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Abstract. A thermodynamically consistent phase-field model is introduced for simulating mo-8

tion and shape transformation of vesicles under flow conditions. In particular, a general slip boundary9

condition is used to describe the interaction between vesicles and the wall of the fluid domain in the10

absence of cell-wall adhesion introduced by ligand-receptor binding. A second-order accurate in both11

space and time C0 finite element method is proposed to solve the model governing equations. Various12

numerical tests confirm the convergence, energy stability, and conservation of mass and surface area13

of cells of the proposed scheme. Vesicles with different mechanical properties are also used to explain14

the pathological risk for patients with sickle cell disease.15
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1. Introduction. Studying dynamic motion and shape transformation of bio-19

logical cells is always a point of interest in cell biology because the shapes of the cells20

usually relate to their function. For example, many blood-related diseases are known21

to be associated with alterations in the geometry and membrane properties of red22

blood cells [56]. Red blood cells in diabetes or sepsis patients exhibit impaired cell23

deformability [17, 42]. During blood clot formation, an indicator of platelet activation24

is its shape change by forming filopodia and lamellipodia. Notably, platelets’ shape25

changes facilitate their adhesion to the site of vascular injury and cohesion with other26

platelets or erythrocytes [54, 2].27

In simulation study, it is vitally important to establish a proper model of cell28

membranes for analyzing the dynamical shape transformation of cells in addition to29

modeling intracellular and extracellular fluids. Various mathematical models were in-30

troduced for predicting cell morphology and function. Dissipative particle dynamics31

[33] models of red blood cell were developed in [41, 33, 40] and were used to study ef-32

fects of red blood cells on platelet aggregation [41]. Models based on interface tracking33

or capturing such as level set method [60, 61, 50] were also developed [6, 29, 25, 24]34

to take into consideration the fluid-cell-structure interaction. In numerical treatment,35

various methods such as the immersed boundary method [30, 52, 39, 57, 59], immersed36
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interface method [26, 31], spectral method [34], and fictitious domain method [24]37

using finite difference or finite element formulation have been introduced to solve38

governing equations of these models.39

The phase-field method considers the material interface as a diffuse layer instead40

of a sharp discontinuity. This regularization can be rigorously formulated through a41

variational process. The main advantages of the phase-field method are twofold. The42

phase-field order parameter identifying the diffuse interface is treated as an additional43

primary unknown of the problem to be solved on the whole domain. Consequently,44

interface transformations are predicted without the necessity of a remeshing algorithm45

to treat the evolution of the interface. The physics mediating the interface dynamics46

can be easily incorporated into the phase-field models.47

Lots of phase-field–type vesicle models have been introduced lately [27, 65, 35,48

11]. Mechanical properties of the vesicle membrane such as bending stiffness and49

inextensibility can be incorporated rigorously by the phase-field theory [11, 13, 14, 12]50

to establish a realistic mechanistic model. For instance, the bending energy of bending51

resistance of the lipid bilayer membrane in the isotropic case (neglecting the proteins52

and channels on the membrane) given in the form of the Helfrich bending energy can53

be approximated by a modified elastic energy defined on the whole domain in the54

phase-field formulation [8, 10, 13, 14]. Constraints conserving cell mass and ensuring55

global inextensibility of cell membrane are frequently introduced into vesicle models56

to keep the mass and surface area of the vesicle constant [12, 1].57

The focus of this paper is to model flowing vesicles interacting with the domain58

boundaries which mimics scenarios such as red blood cells passing through a narrowed59

blood vessel in the absence of the cell-wall adhesion introduced by ligand-receptor60

binding or when the impact of this cell-wall adhesion can be neglected. This involves61

considering a moving contact line problem since three different phases meet to form62

a triple point [44]. The first goal of this paper thus is to derive a thermodynamically63

consistent phase-field model for vesicles’ motion and shape transformation in a closed64

spatial domain by using an energy variational method [53, 21]. All the physics taken65

into consideration are introduced through definitions of energy functionals and dissi-66

pation functional, together with the kinematic assumptions of laws of conservation.67

Besides the energy and dissipation terms defined on bulk region of the domain, terms68

accounting for boundary effects are also added to the functionals. Then performing69

variation of these functionals yields an Allen–Cahn–Navier–Stokes system [58] with70

Allen–Cahn general Navier boundary conditions (GNBCs) [45]. This is in contrast to71

most previous works [13, 14, 7] in which a dynamic boundary condition was rarely72

derived during the course of model derivation. Dirichlet- or Neumann-type condi-73

tions were simply added to these models at the end to close the governing equations74

[1, 12, 10]. Moreover, in our model derivation, the incompressibility of the fluid, the75

local and global inextensibility of the vesicle membrane, and the conservation of vesicle76

mass are taken into account by introducing two Lagrangian multipliers, hydrostatic77

pressure and surface pressure [39] and penalty terms, respectively.78

The second goal of this paper is to propose an efficient and accurate numeri-79

cal scheme for solving the obtained fourth-order nonlinear coupled partial differential80

equation system. Over the past decades, a lot of schemes have been developed for81

Allen–Cahn– or Cahn–Hilliard–Navier–Stokes systems. As for systems such as vesicle82

models introduced in the current and other works which are more sophisticated than83

the Allen–Cahn– or Cahn–Hilliard–Navier–Stokes systems, the backward Euler time84

discretization method is frequently used [1, 13, 19, 18] leading to a first-order accu-85

rate scheme. Later on, decoupled energy stable schemes were proposed by Chen et al.86
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[7] and Francisco and Giordano [20] by introducing explicit, convective velocities.87

Liu, Song, and Xu [34] introduce a variational framework for an inextensible mem-88

brane with immerse boundary formula and propose a spectral method for solving the89

obtained problem. In the current work, an efficient, energy-law preserving (thus en-90

ergy stable) and second-order accurate C0 finite element scheme is proposed to solve91

the obtained vesicle system using ideas introduced in [22]. The key idea of this scheme92

is to utilize the midpoint method in time discretization to ensure the accuracy in time93

and that the form of the discrete energy dissipation law is the same as that of the94

continuous model. In order to properly treat the term related to inextensibility of95

the membrane, a relaxation term of local inextensibility as in [1] is introduced. The96

numerical study of convergence confirms the proposed scheme is second-order conver-97

gent in both time and space. Furthermore, vesicle deformation simulations illustrate98

that it is energy stable and numerically conserves mass and surface area of vesicles.99

The introduction of the GNBC in this work makes it possible to study a broad100

class of complicated fluid-structure interaction problems. In this paper, the developed101

model is applied to studying vesicles passing through narrow channels. The results102

confirm that the more rounded the vesicles (smaller surface-volume ratio) are, the103

more likely the vesicles form a blockage when they pass through narrow channels. It104

is also worth noting that it is critical to include the local inextensibility of the vesi-105

cle membrane in the model when studying this type of problem. Without the local106

inextensibility, the vesicle membrane can be falsely stretched or compressed. Lastly,107

although membrane structures of vesicles and blood cells are quite different, a blood108

cell in many studies can be treated as an elastic capsule with bending rigidity, in109

which the membrane is impenetrable to both interior and exterior fluids. Therefore,110

our model developed for vesicles can be readily applied for studying a vast body of111

blood cell–related problems [37].112

The rest of paper is organized as follows. Section 2 of the paper begins with113

introducing basic dynamical assumptions that have been used in many papers [12, 44]114

and is devoted to model derivation. Dimensionless model governing equations and115

the energy decaying law of the model are presented in section 3. In section 4, the116

numerical scheme solving the proposed model is developed, and its energy law is117

given. Numerical simulation results are described in section 5 to confirm the energy118

law of the numerical scheme and the feasibility of our model. A case study of a vesicle119

passing through a narrow channel is shown, which is to simulate the motion of red120

blood cells in a small blood vessel. Conclusions are drawn in section 6.121

2. Model derivation. Derivation of the model for simulating a flowing vesicle122

deforming in a channel filled with extracellular fluid is presented in this section. The123

phase-field label function φ is introduced to track the motion of the vesicle, where124

