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Abstract
The problem of a suspension droplet falling under gravity was examined for polydisperse
droplets composed of a mixture of particles with different densities and sizes. The study
was conducted using both simulations based on oseenlet particle interactions and
laboratory experiments. It was observed that the hydrodynamic interactions of the
particles within the suspension droplet allow a polydisperse collection of particles to fall
as a coherent droplet, even for cases where the difference in particle terminal velocity
would cause them to quickly separate from each other in the absence of hydrodynamic
interactions. However, a gradual segregation phenomenon is observed in which
lighter/smaller particles (with lower terminal velocity) preferentially leave the suspension
droplet by entering into the droplet tail, whereas heavier/larger particles (with higher
terminal velocity) remain for longer periods of time within the droplet. When
computations and experiments are performed for bidisperse mixtures, with two particle
densities or two particle sizes, a point is eventually reached where all of the
lighter/smaller particles are ejected into the droplet tail and the droplet continues to fall

with only the heavier/larger particles.



1. Introduction

A suspension droplet is a cluster of particles held in suspension in a surrounding
fluid. If the particle density is different from that of the surrounding fluid, the suspension
droplet either falls or rises (for heavier or lighter particles, respectively) in the presence
of a gravitational field. This problem has generated significant interest in the fluid
mechanics community in part because it is an apparently simple problem that leads to
highly complex and interesting dynamics and in part because at sufficiently high particle
concentrations, it is a flow field that is dominated by the hydrodynamic interaction
between the particles. The problem is relevant to a number of geophysical and
environmental applications in which clusters of heavy particles generate turbulence as
they sink in a lighter fluid. For instance, in direct numerical simulations of homogeneous
turbulence of a particulate fluid under gravity, Elgobashi and Truesdell (1993) found that
turbulence generation by falling groups of particles was a primary source of turbulence
generation. Similar physics occurs for buoyant plumes of particles that are lighter than
the surrounding fluid (Hurley and Physick, 1993). Suspension droplet dynamics is also
relevant to applications involving smoke inhalation in the human lung. A number of
investigators have observed that in cases with high particle concentrations, the
penetration of particles into the lung in inhaled cigarette smoke is significantly greater
than predicted based on single-particle settling velocities (Martonen, 1992; Phalen et al.,
1994; Robinson and Yu, 2001). One explanation that has been proposed for this
difference is that smoke particles move through the upper airway region in the form of a
suspension cloud, where the hydrodynamic interaction of particles within this cloud

allows the particles to travel more rapidly relative to the surrounding fluid than would be



the case for isolated particles. The ability to accurately model the degree of penetration of
particles into the lung is very important in understanding the health effects of inhaling
cigarette smoke, as well as related problems of inhalable drug dispersal and silicon dust
inhalation in construction and mining operations.

The dynamics of a small number of settling particles falling under gravity has
been examined in a number of studies (Bretherton, 1964; Jataweera et al., 1964;
Hocking, 1964; Vasseur and Cox, 1977; Ekiel-Jezewska and Felderhof, 2005, 2006a),
which have lead to identification of different stable and unstable particle configurations.
As the number of particles increases, dynamical systems approaches become increasingly
difficult and the problem must instead be approached as one of suspension dynamics,
although computational approaches continue to solve for the system at the individual
particle level. The droplet dynamics is typically characterized by two different Reynolds

numbers, called the droplet Reynolds number Re, =2r,U, ;. /v (also sometimes called
the cloud Reynolds number) and the particle Reynolds number Re , =2r,U/v. Here, r,
and r, are the particle and droplet radii, respectively, v is the fluid kinematic viscosity,
U, ux 1s a theoretical estimate of the droplet settling velocity based on the initial number

of particles in the droplet, and U is the settling velocity of an isolated particle in an
otherwise stagnant fluid.

The settling of an initially spherical particle suspension droplet under gravity was
examined by Nitsche and Batchelor (1997) low Reynolds-number clouds using both
experiments and numerical simulations. The numerical simulations were performed by
representing each particle by the sum of a stokeslet and a doublet that induce a velocity

field on all other particles. This computational approach requires that both the droplet and



the particle Reynolds numbers are small compared to unity. Nitsche and Batchelor
observed that the suspension droplet settles significantly more rapidly than would be
predicted for a cloud of non-interacting particles due to the fluid motion induced by the
particle settling. They also showed that a reasonable approximation for the suspension
droplet settling velocity can be obtained from the Hadamard-Rybczynski (HR) solution
for a spherical droplet of an immiscible fluid immersed in another fluid at low Reynolds
number (see also Ekiel-Jezewska et al., 2006b).

As the suspension droplet falls downward, a series of transitions in the flow
pattern takes place (Adachi et al., 1978; Noh and Fernando, 1993). As originally
described by Adachi et al (1978), the particle cloud in certain cases adopts a toroidal
shape which breaks up into some number of offspring droplets, where the offspring
droplets then repeat this process. The evolution of a suspension droplet into a toroidal
shape is analogous to a similar process that occurs for a droplet of a heavy liquid
immersed in a lighter liquid (Kojima et al., 1984). These transitions were examined in
detail both experimentally and using stokeslet-based simulations by Machu et al. (2001)
and Metzger et al. (2007) for low Reynolds number droplets with spherical particles and
by Park et al. (2010) for suspensions formed of fibers.

