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Abstract
It has long been observed experimentally that energetic ion-beam irradiation of semiconductor
surfaces may lead to spontaneous nanopattern formation. For most ion/target/energy
combinations, the patterns appear when the angle of incidence exceeds a critical angle, and the
models commonly employed to understand this phenomenon exhibit the same behavioral
transition. However, under certain conditions, patterns do not appear for any angle of incidence,
suggesting an important mismatch between experiment and theory. Previous work by our group
(Swenson and Norris 2018 J. Phys.: Condens. Matter 30 304003) proposed a model
incorporating radiation-induced swelling, which is known to occur experimentally, and found
that in the analytically-tractable limit of small swelling rates, this effect is stabilizing at all
angles of incidence, which may explain the observed suppression of ripples. However, at that
time, it was not clear how the proposed model would scale with increased swelling rate. In the
present work, we generalize that analysis to the case of arbitrary swelling rates. Using a
numerical approach, we find that the stabilization effect persists for arbitrarily large swelling
rates, and maintains a stability profile largely similar to that of the small swelling case. Our
findings strongly support the inclusion of a swelling mechanism in models of pattern formation
under ion beam irradiation, and suggest that the simpler small-swelling limit is an adequate
approximation for the full mechanism. They also highlight the need for more—and more
detailed—experimental measurements of material stresses during pattern formation.
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1. Introduction

The manufacture of complex nanostructures is of interest for
a variety of potential applications, including the production of
novel materials, medical devices and semiconductors. Since
at least the 1960s, spontaneous nanoscale pattern formation
has been observed on surfaces subject to ion bombardment in
the 100 eV–10 keV range, with resulting patterns including
ripples [1]; hexagonal arrays of dots on the scale of 5–20 nm
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[2]; and continuous transitions there-between [3]. The use of
ion beam irradiation to induce pattern formation is of partic-
ular interest because ion beam technology is already widely
available in industrial settings, and so a rigorous theory of
irradiation-induced pattern formation could enable the rapid,
inexpensive and well-controlled mass-production of various
useful nano- and meta-materials. An ideal model of this pro-
cess would determine all relevant factors and the relation-
ships between them to the extent that experimental results can
be reliably predicted to high precision. Control could then
be exerted over the system dynamics to enable fine-tuned
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nanoscale manufacture, sometimes referred to as ‘bottom-
up’ micromachining: that is, by designing manufacturing pro-
cesses that operate coarsely at scales potentially much lar-
ger than the nanometer-sized structures that result from the
process. However, despite widespread interest spanning many
decades [4], the general theory is far from complete.

Despite the lack of an overarching theory, some things have
been well-established. For instance, it is understood that the
bottoms of troughs may erode faster than the tops of peaks,
generating an instability [5–8], and that the orientation and
wavelength of the resulting surface ripples can depend not
only on the angle of incidence of the ion beam, but also its
energy. Separately, atoms displaced but not sputtered away by
an ion impact have also been shown to significantly affect sur-
face stability [9–12]; these complementary erosive and redis-
tributive effects have more recently been integrated through
the crater function framework approach [13–17]. In addition to
these so-called ‘prompt-regime’ effects associated with indi-
vidual ion impacts, a number of mechanisms operate in the
‘gradual regime’ over much longer time scales. In particular,
accumulated radiation damage leads to the amorphization of
a thin film of near-surface material, which can be modeled as
a highly viscous fluid subject to surface energy effects [18].
Finally, within this film, significant stresses are created during
irradiation [19–23], andmaterial-dependent responses to these
stresses can also contribute to pattern formation [24–28]. The
relevance of numerous effects operating at various scales con-
tributes to the difficulty of the development of a precise under-
standing of the formation of these nanostructures [29, 30].

In recent years, many ion-induced nanopatterning exper-
iments have been conducted on Si (due to its relevance to
the semiconductor industry) at irradiation energies of 1 keV
or below (due to the ready availability of ion guns designed
for this energy range). For this material at these energies, it
is observed that as the ion-incidence angle θ increases from
0◦ (normal incidence) to 90◦ (grazing incidence), the pat-
terns formed transition from flat surfaces, to ripples with wave
vector parallel to the ion beam, to ripples with wave vec-
tor perpendicular to the ion beam, and that these transitions
occur independently of ion energy [31–33]. Most of the the-
oretical models described in the previous paragraph exhibit
similar behavior. Importantly, however, this behavior does
not seem to be universal, and some researchers have repor-
ted a complete absence of patterns for some ion/target/energy
combinations—we are motivated in particular by the experi-
ments of (a) Teichmann et al [34], who observed no patterns
at any studied angle for Ne+ → Ge or Ar+ → Ge between 400
and 2000 eV, and (b) Hofsäss et al [35], who observed no pat-
terns at any studied angle for Ar+ → Ge between 2 keV and
5 keV. These observations suggest the presense of an addi-
tional, unconditionally-stabilizing mechanism that becomes
important in these regions of parameter space; however, this
is puzzling, as all of the many models described in the pre-
vious paragraph are destabilizing for at least some incidence
angles.

Recent experimental studies have suggested that impact-
induced stresses may be the single greatest contributor to the

transition from smooth surfaces to ripples at an incidence
of around 45 degrees and an energy near 1 keV [29]. This
suggests asking whether some novel stress-related mechan-
ism could exist that is unconditionally stable, explaining the
suppression of ripple patterns discussed above. In particu-
lar, whereas existing stress-based pattern formation models
have employed the convenient incompressibility condition at
low energies [24, 25, 25–28], researchers have long observed
radiation-induced swelling at higher energies, induced by a
variety of atomistic mechanisms [36–43]. Accordingly, recent
work by our group explored replacing the incompressibil-
ity condition with a simple mathematical model of isotropic
swelling, and found that swelling does, indeed, supply the
needed surface stabilization at all angles of incidence [44].
However, due to the mathematical complexities of the model,
analytical solutions could only be obtained in the limit of very
small swelling rates, whereas the observed pattern suppres-
sion would presumably occur above some critical value of the
swelling rate.

In this work, we generalize the prior results to arbitrary
swelling rates using new analytical and numerical approaches,
closing the gap between theory and observation. After re-
casting the system of equations resulting from linear stability
analysis to a single equation, and developing a finite difference
scheme for its solution, we compute the dispersion relation at
arbitrary swelling rates, wave numbers and angles of incid-
ence. We show that the observed angle-independent stabiliz-
ation is not an artifact of the small swelling rate assumption
used in [44]. Indeed, we demonstrate that the overall stabil-
ity structure in the full parameter space is largely independent
of swelling rates despite several features unique to the non-
linear regime (including a fascinating exchange of stabilities
within a multi-branch dispersion relation). With this know-
ledge, we then turn to several relevant experimental systems,
and discuss how the presence of swelling in themodel can help
us to understand those observations. With this work, there-
fore, we have significantly strengthened the hypothesis of a
needed swelling-induced stabilization mechanism, highlight-
ing the potential importance of this effect in future work, and
an urgent need for more experimental data on swelling rates.

2. Preliminaries

We will use the same model as in [44]; here we will briefly
summarize that model and some preliminary results obtained
from its analysis.

2.1. Model

We consider a thin, crystalline material irradiated from above
by an ion beam, with the z-axis oriented normal to the surface.
The accumulation of radiation damage leads to the amorphiz-
ation of the top few nanometers of the target, and this amorph-
ous thin film is described using continuum equations for vis-
cous fluid. Our goal is to solve equations in two dimensions
for velocity v⃗(x,z) = u(x,z)̂i+w(x,z)̂j, the density ρ(x,z),
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Figure 1. Schematic depicting ion bombardment at an incidence
angle of θ, the resulting formation of an amorphous layer with
thickness determined by the ion penetration depth, and an pictorial
illustration of the proposed swelling mechanism. Note that for
off-normal incidence, the bottom boundary z= h1(x, t) may not
align with the top boundary z= h2(x, t).

pressure p(x,z), and an age-tracking variable a(x,z) within a
thin film bounded above by an amorphous–vacuum boundary
z= h2(x, t) and below by a crystalline–amorphous boundary
z= h1(x, t). This geometry is illustrated in the schematic in
figure 1.