φ(x) = ±1 denotes the intracellular and extracellular space and φ = 0 is the vesicle125

membrane or interface.126

The model is derived using an energy variational method [53]. It begins with127

defining two functionals for the total energy and dissipation of the system and intro-128

ducing the kinematic equations based on physical laws of conservation. The specific129

forms of the flux and stress functions in the kinematic equations are obtained by tak-130

ing the time derivative of the total energy functional and comparing with the defined131

dissipation functional. More details of this method can be found in [53].132

In what follows, we detail steps of using this method to derive the model. We133

first make the following assumptions about mass and momentum conservation of the134

mixture of extracellular fluid and vesicle and interface inextensibility, and we assume135

that the dynamics of the phase-field function φ is an L2 gradient flow:136
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∂φ

∂t
+∇ · (uφ) = qφ ,

ρ

(
∂u

∂t
+ (u · ∇)u

)
= ∇ · ση + Fφ ,

∇ · u = 0 ,

δγ(P : ∇u) + ξγ2∇ · (φ2∇λ) = 0

(2.1)137

with specific forms of flux qφ, stress ση, and body force density Fφ functions to be138

determined. ρ and u are the density and velocity of the mixture, respectively. In139

this paper, we assume that the density is a constant. The first equation is the Allen–140

Cahn-type equation to track the interface. The second equation is the conservation141

of momentum. The third equation accounts for the fluid incompressibility (or mass142

conservation).143

The last equation is related to the local inextensibility of the vesicle membrane.144

This local inextensibility prevents stretching on any point of the vesicle membrane145

surface [5]. In the sharp interface model, the local inextensibility (or mass conservation146

on the interface) is represented by ∇Γ ·u = 0 defined on the interface Γ [35, 37]. This147

equation is equivalent to P : ∇u = 0, where the projection operator P is defined to148

be (I − nm ⊗ nm) and nm = ∇φ
|∇φ| is the unit outward normal vector of the interface149

when it is defined as an implicit surface by the level function. In the phase-field150

formulation, the interface is modeled as a diffuse layer. This is different from the151

sharp interface concept. For computational convenience using phase-field formulation,152

this local inextensibility constraint on the interface Γ is extended to the domain Ω by153

multiplying with a scalar function154

δγ =
1

2
γ2|∇φ|2 ,(2.2)155

156

where ∇φ is nonzero only in the diffuse interface layer and γ is the thickness of the157

diffuse interface layer. Here a relaxation term ξγ2∇ · (φ2∇λ) for the local inextensi-158

bility near the membrane is introduced as shown in [1]. ξ is a parameter independent159

of γ, and λ is the a function that measures the interface “pressure” induced by the160

inextensibility of the membrane.161

On the wall boundary ∂Ωw of the domain, the following boundary conditions are162

assumed:163 

u · n = 0 ,

uτ · τi = fτi ,

φ̇ =
∂φ

∂t
+ u · ∇Γφ = JΓ ,

f = 0 ,

∂nλ = 0 ,

(2.3)164

where an Allen–Cahn-type boundary condition is employed for φ, uτ = u− (u ·n)n is165

the fluid slip velocity with respect to the wall, τi, i = 1, 2 are the tangential directions166

of the wall surface (2D), and ∇Γ = ∇ − n(n · ∇) is the surface gradient operator167

on the boundary ∂Ωw. fτi is the slip velocity of the fluid on the wall along the τi168

direction. And JΓ represents the Allen–Cahn type of relaxation on the wall by using169

the phase-field method. Here we abuse the notation when there is no confusion, and170

the subscript Γ refers to ∂Ωw, and n is its unit outward normal. The meaning of171

equation f = 0 will be made explicit after definition of the interface curvature (see172

(2.8)).173
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The remainder of this section is devoted to deriving the exact forms of qφ, ση, Fφ,174

fτi , and JΓ using the energy variational method. By following the works in [58, 11],175

the total energy functional Etotal of a cell- (or vesicle-) fluid system is defined to be176

the sum of the kinetic energy Ekin, the cell membrane energy Ecell, and the specific177

wall energy Ew due to the cell-wall interaction178

Etotal = Ekin︸︷︷︸
Macroscale

+Ecell + Ew︸ ︷︷ ︸
Microscale

.(2.4)179

The kinetic energy accounts for the transport of the cell-fluid mixture and is180

defined as181

Ekin =

∫
Ω

(
1

2
ρ|u|2

)
dx ,(2.5)182

where ρ is the macroscale density of the mixture and is assumed to be equal to a183

constant ρ0 in this work (matched density case).184

The cell energy Ecell is defined to be the sum of the bending energy Ebend and185

two penalty terms in order to preserve the total volume and surface area of the cell:186

Ecell = Ebend +
Mv

2

(V (φ)− V (φ0))
2

V (φ0)
+
Ms

2

(S(φ)− S (φ0))
2

S (φ0)
,(2.6)187

where V (φ) =
∫

Ω
φdx is the volume difference of the cell-fluid system and the value188

of S(φ) =
∫

Ω
G(φ)
γ dx is used to measure the surface area of the cell with G(φ) =189 ∫

Ω
γ2|∇φ|2

2 + (1−φ2)2

4 dx. Mv and Ms are cell volume and surface area constraint190

coefficients, respectively.191

If the cell membrane is assumed to be isotropic and only composed of a lipid192

bilayer, the bending energy of the bending resistance of the cell membrane can be193

modeled by an approximation of the Helfrich bending energy [11] as follows:194

Ebend =

∫
Ω

κ̂B
2γ

∣∣∣∣f(φ)

γ

∣∣∣∣2 dx ,(2.7)195

where κ̂B is the bending modulus and196

f(φ) :=
δG

δφ
= −γ2∆φ+ (φ2 − 1)φ .(2.8)197

In order to take into account the interaction at the interface between vesicle, fluid,198

and vessel wall on ∂Ωw, the wall free energy Ew is introduced:199

Ew =

∫
∂Ωw

fw(φ)ds ,(2.9)200

where fw is the vesicle-wall interaction energy density.201

Remark 2.1. Here we borrow the idea introduced in moving contact line models202

[43, 44]:203

fw(φ) = −σ
2

sin

(
φπ

2

)
cos(θs)(2.10)204

with a static contact angle θs [48, 47] when the cell-wall adhesion is absent or neg-205

ligible. This is justified by the fact that a triple point is formed at which wall, cell,206

and extracellular fluid meet, and its dynamics can be modeled through a contact207

line model. We also note that the choice of contact angle can be subtle and affects
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simulation outcome. Low contact angle values show a tendency of the cell to spread208

and “adhere” to the surface (hydrophilic) due to the existence of a wetting force,209

whereas high contact angle values represent the surface’s tendency to repel the cell210

or an absence of the wetting force (hydrophobic). (See Figure 4 in section 5.2 later.)211

In fact, the wall energy fw can be made more sophisticated in order to faithfully rep-212

resent the complicated vesicle-wall interaction in the case that the cell-wall adhesion213

by ligand-receptor binding is involved, for example, by introducing a new phase to214

represent the wall [18].215

The chemical potential µ is obtained by taking the variation of Ebulk = Ekin+Ecell216

with respect to φ:217

µ =
δEbulk
δφ

=
κ̂B
γ3
g(φ) +Mv

V (φ)− V (φ0)

V (φ0)
+
Ms

γ

S(φ)− S (φ0)

S (φ0)
f(φ) ,(2.11)218

where g(φ) = −γ2∆f + (3φ2 − 1)f .219

It is assumed in the present work that dissipation of the system energy is due220

to fluid viscosity, friction on the wall, and interfacial mixing due to diffuse interface221

representation. Accordingly, the total dissipation functional ∆ is defined as follows:222

∆ =

∫
Ω

2η|Dη|2dx+

∫
Ω

1

M φ
|qφ|2dx+

∫
Ω

ξ|γφ∇λ|2dx+

∫
∂Ωw

βs|uτ |2ds223

+

∫
∂Ωw

κΓ|JΓ|2ds .(2.12)224

Here the first term is the macroscopic dissipation induced by the fluid viscosity with225

Dη = 1
2 [∇u + (∇u)T ], the second term is the microscopic dissipation induced by226

the diffuse interface, the third term is the dissipation induced by the diffuse interface227

method for imposing local inextensibility of the interface, the fourth term is the228

boundary friction dissipation, where βs is related to the roughness of the vessel wall,229

and the last term is the dissipation induced by the diffuse interface contacting the230

wall.231

By taking the time derivative of the total energy functional (2.4), it is obtained232

that (detailed derivation is given in the appendix of this paper)233

dEtotal
dt

=
d

dt
Ekin +

d

dt
Ecell +

d

dt
Ew

(2.13)

