 

ensure that the particles were well mixed. Fluid from the vessel was then added to the 

particles in the syringe, and the syringe was vigorously shaken again to ensure an even 

distribution of the two types of particles within the suspension. The particle suspension 

was injected into the fluid in the test vessel by holding the syringe vertically with the 

syringe tip about 1cm above the surface of the fluid. The suspension was manually 

injected into the container by applying slight pressure to the syringe causing a droplet to 

slowly form at the end of the syringe. The droplet falls into the fluid when the weight of 

the droplet exceeds the surface tension force between the droplet and the syringe. 
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 The number of particles in the suspension droplet was estimated by measuring the 

mass of a series of droplets that were dripped onto a surface, using the same approach for 

droplet generation as used in the experiments. Sample sizes of 21, 20, and 28 were used 

for experiment sets 1, 2, and 3 respectively. The known droplet concentration was then 

used to calculate the approximate number of each particle type in each sample droplet. 

The average total number of particles in a droplet and the associated root-mean square 

uncertainty were computed from the sample, giving the values listed in table 2. Each 

droplet consisted of approximately even amounts of 1N  and 2N , with an uncertainty 

equal to half of the uncertainty for 0N  listed in table 2. 

  

3.2. Experimental Results 

 Experimental runs were first performed in a vessel filled with a lower viscosity 

fluid to examine the evolution of a suspension droplet with much lower particle 

concentration. The lower viscosity fluid allowed for the falling particles to spread out 

more with the initial impact and form a suspension droplet with a much lower initial 

concentration. Similar to what was observed in the computations with low particle 

concentrations (figure 5), the two types of particles immediately start to separate from 

each other and there is no droplet tail formation. Because the particles are spread out 

from each other, there is significantly less hydrodynamic interaction between the falling 

particles, which is the driving mechanism for the tail formation.  

 As we are primarily interested in particle segregation in cases with significant 

particle hydrodynamic interaction, the primary focus of the experiments was on cases 

with sufficiently large particle concentration that the entire particle set settles downward 
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as a single droplet, with the exception of the thin tail that trails behind the droplet. Three 

sets of experiments were performed, with multiple runs performed for each set. The 

characteristics of each set are listed in table 2. In experiment set 1, the particles have the 

same density but different particle radii. In experiment set 2, the particles have nearly the 

same radius, but different densities. In experiment set 3, both the particle radius and 

density are different. The mean values of L and dRe  were determined by averaging 

results from 5, 9, and 8 runs for experimental set numbers 1, 2, and 3, respectively. In 

some of the experimental runs, the droplet was initially teardrop shaped instead of 

spherical, as a result of its injection into the fluid in the vessel. In such cases, the particles 

that enter the fluid last are the ones contained in the rear of the teardrop, and are observed 

to quickly break apart from the droplet, leaving a roughly spherical droplet composed of 

the remaining particles. All of the experimental analysis starts with the droplet in this 

spherical shape, and does not include the particles that were separated from the droplet at 

the time of initial injection. 

 Runs with experimental set 1 were conducted to study the problem of a falling 

suspension droplet containing two different size particles, with   rp2  rp1 / d 43.1 . 

Figure 8 shows a time series of photos of a the settling suspension droplet falling, where 

the large particles (red) are about 2.2 times larger than the small particles (gold). The tail 

that forms behind the droplet consists of both small and large particle sizes, but the small 

particles are more numerous in the tail region than the large particles. Runs with 

experimental set 2, shown in figure 9, were conducted to study the problem of a falling 

suspension droplet containing two different density particles, with 067.0 . The heavy 

particles (silver) are 14% heavier than the light particles (red). The droplet tail contains 
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both heavy and light particles, but the light particles are significantly more numerous. 

Experimental set 3, shown in figure 10, compares particles with a substantial difference 

in both particle size and density, with 44.0  and 473.0 . The tail behind the 

droplet consists of only smaller/lighter particles for the initial part of the run, until 

eventually one larger/heavier particle enters the tail.  