Subramanian and Koch (2008) examine different regimes of suspension droplet
dynamics based on the particle Reynolds number the particle concentration, and the
droplet size. They argue that for cases where the particle Reynolds number and the
particle concentration are small, but the droplet Reynolds number is not small, a more
accurate computational approach is obtained by replacing the stokeslet and the potential

doublet in the simulation approach of Nitsche and Batchelor with the steady Oseen



solution for flow past a sphere. This oseenlet-based approach was used by Pignatel et al.
(2011), along with experiments, to explore suspension droplet dynamics at finite droplet
Reynolds numbers. Other computational methods have also been used to examine
suspension droplet flows. For instance, Bosse et al (2005) approximated the fluid-particle
interaction force as a distributed body force on a grid, from which they solved for the
induced flow field using a pseudo-spectral technique. Chen and Marshall (1999)
employed a vorticity-based method in which the curl of the fluid-particle interaction force
acts as a source term in the vorticity transport equation. The solution was obtained (in
two dimensions) using a Lagrangian approach that employed a combination of vortex
blobs and point particles. A related vorticity-based method was employed in three
dimensions by Walter and Koumoutsakos (2001), in which a vortex-in-cell method was
used to compute the velocity field.

All of the papers described above consider suspensions formed of monodisperse
particles, with uniform particle diameter, density, etc. In a polydisperse mixture, with
variation in particle properties differ, the sedimentation process will generally lead to
particle segregation due to differences in particle settling velocity. Consequently, the
particles within a settling polydisperse suspension droplet would rapidly segregate in the
absence hydrodynamic interaction between the particles. In the presence of
hydrodynamic interaction, the recirculating flow field within the suspension droplet acts
to inhibit particle segregation, provided that the heterogeneities between the particles are
sufficiently small and the particle concentration sufficiently high. Similar inhibition of
particle segregation in a mixture due to particle hydrodynamic interaction was noted by

Roeder et al. (1995) in a centrifugal flow field.



The current paper uses a combination of oseenlet-based simulations and
laboratory experiments to examine the dynamics of falling polydisperse suspension
droplets. The simulations and experiments are both subject to a number of limitations,
and as a consequence cover somewhat different regimes of suspension droplet motion.
Specifically, the oseenlet-based computation method (like the stokeslet-based method

used for vanishing Re ) is valid only for small particle concentrations and small particle
Reynolds numbers Re,. In the experiments, we seek to initialize the flow field as a

sphere of well-mixed polydisperse particles in a stationary liquid bath. A cluster of
particles placed at the top of the liquid bath is observed to form a structure that
reasonably resembles this idealization at sufficiently low droplet Reynolds numbers and
high particle concentrations; however, at low particle concentrations, we have
experienced difficulty in obtaining a well-mixed spherical structure at the onset of the
experiments. These limitations force the simulations to focus on low concentration
clusters and the experiments to focus on high concentration clusters, although both
approaches have values of the droplet Reynolds number near unity and both are
conducted at small particle Reynolds numbers. It is of interest that despite the differences
in particle concentration, both experiments and computations exhibit a similar
mechanism leading to particle segregation from the suspension droplet.

The computational method used in the paper is described in Section 2a, followed
by a summary of computational results for monodisperse and polydisperse mixtures. We
have examined a wide assortment of polydisperse mixtures, including bidisperse mixtures
with two different particle densities, bidisperse mixtures with two different particle sizes,

and polydisperse mixtures with a distribution of particle size and density. The mechanics



in all cases examined are similar, depending only on differences in the particle terminal
velocity. For brevity, Section 2 focuses on bidisperse mixtures with two different particle
densities. An experimental investigation is presented in Section 3 for settling of
suspension clouds with bidisperse particle mixtures with particles of different sizes and

densities. Conclusions are presented in Section 4.

2. Computational Method and Results
2.1. Oseenlet Simulation Method for Particle Hydrodynamic Interaction
Computation of the particle interactions using stokeslets requires that both the

particle Reynolds number Re, and the cloud Reynolds number Re, be small compared

to unity. The latter restriction arises from the fact that the Stokes equation is only valid
within distances from the particle centroid that are small compared to the inertial

screening length /=r,/Re . A uniformly valid solution for the flow around a particle

with low particle Reynolds number is given by the Oseen solution (Proudman and
Pearson, 1957), from which the flow field generated by a spherical particle with radius

r, translating with a velocity Uge, relative to the surrounding fluid at low particle

Reynolds number can be written in a local spherical coordinate system, with the polar

axis (@ = 0) coincident with the direction of particle motion, as
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In this equation, Re; =2r,U /v is the instantaneous particle Reynolds number based on

the particle slip velocity U = |v -u

, where v is the particle velocity and u is the fluid

velocity at the particle centroid (evaluated as if the particle were not present). This
solution approaches the Stokes solution for flow past a sphere within a region r <</
near to the particle, but at large distances » >> ¢ the velocity field approaches that of a
potential point source, with decay rate of O(1/7°). The fluid emitted from this source is
recovered in a back-flow region located within a thin wake near € = 7, within which the
velocity magnitude decays as O(1/r).

The fluid velocity u, at the centroid of particle 7, where i = 1,...,NV, is obtained at

each time step by solution of a matrix equation of the form

“,:Z WX, x;)(v,—-u,). (2)

J#I

The matrix W is obtained using (1) after rotating the local spherical coordinate system
into a global coordinate frame. Since the particle Stokes number is vey small in the
current simulations, we adopt the same assumption used by numerous previous
investigators (Nitsche & Batchelor, 1997; Subramanian & Koch, 2008; Pignatel et al.,

2011) that the particle inertia is negligible, so that the fluid slip velocity Uy is set equal



to the particle terminal velocity U in an otherwise stationary fluid (and Reg and Re,

become identical).

