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ABSTRACT: The lack of high temperature and atmospheric stability of perovskite solar ~ ’
cells has been one of the primary obstacles hindering the commercialization of this |
emerging photovoltaic material. This work presents an all-inorganic CsPbBr; perovskite

solar cell with excellent stability under both thermal and environmental stress. The °f &3
perovskite layer was fabricated with a well-controlled layer-by-layer vapor deposition ¢ ,[ 1eav g
technique and subsequently annealed in a two-stage process. The solar cells have an :-;: Thiswork 4
overall device architecture of FTO/c-TiO,/CsPbBr;/buffer layer/P3HT/Au. A large g °f LSy
band gap PbBr, buffer layer is inserted between the intrinsic layer and the hole transport  § , [
layer. This layer inhibits the recombination of electrons at the p—i interface, improving 3 155V i
the performance of the solar cell. The open-circuit voltage exhibited by these devicesis [ 152v )

1.64 V, the highest open-circuit voltage (V,.) ever reported for this perovskite material.
Additionally, the devices yielded a photo-conversion efficiency of 7.9%. The isolated
perovskite layer showed no degradation when annealed at temperatures up to 300 °C for
24 h. The solar cells withstood exposure to an environment of ambient air at 20 °C for
500 h without any loss in efficiency. Even a high-temperature (200 °C) exposure in air did not result in changes in the efficiency. The
excellent environmental tolerance and high V. indicate the potential for this perovskite to be used in a 4-terminal tandem solar cell
arrangement with Si.
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Bl INTRODUCTION occurred even during short duration electrical characterization
performed in air. The ambient environment device degradation
is particularly acute when PSCs are made using a high I/Br
ratio.”! In this report, all-brominated, iodine-free, CsPbBr;
perovskite materials and solar cell devices are investigated. We
find that the materials and devices exhibit excellent thermal
and environmental stability.

CsPbBr; is a wide band gap (~2.3 eV) semiconductor,
which is of significant importance for making tandem junction
cells. The use of this material with another perovskite device as
the bottom cell is especially important for the creation of
entirely thin-film tandem devices.”> Theoretically, higher V.
should be expected for such a wide band gap light harvester
and is also desired for improving the all-brominated device
efficiency. Till date, the highest V. of thermally prepared
CsPbBr; perovskite cell has stagnated around 1.5 V, resulting

The perovskite solar cell (PSC) is an important technology for
next-generation solar energy conversion. PSCs have attracted
significant attention in the renewable energy conversion device
field due to the promising electro-optical properties such as
high absorption coefficient and long carrier diffusion length.
Since the introduction of PSCs in 2009, a great deal of global
effort has been devoted to perovskite materials, which has
resulted in a dramatic increase in the photo conversion
efficiency to 25.2%.'”'" Despite the decade of excellent
improvement in the efficiency, thermal and moisture instability
still pose potentially fatal flaws for PSCs and need to be further
addressed if true commercial viability is to be achieved."'~"*
It is well known that either organic or hybrid inorganic—
organic perovskite solar cells decompose at relatively low
temperatures less than 100 °C."*'® Consequently, such devices
are marginally useful in hot, desert environments where the cell
temperature often reaches 90—100 °C.'”~' Our previous Received: February 27, 2022
work shows that excellent thermal stability at 200 °C for long Accepted:  April 12, 2022
period of time is achievable through use of all-inorganic Published: April 20, 2022
perovskite materials comprising CsPb(I,Br) alloys.”” However,
such inorganic perovskite materials proved to be unstable
when exposed to moisture. Solar cell device degradation
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in much lower efficiency than solution-processed devices.

In 2018, Tang’s group achieved 1.57 V V,_ on the solution-
prepared CsPbBr; perovskite solar cell.” By utilizing a mixture
of solution process and vapor deposition approach, Yang’s
group demonstrated 1.52 V V. in 2019.%° Recently in 2022,
Cheng’s group achieved 1.55 V V. with pure physical vapor
deposition (PVD) technique in this material.’> Nevertheless,
the solution growth technique generally has inherent problems
with reproducibility and scalability. On the other hand, the
vapor-based process allows for precise control of growth
parameters such as precursor ratio, substrate temperature, and
film thickness. It is more industry-friendly in the sense of yield
enhancement.

In this work, by optimizing the fabrication process and
interface engineering, an outstanding 1.64 V open-circuit
voltage was achieved with CsPbBr; solar cell devices. This is
the highest ever reported open-circuit voltage in this perovskite
material. Moreover, the excellent stability of this material and
the solar cell device under ambient and thermal stress are
systematically assessed in this report.