 Plots of the droplet fall velocity with time are shown in figure 11a for experiment 

sets 1-3. To calculate the velocity, position and time data are obtained from a series of 

time-stamped video photos with a time precision of 03.0 s and a length precision of 1 

mm. The uncertainty of the experimental droplet fall velocity is computed using the 

standard propagation of error equation from the measured uncertainty in the change in 

particle distance and the change in time, and is found to be 1.0 mm/s, 1.0 mm/s, and 8.7 

mm/s for sets 1, 2, and 3, respectively. The droplet velocity decreases with time, as was 

also observed in the computations, due to the loss of particles from the droplet as the 

particles migrate into the tail.  

 The percentage of each particle type that is contained in the tail was calculated as 

a function of time. The uncertainty in the time is 03.0 s, and the uncertainty in the particle 

count is 1 particle. The experimental values varied significantly between different runs 

from the same experimental set due to variation in the initialization of the droplets. The 

mean values are plotted in figure 12a-c for all of the experiment sets. Standard deviation 

of these values are recorded as 3.0 for the dashed line and 5.5 for the solid line in figure 

12a, 6.4 for the dashed line and 3.1 for the solid line in figure 12b, and 10.3 for the 

dashed line and 1.5 for the solid line in figure 12c. Similar large variation between runs 

of the same set also occurred in the experiments of Metzger et al. (2007). The plots in 



 26

figure 12 confirm the experimental observation that the lighter/smaller particles were the 

dominant particles in the tail, and the percentage of larger/heavier particles in the tail 

decreases with increasing values of   and  .  

 The experimental droplet fall velocity was divided by the theoretical solution (8) 

and is plotted with time in figure 11b. The droplet fall velocity is non-dimensionalized by 

dividing by the average isolated particle settling speed for the different particle types that 

make up the droplet. These isolated settling speeds were obtained empirically, and are 

listed in table 2. The droplet diameter is measured with digital imaging software and has 

an uncertainty of mm1 . The number of particles in the droplet with time is calculated by 

subtracting the number of particles counted in the tail at that time from the initial number 

of particles in the droplet. The uncertainty of the experimental droplet fall velocity 

divided by the theoretical solution (8) is computed using the standard propagation of 

error equation from the measured uncertainty in the fall velocity and the number of 

particles, and is found to be .160 , 0.03, and 0.25 , for sets 1, 2, and 3, respectively. 

Figure 11b shows that the value of the experimental droplet fall velocity divided by the 

theoretical solution remains approximately constant with time at mean values of 

approximately 0.65, 0.58, and 0.85 for sets 1, 2, and 3, respectively. The experimental 

values of this velocity ratio are close to the value obtained computationally using the 

oseenlet-based method, as shown in figure 2c.  

 

4. Conclusions 

  An investigation of segregation of polydisperse particles of different sizes and 

densities in a settling suspension droplet was performed using both computations and 
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experiments. The computations approximated the particle hydrodynamic interaction 

using an oseenlet-based simulation method that allows finite (non-small) values of the 

flow Reynolds number, while still requiring that the particle Reynolds number is small. 

The experiments were conducted by observing the fall of suspension droplets formed of 

binary particle mixtures consisting of particles with different sizes and densities in a 

viscous fluid.  

 The particle hydrodynamic interactions are of primary importance for the flow of 

concentrated suspension droplets, for which the droplet settling speed is approximately an 

order of magnitude larger than that of an isolated particle. The computed fall velocity of 

the suspension droplet was compared against an approximate theoretical solution, and the 

ratio of the computed to the theoretical values of droplet fall velocity are found to be 

consistent with both experimental results from our study and with experimental and 

computational solutions obtained by other investigators. Dynamics of bidisperse 

suspension droplets depends strongly on the particle concentration. For low 

concentrations, the amount of particle hydrodynamic interaction is insufficient to oppose 

the gravitational separation of the particles, and the particle type with larger terminal 

velocity quickly pulls away from the slower particles, leaving a deformed cloud of the 

slower particles behind. When the particle concentration is sufficiently large, the particle 

hydrodynamic interaction is sufficient to hold particles of both types together within the 

suspension droplet, thus inhibiting particle separation and allowing the droplet to settle as 

a single unit. 