The governing equations for the suspension droplet motion can be non-
dimensionalized by selecting the characteristic fluid length and velocity scales as the
initial droplet diameter L and the terminal settling speed U of an isolated particle of

nominal size and density, where the latter is given by
3)

and g, =(1-x)g is the reduced gravitational acceleration and y=p,/p, is the

density ratio. For computations with variable size and density particles, it is convenient to

define a nominal particle density p, and diameter d by

B | & B | & , 1/2
ppzﬁzl Py s d= WZ d; | . (4)

n=1

where N is the total number of particles. The nominal particle diameter is specified by
averaging the square of the diameter to ensure that the average terminal velocity (for an

isolated particle) will be equal to that for particles whose diameter are equal to the

nominal value d . For a mixture, the density ratio y = p ./ p, is based on the nominal

particle density. The Froude number Fr=U/,/g,L and the Stokes number
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St = ,BPJ *U/18ulL for this flow can be expressed in terms of the particle Reynolds

number as

Re, d/L 5
18%( ). (5)

St=Fr’ =

The results plotted in the paper are in terms of dimensionless variables in which all length
scales are nondimensionalized by the droplet diameter L, all velocity scales are
nondimensionalized by particle terminal velocity U (computed using (3) with the nominal
particle diameter and density), and all time scales are nondimensionalized using L/U .

Dimensionless variables are denoted by an asterisk.

2.2. Suspension Droplets with Monodisperse Particles

For monodisperse particles, the independent dimensionless parameters of the flow

include droplet Reynolds number Re,, dimensionless particle diameter & =d/L,
density ratio y =p,/p,, and the initial number of particles N, contained within the

droplet. Several previous studies of monodisperse suspension droplets have been reported
which detail how the droplet fall velocity and shape change with variation of these
parameters (Nitsche & Batchelor, 1997; Metzger et al., 2007; Subramanian & Koch,
2008; Pignatel et al., 2011). An important characteristic noted in this literature is the
tendency of the falling suspension droplet to develop a tail formed of particles that leak

away from the droplet near the droplet rear.
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Results are reported in the current section for a case with Re, =1.4, d/L=0.04,
x=1/3, and N, =300, which serves as a baseline for the polydisperse droplet
simulations. The initial particle concentration is given by ¢, = N,(d /L)’ =0.019 and the
particle Reynolds number is Re, =0.004, so the conditions required for use of the

oseenlet simulation approach are well satisfied. A time series showing formation of the
droplet tail for this baseline case is given in figure 1. The suspension droplet initially has
the form of a sphere, but a tail of trailing particles shed from the rear of the droplet
gradually develops. The tail grows progressively longer with time since the particles
within the tail fall at nearly the terminal velocity for an isolated particle, whereas the
particles within the droplet fall at a much faster speed due to the hydrodynamic
interaction between the particles. The droplet shape becomes deformed in time, with a
slight flattening of the ball-like shape in the vertical direction. The fluid velocity field in a
frame traveling with the droplet is similar to that shown by Pignatel et al. (2011). The
flow surrounding the droplet has a toroidal structure qualitatively similar to a Hill's

spherical vortex, with stagnation points at the front and back.

The dimensionless fall velocity of the particles within the droplet, U, and the
current number of particles in the droplet, N(¢), are plotted in figure 2 as functions of

dimensionless time. In order to allow some deformation of the suspension droplet, we use
an effective droplet diameter equal to 1.25 to determine which particles are in the droplet,
which is 25% larger than the nominal droplet diameter. All particles are observed to fall

within the droplet for a short time at the beginning of the computation (approximately

t* <0.5), following which formation of the droplet tail leads to a gradual decrease in
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number of particles within the droplet. The fall velocity reaches a maximum value at
about ¢ =0.5, which is also the time at which the particle tail starts to form. The peak
magnitude of the fall velocity is substantially greater than unity, indicating that the
suspension droplet falls much faster than an isolated particle. The droplet fall velocity
decreases for dimensionless times ¢~ greater than 0.5 as the particles gradually move
from the droplet into the tail and the tail grows progressively longer.

A simple theoretical expression for droplet fall velocity is obtained by treating the

particle suspension as a droplet of another (immiscible) fluid with effective density p,
and viscosity ,. The solution for drag on a fluid droplet suspended in an immiscible

liquid was given independently by Hadamard (1911) and Rybczynski (1911) as

(6)

Ud,HR =

(Py =P )Ly + 1y
124, Myt 31

The density difference in (6) can be written in terms of the particle volume concentration

¢ = N&® within the droplet as p, — p; =9(p, —p,). The effective viscosity is given for

small concentrations by the Einstein expression
py =, (145 9). (7)

Linearizing (6) for small concentration values and dividing by the isolated particle fall

velocity U yields
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Ud,HR =——=—Ng¢, (8)

where N is the number of particles in the droplet. A plot of the ratio U, (¢)/ [g N(t)e] of

the computed and theoretical droplet fall velocity as a function of time is given in figure
2c. The computed value of this ratio is initially close to unity, and then it decreases
gradually in time to about 0.9. The oscillations in value of this ratio observed in the figure
are a consequence of shape oscillations of the suspension droplet. The computed velocity
value shown in figure 2 is close to that obtained both experimentally and computationally
by Pignatel et al. (2011).

Two measures of the length of the particle tail are shown in figure 3 — the root-

mean-square position y. ~ of the particles in the y-direction and the ratio

(y.. —y..)/4. For particles that are uniformly distributed between y.  and y.. ,
these two measures would be equal, so the difference between these measures provides

an indication of the skewness of the particle distribution. The value of y, = remains close

to the value for a uniform sphere for ¢* <1, after which the growth of the droplet tail

causes . = to increase nearly linearly with time. The value of (y_ _ —y.. )/4 is larger
than the corresponding value of y. , as presence of the droplet implies a large number of

particles with values of y" near y_. . Over time, the two measures approach each other

as an increasing number of the particles are drawn out into the tail region.