B EXPERIMENTAL SECTION

All-bromine inorganic CsPbBr; PSC devices were fabricated with a
n—i—p superstrate architecture (light is shining from the bottom n-
layer) with the structure fluorine doped tin oxide (FTO)/compact-
TiO,/CsPbBr;/P3HT/Au, as shown schematically in Figure 1.

Figure 1. Schematic diagram of the superstrate n—i—p inorganic
perovskite solar cell.

FTO-coated glass was first cleaned by sonication and boiling in 5%
surfactant solution, DI water, methanol, acetone, and isopropanol for
20 min each. 10 min air plasma treatment was conducted before n-
layer growth. The compact TiO, layer was prepared by following
steps: (1) A solution of 0.5 M titanium isopropoxide and 0.5 M
diethanolamine dissolved in ethanol was stirred and mixed at room
temperature; (2) prepared solution was spin-coated to the FTO glass
substrate at 7000 RPM and dried on a hot plate to get rid of extra
solution; and the (3) prepared film was then sintered at 500 °C for 2
h.

The perovskite film was grown using well-controlled evaporation
from multiple source boats within Luxel Radak furnaces, as shown in
Figure 2. One boat held PbBr, powder, and the other boat held CsBr
powder. The CsPbBr; film was deposited using a sequential
evaporation technique where a thick layer of one material was
grown followed by the growth of the other material. The best device
performance was achieved when the perovskite material was
composed of three constituent layers, with CsBr as bottom and top
layers and PbBr, in the center (CsBr/PbBr,/CsBr). Optimized
perovskite film thickness was obtained using 136 nm for each layer of
the CsBr and 377 nm for the PbBr, layer, resulting in a total thickness
of 650 nm perovskite material. The substrate was held at 200 °C
during the deposition process. After the thermal evaporation, the films
were subjected to annealing under various conditions.
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Figure 2. Schematic of the homemade vacuum thermal evaporator
where CsPbBr; perovskite thin films were deposited.

Poly(3-hexylthiophene-2,5-diyl) (P3HT) was used as the hole
transport p-layer. 15 mg/mL in chlorobenzene solution was prepared
and spin-coated on the annealed perovskite film at 2000 RPM for 60 s
in a nitrogen glovebox, followed by a 10 min hot plate annealing at
150 °C. The gold top contact was evaporated on the very top to finish
the fabrication of the PSC device. A circular shadow mask was used to
define 0.106 cm? active contact area for the solar cells.

An ABET full-spectrum AMIL.S5 solar simulator was used to
measure the electrical performance of each solar cell inside and
outside of the nitrogen environment glove box. A standard silicon
reference cell from Pacific Sensors was used for the calibration of the
solar simulator. J=V curves were measured by scanning voltage and
measuring current controlled by a Lab-View-based program. The
quantum efficiency (QE) and subgap QE were measured using a
custom-built system with a chopped monochromatic light source,
optical filters, and lock-in amplifiers synchronized to the chopped
source. X-ray diffraction (XRD) was measured using a Rigaku Ultima
X-ray diffractometer with a Cu Ka radiation source (4 = 1.54 A) at 44
kV and 40 mA. Scanning electron microscope images were taken by a
FEI Quanta 250 FE-SEM.

B RESULTS AND DISCUSSION

Device Properties. For a wide band gap semiconductor
material with ~2.3 eV gap, a high voltage for the solar cell
device is highly desired to approach the theoretical possible
efficiency. However, our preliminary data showed that the
CsPbBr; PSC devices we made have open-circuit voltage only
around 1.4 V, which indicated almost 1 V voltage loss of the
device. Referring to the work by the Cohen group,” the
voltage loss mechanism for a perovskite solar device has two
main root causes aside from the thermodynamic limits and
non-radiative recombination: (a) energy band misalignment
and (b) poor interfaces between the intrinsic layer and the n
and p heterojunctions. It is not easy to find proper transport
layer materials whose band diagrams perfectly match with
CsPbBr,.”" "> In this study, we focus on the strategy to
improve CsPbBr;/transport layer interfaces.