 The current paper provides a detailed examination of suspension droplet dynamics 

under conditions where strong particle hydrodynamic interaction holds the particle 
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mixture together into one suspension droplet. As was observed previously for 

monodisperse droplets, a falling suspension droplet with high concentration develops a 

thin tail of trailing particles which slowly leak out from the rear portion of the droplet. A 

novel segregation mechanism is observed to occur by which the particles with smaller 

terminal velocity have a preferential tendency to be transported into the droplet tail, 

whereas particles with higher terminal velocity have a higher tendency to remain within 

the suspension droplet. Three different stages of particle segregation are observed  the 

first in which only the slower particles are transported into the tail, the second with a 

mixture of particles of different sizes/densities transported into the tail (but still 

dominated by the slower particles), and the final stage in which all remaining particles in 

the droplet are of the type with faster terminal velocity.  

 The essential problem examined in this paper concerns the inhibition of particle 

segregation by the hydrodynamic interaction of the particles in a situation where the 

particle terminal velocity differs within the mixture. This difference in terminal velocity 

acts to try to pull apart the mixture (enhancing segregation), whereas the hydrodynamic 

interaction acts to hold the mixture together (suppressing segregation). However, even in 

cases with strong hydrodynamic interaction, segregation still occurs within certain 

regions of the mixture near the edges of the suspension droplet, and particularly near the 

droplet rear stagnation point. This basic problem occurs in many different particulate 

flow problems in which particle agglomerates or clusters are transported relative to the 

surrounding fluid. The model problem examined in the current paper should provide 

insight into the ability of clusters formed of a mixture of different particle sizes and 
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densities to hold their structure even in the presence of differences in drag and other fluid 

forces, which attempt to tear the cluster apart.  
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Figure Captions 
 
Figure 1. Plot showing formation of tail behind a falling monodisperse suspension droplet 
with 4.1Re d . Images are shown at times (a) 0* t , (b) 0.2, (c) 0.4, (d) 0.6 and (e) 0.8.  

 
Figure 2. Time variation of (a) the dimensionless droplet fall velocity, (b) the number of 
particles remaining in the droplet, and (c) the ratio of the average droplet fall velocity to 
the theoretical estimate (16). The plots are for monodisperse particles with droplet 
Reynolds numbers 4.1Re d . The dashed line in (c) corresponds to the theoretical HR 

solution given by Eq. (8). 
 
Figure 3. Plot showing the time variation of the root-mean-square y-position (solid line) 
and the value of 4/)( *

min
*
max yy   (dashed line) for a monodisperse droplet. 

 
Figure 4. Time series of a droplet with 3000 N , showing preferential leakage of lighter 

particles into the droplet tail, for a case with particles with two densities with 5.0 . 

Images are shown at times (a) 0* t , (b) 0.2, (c) 0.4, (d) 0.6 and (e) 1.0. The light 
particles are shown in blue and the heavy particles in red.    
 
Figure 5. Percentage of initial particles remaining in the droplet as a function of 
dimensionless time for different values of the initial particle number 0N . Heavy particles 

(solid lines) and light particles (dashed lines) are shown for a series of cases with 5.0  

and 4.1Re d . Colors correspond to cases with 500 N  (red), 100 (green), 300 (blue), 

and 1000 (black).  
 