2.1.1. Bulk equations. In the bulk, the standard equations for
conservation mass and momentum, respectively, are

∂ρ

∂t
+∇· (ρ⃗v) = 0 (1)

and

−∇p+ η(∇· (∇v⃗)+∇(∇· v⃗)) = 0 (2)

where η is the viscosity, and we have used the viscous limit
of Stokes flow, which is is justifiable due to the dominance
of ‘creep’ forces over inertial forces in the bulk. We note that
the density is not constant, and therefore the incompressibility
condition∇· v⃗ does not apply. As a result, wemust also supply
an equation of state to relate the irradiation-induced damage to
the density. As a simple model appropriate to a first study, we
choose the equation

ρ=
ρ∗0

1+αa
, (3)

where ρ∗0 is the original density of the crystalline solid, α
is a constant expansion rate, and a is an ‘age’ variable that
tracks the length of time a parcel of material has existed within
the irradiated film, according to a simple forced advection
equation

∂a
∂t

+ v⃗ ·∇a= 1 (4)

in which the 1 on the right hand side provides the steady
increase in age as time progresses. Because equation (3)
lacks a pressure term, it can be thought of as a ‘quasi-
incompressibility’ condition—i.e. the density is allowed to
change in response to changes in age, but not to changes in
pressure. This preserves some of the analytical convenience
of incompressibility, while allowing density changes due to
irradiation.

It is worth re-emphasizing from [44] that our model of
swelling is mechanism-agnostic. In other words, whichever
specific atomistic mechanism causes the increase in volume
over time (i.e. defects and accumulated damage, vacancies
coalescing into voids, implanted ions forming bubbles, etc),
that process appears in equation (3) only indirectly by way of
the age variable. In this mathematical simplification, swelling
simply proceeds linearly in time (i.e. proportional to accumu-
lated fluence) once a parcel of material becomes amorphized at
the bottom of the film, and proceeds until the parcel is removed
by sputtering at the top of the film.

2.1.2. Boundary conditions. At the crystalline–amorphous
(bottom) boundary z= h1(x, t), the standard no-slip and
no-penetration conditions are applied simultaneously as

v⃗= 0⃗. (5)

At the amorphous–vacuum (top) boundary z= h2(x, t), we
have the following two boundary conditions:

vn̂ = v⃗ · n̂−V
ρ∗0
ρ

(6)

and

[T] · n̂=−γκn̂ (7)

where equation (6) is a modified kinematic condition that
incorporates the sputtering of material at the free interface
(V is the surface sputter velocity) [44]. Finally, equation (7)
is a standard conservation of momentum applied at the inter-
face, [ · ] denotes the jump across the interface, and the stress
tensor is that of a standard Newtonian fluid,

T=−pI+ η(∇v⃗+∇v⃗⊤). (8)

Because the effect of surface tension in pattern formation is
well-established [18], we here take γ= 0 to focus entirely on
the effect of the swelling mechanism.

2.2. Previous results

In [44], the above model is first non-dimensionalized and
translated into a frame of reference moving downward with
the eroding surface at speed V. (In this frame of refer-
ence, material appears to pass upward through the crystalline/
amorphous boundary, proceed to swell as it rises through the
film, and finally be sputtered away once it reaches the free
surface.) Next, steady-state solutions are computed exhibit-
ing reflection, rotation, and translation invariance. Finally, the
non-dimensionalized governing equations are linearized about
the steady-state solution in normal modes with wavenumber
k, leading to the following system of linearized, single-mode
equations:

Σρ1 −
A
ψ3
w1 +

1
ψ
(iQu1 +w ′

1)+ψρ ′
1 +A

1
ψ
ρ1 = 0 (9)
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Σa1 +ψa ′
1 +A

1
ψ
w1 = 0 (10)

ψρ1 +
1
ψ
a1 = 0 (11)

−2Q2u1 + u ′ ′
1 + iQw ′

1 = iQp1 (12)

−Q2w1 + 2w ′ ′
1 + iQu ′

1 = p ′
1 (13)

with the following boundary conditions at z = 0:

a1 =−h11A (14)

u1 = 0 (15)

w1 =−h11A (16)

and the following boundary conditions at z = 1:

w1 =Σh21 − (1+ 2A)ρ1 (17)

u ′
1 + iQw1 =−2iQ

A√
1+ 2A

h21 (18)

−p1 + 2w ′
1 = 0. (19)

Here and throughout this paper, Q = kh0 is the dimension-
less wave number of a perturbation, Σ= σh0

V is the dimen-
sionless growth rate of that perturbation, A= αh0/V is the
dimensionless swelling rate of the film, and ψ =

√
1+ 2Az.

Physically, the parameter A quantifies the relative increase
in volume of a parcel of material by the time it is sputtered
away, as discussed above (i.e. A= 0.1 reflects an increase
of 10% in the volume of a parcel of matter by the time
it is sputtered away, and A= 1 reflects a doubling in the
volume).

As discussed in [44], equations (9)–(19) are seemingly not
amenable to an exact analytical solution. However, a second
linearization in the small-A limit leads to solvable equations,
which yield the small-A dispersion relation

Σ=

[(
1− cosh(Q)+Qsinh(Q)

Q2 + cosh2(Q)

)
h11
h21

− Q2

Q2 + cosh2(Q)

]
A+O(A2) (20)

where h11 and h21 are the lower and upper interfaces
linearized in normal modes, respectively. This dispersion
relation contains a pocket of stable wavenumbers approx-
imately between Q= 0 and Q= 1.5 for all angles of incid-
ence. A plot of (20) at normal incidence is reproduced in
figure 2(a).

Although this result holds for ‘small enough’ swelling
rates where the second linearization A≪ 1 is valid, we note
that if isotropic swelling is hypothesized to suppress ripple
formation under some set of conditions, the swelling rate
must presumably be ‘large enough’ to do so. This necessar-
ily requires the consideration of larger swelling rates. We
therefore now turn our attention to the problem of equations
(9)–(19) for arbitrary values of A, with two main goals in
mind: first, to develop a numerical method with which we
can conduct a full modal analysis for arbitrary values of Q;
and second, to study the dependence of pattern formation
on the full (Q,A,θ) space and compare with the small-A
results.

3. Numerical methods

In this section, we describe in detail an approach to determ-
ine the linear dispersion relation numerically for arbitrary non-
dimensional swelling rates A. We will restrict our attention to
the parameter range A ∈ [0,1], which should be sufficient to
capture most physical systems, even those such as irradiated
Ge that exhibit extreme amounts of volumization.