234

= −
∫

Ω

((ση + pI) : ∇u)dx+

∫
Ω

(Fφ − µ∇φ−∇ · (λδγP)) · udx+

∫
Ω

µqφdx235

+

∫
Ω

ξ(γφ∇λ)2dx+

∫
∂Ωw

((ση + λδγP) · n) · uτds+

∫
∂Ωs

L̂(φ)
∂φ

∂t
ds236

= −
∫

Ω

((ση + pI) : ∇u)dx+

∫
Ω

(Fφ − µ∇φ−∇ · (λδγP)) · udx+

∫
Ω

µqφdx237

+

∫
Ω

ξ(γφ∇λ)2dx+

∫
∂Ωw

((ση + λδγP) · n) · uτds+

∫
∂Ωs

L̂(φ)(−u · ∇Γφ+ JΓ)ds238

= −
∫

Ω

((ση + pI) : ∇u)dx+

∫
Ω

(Fφ − µ∇φ−∇ · (λδγP)) · udx+

∫
Ω

µqφdx239

+

∫
Ω

ξ(γφ∇λ)2dx+

∫
∂Ωw

((ση + λδγP) · n− L̂(φ)∇Γφ) · uτds+

∫
∂Ωw

L̂(φ)JΓds,240

241

where p and λ are introduced as Lagrange multipliers accounting for fluid incom-242

pressibility and local inextensibility of the cell membrane, respectively. δγ is defined243

in (2.2), and L̂(φ) = κ̂B

γ ∂nf +Ms
S(φ)−S(φ0)

S(φ0) γ∂nφ+ ∂fw
∂φ .244
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Using the energy dissipation law dEtotal

dt = −∆ [62, 15] and the definition of the245

dissipation functional (2.12), it is obtained that246 

ση = 2ηDη − pI in Ω ,

qφ = −Mφµ in Ω ,

Fφ = µ∇φ+∇ · (λδγP) in Ω ,

JΓ = −κ−1
Γ L̂(φ) on ∂Ωw ,

uτi = β−1
s (−(n · (ση + λδγP) · τi) + L̂(φ)∂τiφ) , i = 1, 2, on ∂Ωw .

(2.14)247

Here constant Mφ is called the mobility (a phenomenological parameter), κγ is the248

boundary mobility (a phenomenological parameter), and βs is the wall friction coef-249

ficient.250

To this end, the proposed phase-field model is composed of the following251

equations:252 

∂φ

∂t
+∇ · (uφ) = −Mφµ ,

µ =
κ̂B
γ3
g(φ) +Mv

V (φ)− V (φ0)

V (φ0)
+
Ms

γ

S(φ)− S (φ0)

S (φ0)
f(φ) ,

g(φ) = −γ2∆f + (3φ2 − 1)f(φ),

f(φ) = −γ2∆φ+ (φ2 − 1)φ ,

ρ

(
∂u

∂t
+ (u · ∇)u

)
+∇p = ∇ · (2ηDη) + µ∇φ+∇ · (λδγP) ,

∇ · u = 0 ,

δγ(P : ∇u) + ξγ2∇ · (φ2∇λ) = 0

(2.15)253

with the boundary conditions254 

u · n = 0 ,

−βsuτi = (n · (ση + λδγP) · τi)− L̂(φ)∂τiφ , i = 1, 2,
f = 0 ,

κΓ

(
∂φ

∂t
+ u · ∇Γφ

)
= −L̂(φ) ,

L̂(φ) =
κ̂B
γ
∂nf +Ms

S(φ)− S (φ0)

S (φ0)
γ∂nφ+

∂fw
∂φ

,

∂nλ = 0 .

(2.16)255

3. Dimensionless model governing equations and energy dissipation256

law. If the viscosity, length, velocity, time, bulk, and boundary chemical potentials257

in (2.15)–(2.16) are scaled by their corresponding characteristic values η0, L, U , L
U258

η0U
L and η0U , respectively, and if we let ε = γ

L be the nondimensionalized thickness259

of the interface (2.15)–(2.16) can be rewritten as260 

Re

(
∂u

∂t
+ (u · ∇)u

)
+∇P = ∇ · (2ηD) + µ∇φ+∇ · (λδεP) in Ω ,

∇ · u = 0 in Ω ,

∂φ

∂t
+ u · ∇φ = −Mµ in Ω ,

µ = κBg(φ) +Mv
(V (φ)− V (φ0))

V (φ0)
+Ms

(S(φ)− S (φ0))

S (φ0)
f(φ) in Ω ,

f(φ) = −ε∆φ+
(φ2 − 1)

ε
φ, g(φ) = −∆f +

1

ε2
(3φ2 − 1)f(φ) in Ω ,

δε(P : ∇u) + ξε2∇ · (φ2∇λ) = 0 in Ω

(3.1)261
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with the boundary conditions262 

κφ̇+ L(φ) = 0 on ∂Ωw ,

L(φ) = κB∂nf + εMs
S(φ)− S (φ0)

S (φ0)
∂nφ+ αw

dfw
dφ

on ∂Ωw ,

−l−1
s uτi = τi · (2ηDη + λδεP) · n− L(φ)∂τiφ , i = 1, 2, on ∂Ωw ,

f = 0 on ∂Ωw ,
∂nλ = 0 on ∂Ωw ,

(3.2)263

where V (φ) =
∫

Ω
φdx, S(φ) =

∫
Ω
ε
2 |∇φ|

2 + 1
4ε (φ

2 − 1)2dx, and δε = 1
2ε

2|∇φ|2. The264

dimensionless constants in (3.1)–(3.2) are given by ε = γ
L , Re = ρ0UL

η0
, M = Mφη0,265

κB = κ̂B

L2η0U
, k = κ̂B

η0L
, ls = η0

βsL
, αw = σ

η0U
, Ms = Ms

η0U
, and Mv = MvL

η0U
.266

If we define the Sobolev spaces as [22, 53]267

W 1,3 = (W 1,3)2 ,(3.3)268

W 1,3(Ω) =
{
u = (ux, uy)T ∈W 1,3|u · n = 0, on ∂Ωw

}
,(3.4)269

Wb = W 1,3(Ω)×W 1,3(Ω)×W 1,3(Ω)×W 1,3/2(Ω)×W 1,3/2(Ω)×W 1,3(Ω)(3.5)270
271

and let ‖ · ‖ = (
∫

Ω
| · |2dx)

1
2 and ‖ · ‖w = (

∫
∂Ωw
| · |2ds) 1

2 denote the L2 norm defined272

in the domain and on the domain boundary, respectively, then the system (3.1)–(3.2)273

satisfies the following energy law.274

Theorem 3.1. If (φ, f, µ, λ, P, u) ∈ Wb are smooth solutions of the above275

system (3.1)–(3.2), then the following energy law is satisfied:276

d

dt
Etotal =

d

dt
(Ekin + Ecell + Ew)277

=
1

Re

(
−2‖η1/2Dη‖2 −M‖µ‖2 − ξ‖εφ∇λ‖2 − κ‖φ̇‖2w − ‖l−1/2

s uτ‖2w
)
,(3.6)278

where Etotal = Ekin + Ecell + Ew, Ekin = 1
2

∫
Ω
|u|2dx, Ecell = κB

2Reε

∫
Ω
|f |2dx +279

Mv
(V (φ)−V (φ0))2

2ReV (φ0) +Ms
(S(φ)−S(φ0))2

2ReS(φ0) , and Ew = αw

Re

∫
∂Ωw

fwds.280

Proof. Multiplying the first equation in (3.1) with u and integration by parts281

yield282

d

dt
Ekin =

1

Re

{
−
∫

Ω

2η|Dη|2dx+

∫
∂Ωw

(ση · n) · uτds+

∫
Ω

µ∇φ · udx283

−
∫

Ω

λδεP : ∇udx+

∫
∂Ωw

(λδεP · n) · uτds
}

284

=
1

Re

{
−
∫

Ω

2η|Dη|2dx−
∫

Ω

λδεP : ∇udx− l−1
s

∫
∂Ωw

|uτ |2ds285

+

∫
∂Ωw

L(φ)∂τφ · uτds+

∫
Ω

µ∇φ · udx
}
,(3.7)286

where the slip boundary condition in (3.2) is applied.287

Taking the inner product of the third equation in (3.1) with µ
Re results in288

1

Re

∫
Ω

∂φ

∂t
µdx+

1

Re

∫
Ω

u · ∇φµdx = − 1

Re
M
∫

Ω

|µ|2dx .(3.8)289
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Multiplying the fourth equation in (3.1) with 1
Re