2.3. Suspension Droplets with Polydisperse Particles
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Computations for a wide range of polydisperse suspension droplets have been
conducted, including a series of cases with particles of two different sizes, a series with
particles with two different densities, and many flows with a distribution of both particle
size and density. All of the cases examined exhibited the same essential physics, which
seems to depend on the difference in value of particle terminal velocity rather than which
specific property is varied. For the sake of brevity, the current section presents
polydisperse suspension droplet results for a representative series of cases where half the
particles have one density value and the other half have a different density value. The

particle polydispersity can be characterized by a dimensionless parameter

p E‘ppz - ppl‘/2,5p. A full report of the different computational cases examined is

given in the thesis by Faletra (2014).
We begin by examining the effect of droplet concentration on the segregation
phenomenon by simulating droplet settling for cases in which the initial number of

particles N, varies between 50 and 1000, where all other parameters are held constant at
B=05,d/L=004, y=1/3, Re, =14, and Re, =0.004. A typical case in which

particle hydrodynamic interaction has a strong effect on inhibiting particle segregation is

that of N, =300. The early evolution of the droplet in this case is shown in a time series

in figure 4. Similar to the simulations for monodisperse particles, the suspension droplet
falls with nearly a spherical shape with a tail of trailing particles shed from the rear of the
droplet. As time passes, the tail grows progressively longer because the particles in the
tail fall at approximately the terminal velocity of an isolated particle, whereas the
particles in the droplet fall much faster due to the hydrodynamic interaction between the

particles in the droplet. Due to the strong particle hydrodynamic interactions, some of the
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light particles are able to remain inside the suspension droplet for a long period of time.
At the same time, it is clear that the lighter particles have a much higher probability of
passing into the drolet tail than do the heavier particles, particularly near the start of the
computation. The heavier particles do eventually start to enter into the tail, but at a lower
rate than the lighter particles. At long time, a point is reached where all of the light
particles are removed from the droplet and form a very long tail, after which the rate at
which particles enter into the tail decreases significantly.

For small numbers of particles (e.g., N, =50 or 100), the weak

hydrodynamic interaction between the particles is insufficient to significantly slow down
the separation of light and heavy particles that occurs due to the difference in terminal
velocity. The particles of the two densities separate as two dispersed clouds before the
suspension droplet has fallen more then a few droplet diameters. A comparison of cases
with different initial concentration values is given in figure 5, in which the percentage of
initial particles that remain in the droplet is plotted as a function of time for cases with
N, =50, 100, 300, and 1000. These percentages are shown separately for the light
particles and the heavy particles. The results for cases with N, =50 and 100 are almost
the same, and both are typical of cases in which the amount of hydrodynamic interaction
is too small to significantly inhibit particle segregation. Increase in value of N, above
100 results in delay of the separation of light particles from the droplet and increase in the
rate of separation of heavy particles from the droplet. The delay in separation of light
particles is due to the strong recirculating flow surrounding the droplet, which acts to
suspend particles with different terminal velocities. The increase in rate of transport of

the heavier particles into the tail for large values of N, is opposite to the trends observed

16



for leakage rate in monodisperse suspension droplets, for which the leakage rate

decreases with increase in N, (Metzger et al., 2007; Pignatel et al., 2011). We speculate
that the increase in leakage rate for the polydisperse cases with large N, is a

consequence of the disturbance to the heavy particles caused by relative motion with the

lighter particles. The cases with large N, values are more susceptible to these

disturbances because the light particles remain in the droplet for a longer time period than

is the case with smaller values of N, .

Cases in which the suspension droplet dynamics is dominated by hydrodynamic
interaction between the particles are of particular interest, since these cases provide an
illustration of the ability of hydrodynamic interaction to inhibit particle segregation. To
explore such problems further, results are reported for a series of computations with

different values of £, but with all other parameters fixed to the same values as used for

the simulation shown in figure 4. The average particle fall velocity v, =-dy. /dt is
plotted as a function of time in figure 6a for values of f ranging between 0.1 and 0.9.

This velocity is computed separately for the light and heavy particles, which are plotted
in figure 6a using dashed and solid curves, respectively. The fall velocity of all particles
reaches a maximum value at about ¢* = 0.4, with roughly the same value for both light
and heavy particles. The value of v, decreases with time after this peak value is
achieved, which is associated with the decrease in number of particles in the droplet as a
result of tail formation. Because the light particles have a greater tendency to move into

the tail than do the heavy particles, the average fall velocity of the light particles

decreases with time more quickly than for the heavy particles. Since the isolated particle
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fall velocity (and hence also the fall velocity of particles in the tail) decreases with

decrease in particle density p, , the average fall velocity of the light particles in figure 6a
decreases as fincreases. For the case with £ =0.9, the light particles have lower density

than the surrounding fluid and the long-time value of v, for these particles is negative

(indicating that the particles rise upward in the fluid). The fall velocity for the heavy
particles is observed to have a similar value for all values of  examined.

The degree of particle spread in the vertical direction is quantified using the root-
mean-square position of the particles in the y-direction, y. , which is plotted as a
function of time in figure 6b. Small values of y. = can be achieved either if particles all

remain in the droplet or if particles are quickly removed from the droplet and pass into

the tail. The largest values of y. occur when particles move very slowly from the

droplet into the tail. The rate of passage of the light particles from the droplet into the tail
can be quantified by plotting the percentage of the initial light particles that remain in the
droplet as a function of time, shown in figure 6¢c. The results indicate a monotonic

increase in the segregation rate as the value of £ increases.
By observing the difference in the value of y  for the heavy and light particles

in figure 6b, we can infer the different extent to which the two types of particles have

become spread out into the droplet tail. For the case with £ =0.1, there is only a slight
difference in density between the two particles types, and the values of y, = in figure 6b
consequently remain fairly close to each other, with the y. — values for the lighter

particles slightly higher due to their greater tendency to pass into the droplet tail. Cases

with B values ranging from 0.3 to 0.9 exhibit very different values of y. between the
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two particle types. For the heavy particles, particles with densities closest to the nominal

density (small f) have the smallest values of y, , and particles with higher densities
(larger ) have larger values of y’ . A similar trend holds during the initial part of the

calculation for the lighter particles. However, as time progresses the value of y. = for the

light particles is observed to asymptote to a nearly constant value. Both this asymptotic
value and the time at which this flattening of the y, = curve occurs decrease as /3
increases. In this asymptotic state, all of the lighter particles have been removed from the
droplet and passed into the tail. Since all of the light particles in the tail fall at
approximately the same speed, the value of y  for the light particles remains
approximately constant in this state.