3.1. Reformulation in density

We return to the full linearized equations (9)–(19), whose dis-
persion relation we seek for all of (Q,A,θ) parameter space.
As written, equations (9)–(19) is a system of five ordinary
differential equations (ODEs) with six boundary conditions,
one of which (the kinematic condition (17)) must be reserved
in order to determine Σ. However, in doing this, we would
have no boundary condition available for the solution of ρ1.
Indeed, the boundary conditions at z= 1 all involve multiple
unknowns, complicating numerical solution. One remedy is
to simply reduce the system into the density, which yields a
single fifth-order ODE with six boundary conditions. This is
readily amenable to solution by simple finite differences, and
may also serve as a staging point for an exact analytical solu-
tion in the future. The dimensional reduction is performed as
follows:

(a) Solve for a1 in terms of ρ1 in equation (11).
(b) Substitute the above result into equation (10) so that w1 is

expressed in terms of ρ1.
(c) Substitute the expression for w1 in terms of ρ1 into

equation (9) and solve for u1 in terms of ρ1.
(d) Substitute expressions for w1 and u1 in terms of ρ1 into

equations (12) and (13).
(e) Differentiate the new equation (12) with respect to z and

multiply the new equation (13) by a factor of iQ.
(f) Set these new equations (12) and (13) equal to each other

to yield the fifth-order ODE with variable coefficients.
(g) Apply the implied relationships between unknowns to the

boundary conditions.
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The result of these operations is the ODE in the bulk

(Q4Σ+ 2AQ4(4Σz+ψ)+A4(16Q4z3ψ+Σ(3− 4Q2z2)2)+ 8A3Q2z(3Q2zψ+Σ(−3+ 4Q2z2))

+ 6A2((−Q2)Σ+ 2Q4z(2Σz+ψ)))ρ1 −ψ2(((−Q4)ψ− 6A(−2Q2Σ+Q4zψ)+A2Q2(48Σz

+ψ(31− 12Q2z2))+ 2A3(Q2zψ(31− 4Q2z2)+ 6Σ(1+ 4Q2z2)))ρ ′
1 +ψ2(2(Q2Σ+ 2AQ2(2Σz

+ 5ψ)+A2(−9Σ+ 4Q2Σz2 + 20Q2zψ))ρ ′ ′
1 +(2Q2ψ+A(−12Σ+ 8Q2zψ)

+A2(−24Σz+ψ(−63+ 8Q2z2)))ρ(3)1 −ψ2((Σ+ 2AΣz+ 18Aψ)ρ(4)1 +ψ3ρ
(5)
1 ))) = 0, (21)

which we note is linear and homogeneous, along with the fol-
lowing boundary conditions at z= 0:

Ah11 − ρ1 = 0 (22)

3A2ρ1 + 6Aρ ′
1 + 3Aρ1Σ+ ρ ′ ′

1 +Σρ ′
1 = 0 (23)

A2h11 + 2Aρ1 + ρ ′
1 + ρ1Σ= 0 (24)

and the following boundary conditions at z = 1:

ψ2(2Aρ ′
1 +ψρ1Σ+ 3Aρ1 + ρ ′

1)

A
− h21Σ= 0 (25)

2A2h21Q2

ψ
+ 4A2ρ

(3)
1 + 20A2ρ ′ ′

1 +
2A2Σρ ′

1

ψ
+ 15A2ρ ′

1 +
3A2ρ1Σ

ψ
+ψ2Q2(2A(ρ ′

1 + ρ1)+ ρ ′
1)

+ψ3Q2ρ1Σ+ 4Aρ(3)1 + 2AψΣρ ′ ′
1 +ψΣρ ′ ′

1 + 10Aρ ′ ′
1 + 5AψΣρ ′

1 +
AΣρ ′

1

ψ
+ ρ

(3)
1 = 0 (26)

A3(4Q2(6ψρ ′ ′
1 + 6(3ψ+Σ)ρ ′

1 + ρ1(5ψ+ 9Σ))− 2ψ(35ρ ′ ′
1 + 4(ρ(4)1 + 7ρ(3)1 ))+Σ(3ρ1 − 2(4ρ(3)1

+ 18ρ ′ ′
1 + 9ρ ′

1)))+A2(2Q2(18(ψρ ′ ′
1 +(2ψ+Σ)ρ ′

1)+ ρ1(5ψ+ 18Σ))−ψ(12ρ(4)1 + 56ρ(3)1

+ 35ρ ′ ′
1 )− 3Σ(4ρ(3)1 + 12ρ ′ ′

1 + 3ρ ′
1))+ 3Q2(ψρ ′ ′

1 +Σρ ′
1)+A(9Q2(2ψ(ρ ′ ′

1 + ρ ′
1)+Σ(2ρ ′

1 + ρ1))

− 2ψ(3ρ(4)1 + 7ρ(3)1 )−Σ(2ρ(3)1 + 3ρ ′ ′
1 ))−ψρ

(4)
1 − ρ

(3)
1 Σ= 0. (27)

Hence we have converted a system of five differential
equations in five unknowns with six boundary conditions into
a single differential equation in one unknown with six bound-
ary conditions. Although, superficially, the form of the expres-
sions is substantially worsened by bringing them into a single
unknown, finite difference methods for a single ODE are often
very convenient to write and implement.

3.2. Numerical algorithm

Mathematically, equations (21)–(27) represent an eigenvalue
problem for the growth rate Σ. In cases where such equations
are solvable in closed form, it is typical to reserve one bound-
ary condition (most naturally the kinematic condition, where
Σ appears upon application of the linear stability ansatz), solve
the system of differential equations with the remaining bound-
ary conditions andΣ remaining an arbitrary parameter up until

the end, and then to substitute the computed solution into the
reserved boundary condition to determine Σ. The parameter
Σ is then known in terms of the other system parameters, pos-
sibly as an implicit function. It is this approach that we seek to
recreate numerically in a least-squares sense. Accordingly, we
reserve (25), the kinematic condition, from which we define

Π(Σ;Q,θ,A) =
ψ2(2Aρ ′

1 +ψρ1Σ+ 3Aρ1 + ρ ′
1)

A
− h21Σ

(28)

which is just the left side of (25), and whose Σ roots we wish
to compute for a given (Q,θ) pair. In general, Σ is complex-
valued, and so Π will also be complex valued. To obtain the Σ
roots, we therefore seek to minimize an objective function

Φ(Σ;Q,θ,A) = |Π|2 = Re[Π]2 + Im[Π]2 (29)

5
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4

Figure 2. (a) Comparison between analytical and numerical results for small A and normal incidence. (b) Convergence analysis of our finite
difference solver for A= .2, Q= .7, θ= 0, using h= 1

128 ,
1
64 ,

1
32 ,

1
16 and taking h= 1

256 to be the true solution. We obtain a slope of 1.9943
between values associated with h= 1

256 and h= 1
128 on the log–log plot, consistent with second order convergence.

which is simply the squared modulus of Π. Numerically, we
designate Σ(Q,θ) to be a root if Φ(Σ;Q,θ,A)< ε. For con-
venience, we used Matlab’s fminsearch function to determine
the Σ roots, and our overall method may thus be summarized
as follows:

(a) Set values of A,Q, θ for which we desire Σ.
(b) Set initial guess for Re[Σ] and Im[Σ].
(c) Solve BVP (21)–(27) using finite differences.
(d) Evaluate Φ(Σ;Q,θ,A).
(e) If |Ψ< ε|, assign Σ(Q,θ,A) and exit
(f) Else, adjust Re[Σ] and Im[Σ], go to (c).

In order to sweep over the minimization process, we must
solve the system (21)–(27) at each iteration. We use a typical
second-order central difference scheme to approximate the
first through fifth order derivatives, and ghost points on each
end of the domain to facilitate enforcement of the boundary
conditions1. However, we deviate from the standard approach
in an important way.

1 ‘Ghost points’ are nonphysical extensions of the domain of solution which
allow the application of, for example, central finite differences at boundaries
where one or more of the points required for the stencil would be undefined.
By considering what the value of the ghost point would be if the domain were
continued, we can express the value at the out-of-domain grid point in terms
of in-domain grid points simply by solving for them algebraically using the
finite difference approximations of the boundary conditions that should apply
there.

Crucially, the reservation of (25) at z= 1 for use as an
objective function reduces the number of available ghost
points at z= 1 from three to two, precluding the use of the
typical second-order central finite difference for a fifth deriv-
ative, whose stencil involves three points on each side. Con-
sequently, we use an off-center (but still second-order) dif-
ference scheme for the fifth derivative at z= 1, with weights
1
2 ,−4, 252 ,−20, 352 ,−8, 32 at grid points zi−4, zi−3, zi−2, zi−1, zi,
zi+1, zi+2 respectively. With our custom stencil, we require
only two ghost points to the right of the interval, which are
uniquely determined by the two boundary conditions at hand.