∂φ
∂t and integration by parts give rise290

to291

1

Re

∫
Ω

µ
∂φ

∂t
dx =

1

Re

{
κB

∫
Ω

g
∂φ

∂t
dx+

d

dt

(
Mv

(V (φ)− V (φ0))2

2V (φ0)

)(3.9)

292

+Ms
S(φ)− S (φ0)

S (φ0)

∫
Ω

f
∂φ

∂t
dx

}
293

=
κB
Re

∫
Ω

f
∂

∂t

(
−∆φ+

1

ε2
(φ3 − φ)

)
dx− κB

Re

∫
∂Ωw

∂nf
∂φ

∂t
ds294

+
d

dt

(
Mv

(V (φ)− V (φ0))2

ReV (φ0)

)
+Ms

d

dt

(
(S(φ)− S (φ0))2

2ReS (φ0)

)
295

−Ms

(
S(φ)− S (φ0)

ReS (φ0)

)∫
∂Ωw

ε∂nφ
∂φ

∂t
ds296

=
d

dt

(
κB

∫
Ω

|f |2

2Reε
dx

)
+

d

dt

(
Mv

(V (φ)− V (φ0))2

2ReV (φ0)

)
297

+Ms
d

dt

(
(S(φ)− S (φ0))2

2ReS (φ0)

)
−
∫
∂Ωw

L(φ)

Re

∂φ

∂t
ds+

αw
Re

d

dt

∫
∂Ωw

fwds298

=
d

dt
(Ecell + Ew)−

∫
∂Ωw

L(φ)

Re

∂φ

∂t
ds ,299

300

where the definitions of f(φ), g(φ) and the boundary conditions of φ and f are utilized.301

Multiplying the last equations with λ
Re and integration by parts lead to302

1

Re

∫
Ω

(λδεP) : ∇udx− 1

Re

∫
Ω

ξε2φ2(∇λ)2 = 0 .(3.10)303

Finally, the energy dissipation law (3.6) is obtained by combining (3.7), (3.8),304

(3.9), and (3.10).305

4. Numerical scheme and discrete energy law.306

4.1. Time-discrete primitive method. The numerical scheme for solving307

(3.1)–(3.2) uses the midpoint method for temporal discretization. Let ∆t denote308

the time step size, and let ()n+1 and ()n denote the value of the variables at times309

(n + 1)∆t and n∆t, respectively. The semidiscrete in time equations are as follows:310

in Ω,311



un+1 − un

∆t
+
(
un+ 1

2 · ∇
)
un+ 1

2 +
1

Re
∇Pn+ 1

2 =
1

Re
∇ ·
(
ηn
(
∇un+ 1

2 + (∇un+ 1
2 )T
))

+
1

Re
µn+ 1

2∇φn+ 1
2 +

1

Re
∇ ·
(
λn+ 1

2Pnδε
)
,

∇ · un+ 1
2 = 0 ,

φn+1 − φn

∆t
+
(
un+ 1

2 · ∇
)
φn+ 1

2 = −Mµn+ 1
2 ,

µn+ 1
2 = κBg

(
φn+1, φn

)
+Mv

(
V
(
φn+ 1

2

)
− V (φ0)

)
V (φ0)

+Ms

(
S
(
φn+ 1

2

)
− S (φ0)

)
S(G0)

f
(
φn+1, φn

)
,

fn+ 1
2 = −ε∆φn+ 1

2 +
1

ε

((
φn+ 1

2

)2

− 1

)
φn+ 1

2 ,

ξε2∇ ·
(

(φn)2∇λn+ 1
2

)
+ δεPn : ∇un+ 1

2 = 0 .

(4.1)

312

313
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The numerical boundary conditions can be written as314



κφ̇n+ 1
2 = −Ln+ 1

2 on ∂Ωw,

Ln+ 1
2 = κB∂nf

n+ 1
2 +Msε

S
(
φn+ 1

2

)
− S0

S0
∂nφ

n+ 1
2 + αw

fn+1
w − fnw
φn+1 − φn

on ∂Ωw,

−l−1
s u

n+ 1
2

τi = τi ·
(
ηn
(
∇un+ 1

2 +
(
∇un+ 1

2

)T)
+ λn+ 1

2 δεPn
)
· n

− Ln+ 1
2 ∂τiφ

n+ 1
2 , i = 1, 2, on ∂Ωw,

fn+ 1
2 = 0 on ∂Ωw,

∂nλ
n+ 1

2 = 0 on ∂Ωw,

(4.2)

315

316

where317

f
(
φn+1, φn

)
= −ε∆φn+ 1

2 +
1

4ε

((
φn+1

)2
+ (φn)2 − 2

) (
φn+1 + φn

)
,(4.3)318

g
(
φn+1, φn

)
=

(
−∆fn+ 1

2 +
1

ε2

((
φn+1

)2
+ (φn)2 + φn+1φn − 1

)
fn+ 1

2

)
,(4.4)319

(·)n+ 1
2 = (·)n+(·)n+1

2 , and Pn = I − nnm ⊗ nnm with nnm = ∇φn

|∇φn| .320

The above scheme obeys the following theorem of energy stability.321

Theorem 4.1. If (φn,un, Pn) are smooth solutions of the above system (4.1)–322

(4.2), then the following energy law is satisfied:323

En+1
total − E

n
total =

(
En+1
kin + En+1

cell + En+1
w

)
− (Enkin + Encell + Enw)324

=
4t
Re

(
−2‖(ηn)1/2D

n+ 1
2

η ‖2 −M‖µn+ 1
2 ‖2 − ξ‖ εφn∇λn+ 1

2 ‖2325

− 1

κ
‖L(φn+ 1

2 )‖2w − ‖l−1/2
s u

n+ 1
2

τ ‖2w
)
,(4.5)326

where Entotal = Enkin+Encell+Enw with Enkin = 1
2‖u

n‖2, Encell = κB‖fn‖2
2Reε +Mv

(V (φn)−V (φ0))2

2ReV (φ0)327

+Ms
(S(φn)−S(φ0))2

2ReS(φ0) , and Enw=αw

Re

∫
∂Ωw

fnwds.328

The following two lemmas are needed for proving Theorem 4.1. Proofs of these329

two lemmas can be found in the appendix.330

Lemma 4.2. Let331

f
(
φn+1, φn

)
= −ε∆φn+ 1

2 +
1

4ε

((
φn+1

)2
+ (φn)2 − 2

) (
φn+1 + φn

)
.(4.6)332

Then f(φn+1, φn) satisfies333

∫
Ω

f
(
φn+1, φn

) (
φn+1 − φn

)
dx = Sn+1 − Sn −

∫
∂Ωw

ε∂nφ
n+ 1

2

(
φn+1 − φn

)
ds,

(4.7)

334

335

where Sn+1 =
∫

Ω
G(φn+1)dx, Sn =

∫
Ω
G(φn)dx.336

Lemma 4.3. Let g(φn+1, φn) = −∆fn+ 1
2 + 1

ε2 ((φn+1)2+(φn)2+φn+1φn−1)fn+ 1
2 .337

Then g(φn+1, φn) satisfies338



PHASE-FIELD MODEL OF VESICLE MOTION B11∫
Ω

g
(
φn+1, φn

)
(φn+1 − φn)dx339

=

∫
Ω

1

2ε
((fn+1)2 − (fn)2)dx−

∫
∂Ωw

∂nf
n+ 1

2 (φn+1 − φn)ds ,(4.8)340

where fn+1 = −ε∆φn+1 + 1
ε ((φn+1)2 − 1)φn+1, fn = −ε∆φn + 1

ε ((φn)2 − 1)φn.341

Proof of Theorem 4.1. Multiplying the first equation in system (4.1) by ∆tun+ 1
2342

gives343

∫
Ω

1

2
((un+1)2 − (un)2)dx+

∫
Ω

∆tun+ 1
2 ·
((

un+ 1
2∇
)
· un+ 1

2

)
dx

(4.9)