There are numerous mixing and segregation indices used in the literature, many of
which are adopted for specific problems (Li and McCarthy, 2005; Jain et al., 2005). A
mixing index proposed for DEM simulations by Amar et al. (2002) would seem to be
applicable for the problem addressed in the current paper. In this paper, a generalized

mean mixing index is defined for a given coordinate direction (say, y) as

,~=[Niz (y_,—y,e_,v)} / {NLZ (yk—y,ef)} 9)

i Jj=1 ot k=1

where y, . is taken as the minimum value of y occupied by any of the particles. The
numerator of (10) is a sum over all N, particles of type i, whereas the denominator is a

sum over all N,, particles in the system. A value of G equal to 1 indicates that particle
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type i is distributed within the solution domain in a similar manner to all of the other
particles. A value of G less than 1 indicates that particles of type i tend to have lower
value of y than the average value for the entire particle set, and a value greater than 1
indicates that particles of type i tend to have higher values of y than the average value for
the entire particle set.

The mixing measure G, for the light particles is plotted as a function of time for

different values of £ in figure 6d. The initial value of G, ,, is equal to unity for all cases,

light
indicating that the initial condition is well mixed. For small values of ¢°, the value of

G, . increases with time as the lighter particles preferentially segregate into the droplet

light

tail. At some point around ¢~ ~ 1.5, a maximum value of G, is attained, after which the

ight
mixing measure gradually decreases for the remainder of the computation as the heavier

particles begin to enter into the droplet tail in larger numbers. For £ <0.5, the value of
the mixing measure is found to exhibit a marked increase with increase in £, indicating

that the extent of particle segregation becomes substantially greater as the density

difference between the particles increases. The trend breaks down for £ > 0.5, where we
notice that the three cases with #=0.5, 0.7, and 0.9 all have similar values of the mixing

measure.

3. Experimental Method and Results
3.1. Experimental Method
A series of experiments were conducted in which a particle suspension droplet

settles in a container filled with a transparent fluid. A diagram of the experimental set-up
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is given in figure 7. The vessel used in the experiments has inner cross sectional
dimensions of 9 cm by 9 cm, and was filled with the working fluid to a height of 28 cm.

The fluid used in the experiments consisted of a mixture of water-soluble UCONN oil

and water to create a fluid with a kinematic viscosity of 174x10°m?/s and a density of
0.95 g/em’. The container was lit from the side with white light from four 6400K
fluorescent tubes. A ruler with millimeter scale spanning the container height was
attached to the other side, and the container was placed in front of a black background.
The video camera used to capture the images of the falling droplet was a Sony HDR-
SR 12 with a frame rate of 30 frames per second.

Combinations of four different types of spherical particles were used in the
experiments, the characteristics of which are given in table 1. The particle size
distributions were measured using a digital imaging system (Image Pro Plus 6.0, Media
Cybernetics), where the diameter given in the table is the mean diameter and the
uncertainty stated is equal to one standard deviation, with sample sizes between 70-100
particles. The particle density was calculated by measuring the mass of a sample of
particles and dividing it by the measured volume of the same sample. The mass was
measured with a scale that has a precision of 0.0001 grams, and the volume was
measured by putting the sample into a graduated cylinder with a 0.2 ml scale and adding
a known volume of water into the graduated cylinder. The error in the density value that
is given is calculated using the standard error propagation equation from the known
uncertainty of the mass and volume measurements. The measured values of both the
particle diameters and densities were found to be consistent with manufacturer specified

values. The terminal settling velocity of each particle is determined by measuring the
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position and time from a series of time-stamped photos pulled from a video of the falling
particle, with a time precision of 0.03s and a length precision of 1 mm. The average
particle velocity is calculated by averaging the velocity from 20 samples, and the
uncertainty is equal to one standard deviation from the mean.

The particle suspension was formed by first measuring out the two sets of

particles to be used in the given experiment. The particle number ratio N, /N, for all of

the experiments was set equal to 1. To estimate particle number, tweezers were used to
count out 100 particles of each particle type, and the mass of the 100 particles was
recorded with an accuracy of 0.0001 grams. Using these values, the number of particles
in a sample was obtained by measuring the sample’s mass and dividing by the mass per
particle. Once an equal number of particles of each type were measured, both sets of
particles were put in a small closable container and the container was vigorously shaken.
The particles were then put into a syringe with a 4 mm diameter opening and, with the
syringe extended to leave empty space for mixing, the syringe was vigorously shaken to
ensure that the particles were well mixed. Fluid from the vessel was then added to the
particles in the syringe, and the syringe was vigorously shaken again to ensure an even
distribution of the two types of particles within the suspension. The particle suspension
was injected into the fluid in the test vessel by holding the syringe vertically with the
syringe tip about lecm above the surface of the fluid. The suspension was manually
injected into the container by applying slight pressure to the syringe causing a droplet to
slowly form at the end of the syringe. The droplet falls into the fluid when the weight of

the droplet exceeds the surface tension force between the droplet and the syringe.
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The number of particles in the suspension droplet was estimated by measuring the
mass of a series of droplets that were dripped onto a surface, using the same approach for
droplet generation as used in the experiments. Sample sizes of 21, 20, and 28 were used
for experiment sets 1, 2, and 3 respectively. The known droplet concentration was then
used to calculate the approximate number of each particle type in each sample droplet.
The average total number of particles in a droplet and the associated root-mean square
uncertainty were computed from the sample, giving the values listed in table 2. Each

droplet consisted of approximately even amounts of N, and N,, with an uncertainty

equal to half of the uncertainty for N, listed in table 2.