3.3. Verification and convergence

To verify the accuracy of our approach, we compare the analyt-
ical solution in the small A limit (reference) with the numerical
solution for a small value of A= .001. In figure 2(a), we have
reproduced the small-A dispersion relation from our numer-
ical results, confirming that our combination of root-finding
and finite difference methods is viable. In figure 2(b), we have
conducted a convergence analysis for Q= .7 at A= .2 and
normal incidence, taking mesh spacing ∆z= 1

256 to be the
‘true’ solution, then coarsening the mesh and recording the L2

norm of the error between ‘true’ and obtained. We see a slope
of approximately 2, reflecting roughly second order conver-
gence, as expected. Other parameter choices produce similar
convergence plots, giving further assurance that our method
works correctly.

6
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4. Stability results

We now use our numerical method to obtain two main sets of
results. First, we obtain the full dispersion relation and relative
flow fields within the film at normal incidence, and conduct a
careful study of their scaling in the swelling rate A. Second,
we consider the (Q,θ) dependence of both pattern growth and
translation for several relevant values of A. We will demon-
strate that the key results for vanishingly-small swelling rate
A are reproduced for arbitrary A, while also investigating the
complexities of the non-small rate.

4.1. Dispersion relation computed numerically: normal
incidence

We begin with a simple depiction of the growth rates Re[Σ] in
the normal incidence case.We note that, because swelling is an
isotropic effect, the incidence angle appears in the governing
equations only indirectly, through the relationship between the
top and bottom boundaries. For normal incidence, we expect
the bottom boundary to be a simple downward translation of
the top boundary by a distance h0. This means the perturba-
tions to the bottom boundary are in phase with the perturba-
tions to the top boundary—i.e.

h11 = h12. (30)

We also note that under normal incidence irradiation, the
growth rate is purely real due to symmetry considerations.

In figure 3(a) we have numerically computed the growth
rate for several values of swelling rate A ranging from
A= .01 (1% volume increase before sputtering) to A= 1
(100% volume increase before sputtering). It is clear that the
characteristic swelling-induced pocket of stable wave num-
bers below Q= 2 persists for all swelling rates depicted.
We observe that the magnitude of the growth rate Re[Σ]
increases significantly as the swelling rate A increases. This
is expected, but complicates a comparison of the qualitat-
ive features of Re[Σ] for different values of A. Therefore, in
figure 3(b), we scale each growth rate curve by its limiting
value C∞ := limQ→∞Σ(Q,A). The scaled curves are remark-
ably similar at all values of A, nearly collapsing onto the curve
associated with the small-A limit. This observation, alone, sig-
nificantly answers in the affirmative some of our motivating
questions concerning the applicability of the small-A result in
experimental settings.

Closer examination of figure 3(b) shows that the neutrally
stable wavenumber Qneutral is pushed slightly to the right for
increasing A. Compared to its value Qneutral ≈ 1.508 in the
small-A limit, we observe that for A= .1, Qneutral ≈ 1.525, and
for A= 1, Qneutral ≈ 1.653. Thus, an increased swelling rate
A is seen to slightly increase the range of stable wavenum-
bers for normal-incidence irradiation. Finally, we observe that
the roots at Q= 0 and Q ≈ 1.508 do not change very much
for different values of A, while the curvature of the disper-
sion relation between these two roots appears to somehow
scale by A. This prompts an exploration of the long-wave
dispersion relation, and we find that, indeed, scaling by the

second-derivative in Q of the arbitrary-A long-wave disper-
sion relation provides a good approximation (see appendix)
or, equivalently, by twice the coefficient. In addition, the res-
ults of the long-wave analysis analytically confirm the angle-
independent stabilization of small wavenumbers.

As a visual aid to understanding the effect of the swell-
ing mechanism on the relative flow field within the amorph-
ous thin film, we consider in (figure 4) a few wavenum-
bers for normal-incidence ion beam irradiation at both A= .1
(10% volume increase before sputtering) and A= 1 (100%
volume increase before sputtering). The wavenumbers chosen
are Q≈ 0.7, which is approximately the most stable wave
number, a neutrally stable wave number depending on A, and
Q≈ 2, a wave number which is unstable for all A that we have
considered here.

It is clear from the relative flowfield that forQ= 0.7, mater-
ial tends to flow from hilltops into valleys, which has the net
effect of reducing disparities between highs and lows over
time. Near each respective neutrally stable wave number, vor-
tices have begun to form which exactly balance the loss of
material from hilltops with a cycling of material forced below
the surface in the valleys back into the hilltops. This has the
net effect of preserving the distance between hilltop and val-
ley over time, hence neutral stability. Finally, the relative flow
field for unstable wave number Q= 2 depicts the case where
the redistribution is dominated by shear forces, with material
from valleys being driven beneath the surface and then forced
uphill by the sub-surface vortical flow faster than lateral expan-
sion can compensate. This leads to growth in distance between
hill-top and valley-bottom, hence instability and pattern
formation.

Fundamentally, these observations are attributable to a
competition between two phenomena. First, the hilltops are
driven to expand laterally into valleys by the swelling mech-
anism. Second, shear forces tend to redistribute material ver-
tically due to the different rate of sputtering in the hilltops and
valleys, because the time until sputtering (the ‘dwell time’)
is proportional to the depth of film relative to a given par-
cel of matter. For long waves, the former dominates, whereas
for short waves, the latter dominates. This basic mechanism
is fundamentally unchanged by different values of A. As can
be seen, the proposed swelling mechanism continues to exert
a robust, qualitative effect on the dispersive behavior of the
medium even when A is non-vanishing. This demonstrates that
the earlier findings are not attributable to the smallness of the
swelling rate that was originally considered, and are repres-
entative of a real effect that is manifest at all positive swelling
rates.

4.2. Exploration of full (Q,A,θ) dependence

We now turn our attention to the behavior of Re[Σ] and Im[Σ]
at incidence angles other than zero. To explore the effect of
off-normal incidence, we follow [28, 44] and assume that the
bottom boundary is still translated a distance h0 from the top
boundary, but in the direction of the ion beam. Hence, by
simple geometry,
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Figure 3. Dispersion relations computed numerically. (a) Unscaled, showing behavior in absolute terms. We note an apparent preservation
of shape. (b) Scaled by the large-Q asymptote for each A, demonstrating that the Q→∞ limit provides a natural scaling factor. (c) Scaled
by the second derivative of the long-wave coefficient.

h1(x, t) = h2 (x− h0 sin(θ), t)− h0 cos(θ). (31)

This reduces the steady film depth according to

h0θ = h0 cos(θ), (32)

which causes a corresponding re-definition of the dimension-
less wave numbers:

Qθ = Qcos(θ). (33)

Finally, it also induces a phase shift in the perturbations of the
top and bottom boundaries, yielding:

h11 = h21e
−iQθ tan(θ). (34)

We will consider the dependence of Re[Σ] and Im[Σ] on a
range of angles between θ = 0◦ and θ = 90◦, but we will

neglect the relative flow fields for these angles in favor of rep-
resenting the data more broadly as two pairs of heat maps
in A and θ. Recall that we are ultimately interested in the
behavior of ϵ-small perturbations to a steady state: f(x,z, t) =
f0(z)+ ϵf̃(z)eΣt+iQx. Then we have

f(x,z, t) = f0(z)+ ϵf̃(z)eRe[Σ]t+iQ(x+ Im[Σ]t
Q ) (35)

such that Re[Σ] is associated with growth (>0) or decay (<0)
in time, and Im[Σ] is associated with translation left (>0) or
right (<0) on the x-axis.