344

− ∆t

Re

∫
Ω

Pn+ 1
2∇ · un+ 1

2 dx345

= −∆t

Re

∫
Ω

∇un+ 1
2 : ηn

(
∇un+ 1

2 +
(
∇un+ 1

2

)T)
dx+

∆t

Re

∫
Ω

un+ 1
2 · ∇φn+1µn+1dx346

− ∆t

Re

∫
Ω

λδεPn : ∇un+ 1
2 dx+

∆t

Re

∫
∂Ωw

λn+ 1
2 (δεPn · n) · un+ 1

2
τ ds347

+
∆t

Re

∫
∂Ωw

un+ 1
2 · ηn

((
∇un+ 1

2 + (∇un+ 1
2 )T
)
· n
)
ds.348

349

Multiplying the fourth equation in system (4.1) by φn+1−φn

Re and integration by350

parts lead to351

1

Re

∫
Ω

µn+1/2 (φn+1 − φn
)
dx =

κB
Re

∫
Ω

1

2ε
((fn+1)2 − (fn)2)dx

(4.10)

352

+
Mv

Re

(V
(
φn+1

)
− V0)2 − (V (φn)− V0)2

2V0
+
Ms

Re

(S
(
φn+1

)
− S0)2 − (S(φn)− S0)2

2S0
353

− κB
Re

∫
∂Ωw

∂nf
n+ 1

2
(
φn+1 − φn

)
ds− Ms

Re

∫
∂Ωw

S
(
φn+ 1

2

)
− S0

S0
ε∂nφ

n+ 1
2
(
φn+1 − φn

)
ds.354

355

Multiplying the third equation in system (4.1) by µn+1∆t
Re and integration by parts356

yield357

1

Re

∫
Ω

µn+1
(
φn+1 − φn

)
dx+

∆t

Re

∫
Ω

µn+1(un+1/2 · ∇)φn+1dx358

= −M∆t

Re

∫
Ω

(µn+1)2dx.(4.11)359

Multiplying the last equation in system (4.1) by λn+1
2 ∆t

Re and integration by parts give360

−∆t

Re

∫
Ω

ξε2(φn)2
∣∣∣∇λn+ 1

2

∣∣∣2 dx+
∆t

Re

∫
Ω

(λn+ 1
2 δεPn) : ∇un+ 1

2 dx = 0.(4.12)361

The discretized energy dissipation law (4.5) is obtained by combining (4.9)–(4.12) and362

organizing the terms according to the boundary conditions L(φ) as shown in (4.2).363

Remark 4.4. The system (4.1) is second-order accurate in time except for the364

last equation. It can be changed to be second-order accurate as well by using φn+1/2
365

and Pn+1/2. However, this change makes the Newton iteration discussed in the next366

section very complicated. For simplicity of computer implementation, a first-order367

accurate treatment for the last equation is adopted here.368
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4.2. Fully discrete C0 finite element scheme. The spatial discretization369

using C0 finite element is straightforward. Let Ω be the domain of interest with370

a Lipschitz-continuous boundary ∂Ω. Let Wb
h ⊂ Wb be a finite element space371

with respect to the triangulation of the domain Ω. The fully discrete scheme of the372

system is to find (φh
n+1, µh

n+1, fh
n+1, λh

n+1, ph
n+1,uh

n+1) ∈ Wb
h, such that for373

any (ψh, χh, ζh,Θh, qh,vh) ∈Wh
b ,374



∫
Ω

(
un+1
h − unh

∆t
+
(
u
n+ 1

2

h · ∇
)

u
n+ 1

2

h +
1

Re
∇Pn+ 1

2

h

)
· vhdx

= −
∫

Ω

1

Re

(
ηnh

(
∇u

n+ 1
2

h +
(
∇u

n+ 1
2

h

)T))
: ∇vhdx

+

∫
Ω

1

Re
µ
n+ 1

2

h ∇φn+ 1
2

h · vhdx−
∫

Ω

1

Re
λ
n+ 1

2

h Pnh δε : vhdx

+

∫
∂Ωw

1

Re
n ·
(
ηnh

(
∇u

n+ 1
2

h +
(
∇u

n+ 1
2

h

)T)
+ λ

n+ 1
2

h Pnh δε
)
· vhdx ,∫

Ω

(
∇ · un+ 1

2

h

)
qhdx = 0 ,∫

Ω

(
φn+1
h − φnh

∆t
+
(
u
n+ 1

2

h · ∇
)
φ
n+ 1

2

h

)
ψhdx = −

∫
Ω

Mµ
n+ 1

2

h ψhdx ,∫
Ω

µ
n+ 1

2

h χhdx =

∫
Ω

(
κB

1

ε2

((
φn+1
h

)2
+ (φnh)

2
+ φn+1

h φnh − 1
)
f
n+ 1

2

h

+Mv

(
V
(
φ
n+ 1

2

h

)
− V (φ0)

)
V (φ0)

+Ms

(
S

(
φ
n+1

2
h

)
−S(φ0)

)
S(G0)

(
1
4ε

((
φn+1
h

)2
+ (φnh)

2 − 2
) (
φn+1
h + φnh

))χhdx

+

∫
Ω

κB∇fn+ 1
2

h +Msε

(
S
(
φ
n+ 1

2

h

)
− S (φ0)

)
S(G0)

∇φn+ 1
2

h

 · ∇χhdx
−
∫
∂Ωw

κB∂nfn+ 1
2

h +Msε

(
S
(
φ
n+ 1

2

h

)
− S (φ0)

)
S(G0)

∂nφ
n+ 1

2

h

χhdx ,∫
Ω

f
n+ 1

2

h ζh =

∫
Ω

ε∇φn+ 1
2

h · ∇ζh +

∫
Ω

1

ε

((
φ
n+ 1

2

h

)2

− 1

)
φ
n+ 1

2

h ζhdx

−
∫
∂Ωw

ε∂nφ
n+ 1

2

h ζhdx ,∫
Ω

ξε2
(

(φnh)
2∇λn+ 1

2

h

)
· ∇Θhdx =

∫
Ω

δεPnh : ∇u
n+ 1

2

h Θhdx

+

∫
∂Ωw

ξε2
(

(φnh)
2
∂nλ

n+ 1
2

h

)
Θhdx .

(4.13)

375

376

Theorem 4.5. If (φh
n+1, µh

n+1, fh
n+1, λh

n+1, ph
n+1,uh

n+1) ∈ Wb
h are solu-377

tions of the above system, then the following energy law is satisfied:378

En+1
total,h − E

n
total,h =

4t
Re

(
−2‖(ηnh)1/2D

n+ 1
2

η ‖2 −M‖µn+ 1
2

h ‖2 − ξ‖ εφnh∇λ
n+ 1

2

h ‖2379

− 1

κ
‖L(φ

n+ 1
2

h )‖2w − ‖l−1/2
s u

n+ 1
2

τ,h ‖
2
w

)
.(4.14)380
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It is easy to prove this theorem by letting vh = ∆tun+1
h , qh =

∆tpn+1
h

Re , ψh =
cn+1
h −cnh
Re ,381

χh =
∆tµn

h+1
Re ,Θh =

∆tλn+1
h

Re and following the process of proving Theorem 4.1. Details382

of the proof are presented in the appendix.383

4.3. Linearization and unique solvability. Note that the energy stable384

scheme (4.13) is a coupled nonlinear system. Newton’s method [22] is used to solve385

the scheme equations. First, the scheme (4.13) can be written into the form386

Fn+1
h = C387

by relocating all of the constant terms to the right-hand side and the terms containing388

unknown variables to the left-hand side.389

For the sake of simplification, we let Un+1,k
h = (φh

n+1,k, µh
n+1,k, fh

n+1,k, λh
n+1,k,390

uh
n+1,k, ph

n+1,k) be the solution at time (n + 1)∆t in the kth iteration of Newton’s391

method, and we let the variation between iterations be392

(δU)n+1,k
h =

(
(δφh)n+1,k+1, (δµh)n+1,k+1, (δfh)n+1,k+1, (δλh)n+1,k+1,393

(δuh)n+1,k+1, (δph)n+1,k+1
)
.394

395

Here (δ·) stands for the amount of change of the value, (δ·)n+1,k = (·)n+1,k+1−(·)n+1,k.396