3.2. Experimental Results

Experimental runs were first performed in a vessel filled with a lower viscosity
fluid to examine the evolution of a suspension droplet with much lower particle
concentration. The lower viscosity fluid allowed for the falling particles to spread out
more with the initial impact and form a suspension droplet with a much lower initial
concentration. Similar to what was observed in the computations with low particle
concentrations (figure 5), the two types of particles immediately start to separate from
each other and there is no droplet tail formation. Because the particles are spread out
from each other, there is significantly less hydrodynamic interaction between the falling
particles, which is the driving mechanism for the tail formation.

As we are primarily interested in particle segregation in cases with significant
particle hydrodynamic interaction, the primary focus of the experiments was on cases

with sufficiently large particle concentration that the entire particle set settles downward

23



as a single droplet, with the exception of the thin tail that trails behind the droplet. Three
sets of experiments were performed, with multiple runs performed for each set. The
characteristics of each set are listed in table 2. In experiment set 1, the particles have the
same density but different particle radii. In experiment set 2, the particles have nearly the
same radius, but different densities. In experiment set 3, both the particle radius and

density are different. The mean values of L and Re, were determined by averaging

results from 5, 9, and 8 runs for experimental set numbers 1, 2, and 3, respectively. In
some of the experimental runs, the droplet was initially teardrop shaped instead of
spherical, as a result of its injection into the fluid in the vessel. In such cases, the particles
that enter the fluid last are the ones contained in the rear of the teardrop, and are observed
to quickly break apart from the droplet, leaving a roughly spherical droplet composed of
the remaining particles. All of the experimental analysis starts with the droplet in this
spherical shape, and does not include the particles that were separated from the droplet at
the time of initial injection.

Runs with experimental set 1 were conducted to study the problem of a falling

suspension droplet containing two different size particles, with as‘rpz _’”,;1‘/ d=143.

Figure 8 shows a time series of photos of a the settling suspension droplet falling, where
the large particles (red) are about 2.2 times larger than the small particles (gold). The tail
that forms behind the droplet consists of both small and large particle sizes, but the small
particles are more numerous in the tail region than the large particles. Runs with
experimental set 2, shown in figure 9, were conducted to study the problem of a falling

suspension droplet containing two different density particles, with f = 0.067 . The heavy

particles (silver) are 14% heavier than the light particles (red). The droplet tail contains
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both heavy and light particles, but the light particles are significantly more numerous.
Experimental set 3, shown in figure 10, compares particles with a substantial difference

in both particle size and density, with ¢ =0.44 and S =0.473. The tail behind the

droplet consists of only smaller/lighter particles for the initial part of the run, until
eventually one larger/heavier particle enters the tail.

Plots of the droplet fall velocity with time are shown in figure 11a for experiment
sets 1-3. To calculate the velocity, position and time data are obtained from a series of
time-stamped video photos with a time precision of 0.03s and a length precision of 1
mm. The uncertainty of the experimental droplet fall velocity is computed using the
standard propagation of error equation from the measured uncertainty in the change in
particle distance and the change in time, and is found to be 1.0 mm/s, 1.0 mm/s, and 8.7
mm/s for sets 1, 2, and 3, respectively. The droplet velocity decreases with time, as was
also observed in the computations, due to the loss of particles from the droplet as the
particles migrate into the tail.

The percentage of each particle type that is contained in the tail was calculated as
a function of time. The uncertainty in the time is 0.03 s, and the uncertainty in the particle
count is 1 particle. The experimental values varied significantly between different runs
from the same experimental set due to variation in the initialization of the droplets. The
mean values are plotted in figure 12a-c for all of the experiment sets. Standard deviation
of these values are recorded as 3.0 for the dashed line and 5.5 for the solid line in figure
12a, 6.4 for the dashed line and 3.1 for the solid line in figure 12b, and 10.3 for the
dashed line and 1.5 for the solid line in figure 12c. Similar large variation between runs

of the same set also occurred in the experiments of Metzger et al. (2007). The plots in
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figure 12 confirm the experimental observation that the lighter/smaller particles were the
dominant particles in the tail, and the percentage of larger/heavier particles in the tail

decreases with increasing values of # and « .

The experimental droplet fall velocity was divided by the theoretical solution (8)
and is plotted with time in figure 11b. The droplet fall velocity is non-dimensionalized by
dividing by the average isolated particle settling speed for the different particle types that
make up the droplet. These isolated settling speeds were obtained empirically, and are
listed in table 2. The droplet diameter is measured with digital imaging software and has

an uncertainty of 1mm. The number of particles in the droplet with time is calculated by

subtracting the number of particles counted in the tail at that time from the initial number
of particles in the droplet. The uncertainty of the experimental droplet fall velocity
divided by the theoretical solution (8) is computed using the standard propagation of
error equation from the measured uncertainty in the fall velocity and the number of
particles, and is found to be 0.16, 0.03, and 0.25, for sets 1, 2, and 3, respectively.
Figure 11b shows that the value of the experimental droplet fall velocity divided by the
theoretical solution remains approximately constant with time at mean values of
approximately 0.65, 0.58, and 0.85 for sets 1, 2, and 3, respectively. The experimental
values of this velocity ratio are close to the value obtained computationally using the

oseenlet-based method, as shown in figure 2c.