4.2.1. Real part. Comparing with the results of [44], figure 5
demonstrates that the angle dependence observed for the
vanishingly-small swelling rate is reproduced at higher swell-
ing rates with a strong analogy between each Σ(Q,θ;A).
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Figure 4. Comparison of relative flow fields for A= 0.1 versus A= 1. We plot the velocity fields v⃗11(x,z;Q)− v⃗11(x,z;0) for several
representative wave numbers. Subtracting off v⃗11(x,z;0) isolates the components relevant to linear stability by removing a strong, constant,
downward velocity associated with the traveling frame, as in [44]. First row: lateral expansion drives the flow of material from hilltops into
valleys, tending to stabilize. Second row: lateral expansion and shear forces attempting to pull material uphill are evenly matched, leading to
neutral stability. Third row: shear forces have overcome the lateral expansion, pulling more flow of material uphill than can be offset by
lateral expansion, leading to instability.

Comparing the first row of the heatmap (or, equivalently,
figure 3) to the associated result for the A→ 0 limit [44], we
see near perfect agreement. As A increases the general form of
the real part of sigma remains unchanged, while some interest-
ing behavior is seen in the imaginary part, which we will dis-
cuss below. This again confirms that the qualitative behavior
of the swelling mechanism is not strongly dependent on the
swelling rate A, further confirming the motivating hypothesis
of this work.

Focusing on the real part (left-hand column), some minor
dependence on A may be noted. In particular, increased A is
associated with an expansion of the unstable regions in gen-
eral, and a contraction of the stable regions. At the same time,
the small-angle stability frontier is pushed into higher wave
numbers, and the large-angle stability frontier is reduced in its
extent. This is most evident at θ= 0 and θ= 45. For θ= 0,
A= .1 yields Q≈ 1.525 as first neutrally stable wave num-
ber greater than 0, whereas A= 1 yields Q≈ 1.653 as the first
neutrally stable wave number greater than 0, suggesting that
increased swelling rate is associated with slightly larger wave
numbers becoming stable: a stabilization of larger wave num-
bers at small angle of incidence. On the other hand, for θ= 45,
with A= .1, the first non-zero neutrally stable wave number
is Q≈ 6.5, and for A= 1, it is Q≈ 6. We also note that pre-
vious results for vanishingly-small A yield Q≈ 7 [44]. This
effect is perhaps most evident around θ= 35, where the expan-
sion of the unstable region for smaller angles has ‘cut off’ a
previously stable region, now destabilizing it. This illustrates

that although the existence of a swelling mechanism always
induces stability for small wave numbers, it may stabilize or
destabilize wave numbers in the general phase space depend-
ing on A and θ.

4.2.2. Imaginary part. Turning our attention to the imagin-
ary part of Σ, we again see marked similarity between images
for different values of A, with one notable exception: the
apparent replacement of some of the neutral stability regions
by sudden changes in the direction of translation, which is
unexpected. Indeed, investigating a ‘slice’ of the heat map at
θ = 45◦ for different values of A (figure 6), we observe that,
for sufficiently high A, discontinuities appear to form!

The key to understanding these apparent discontinuities is
twofold. First, after further investigation, we notice that they
occur when the upper and lower interfaces h11 and h21 are
exactly out of phase, which is to say that h11

h21
=−1. Equation

(34) implies that this occurs when

e−iQ sin(θ) =−1= e−i(2n+1)π (36)

or explicitly, when

θ = arcsin

(
(2n+ 1)π

Q

)
. (37)

These curves are plotted as dashed black lines in figure 5,
and it can be seen in figure 6 that the apparent discontinuities

9
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Figure 5. Comparison of heat maps for select swelling rates A. Black dashed lines show the level curves Qsin(θ) = π,3π,5π for which the
upper and lower interfaces are exactly out of phase.

lie directly upon them. Second, we must realize that the out-
of-phase interface configuration exhibits left-right symmetry,
such that any solution with non-zero translation ratemust have
a partner solution moving in the opposite direction with the
same speed. These observations suggest that the solution forΣ
contains more than one branch, and that what appear to be dis-
continuities in Im[Σ]may in fact simply represent an exchange
of stability between branches.

With such consideration in mind, we now treat the regions
around the apparent discontinuities more carefully. By adjust-
ing the initial guesses that our numerical solver makes in min-
imizing the error (29), we indeed are able to obtain more than
one solution branch for Σ, which are shown in figure 7.

We now see clearly that at the point of the ‘discontinuity’
in Im[Σ], the two branches of Re[Σ] cross. This complicates
visualizations of the dispersion relation, which reflect a tradi-
tional focus of stability analyses only on the branch with the
most positive value of Re[Σ]. Our more careful computations
reveal that this maximal value changes branches at a critical
value of Q, resulting in the apparent cusps and discontinuities
seen in figure 6.

It turns out that the separation of the two intersect-
ing branches of Im[Σ] begins around A∗ ≈ .55 for θ= 45.
Although we have not shown it here, analogous transitions
occur near Q≈ 6π√

2
for θ= 45, and, more broadly, near the

entire level curve defined in (37) at various critical thresholds

10
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Figure 6. A slice of the heat map at θ= 45, illustrating the increasingly sensitive dependence on Q as A increases.

Figure 7. Transition diagram of the multi-branch structure near
Q≈ 2π√

2
on the out-of-phase level curve as A is toggled.

A∗(Q,θ). Thus all of the rapid transitions in figures 5 and 6
can be explained.

5. Discussion

In this section, we consider the implications of our results
for the interpretation of certain experimental observations. We
begin with some general observations on how the swelling
mechanism should affect the pattern-forming properties of a

system. It is essential to note that, as discussed in [44], swell-
ing operates simultaneously with other, previously-studied
mechanisms such as sputter erosion [5–8], mass redistribution
[9–12], and anisotropic stress-driven flows [24, 25, 27, 28]. A
schematic exploration of the addition of the swelling mechan-
ism to these existing models is illustrated in figure 8. There,
we see that a modest amount of swelling will be expected
to increase the transition angle separating flat surfaces from
rippled surfaces, whereas a large amount of swelling might
be expected to suppress ripple formation entirely. A detailed
attempt to estimate all relevant parameters is beyond the scope
of this work, but in what follows we provide some qualitative
discussion in the context of relevant experiments.

5.1. Comparison with selected experiments

5.1.1. Ar+ →Si below 1000 eV. We first review observa-
tions in a ‘reference’ system of Ar+ → Si at energies below
1000 eV, as studied by Madi et al [31–33]. At near-normal
incidence, patterns are not observed, but above a transition
angle of about 45◦, ripples emerge with wavevector parallel
to the ion beam direction. Finally (although this is not our
focus), above a second transition angle of around 80◦, these
‘parallel-mode’ ripples are replaced by ‘perpendicular-mode’
ripples with wavevector perpendicular to the ion beam. In this
energy range, the transition angles are not observed to depend
strongly on the ion energy. We would conclude that any swell-
ing in this system is either present in low amounts, or does not
depend strongly on the ion energy within this energy range.
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Figure 8. A schematic illustrating the expected effect of swelling on the stability coefficient C11, in a longwave linearization of the form
ht ≈ C11(θ)hxx. (a) Compared to existing models, which all exhibit a band of unstable angles above some transition angle, the swelling
mechanism is stable for all angles of incidence. (b) As swelling is added at increasing ratios to the existing stability profile, the critical angle
shifts to higher angles, and eventually may vanish entirely. (Here, ‘ratio’ indicates the relative magnitude of the swelling mechanism
compared to the existing profile, and the resulting sums are scaled by the value of C11(0).)