Newton’s method can be formally written as397

Fn+1
h (Un+1,k

h ) +∇Un+1,k
h

Fn+1
h (Un+1,k

h ) · (δU)n+1,k
h = C(Unh) .398

The solution is updated by Un+1,k+1
h = Un+1,k

h + δUn+1,k
h , where Un+1,0

h = Unh.399

Then we have the following theorem for the solvability.400

Theorem 4.6. If the time step ∆t is small enough, then the equations of the401

scheme (4.13) are uniquely solvable.402

Proof. From the last three equations we find µn+1
h = µ(φn+1

h ), fn+1
h = f(φn+1

h ),403

λn+1
h = λ(un+1

h ). With the first and the second equations, Pn+1
h can be expressed404

as Pn+1
h = P (un+1

h , φn+1
h ). Then the first and the third equations can be solved405

separately. Applying Newton’s method to the first three equations, we have their406

linearized form:407

Fn+1
h

(
un+1,k
h , φn+1,k

h

)(4.15)

408

+∇
u
n+1,k
h

,φ
n+1,k
h

Fn+1
h

(
un+1,k
h , φn+1,k

h

)
·
(
un+1,k+1
h − un+1,k

h , φn+1,k+1
h − φn+1,k

h

)T
= C.409

410

411

Note that un+1,k+1
h = (un+1,k

h , vn+1,k+1
h ). Multiplying ∆t to (4.15) yields412 I −∆tA11 ∆tA12 ∆tA13

∆tA21 I −∆tA22 ∆tA23

∆tA31 ∆tA32 I −∆tA33

un+1,k+1
h

vn+1,k+1
h

φn+1,k+1
h

 = C′,(4.16)413

where414

A11 = 1
4 (un+1,k

h ∂x,h+∂x,hu
n+1,k
h +unh∂x,h+∂x,hu

n
h+∂y,hv

n+1,k
h )− 1

2Re (2∂x,h(ηnh∂x,h)+415

∂y,h(ηnh∂y,h))+ 1
2Re

∂h(∂x,hP
n+1,k
h )

∂hu
n+1,k
h

− 1
4Re

∂h(∂x,h(λn+1,k
h (∂x,hφ

n
h)2))+∂y,h(λn+1,k

h ∂x,hφ
n
h∂y,hφ

n
h)

∂un+1,k
h

,416

A12 = 1
4u

n+1,k
h ∂y,h − 1

2Reη
n
h∂x,h∂y,h + 1

2Re

∂h(∂x,hP
n+1,k
h )

∂hv
n+1,k
h

417
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− 1
4Re

∂h(∂x,h(λn+1,k
h (∂x,hφ

n
h)2))+∂y,h(λn+1,k

h ∂x,hφ
n
h∂y,hφ

n
h)

∂vn+1,k
h

,418

A13 = − 1
4Re (µn+1,k

h ∂x,h +
∂µn+1,k

h

∂φn+1,k
h

∂x,hφ
n+1,k
h + µnh∂x,h +

∂µn+1,k
h

∂φn+1,k
h

∂x,hφ
n
h) ,419

A21 = 1
4v
n+1,k
h ∂x,h − 1

2Reη
n
h∂x,h∂y,h + 1

2Re

∂h(∂y,hP
n+1,k
h )

∂hu
n+1,k
h

420

− 1
4Re

∂h(∂y,h(λn+1,k
h (∂y,hφ

n
h)2))+∂x,h(λn+1,k

h ∂x,hφ
n
h∂y,hφ

n
h)

∂un+1,k
h

,421

A22 = 1
4 (vn+1,k

h ∂y,h+∂y,hv
n+1,k
h + vnh∂y,h+∂y,hv

n
h +∂x,hu

n+1,k
h )− 1

2Re (∂x,h(ηnh∂x,h) +422

2∂y,h(ηnh∂y,h))+ 1
2Re

∂h(∂y,hP
n+1,k
h )

∂hv
n+1,k
h

− 1
4Re

∂h(∂y,h(λn+1,k
h (∂y,hφ

n
h)2))+∂x,h(λn+1,k

h ∂x,hφ
n
h∂y,hφ

n
h)

∂vn+1,k
h

,423

A23 = − 1
4Re (µn+1,k

h ∂y,h +
∂µn+1,k

h

∂φn+1,k
h

∂y,hφ
n+1,k
h + µnh∂y,h +

∂µn+1,k
h

∂φn+1,k
h

∂y,hφ
n
h) ,424

A31 = 1
4∂x(φn+1,k

h + φnh) ,425

A32 = 1
4∂y(φn+1,k

h + φnh) ,426

A33 = 1
4 ((un+1,k

h + unh)∂x,h + (vn+1,k
h + vnh)∂y,h) +M∂µn+1,k

h

∂φn+1,k
h

.427

Using Gaussian elimination, the left side of the above matrix system can be428

transformed as follows:429

I −∆tA11 ∆tA12 ∆tA13

0 I −∆tA22 − (∆t)2(I −∆tA11)−1A21A12 ∆tA23 − (∆t)2(I −∆tA11)−1A21A13

0 0 A′33

 ,

(4.17)

430

431

where A′33 = I −∆tA33 − (∆t)2(I −∆tA22 − (∆t)2(I −∆tA11)−1A21A12)−1A32A23.432

C,C ′ are constant matrices. When ∆t is small enough, I − ∆tAii(i = 1, 2, 3) is433

invertible. Thus the given matrix is invertible; we can obtain the unique solution of434

(un+1,k+1
h , φn+1,k+1

h ) with given boundary condition, which means (4.13) is uniquely435

solvable.436

5. Simulation results. Numerical simulations using the model introduced in437

the paper are presented in this section. The first example is used to illustrate the438

convergence and energy stability of the proposed numerical scheme. Then feasibility439

of the proposed model and the model simulation scheme for studying vesicle motion440

and shape transformation are assessed by cell tank treading and tumbling tests. The441

last simulation is devoted to studying effects of mechanical and geometric properties442

of a vesicle on its deformability when it passes through a narrow channel.443

5.1. Convergence study. The initial condition of the convergence test is set to444

be a 2D tear-shaped vesicle in a closed cube with intercellular and extracellular fluid445

velocity being 0. The initial conditions are446

φ0(x) =

{
− tanh[(15(y − 0.185)(y − 0.065)− x+ 0.125)/

√
2ε], x < 0.125

− tanh[(
√

(x− 0.125)2 + (y − 0.125)2 − 0.06)/
√

2ε], x >= 0.125,
u0 = (0, 0).

(5.1)

447

448

Thanks to the bending force of the cell membrane, the shape of the vesicle grad-453

ually transforms into a perfect circle to minimize the total energy (see Figure 1).454

The parameter values used for this simulation are chosen as follows: Re = 2× 10−4,455

M = 5 × 10−5, κB = 8 × 10−1, ε = 2.5 × 10−2, Mv = 20, Ms = 2, ξ = 1.6 × 105,456

κ = 8× 10−10, ls = 5× 10−3.457

In the simulations, the numerical solution computed with a mesh size h = 1/240461

is treated as the reference solution or “the true solution.” As shown in Table 1, our462

scheme is second-order accurate in space.463
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Fig. 1. Relaxation of a tear-shaped vesicle.449

Table 1450

L2 norm of the error and convergence rate for velocity u = (ux, uy), phase-field function φ, at
time t = 0.02 with both intercellular and extracellular fluid viscosity being 1.

451

452

Spatial mesh
size h

P2 element

Err(ux)
Convergence

rate(ux)
Err(uy)

Convergence
rate(uy)

Err(φ)
Convergence

rate(φ)
1/47 1.3e-1 1.5e-1 1.4e-2
1/71 8.3e-2 1.15 7.6e-2 1.71 6.1e-3 1.97
1/107 3.8e-2 1.94 3.7e-2 1.83 2.3e-3 2.45
1/160 1.5e-2 2.35 1.3e-2 2.59 5.7e-4 3.42

Table 2458

L2 norm of the error and convergence rate for velocity u = (ux, uy), phase-field function φ, at
time t = 0.05 with both intercellular and extracellular fluid viscosities being 1.