4. Conclusions

An investigation of segregation of polydisperse particles of different sizes and

densities in a settling suspension droplet was performed using both computations and
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experiments. The computations approximated the particle hydrodynamic interaction
using an oseenlet-based simulation method that allows finite (non-small) values of the
flow Reynolds number, while still requiring that the particle Reynolds number is small.
The experiments were conducted by observing the fall of suspension droplets formed of
binary particle mixtures consisting of particles with different sizes and densities in a
viscous fluid.

The particle hydrodynamic interactions are of primary importance for the flow of
concentrated suspension droplets, for which the droplet settling speed is approximately an
order of magnitude larger than that of an isolated particle. The computed fall velocity of
the suspension droplet was compared against an approximate theoretical solution, and the
ratio of the computed to the theoretical values of droplet fall velocity are found to be
consistent with both experimental results from our study and with experimental and
computational solutions obtained by other investigators. Dynamics of bidisperse
suspension droplets depends strongly on the particle concentration. For low
concentrations, the amount of particle hydrodynamic interaction is insufficient to oppose
the gravitational separation of the particles, and the particle type with larger terminal
velocity quickly pulls away from the slower particles, leaving a deformed cloud of the
slower particles behind. When the particle concentration is sufficiently large, the particle
hydrodynamic interaction is sufficient to hold particles of both types together within the
suspension droplet, thus inhibiting particle separation and allowing the droplet to settle as
a single unit.

The current paper provides a detailed examination of suspension droplet dynamics

under conditions where strong particle hydrodynamic interaction holds the particle
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mixture together into one suspension droplet. As was observed previously for
monodisperse droplets, a falling suspension droplet with high concentration develops a
thin tail of trailing particles which slowly leak out from the rear portion of the droplet. A
novel segregation mechanism is observed to occur by which the particles with smaller
terminal velocity have a preferential tendency to be transported into the droplet tail,
whereas particles with higher terminal velocity have a higher tendency to remain within
the suspension droplet. Three different stages of particle segregation are observed — the
first in which only the slower particles are transported into the tail, the second with a
mixture of particles of different sizes/densities transported into the tail (but still
dominated by the slower particles), and the final stage in which all remaining particles in
the droplet are of the type with faster terminal velocity.

The essential problem examined in this paper concerns the inhibition of particle
segregation by the hydrodynamic interaction of the particles in a situation where the
particle terminal velocity differs within the mixture. This difference in terminal velocity
acts to try to pull apart the mixture (enhancing segregation), whereas the hydrodynamic
interaction acts to hold the mixture together (suppressing segregation). However, even in
cases with strong hydrodynamic interaction, segregation still occurs within certain
regions of the mixture near the edges of the suspension droplet, and particularly near the
droplet rear stagnation point. This basic problem occurs in many different particulate
flow problems in which particle agglomerates or clusters are transported relative to the
surrounding fluid. The model problem examined in the current paper should provide

insight into the ability of clusters formed of a mixture of different particle sizes and
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densities to hold their structure even in the presence of differences in drag and other fluid

forces, which attempt to tear the cluster apart.
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Figure Captions

Figure 1. Plot showing formation of tail behind a falling monodisperse suspension droplet
with Re, =1.4. Images are shown at times (a) ¢* =0, (b) 0.2, (c) 0.4, (d) 0.6 and (e) 0.8.

Figure 2. Time variation of (a) the dimensionless droplet fall velocity, (b) the number of
particles remaining in the droplet, and (c) the ratio of the average droplet fall velocity to
the theoretical estimate (16). The plots are for monodisperse particles with droplet
Reynolds numbers Re, =1.4. The dashed line in (c) corresponds to the theoretical HR

solution given by Eq. (8).

Figure 3. Plot showing the time variation of the root-mean-square y-position (solid line)
and the value of (y._ —y..)/4 (dashed line) for a monodisperse droplet.

Figure 4. Time series of a droplet with N, =300, showing preferential leakage of lighter
particles into the droplet tail, for a case with particles with two densities with f=0.5.

Images are shown at times (a) ¢ =0, (b) 0.2, (c) 0.4, (d) 0.6 and (e) 1.0. The light
particles are shown in blue and the heavy particles in red.

Figure 5. Percentage of initial particles remaining in the droplet as a function of
dimensionless time for different values of the initial particle number N,. Heavy particles
(solid lines) and light particles (dashed lines) are shown for a series of cases with £ =0.5
and Re, =1.4. Colors correspond to cases with N, =50 (red), 100 (green), 300 (blue),
and 1000 (black).

Figure 6. Effect of density difference on time variation of (a) the average fall velocity, (b)
the root-mean-square value of y, (¢) percentage of light particles remaining in the droplet
(based on total number initially in droplet), and (d) mixing measure G, for the light

particles. Results in (a) and (b) are shown for both the heavy particles (dark lines) and the
light particles (dashed lines) with N, =300 . Curves are shown for S values of 0.1 (red

lines, A), 0.3 (green lines, B), 0.5 (blue lines, C), 0.7 (orange lines, D), and 0.9 (black
lines, E).

Figure 7. Diagram of the experimental set-up including (A) the black background, (B) the
injection syringe, (C) the lighting system, (D) the video camera, (E) the ruler, and (F) the
vessel.

Figure 8. Photo of the particle positions of a falling droplet, with initial droplet diameter
L =3.8mm, in experimental set 1 at dimensional times (seconds): (a) t =0 , (b) t=0.8,

(c) t=1.8, (d) t=3.8, and (e) ¢t =4.3. The large particles (red) are about 2.2 times
larger than the small particles (gold).
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Figure 9. Photos of the particle positions of a falling droplet with initial droplet diameter
L =4mm in experimental set 2 at dimensional times (seconds): (a) 1 =0, (b) t=1.2, (c)
t=2.7, and (d) t=4.2. The heavy particles (silver) are 14% heavier than the light
particles (red).