A previous study has shown that a two-stage annealing
process can effectively modifZ the CsPbBr; morphologies and
reduce the defect densities.’”” A similar two-step annealing
process was adopted and optimized in this work with a higher
temperature, short duration anneal followed by a lower
temperature, high duration anneal. Figure 3 shows the SEM
images of the CsPbBr; film surface after being annealed at
three different conditions: 320 °C/20 min + 300 °C/40 min,
400 °C/20 min + 350 °C/40 min, and 450 °C/20 min + 350
°C/40 min. A significant increase in the grain size can be found
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Figure 3. SEM images of perovskite annealed at two-step temperatures: (a) 320 °C/20 min + 300 °C/40 min; (b) 400 °C/20 min + 350 °C/40

min; and (c) 450 °C/20 min + 350 °C/40 min.

as a function of increasing annealing temperatures. About 10
pm large grain was obtained when the film was annealed at 450
°C and 350 °C conditions. Using 450 °C as the high-
temperature annealing condition provides the initial energy for
a better reaction of CsBr and PbBr, films that were individually
evaporated onto the substrate. The following lower temper-
ature, longer duration sintering process is beneficial for the
formed CsPbBr; perovskite structure to become fully crystal-
lized and results in extensive growth of the grains. The
corresponding XRD spectrum is in good agreement with the
SEM results, as shown in Figure 4. Two major intensity peaks

— 320C/20min + 300C/40min
——400C/20min + 350C/40min
B —— 450C/20min + 350C/40min

Intensity (a.u.)

J A
—71r . 1 r 1 1 1 1 r 1 r T T T 7
5 10 15 20 25 30 35 40 45 50 55
2 Theta (degree)

Figure 4. XRD of CsPbBr; films annealed at different two-stage
temperature profiles.

6267

located at 20 = 15.2 and 30.8° were found on each two-step
annealed CsPbBr; films, which were assigned to (1 0 0) and (2
0 0) planes of the cubic CsPbBr; phase (Pm3m).”> Almost
none of other CsBr- or PbBr,-rich phases were exhibited in the
XRD pattern, indicating high perovskite crystallinity achieved
by the sequential deposition technique and subsequent two-
step annealing process. Heightened intensity of both two peaks
was obtained as the annealing temperature increases, which is
congruent with what has been found in SEM images. From
these test results, we deduce that complete crystallization and
extensive grain growth were achieved. Film degradation begins
to occur at annealing temperatures surpassing 450 °C.

The CsPbBr; solar cell device photovoltaic performance (J—
V) with corresponding annealing conditions is shown in Figure
S. When the device was not annealed at high enough
temperatures (e.g, 320 °C/20 min + 300 °C/40 min), the
open-circuit voltage (V) of the cell was only 1.37 V. Higher
annealing temperatures (450 °C/20 min + 350 °C/40 min)
help in enhancing the grain growth and crystallization,
resulting in higher V. of 1.54 V. Larger grains and higher
crystallinity usually lead to reduced defect densities in the film,
thereby reducing the voltage loss from this 2.3 eV wide
material. The assumption of reduced grain boundary defects is
also supported by the J—V curves, in which the higher-
temperature annealing cycle results in increased short-circuit
current Usc).

Further optimization of the device was carried out by
changing the interface of the perovskite and p-type hole
transport layer (HTL). We deposited an extra PbBr, cap layer
at the end of the deposition after high-temperature annealing
cycle. The device was further annealed at 300 °C/1S min after
the deposition of the buffer layer. Figure 6 shows the band
diagram of the FTO/compact-TiO,/CsPbBr;/P3HT/Au solar
cell device. By adding a thin layer of PbBr,, which is a ~4.2 eV
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Figure S. ]—V curves showing the influence of different temperatures
of the two-step annealing profile on the solar cell device performance.
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Figure 7. J—V performance of the solar cell device with differing
PbBr, cap layer thicknesses.
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Figure 6. Band diagram of the FTO/compact-TiO,/CsPbBr;/P3HT/
Au solar cell device with an extra thin PbBr, cap layer added.

wide band gap material,”® a potential step is created at the p—i
interface. The E_ energy difference creates a significantly higher
barrier for electron flow than what exists at the P3HT/
perovskite interface (see Figure 6), thereby reducing the
electron recombination at that interface. Optimization of the
PbBr, cap layer thickness is crucial for enacting the theory
without incurring negative consequences. If the additional
PbBr, layer is too thick, then the hold transport at the interface
may become impeded.