459

460

Time step ∆t P2 element

Err(ux)
Convergence

rate(ux)
Err(uy)

Convergence
rate(uy)

Err(φ)
Convergence

rate(φ)
0.025 - - -
0.0125 8.12e-6 8.13e-6 9.92e-6
0.00625 2.90e-6 1.49 2.97e-6 1.45 2.42e-6 2.04
0.003125 1.03e-6 1.48 1.07e-6 1.48 5.98e-7 2.01
0.0015625 2.53e-7 2.03 2.60e-7 2.03 1.49e-7 2.01

The time convergence rate of the scheme is obtained by comparing the numerical464

errors calculated using each pair of successively reduced time step sizes. The purpose465

of doing so is to eliminate the influence from the error of the reference solution which466

is also a numerical result. Larger Reynolds number Re and interface thickness ε and a467

smoother initial profile of the interface are applied to ensure that the convergence rate468

is not affected by any sharp changes in the phase-field label function φ(x). Results in469

Table 2 confirm that our scheme is also second-order accurate in time.470

Remark 5.1. During the convergence test, we mainly focus on the convergence471

rates of the velocity and the phase-field function. The local inextensibility is neglected,472

and only the global area and volume constraints are taken into consideration.473

Finally, the energy law (Theorem 4.1) and conservation of mass and surface area of474

vesicles are tested by simulating the relaxation of a bent vesicle. The vesicle gradually475

evolves back to its equilibrium biconcave shape. Figure 2 shows the snapshots of the476

vesicle profile at different times t = 0, 0.25, 0.5, and 1.25. The parameter values used477

here are as follows:478
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Fig. 2. Relaxation of a bent vesicle. The fluid viscosities are 1 and 50 for intercellular and
extracellular fluids, respectively.
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Fig. 3. The test case of relaxation of a bent vesicle. Left: Change of mass and surface area vs.
time. Right: Change of discrete energy vs. time.

490

491

Re = 2 × 10−4, M = 2.5 × 10−3, κB = 2, ε = 7.5 × 10−3, Mv = 20, Ms = 2,479

ξ = 7.1× 104, κ = 2× 10−10, ls = 0.5.480

The initial conditions are481

φ0(x) =

{
−tanh[(5(y − 0.7)(y − 0.3)− x+ 0.5)/

√
2ε], x < 0.5

−tanh[(400(y − 0.7)(y − 0.3)(y − 0.5)2 + x− 0.5)/
√

2ε], x >= 0.5,
u0 = (0, 0).

(5.2)

482

483

The changes of vesicle mass and surface area and the change of total discrete484

energy of this test case computed by the scheme (3.1)–(3.2) are shown in Figure 3. It485

is evident that the vesicle mass and surface area are almost perfectly preserved, and486

the total energy decays over the course of time as expected.487

5.2. Vesicle-wall interaction. This example is used to investigate the effect of492

the contact line model used for describing vesicle-wall interaction. As shown in Figure493

4, a vesicle is initially placed at a location with a pointwise vesicle-wall contact, and494

a shear flow from left to right is introduced to the system. The parameter values of495

this simulation are listed as follows:496

Re = 2×10−4,M = 1.5×10−3, κB = 0.1, ε = 0.03,Mv = 200,Ms = 2×105, ξ =497

104, κ = 1 × 10−10, αw = 80, ls = 0.5. θs is set to be 85◦ (or 180◦) for different498

interactions between the vesicle and the vessel wall.499

Remark 5.2. As can be seen in Figure 4, when the contact angle is 180◦ high, the503

cell is carried away by the flow due to an absence of “attraction” between the cell504
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Fig. 4. The top three pictures show the result of no wetting force modeled using a contact angle
180◦. The bottom three pictures show the result of an existing cell-wall wetting condition modeled
using a contact angle 85◦.

500

501

502

and the wall by a wetting force which is introduced by the contact line model. When505

the contact angle is significantly lower, say 85◦, the vesicle membrane is torn apart506

at the vesicle-wall contact location due to the existence of a wetting force. We point507

out that the simulation using an 85◦ contact angle is not biologically relevant. This508

shows the limitation of our current model based only on hydrophobicity in considering509

interaction. The idea of modeling cell-wall adhesion by forming ligand-receptor bonds510

from [18] could be a good way to model the adhesion force by introducing a wall phase511

and its interacting potential with the vesicle phase. We will thus use a significantly512

higher contact angle, i.e., θs = 180◦, in the rest of the simulations presented in the513

paper.514

5.3. Tank treading and tumbling. The vesicle motion in a Couette flow515

changes with respect to the ratio of the viscosities ηin and ηout of intracellular and516

extracellular fluids [32, 4, 16, 24]. When this viscosity ratio is small, the vesicle is517

prone to move in the tank treading mode, while the tumbling mode is preferred when518

the viscosity ratio is large. The parameter values utilized for this vesicle motion519

simulation are set as follows:520

Re = 2×10−4, δε = |∇φn|2,M = 10−3, κB = 5×10−3, ε = 7.5×10−3,Mv = 20,521

Ms = 200, ξ = 1.78× 107, κ = 2× 10−12, ls = 0.2.522

The upper and bottom walls of the domain are set to move in opposite directions523

horizontally with velocities −20 and 20, respectively. The simulation domain is 2× 1,524

and the initial shape of the vesicle is chosen to be an ellipse with eccentricity
√

3.525

The ratios of viscosities of the intracellular and extracellular fluids are set to be 1 : 1526

and 1 : 500, respectively. Figure 5 shows the interfaces of tank treading vesicle (low527

viscosity ratio case) and tumbling vesicle (high viscosity ratio case) and corresponding528

fluid velocity fields at different times, respectively. A point on the interface (black529

solid) is tracked to illustrate these two different types of motion. For the tank treading530

motion, the angle between the long axis of the vesicle and the horizontal axis is fixed531

when the vesicle is at equilibrium, but the tracer point rotates in a counterclockwise532

direction along the membrane. For the tumbling motion, the vesicle keeps rotating,533

and the tracer point does not move with respect to the membrane shape.534

Remark 5.3. Tracking of the marker point (the black solid dot) is done by the535

following steps:536

1. Determine a marker point P that is located on the interface with coordinate537

(x, y).538

2. Compute the velocity u(P ) = (ux(P ), uy(P )) of the marker point by inter-539

polation.540
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Fig. 5. Top: Tank treading with viscosity ratio 1 : 1. The orientation of the vesicle and the
velocity field are kept stable when the system comes to equilibrium. Bottom: Tumbling with viscosity
ratio 1 : 500. The vesicle keeps rotating in the flow. Position of the tracer point (in black) is fixed
with respect to the vesicle membrane.
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Fig. 6. Comparison between theoretical and simulation results of the flipping ellipse. The blue
line is the angle between the long axis of the ellipse and the horizontal axis predicted by the Jeffery
orbit theory, and the red circles are the angle from the simulation.