5.1.2. Ne+,Ar+ →Ge below 2000 eV. We now turn to the
irradiation of Ge by various ions at similar energies, as repor-
ted by Teichmann et al [34]. Surprisingly, for Ne+ and Ar+

ions, no pattern formation is observed at any angle of incid-
ence in this energy range (at least, no angle less than 75◦,
which was the maximum angle studied). This observation is
consistent with our model if we assume that Ge experiences
much more swelling than Si under similar irradiation condi-
tions. And in fact, this is precisely the case—Ge can be shown
to readily double in volume [36, 45] due to the stabilization of
vacancies and their accumulation into voids [46, 47].

5.1.3. Kr+,Xe+ →Ge below 2000 eV. Teichmann et al also
studied irradiation of Ge by the heavier ions Kr+ and Xe+

[34], where ‘standard’ patterning behavior is observed, with
two important differences. First, the transition angles are much
higher than for the Ar+ → Si system (in the vicinity of 65◦).
Second, in a series of experiments at 65◦, strong ripples were
osbseved at 400 eV, weaker ripples at 800 and 1200 eV, and
no ripples at 2000 eV. Repeating these experiments at 75◦,
the authors observed ripples at all energies, and therefore con-
cluded that the transition angle had increased with increas-
ing ion energy. These behaviors are also consistent with our
findings, if we assume that the relevant strength of swelling
increases with ion energy; indeed, this is suggested by the
experiments of Böttger et al [48].

5.1.4. Ar+ →Si above 2000 eV. Finally, we consider some
observations for the Ar+ → Si system at higher energies
between 650 eV and 10 keV, as reported by Hofsäss et al
[35]. These authors performed a series of experiments at
65◦, observing strong patterns at 650 eV, weaker patterns
at 1 keV and 1.3 keV, and essentially no patterns between
3 keV and 10 keV. Being essentially identical to the results
in [34] for Kr+ and Xe+ on Ge, these observations are also
consistent with our findings, under the assumptions described
above.

5.2. Directions for future work

5.2.1. Transition angles: vanished or moved? The obser-
vations above naturally suggest the question of whether a
transition from flat to rippled surfaces was, in fact, entirely
suppressed in any of the above systems, or whether it simply
moved to a higher angle of incidence. For the Kr+,Xe+ → Ge
system, when increasing energies caused ripples to vanish
at 65◦, Teichmann et al repeated their experiments at 75◦,
confirming that ripples persist at all energies for this higher
incidence angle. However, for the Ne+,Ar+ → Ge system,
when ripples were not observed at any angle below 75◦,
those authors did not report further experiments at even higher
angles. Similarly, for the Ar+ → Si system, when increasing
energies caused ripples to vanish at 65◦, Hofsäss et al did not
report further experiments at higher angles2 [35]. We therefore
consider these regions of parameter space to be of high interest
for continued study.

5.2.2. Model refinements: swelling saturation. The simple
model of swelling represented by equation (3) has the advant-
age of mathematical simplicity, and generalization across dif-
ferent atomic-level volumization mechanisms. One disadvant-
age is that it does not contain a saturationmechanism. This was
not a problem in [44] when the rate of swelling was assumed
to be small. For larger swelling rates, this may or may not need
refinement. We note that material parcels undergo swelling
only until they are sputtered away at the top surface. There-
fore, if the ‘dwell time’ τdwell =

h0
V needed to sputter away one

film depth’s worth of material is less than the time τ sat at which

2 We note that in [35], Hofsäss et al argued that ripples could not form for any
angle at these energies, based on simulations using a a modified version of
the Crater Function Framework proposed in [49, 50]. However, this reason-
ing assumes prompt erosive and redistributive effects alone determine pattern-
ing behavior, which is inconsistent with recent studies of ion-induced stresses
[24–29]. Moreover, as we have noted elsewhere [30], several of the proposed
modifications do not appear to be mathematically justified.
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the stress would saturate without sputtering, then the linear
approximation in equation (3) remains reasonable. This seems
to be the case at least for the ‘reference’ system of Ar+ → Si
below 1 keV [21]. If τFD > τSS, a refinement would be needed.
We defer such refinement to future work.

5.2.3. Energy dependence: a complex space. The energy
dependence of patterning behavior is highly complex. For
instance, in the Ar+ → Si system [35], identify three distinct
energy regimes. In ‘Region 1’ (below 1 keV), patterns are
readily formed at angles above 45 degrees [31]. In ‘Region 2’
(from 1 keV to 20 keV), patterns are less easily formed, with
a higher transition angle that can exceed 65 degrees, and may
potentially vanish entirely [35]. Finally, in ‘Region 3’ (above
20 keV), patterns again readily formed, and the transition
angle decreases again, potentially as low as 30 degrees at an
energy of 40 keV [51]. So, although we have suggested that
an energy-dependent swelling may explain the transition from
‘Region 1’ to ‘Region 2’ type behavior in some relevant sys-
tems [34, 35], a simple extrapolation of this trend to all ener-
gies is obviously insufficient.

There are several reasons to expect that a more nuanced
approach should be needed. First, as shown in [44], the ‘dwell
time’ τ dwell introduced above has a minimum value at around
1–2 keV. Above this energy, it increases steadily, doubling by
10 keV, and doubling again by 30 keV. As material spends
increasing amounts of time in the amorphous film prior to
sputtering, we may expect the importance of bulk physics
(such as stress-driven viscous flow [24, 25, 27, 28]) to increase
relative to surface physics (such as surface sputtering and
redistribution [5–7, 9–11, 16, 17]). An increasing dwell time
may also necessitate the inclusion of a saturation mechanism
as just described, which in turn, could limit the suppressive
effect of swelling as energies continue to increase. Second,
the fundamental physics of ion/solid interactions are changing
at these energy levels. Ions moving through solids undergo
both nuclear and electronic stopping [52], and above a cer-
tain energy, electronic stopping becomes dominant. Indeed,
for the Ar→ Si sytem, nuclear stopping reaches a peak at
around 20 keV [53]—exactly the boundary between ‘Region
2’ and ‘Region 3’ as described by [35]. In short, because
the underlying physics of the system are changing, it is not
unreasonable that trends in the relative magnitude of para-
meters might change direction in this region. Indeed, ion-
solid interactions at higher energies have previously been
described using entirely different modeling approaches (see
e.g. [19, 54–62]). Much more work is needed, but we hope
this contribution motivates future studies.

6. Conclusion

As described above, past work from our group [44] has
shown that a simple mathematical model of radiation-induced
swelling, a mechanism historically neglected in theoretical
treatments of ion-induced nanopatterning, is unconditionally

stabilizing. This may, in principle, provide a means of explain-
ing the disappearance of ion-induced nanopatterns observed
for certain ion/target/energy combinations [34, 35]. However,
an important limitation to the previous work was its restriction
to the limit of small swelling rates. While the analysis show-
ing unconditional stability of the swelling mechanism used
the assumption of a small swelling rate (A) in order to render
the governing equations analytically solvable, the actual sup-
pression of pattern formation observed experimentally would
only be expected to appear for relatively large swelling rates.
Hence, some means of ‘bridging the gap’ between these two
regimes was needed. This work has provided such a bridge by
employing a numerical study of the linear stability equations,
an approach not commonly seen but broadly applicable to
other systems.

The present work overcomes the previous limitations on
parameter A, successfully bridging the gap: the stabilization
of observed wavelengths is not a transient artifact of the small
swelling rate assumption made originally, but is, rather, due
to the nature of the swelling mechanism itself. Indeed, there
are very strong similarities between the behavior associated
with small swelling rates, and that associated with even very
large swelling rates. In fact, at normal incidence, the behavior
over different wavenumbers and swelling rates is very nearly
separable, and we have derived a simple prefactor function
that scales the small-swelling result into the arbitrary-swelling
regime. The persistence of these stabilization effects for all
swelling rates strengthens the argument for adding a swelling-
type mechanism to models of nanopattern formation, and the
great similarities in the dispersion relation across all swelling
rates suggests that the small-swelling limit obtained in [44] is
an adequate approximation to the full mechanism.