Figure 6. Effect of density difference on time variation of (a) the average fall velocity, (b) 
the root-mean-square value of y, (c) percentage of light particles remaining in the droplet 
(based on total number initially in droplet), and (d) mixing measure lightG  for the light 

particles. Results in (a) and (b) are shown for both the heavy particles (dark lines) and the 
light particles (dashed lines) with 3000 N . Curves are shown for   values of 0.1 (red 

lines, A), 0.3 (green lines, B), 0.5 (blue lines, C), 0.7 (orange lines, D), and 0.9 (black 
lines, E).   
 
Figure 7. Diagram of the experimental set-up including (A) the black background, (B) the 
injection syringe, (C) the lighting system, (D) the video camera, (E) the ruler, and (F) the 
vessel.  
 
Figure 8. Photo of the particle positions of a falling droplet, with initial droplet diameter 

mm8.3L , in experimental set 1 at dimensional times (seconds): (a) 0t  , (b) 8.0t , 
(c) 8.1t , (d) 8.3t , and (e) 3.4t . The large particles (red) are about 2.2 times 
larger than the small particles (gold). 
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Figure 9. Photos of the particle positions of a falling droplet with initial droplet diameter 
mm4L  in experimental set 2 at dimensional times (seconds): (a) 0t , (b) 2.1t , (c) 
7.2t , and (d) 2.4t . The heavy particles (silver) are 14% heavier than the light 

particles (red). 
 
Figure 10. Photos of the particle positions of a falling droplet with initial droplet diameter 

mm5.3L  in experimental set 3 at dimensional times (seconds): (a) 0t  , (b) 
44.0t , (c) 94.0t , (d) 4.1t , and (e) 74.1t . The large/heavy particles (silver) are 

27% larger and 3.2 times heavier than the small/light particles (red). 
 
Figure 11. (a) Experimental droplet fall velocity versus time for experimental set 1 
(squares), set 2 (circles), and set 3 (triangles). The lines are fits to the data. (b) Droplet 
fall velocity divided by the theoretical HR solution in Eq. (8). 
 
Figure 12. Plots showing the percentage Tp  of each type of particle contained in the 
vertical tail as a function of dimensionless time. Percentages are based on the total 
number of each type of particle for (a) experimental set 1, (b) set 2, and (c) set 3. Solid 
lines represent heavier (or larger) particles and dashed lines represent lighter (or smaller) 
particles.  
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Table 1. Characteristics of particles used in the experiments. 
 

Particle 
Label 

Material Color 
Diameter 

(mm) 
Density 
(g/cm3) 

Isolated 
particle fall 

velocity 
(mm/s) 

A Glass Gold 0.36 03.0  2.44 ± 0.10 0.39  0.1 
B Glass Red 0.78 05.0  2.55 ± 0.16 1.7  0.3 
C Aluminum Silver 0.77 01.0  2.86 ± 0.35 2.1  0.1 
D Chrome steel Silver 0.96 01.0  8.94 ± 1.9 13.0  0.2 

 

 
 
 
 
Table 2. Parameters characterizing the experimental data sets. The average values of the 
initial particle droplet diameter L, the droplet Reynolds number Red, and the initial 
number of particles 0N  are averaged over the different experimental runs. 

 

Set 
# 

Particles in 
Suspension 

    
Avg. 

L 
(mm) 

Avg. 

dRe  

 

p  

(g/cm3) 
d  

(mm) 
Avg. 0N  

1 A & B 0.022 1.43 4.1 0.69 2.495 0.61 156 ± 18 
 

2 
 

B & C 0.057 0.02 4.2 0.87 2.705 0.775 85 ± 10 

 
3 
 

B & D 0.556 0.24 3.7 1.94 5.75 0.87 44 ± 9 
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Figure 1. Plot showing formation of tail behind a falling monodisperse suspension droplet 
with 4.1Re d . Images are shown at times (a) 0* t , (b) 0.2, (c) 0.4, (d) 0.6 and (e) 0.8.  