Results from PbBr, cap layer thicknesses of 10, 20 and 30
nm are given in this report. Figure 7 shows the J—V curve of
the device with different cap layer thicknesses. There is a clear
trend in the data. A 10 nm thick PbBr, helped boost the ], up
to 6.5 mA/cm* when compared with the control group (no
cap) which is 6.0 mA/cm’. Upon increasing the cap layer
thickness to 20 and 30 nm, short-circuit current density
decreases to values lower than the control group. More clarity
about this phenomenon is provided by the QE measurement,
as shown in Figure 8. Initially, the thin cap layer improves the
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Figure 8. QE performance of the solar cell device with differing PbBr,
cap layer thicknesses.

QE, particularly for long wavelengths (520 nm) from the
reduction in electron recombination at this interface. As we
increase the thickness of the cap layer, the QE begins to
decrease at all wavelengths. This is attributed to the necessity
of tunneling for holes to travel through the PbBr, barrier layer.
The efficiency of tunneling across this layer decreases as a
function of thickness. Further increase to 30 nm suppresses the
tunneling even more. The apparent resistance indicated by the
slope of the J—V curve at V_ also increases as the thickness of
the barrier layer increases, further supporting the hypothesis
that a thick layer impedes the transport of holes. Thus, we have
shown that an appropriate thickness of a buffer layer at the p—i
interface improves the device.

In Table 1 below, we show the values of various photovoltaic
parameters as a function of the thickness of the PbBr, layer.

Noticeably, from Table 1 and Figure 7, the open-circuit
voltage also increased slightly as we insert a 10 nm PbBr, cap
layer into the device. An added advantage of PbBr,, an inactive
material in air, is that it encapsulates the CsPbBr; perovskite

https://doi.org/10.1021/acsaem.2c00624
ACS Appl. Energy Mater. 2022, 5, 6265—6273


https://pubs.acs.org/doi/10.1021/acsaem.2c00624?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00624?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00624?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00624?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00624?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00624?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00624?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00624?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00624?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00624?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00624?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00624?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00624?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00624?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00624?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.2c00624?fig=fig8&ref=pdf
www.acsaem.org?ref=pdf
https://doi.org/10.1021/acsaem.2c00624?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Applied Energy Materials

www.acsaem.org

Table 1. Specific Parameters of the CsPbBr; Solar Cell with
Various PbBr, Cap Layer Thicknesses

device Voe (V) Jio (mA/em®)  FF (%)  PCE (%)
no cap 1.55 6.02 73 6.8
10 nm PbBr, cap 1.62 6.50 73 7.7
20 nm PbBr, cap 1.48 5.94 74 6.5
30 nm PbBr, cap 1.45 522 73 S.S

surface and bolsters the device resistance to moisture. Using all
the process optimization techniques described in this work, we
have manifested a V. of 1.64 V with 7.9% energy conversion
efficiency. Figure 9 shows the J—V curve and QE of the
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Figure 9. With extra 10 nm of PbBr, after annealing, 7.9% solar cell
with ultrahigh 1.64 V voltage has been achieved. (a) J—V curve with
forward and reverse scan (b) QE for the champion cell

champion cell, with the detailed device performance parameter
listed in Table 2. In Figure 10, we show the histogram for six
cells, showing excellent repeatability in the performance.
Stability. Thermal and environmental degradation is a well-
known problem of perovskite solar cell devices. This is one of
the main focuses of our research and will be addressed in this
work. As demonstrated by our previous work with mixed
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Table 2. Specific Parameters of the CsPbBr; Champion Cell
Performance

device V. (V) Jie (mA/cm?) FF (%) PCE (%)
champion cell 1.64 6.72 71 7.9
1.8 7
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Figure 10. Histogram of V,_ and J. for repeated solar cell devices.

halide perovskite material CsPbI,Br, great thermal stability was
validated with such cells. However, all the fabrication and
characterization work were restricted inside a N, glovebox as
the cell would degrade dramatically with exposure to the air. As
mentioned, the elimination of the iodine content from the
perovskite should result in a device with better stability under
both thermal and environmental stress.

After fabrication, the CsPbBr; PSC device was exposed to
the ambient air (20 °C and relative humidity 40%) for over
500 h. Figure 11 shows the device efficiency change over 100 h
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Figure 11. Normalized PCE of the CsPbBr; perovskite solar cell
exposed in ambient air. The device efficiency shows only about 2%
change over 500 h exposure.

normalized to the initial measured value immediately after
fabrication. Virtually no degradation of the cell efficiency has
been observed. This result was confirmed by the comparison of
the device J—V characteristic after continuous air exposure for
25 days, as shown in Figure 12. After over 500 h, the J—V curve
for the cell was almost identical to the initial J—V curve, which
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demonstrated promising robustness of the device under the

moisture stress.
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Figure 12. J—V curve of the device performance shows no change
over 25 days exposure in ambient air.