Having verified the behavior of the swelling mechanism for
arbitrary swelling rates, we also made some testable predic-
tions of its effect on experimental systems. Themost important
of these is that swelling should increase the transition angle
between flat and patterned surfaces, potentially eliminating
patterns entirely if it is strong enough. Combined with the
knowledge that irradiated Ge readily swells to almost double
its initial volume [45], this prediction would explain the obser-
vations of Teichmann et al [34], who observed no ripples in
the Ne+ → Ge and Ar+ → Ge systems at any incidence angle,
and ripples only at high incidence angles in the Kr+ → Ge
and Xe+ → Ge systems. If we further predict that swelling
increases with ion energy in this energy range, we can addi-
tionally explain the increasing transition angles observed by
Teichmann et al in Kr+ → Ge between 400 eV and 2000 eV,
and byHofsäss et al in Ar+ → Si between 650 eV and 3000 eV
[34, 35].

These theoretical advancements, and associated predic-
tions, highlight a paucity of experimental measurements
needed to compare the relative magnitudes of active mech-
anisms in ion-irradiated solids. For instance, to quantify the
discussion presented in section 5.1, we would need simultan-
eous measurements of both the (isotropic) swelling rate (iso-
tropic stress) and the (deviatoric) stress-driven viscous flow
rate, across a wide range of energies. Although both swelling
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and stress can be measured independently, we are aware of
only one limited study that attempts to distinguish between
these two quantities, by collecting angle-dependent measure-
ments of cantilever curvature [22]. That study does appear
to suggest the presence of both effects even at low energies
(250 eV Ar+ on Si), further indicating that the inclusion of
swelling effects may be necessary to obtain the quantitatively-
accurate ‘predictive model’ so long sought in this field [30].
More experimental work in this area will be crucial compon-
ent of this ongoing pursuit.
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Appendix. Long-wave limit, arbitrary swelling rate

As a simple first step in determining whether the swelling
mechanism continues to produce a regime of stabilizing wave
numbers for arbitrary swelling rates, we consider an alternate
linearization of equations (15)–(25), in small wavenumber Q,
rather than in small swelling rate A, in order to understand the
long-wave behavior of the swelling mechanism in general. We
expand equations (15)–(25) in a standard asymptotic series for
small Q by applying the following set of ansatzes

ρ1(z) =
∞∑
i=0

Qiρ1i(z); u1(z) =
∞∑
i=0

Qiu1i(z);

w1(z) =
∞∑
i=0

Qiw1i(z); p1(z) =
∞∑
i=0

Qip1i(z);

a1(z) =
∞∑
i=0

Qia1i(z); Σ =
∞∑
i=0

QiΣi,

deriving new sets of differential equations in the coefficients
and solving them. The results will then provide good approx-
imations to the ρ1,u1,w1,p1,a1 and Σ that we seek when
Q≈ 0. Although the system, in principle, will admit multiple
solutions for Σ, we are usually concerned only with the most
positive branch, since this will determine the pattern formation
that is actually observed. This suggests that we should begin
the analysis by seeking perturbation solutions nearΣ0 = 0.We
now provide a brief summary of the solution up toO(Q2)with
this assumption about Σ0. We will refer to this as the ‘main
branch’.

At O(1)

The i= 0 termmay be computed by settingQ→ 0,Σ0 → 0 for
equations (9)–(19). This leads to the bulk equations

−A
ψ3

w10 +
w ′

10

ψ
+ψρ ′

10 +
A
ψ
ρ10 = 0 (38)

ψa ′
10 +

A
ψ
w10 = 0 (39)

ψρ10 +
a10
ψ

= 0 (40)

u ′ ′
10 = 0 (41)

2w ′ ′
10 = p ′

10, (42)

with

a10 =−h11A (43)

u10 = 0 (44)

w10 =−h11A (45)

at z= 0, and

w10 =−(1+ 2A)ρ10 (46)

u ′
10 = 0 (47)

−p10 + 2w ′
10 = 0 (48)

at z= 1. It is clear that u10 is at most a polynomial. From
equations (39) and (40), we may obtain a10 in terms of ρ10,
and then w10 is known in terms of the ρ10 by substitution.
These relationships may be applied to (38) to obtain a differen-
tial equation purely in terms of ρ10, which is readily solvable.
Having obtained ρ10, we know a10 from (11) and w10 from
having already identified w10 in terms of a10. Then p10 may
be obtained from (42), and the boundary conditions are easy
to match. We obtain the following solution set at O(1) for the
main branch:

w10 =
−Ah11√
1+ 2Az

(49)

u10 = 0 (50)

p10 =
2A2 h11

(1+ 2Az)3/2
(51)
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ρ10 =
Ah11

(1+ 2Az)3/2
(52)

a10 =
−Ah11√
1+ 2Az

(53)

Σ0 = 0. (54)

At O(Q)

We obtain the bulk equations

Σ1ρ10 −
A
ψ3
w11 +

w ′
11

ψ
+ψρ ′

11 +
Aρ11
ψ

= 0 (55)

Σ1a10 +ψa ′
11 +

Aw11

ψ
= 0 (56)

ψρ11 +
a11
ψ

= 0 (57)

u ′ ′
11 + iw ′

10 = ip10 (58)

p ′
11 = 2w ′ ′

11 (59)

with boundary conditions at z= 0:

a11 = 0 (60)

u11 = 0 (61)

w11 = 0 (62)

and boundary conditions at z= 1:

w11 =Σ1h21 − (1+ 2A)ρ11 (63)

u ′
11 + iw10 =

−2iAh21√
1+ 2A

(64)

−p11 + 2w ′
11 = 0 (65)

from which we obtain

a11 = w11 = ρ11 = p11 =Σ1 = 0 (66)

u11 = i

(
h11 +

2A(h11 − h21)z√
1+ 2A

− h11
√
1+ 2Az

)
. (67)

As before, the primary ‘trick’ is in exploiting the linearized
equation of state. Here, we use equation (59) to determine that
p11 is a constant, and (58) can be integrated twice to provide the
u11 in terms of theO(1) results. Equation (57) gives a relation-
ship between a11 and ρ11 which can be substituted into (56) to
obtainw11 in terms ofO(1) results and ρ11. This may be substi-
tuted into (55) to arrive at a differential equation in terms of ρ11
which is solvable in closed form.We may then back-substitute
to obtain the solutions for all other quantities.

At O(Q2)

We obtain the bulk equations

Σ2ρ10 +Σ1ρ11 −
Aw12

ψ3
+

1
ψ
(iu11 +w ′

12)+ψρ ′
12 +

A
ψ
ρ12 = 0

(68)

Σ2a10 +Σ1a11 +ψa ′
12 +

Aw12

ψ
= 0 (69)

ψρ12 +
a12
ψ

= 0 (70)

−2u10 + u ′ ′
12 + iw ′

11 = ip11 (71)

−w10 + 2w ′ ′
12 + iu ′

11 = p ′
12 (72)

with boundary conditions at z= 0:

a12 = 0 (73)

u12 = 0 (74)

w12 = 0 (75)

and boundary conditions at z= 1:

w12 = h21Σ12 − (1+ 2A)ρ12 (76)

u ′
12 + iw11 = 0 (77)

−p12 + 2 w ′
12 = 0 (78)

from which we may finally obtain Σ2. The solution method
is similar to the first two orders of Q. From (72) we obtain
p12 in terms of known quantities. Equation (71) may be
integrated twice to obtain u12 in terms of known quantit-
ies. Then we may solve for a12 in terms of ρ12 and known
quantities using (71). Using (70) as before, we obtain w12 in
terms of ρ21 and known quantities, which may be substituted
into (68) to arrive at a differential equation that is solvable
for ρ21, and the other quantities may be obtained by back-
substitution. The boundary conditions, as before, are easy to
handle although the calculations are somewhat lengthy. It is at
O(Q2) that we obtain our first non-zero solution in the small-Q
approximation of Σ.