Figure 10. Photos of the particle positions of a falling droplet with initial droplet diameter
L=3.5mm in experimental set 3 at dimensional times (seconds): (a) t=0 , (b)
t=044,(c) t=094,(d) t=1.4, and (e) t =1.74. The large/heavy particles (silver) are
27% larger and 3.2 times heavier than the small/light particles (red).

Figure 11. (a) Experimental droplet fall velocity versus time for experimental set 1
(squares), set 2 (circles), and set 3 (triangles). The lines are fits to the data. (b) Droplet
fall velocity divided by the theoretical HR solution in Eq. (8).

Figure 12. Plots showing the percentage p, of each type of particle contained in the

vertical tail as a function of dimensionless time. Percentages are based on the total
number of each type of particle for (a) experimental set 1, (b) set 2, and (c) set 3. Solid
lines represent heavier (or larger) particles and dashed lines represent lighter (or smaller)
particles.
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Table 1. Characteristics of particles used in the experiments.

Isolated
Particle . Diameter Densit article fall
Label Material Color (mm) (g/cm%] ’ velocity
(mm/s)
A Glass Gold 0.36+0.03 2.44+0.10 0.39+0.1
B Glass Red 0.78+0.05 2.55+£0.16 1.7+£0.3
C Aluminum Silver 0.77+0.01 2.86+0.35 2.1+0.1
D Chrome steel Silver 0.96%0.01 894+1.9 13.0+0.2

Table 2. Parameters characterizing the experimental data sets. The average values of the
initial particle droplet diameter L, the droplet Reynolds number Re;, and the initial
number of particles N, are averaged over the different experimental runs.

. . Avg. | Avg. - -
Set Part101e§ in Vi o I Re, Py d Avg. N,
# | Suspension (mm) (g/cm’) | (mm)
1 A&B 0.022 | 143 | 4.1 | 0.69 | 2495 0.61 | 156+18
2 B&C 0.057 | 0.02 | 42 | 087 | 2705 |0.775| 85=£10
3 B &D 0.556 | 0.24 | 3.7 | 1.94 5.75 0.87 44 +£9
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Figure 1. Plot showing formation of tail behind a falling monodisperse suspension droplet
with Re, =1.4. Images are shown at times (a) " =0, (b) 0.2, (c) 0.4, (d) 0.6 and (e) 0.8.

(@) (b) ©

Figure 2. Time variation of (a) the dimensionless droplet fall velocity, (b) the number of
particles remaining in the droplet, and (c) the ratio of the average droplet fall velocity to
the theoretical estimate (16). The plots are for monodisperse particles with droplet
Reynolds numbers Re, =1.4. The dashed line in (c) corresponds to the theoretical HR

solution given by Eq. (8).
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Figure 3. Plot showing the time variation of the root-mean-square y-position (solid line)

and the value of ( y:nax

—y...)/ 4 (dashed line) for a monodisperse droplet.

Figure 4. Time series of a droplet with N, =300, showing preferential leakage of lighter
particles into the droplet tail, for a case with particles with two densities with f=0.5.

Images are shown at times (a) ¢t =0, (b) 0.2, (c) 0.4, (d) 0.6 and (e) 1.0. The light
particles are shown in blue and the heavy particles in red.
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Figure 5. Percentage of initial particles remaining in the droplet as a function of
dimensionless time for different values of the initial particle number N,. Heavy particles

(solid lines) and light particles (dashed lines) are shown for a series of cases with £ =0.5
and Re, =1.4. Colors correspond to cases with N, =50 (red), 100 (green), 300 (blue),
and 1000 (black).
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Figure 6. Effect of density difference on time variation of (a) the average fall velocity, (b)
the root-mean-square value of y, (¢) percentage of light particles remaining in the droplet
(based on total number initially in droplet), and (d) mixing measure G, ,, for the light

particles. Results in (a) and (b) are shown for both the heavy particles (dark lines) and the
light particles (dashed lines) with N, =300 . Curves are shown for S values of 0.1 (red

lines, A), 0.3 (green lines, B), 0.5 (blue lines, C), 0.7 (orange lines, D), and 0.9 (black
lines, E).
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Figure 7. Diagram of the experimental set-up including (A) the black background, (B) the
injection syringe, (C) the lighting system, (D) the video camera, (E) the ruler, and (F) the
vessel.
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Figure 8. Photos of the particle positions of a falling droplet, with initial droplet diameter
L =3.8mm, in experimental set 1 at dimensional times (seconds): (a) t =0 , (b) 1 =0.8,

(c) t=1.8, (d) +=3.8, and (e) ¢t =4.3. The large particles (red) are about 2.2 times
larger than the small particles (gold).
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Figure 9. Photos of the particle positions of a falling droplet with initial droplet diameter
L =4mm in experimental set 2 at dimensional times (seconds): (a) 1 =0, (b) t=1.2, (c)

t=2.7, and (d) t=4.2. The heavy particles (silver) are 14% heavier than the light
particles (red).
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Figure 10. Photos of the particle positions of a falling droplet with initial droplet diameter
L=3.5mm in experimental set 3 at dimensional times (seconds): (a) t=0 , (b)

t=044,(c) t=094,(d) t=1.4, and (e) t =1.74. The large/heavy particles (silver) are
27% larger and 3.2 times heavier than the small/light particles (red).
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Figure 11. (a) Experimental droplet fall velocity versus time for experimental set 1
(squares), set 2 (circles), and set 3 (triangles). The lines are fits to the data. (b) Droplet

fall velocity divided by the theoretical HR solution in Eq. (8).
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Figure 12. Plots showing the percentage p, of each type of particle contained in the
vertical tail as a function of dimensionless time. Percentages are based on the total
number of each type of particle for (a) experimental set 1, (b) set 2, and (c) set 3. Solid
lines represent heavier (or larger) particles and dashed lines represent lighter (or smaller)

particles.
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