We next studied the stability of the cell under both thermal
and ambient stress. Figure 13 shows the XRD data for
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Figure 13. XRD patterns for CsPbBr; perovskite films before and
after annealing at 300 °C for 24 h in ambient air.

perovskite material itself under the high-temperature stress test
in the ambient air environment. The CsPbBr; film was
deposited on the glass slide and heated at 300 °C for 24 h in
air. It is well known that an unstable perovskite decomposed
into a Pb phase (eg, Pbl, or PbBr,) upon heating. This
behavior can be easily picked up in the X-ray spectrum.
Compared the XRD data with the initial as-deposited
spectrum, no decomposition of the all-brominated perovskite
material was observed after being heated in the air. The
intensity of (100) and (200) planes is comparable for
measurements done before and after the environmental stress
test detailed above. Additionally, there is no emergence of any
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new peaks on the post air anneal XRD spectrum. These results
indicate that there is no degradation of the crystallinity of the
perovskite material. This is a remarkable result and attests to
the potential for the use of such materials as a stable, large
band gap solar cell partner with Si or other perovskite in a four-
terminal tandem cell arrangement.

The CsPbBrj; solar cell device was also tested under similar
thermal and ambient stress. Figure 14 shows the device
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Figure 14. ]=V curve of the perovskite device for air stability at the
high-temperature test.

performance (J—V and QE curves) after heating the device at
200 °C for 12 h in the atmosphere. Both J—V and QE curves
showed no degradation of the device performance under such
a stress test, indicating that the brominated perovskite solar
cells are very stable and robust in real-world environments
even at elevated temperatures.

Fundamental Material Properties. Fundamental materi-
al properties of the vacuum-deposited CsPbBr; perovskite films
were also measured in this work. As a direct band gap material,
the absorption coeflicient is dependent to the source light
photon energy following the equation

(ahv)* = A(hw — E,) 1)

At long wavelengths, where « is small, the absorption is
proportional to at, where t is the thickness. Hence, one can
plot external quantum efficiency (EQE), which is proportional
to at, instead of & in eq 1, to obtain the band gap. The result
for the Tauc plot as (EQE X E,,)* versus E,, in the cutoff
region is shown in Figure 15. A linear intercept on the x-axis
shows a band gap of 2.30 eV.

We also measured the subgap QE against the photon energy
to determine the value of Urbach energy of the valence band
tails. Urbach energy is an important Earameter and impacts the
open-circuit voltage of the solar cell.”* A high value for Urbach
energy indicates that tail state defects are extending far into the
gap and will limit the movement of quasi-Fermi levels upon
illumination, and therefore, limit the open-circuit voltage. A
value of 22 meV for Urbach energy of valence band tails is
obtained from Figure 16, which is in the usual range observed
in all device-quality perovskite materials.

We also measured the C—V curve of the device to determine
the donor and shallow defect and built-in voltage. The data for
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Figure 15. Tauc plot: (EQE X EPh)2 plotted vs E,, to determine the
band gap of CsPbBr; perovskite material.
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Figure 16. Sub-band gap absorption vs E, plotted to calculate the
Urbach energy of tail states.

1/C?* versus V curve are shown in Figure 17, which shows a
defect density of 2.4 X 10'°/cm® and 1.61 V for the built-in
voltage.

B CONCLUSIONS

In summary, we have developed a solar cell device utilizing the
all-inorganic, all-bromide perovskite material, CsPbBr;, which
exhibits very good stability under both thermal and ambient
stress. The perovskite material itself shows no compositional
degradation at 300 °C for 24 h in the air. Furthermore,
CsPbBr; solar cell devices were demonstrated to have robust
environmental stability with no performance degradation at
200 °C in the air for 12 h and show little efficiency loss after
500 h exposure in the ambient environment. We also show that
the insertion of a thin, larger band gap capping layer at the p—i
interface improves the device performance by reducing the
electron recombination at this interface. By precise control of
vacuum deposition processing and interface engineering, we
have obtained the highest open-circuit voltage ever achieved,
1.64 V, in this perovskite material. The combination of
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Figure 17. C—V plot to determine the built-in voltage V;, and defect
density of the CsPbBr; perovskite solar cell device.

excellent stability in the real-world environment at elevated
temperatures, a high open-circuit voltage, and a very well-
controlled processing technique indicates a significant potential
for this material to be utilized in a four-terminal tandem cell
system.
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