Results

Therefore we have in the long-wave limit, to leading order
in Q,
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Figure 9. The A-dependent, angle-independent coefficient from (a) the real part and (b) the imaginary part of the long-wave dispersion
relation, from equations (80) to (81).

Σ≈ Q2(2(−2A2 +A−
√
2A+ 1+ 1)h21 + 5(

√
2A+ 1− 1)h11 +A(−2A+ 6

√
2A+ 1− 11)h11)

3A((2A+ 1)h11 +
√
2A+ 1(h21 − h11))

(79)

which is proportional to−Q2, and this gives us a good approx-
imation of the main branch of the dispersion relation for small
wave numbers. As described above, the dependence on incid-
ence angle can be explored by re-scaling the film depth, wave
number, and linearized interface perturbations (h0,Q,h11,h21
respectively) using equations (32)–(34). Dividing numerator
and denominator by h21, applying those substitutions, and then
performing a Taylor expansion forQ≈ 0, we deduce the angle-
and swelling rate-dependent long-wave solution

Re[Σ(Q,θ;A)]≈
(
−A+

√
2A+ 1− 1

)
Q2 cos2(θ)

A
(80)

and

Im[Σ(Q,θ;A)]

≈−
(√

2A+ 1+A
(
2
√
2A+ 1− 3

)
− 1

)
Q3 sin(θ)cos3(θ)

3A
√
2A+ 1

(81)

which are much simpler forms accounting for the growth and
translation, respectively, of long-wave perturbations. We note

that a second Taylor expansion in A for A≈ 0 for (80) and (81)
reproduces the result given in [44],

Re[Σ(Q,θ,0)]≈−1
2
AQ2 cos2(θ). (82)

We note that for θ= 0, the imaginary part drops out of our res-
ult entirely, consistent with previous results at normal incid-
ence. It is clear that for all values of A, small wave numbers are
stable, reflecting that the swellingmechanism induces a pocket
of stability for some range of long wave numbers at all angles
of incidence. Hence the stabilizing effect of the swellingmech-
anism is established for arbitrary swelling rates, angle of incid-
ence and at least long waves. For interest, we have plotted the
A-dependent coefficients of equations (80) and (81) above in
figure 2.

ORCID iD

Tyler Evans https://orcid.org/0000-0001-7812-2479

16



J. Phys.: Condens. Matter 34 (2022) 325302 T Evans and S Norris

References

[1] Navez M, Chaperot D and Sella C 1962 Microscopie
electronique-etude de lattaque du verre par bombardement
ionique C. R. Hebd. Seances Acad. Sci. 254 240

[2] Facsko S, Dekorsy T, Koerdt C, Trappe C, Kurz H, Vogt A and
Hartnagel H L 1999 Formation of ordered nanoscale
semiconductor dots by ion sputtering Science 285 1551–3

[3] Frost F, Ziberi B, Schindler A and Rauschenbach B 2008
Surface engineering with ion beams: from self-organized
nanostructures to ultra-smooth surfaces Appl. Phys. A
91 551–9

[4] Chan W L and Chason E 2007 Making waves: kinetic
processes controlling surface evolution during low energy
ion sputtering J. Appl. Phys. 101 121301

[5] Sigmund P 1969 Theory of sputtering. I. Sputtering yield of
amorphous and polycrystalline targets Phys. Rev.
184 383–416

[6] Sigmund P 1973 A mechanism of surface micro-roughening
by ion bombardment J. Mater. Sci. 8 1545–53

[7] Bradley R M and Harper J M 1988 Theory of ripple
topography induced by ion bombardment J. Vac. Sci.
Technol. 6 2390–5

[8] Makeev M A, Cuerno R and Barabási A-L 2002 Morphology
of ion-sputtered surfaces Nucl. Instrum. Methods Phys. Res.
B 197 185–227

[9] Carter G and Vishnyakov V 1996 Roughening and ripple
instabilities on ion-bombarded Si Phys. Rev. B 54 17647–53

[10] Moseler M, Gumbsch P, Casiraghi C, Ferrari A C and
Robertson J 2005 The ultrasmoothness of diamond-like
carbon surfaces Science 309 1545–8

[11] Davidovitch B, Aziz M J and Brenner M P 2009 Linear
dynamics of ion sputtered surfaces: instability, stability and
bifurcations J. Phys.: Condens. Matter 21 224019

[12] Madi C S, Anzenberg E, Ludwig K F Jr and Aziz M J 2011
Mass redistribution causes the structural richness of
ion-irradiated surfaces Phys. Rev. Lett. 106 066101

[13] Kalyanasundaram N, Ghazisaeidi M, Freund J B and
Johnson H T 2008 Single impact crater functions for ion
bombardment of silicon Appl. Phys. Lett. 92 131909

[14] Kalyanasundaram N, Freund J B and Johnson H T 2009 A
multiscale crater function model for ion-induced pattern
formation in silicon J. Phys.: Condens. Matter 21 224018

[15] Norris S A, Brenner M P and Aziz M J 2009 From crater
functions to partial differential equations: a new approach to
ion bombardment induced nonequilibrium pattern
formation J. Phys.: Condens. Matter 21 224017

[16] Norris S A, Samela J, Bukonte L, Backman M,
Nordlund D F K, Madi C, Brenner M and Aziz M 2011
Molecular dynamics of single-particle impacts predicts
phase diagrams for large scale pattern formation Nat.
Commun. 2 276

[17] Harrison M P and Bradley R M 2014 Crater function approach
to ion-induced nanoscale pattern formation: craters for flat
surfaces are insufficient Phys. Rev. B 89 245401

[18] Umbach C C, Headrick R L and Chang K-C 2001
Spontaneous nanoscale corrugation of ion-eroded SiO2: the
role of ion-irradiation-enhanced viscous flow Phys. Rev.
Lett. 87 246104

[19] Brongersma M L, Snoeks E, van Dillen T and Polman A 2000
Origin of MeV ion irradiation-induced stress changes in
SiO2 J. Appl. Phys. 88 59–64

[20] Chan W L and Chason E 2008 Stress evolution and defect
diffusion in Cu during low energy ion irradiation:
experiments and modeling J. Vac. Sci. Technol. A 26 44

[21] Madi C S 2011 Linear stability and instability patterns in ion
bombarded silicon surfaces PhD Dissertation Harvard
University

[22] Perkinson J C 2017 PhD Dissertation Harvard University

[23] Ishii Y, Madi C, Aziz M J and Chason E 2014 Stress evolution
in Si during low-energy ion bombardment J. Mater. Res.
29 2942–8

[24] Castro M and Cuerno R 2012 Hydrodynamic approach to
surface pattern formation by ion beams Appl. Surf. Sci.
258 4171–8

[25] Castro M, Gago R, Vázquez L, Muñoz-García J and Cuerno R
2012 Stress-induced solid flow drives surface
nanopatterning of silicon by ion-beam irradiation Phys. Rev.
B 86 214107

[26] Norris S A 2012 Stability analysis of a viscoelastic model for
ion-irradiated silicon Phys. Rev. B 85 155325

[27] Norris S A 2012 Stress-induced patterns in ion-irradiated
silicon: model based on anisotropic plastic flow Phys. Rev.
B 86 235405

[28] Moreno-Barrado A, Castro M, Gago R, Vãzquez L,
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