 
 
 
 

     
 (a) (b) (c) 
 
Figure 2. Time variation of (a) the dimensionless droplet fall velocity, (b) the number of 
particles remaining in the droplet, and (c) the ratio of the average droplet fall velocity to 
the theoretical estimate (16). The plots are for monodisperse particles with droplet 
Reynolds numbers 4.1Re d . The dashed line in (c) corresponds to the theoretical HR 

solution given by Eq. (8). 
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Figure 3. Plot showing the time variation of the root-mean-square y-position (solid line) 
and the value of 4/)( *

min
*
max yy   (dashed line) for a monodisperse droplet. 

 
 

 
Figure 4. Time series of a droplet with 3000 N , showing preferential leakage of lighter 

particles into the droplet tail, for a case with particles with two densities with 5.0 . 

Images are shown at times (a) 0* t , (b) 0.2, (c) 0.4, (d) 0.6 and (e) 1.0. The light 
particles are shown in blue and the heavy particles in red.    
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Figure 5. Percentage of initial particles remaining in the droplet as a function of 
dimensionless time for different values of the initial particle number 0N . Heavy particles 

(solid lines) and light particles (dashed lines) are shown for a series of cases with 5.0  

and 4.1Re d . Colors correspond to cases with 500 N  (red), 100 (green), 300 (blue), 

and 1000 (black).  
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 (a) (b) 
 

     
 (c) (d) 
 
Figure 6. Effect of density difference on time variation of (a) the average fall velocity, (b) 
the root-mean-square value of y, (c) percentage of light particles remaining in the droplet 
(based on total number initially in droplet), and (d) mixing measure lightG  for the light 

particles. Results in (a) and (b) are shown for both the heavy particles (dark lines) and the 
light particles (dashed lines) with 3000 N . Curves are shown for   values of 0.1 (red 

lines, A), 0.3 (green lines, B), 0.5 (blue lines, C), 0.7 (orange lines, D), and 0.9 (black 
lines, E).   
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Figure 7. Diagram of the experimental set-up including (A) the black background, (B) the 
injection syringe, (C) the lighting system, (D) the video camera, (E) the ruler, and (F) the 
vessel.  
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Figure 8. Photos of the particle positions of a falling droplet, with initial droplet diameter 

mm8.3L , in experimental set 1 at dimensional times (seconds): (a) 0t  , (b) 8.0t , 
(c) 8.1t , (d) 8.3t , and (e) 3.4t . The large particles (red) are about 2.2 times 
larger than the small particles (gold). 
 
 
 

(a) (b) (c) (d) (e) 
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Figure 9. Photos of the particle positions of a falling droplet with initial droplet diameter 

mm4L  in experimental set 2 at dimensional times (seconds): (a) 0t , (b) 2.1t , (c) 
7.2t , and (d) 2.4t . The heavy particles (silver) are 14% heavier than the light 

particles (red). 
 
 
 

(a) (b) (c) (d) 
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Figure 10. Photos of the particle positions of a falling droplet with initial droplet diameter 

mm5.3L  in experimental set 3 at dimensional times (seconds): (a) 0t  , (b) 
44.0t , (c) 94.0t , (d) 4.1t , and (e) 74.1t . The large/heavy particles (silver) are 

27% larger and 3.2 times heavier than the small/light particles (red). 
 

(a) (b) (c) (d) (e) 



 44

 

 
 (a) (b) 
 
Figure 11. (a) Experimental droplet fall velocity versus time for experimental set 1 
(squares), set 2 (circles), and set 3 (triangles). The lines are fits to the data. (b) Droplet 
fall velocity divided by the theoretical HR solution in Eq. (8). 
 
 
 
 

 
 (a) (b) (c) 

 
Figure 12. Plots showing the percentage Tp  of each type of particle contained in the 
vertical tail as a function of dimensionless time. Percentages are based on the total 
number of each type of particle for (a) experimental set 1, (b) set 2, and (c) set 3. Solid 
lines represent heavier (or larger) particles and dashed lines represent lighter (or smaller) 
particles.  
 
 

   
 