549

550

551

3. Update the marker point position at the next time point by (x+ux(P )∆t, y+541

uy(P )∆t).542

4. Go to step 2.543

This tracking gives the trajectory of the marker point.544

Next, the simulation result of tumbling motion of a rigid ellipse is compared with552

the theoretical solution obtained using Jeffery’s orbit theory [28]. Specifically, the553

angle between the long axis of the ellipse and the horizontal axis is compared. As554

shown in Figure 6, our simulation result is in close agreement with the analytical555

Jeffery orbit.556

Remark 5.4. The long axis of the rigid ellipse during the tumbling motion is557

determined as follows:558

1. Determine the interface location of the ellipse by φ = 0.559

2. Find the point on the interface that is farthest away from the center of the560

vesicle in the upper domain.561

3. Match these two points, and the line is considered as the long axis of the562

ellipse.563

Since the ellipse is located at the center of the domain at the initial time point,564

and the motion of the fluid is centrosymmetric according to the specified boundary565

condition, it is expected that the center of the ellipse is kept at the center of the566

domain Ω. Therefore the determination of the long axis of the ellipse based on its567

geometry character is acceptable.568
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5.4. Vesicle passing through a narrow fluid channel. Finally, the cali-573

brated model is used to study the effects of mechanical properties of the membrane574

of the vesicle on its circulating through constricting micro channels [23]. The vesicle575

shape is described by an ellipse with eccentricity
√

3, and the width of the squeezing576

section of the narrow channel is 0.3 by default. A pressure drop boundary condition577

is applied at the inlet (left) and outlet (right) of the domain by setting the pressure578

on the inlet and outlet to be P = 50 and P = −50, respectively. The fluid viscosity579

ratio is set to be 1 : 10 for extracellular and intracellular fluids, respectively. The580

other parameters are as follows:581

Re = 2× 10−4, δε = 10× |∇φn|2, M = 5× 10−4, κB = 4× 10−2, ε = 7.5× 10−3,582

Mv = 20, Ms = 100, ξ = 7.1× 104, κ = 4× 10−11, ls = 5× 10−3.583

The effect of the local inextensibility of the vesicle membrane is assessed by com-584

paring vesicle simulations with and without using the local inextensibility constraint585

P : ∇u = 0 in the model. Snapshots of these simulations at different times are shown586

in Figure 7. They illustrate that a vesicle modeled without using the local inextensi-587

bility can pass through the channel by introducing large extension and deformation588

of its body with a relatively small value of global inextensibility coefficient Ms, while589

a vesicle modeled with the local inextensibility hardly exhibits large extension and590

deformation of its body and blocks the channel. This is also confirmed by Figure 8. It591

shows that under otherwise identical conditions, the total arc length of the membrane592

of the vesicle modeled without the local inextensibility increases significantly when it593

passes through the channel, and the vesicle with the local inextensibility preserves its594

membrane arc length well during the course of the simulation.595

Although the total arc length of a vesicle without the local inextensibility and with596

a very largeMs value could maintain almost unchanged as shown in Figures 7(c) and597

8, the morphological changes of vesicles with and without the local inextensibility are598

drastically different. For the vesicles modeled without the local inextensibility, Figure599

9(b) and (c) illustrates that the vesicle membranes are stretched (red) or compressed600

(blue) everywhere, even though the total arc length of the vesicle modeled using a large601

modulusMs value could be preserved, and the vesicle forms a blockage. For the vesicle602

modeled with the local inextensibility, Figure 9(c) confirms that there is almost no603

local extension or compression of the membrane, which is consistent with experimental604

observations. All simulations described below use the local inextensibility.605

(a) (b) (c)

Fig. 7. Snapshots of vesicles passing through a narrowed channel with different surface area
constraints at times t = 0.08, 2, and 4, respectively. (a) Ms = 100 with the local inextensibility; (b)
Ms = 100 without the local inextensibility; (c) Ms = 20000 without the local inextensibility. The
curves on the top and bottom ceiling are the wall boundary of the narrowed channel.

569

570

571

572
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Fig. 8. Total arc length of vesicle membrane with the local inextensibility (blue line) and the
total arc lengths of vesicle membranes with low (100) (red dashed line) and high (20000) (black
point) Ms and no local inextensibility, respectively, during vesicles passing through the constriction
of the micro channel with otherwise identical parameter values and settings.
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608

609

(a) (b) (c)

Fig. 9. Effects of the local inextensibility P : ∇u = 0. Snapshots of membrane forces of vesicles:
(a) Ms = 100 with the local inextensibility, (b) Ms = 100 without the local inextensibility, and (c)
Ms = 20000 without the local inextensibility.

610

611

612

Fig. 10. Side view of a vesicle with surface-volume ratio 1.5 : 1 at different times.613

Both experiments and clinical reports have shown that the cell bending modu-614

lus and surface-volume ratio play important roles in determining the deformability615

of vesicles, especially when they pass through narrow channels [55, 38, 49]. The lat-616

est results reveal that a moderate decrease in the surface-volume ratio has a more617

significant effect than varying the cell bending stiffness. This surface-volume ratio618

effect is tested by increasing the ratio value slightly from 1.5 : 1 to 2 : 1. Results in619

Figures 10 and 11 confirm that the more rounded vesicles are much harder to pass620

through the narrow channel and can easily form a blockage. This is consistent with621

the experimental observations.622
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Fig. 11. Side view of a vesicle with surface-volume ratio 2 : 1 at different times.627

Fig. 12. Side view of a vesicle with large bending modulus κB = 4× 10−1 and surface-volume
ratio 2 : 1 at different times.

628

629

The effect of the bending modulus is assessed by increasing its value 10 times.623

The surface-volume ratio of the vesicle is 2 : 1 in this test. Figure 11 illustrates that624

this more rigid vesicle can also pass through the same size channel but exhibits very625

different shape transformation.626

6. Conclusion. In this paper, an energy variational method is used to derive630

a thermodynamically consistent phase-field model for simulating vesicle motion and631

deformation under flow conditions. Corresponding Allen–Cahn GNBCs accounting632

for the vesicle-wall (or fluid-structure) interaction are also proposed by introducing633

the proper boundary dissipation and vesicle-wall interaction energy.634

Then an efficient scheme using C0 finite element spatial discretization and the635

midpoint temporal discretization is proposed to solve the obtained model equations.636

Thanks to the midpoint temporal discretization, the obtained numerical scheme is637

unconditionally energy stable. The numerical experiments confirm that this scheme is638

second-order accurate in both space and time. Simulations of the vesicle tank treading639

and tumbling motions reproduce experimental observations. And the flipping ellipse640

simulation agrees with the analytical solution well. Finally, the model is used to641

investigate how vesicles’ mechanical properties affect the vesicles’ capability to pass642

through narrow channels. It is shown that whether a vesicle can pass through a643

narrow channel is largely determined by the surface-volume ratio of the vesicle, which644

is consistent with in vitro experiments.645
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Our model can be used to study the impaired dynamics of red blood cells due646

to altered mechanical properties of red blood cell membranes in sickle cell disease [3]647

and in diabetes [36]. Combining with the restricted diffusion model [46], our model648

can be generalized to model the mass transfer through a semipermeable membrane,649

for example, oxygen delivering [57].650

There are limitations in our model if we need to consider an adhesion based on the651

ligand-receptor binding. When the static contact angle is lower than 180◦, the vesicle652

is torn apart due to the wetting effect. In [18], the authors proposed an adhesion653

model by introducing a new phase label for vascular wall and an adhesion energy654

functional using labels of wall phase and cell. In the future, we will combine the655

adhesion model with the contact line model and more realistic submodels for cell-wall656

and cell-cell interactions to model the cell aggregation [63, 64], cell crawling, and657

invasion problems [51, 9].658
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[20] F. Guillén-González and G. Tierra, Unconditionally energy stable numerical schemes for700

phase-field vesicle membrane model, J. Comput. Phys., 354 (2018), pp. 67–85.701



PHASE-FIELD MODEL OF VESICLE MOTION B23

[21] Z. Guo and P. Lin, A thermodynamically consistent phase-field model for two-phase flows702

with thermocapillary effects, J. Fluid Mech., 766 (2015), pp. 226–271.703

[22] Z. Guo, P. Lin, and J. S. Lowengrub, A numerical method for the quasi-incompressible704

Cahn–Hilliard–Navier–Stokes equations for variable density flows with a discrete energy705

law, J. Comput. Phys., 276 (2014), pp. 486–507.706

[23] Y. Han, H. Lin, M. Ding, R. Li, and T. Shi, Flow-induced translocation of vesicles through707

a narrow pore, Soft Matter, 15 (2019), pp. 3307–3314.708

[24] W. Hao, Z. Xu, C. Liu, and G. Lin, A fictitious domain method with a hybrid cell model for709

simulating motion of cells in fluid flow, J. Comput. Phys., 280 (2015), pp. 345–362.710

[25] D. Hu, P. Zhang, and E. Weinan, Continuum theory of a moving membrane, Phys. Rev. E,711

75 (2007), 041605.712

[26] W.-F. Hu, M.-C. Lai, Y. Seol, and Y.-N. Young, Vesicle electrohydrodynamic simulations713

by coupling immersed boundary and immersed interface method, J. Comput. Phys., 317714

(2016), pp. 66–81.715

[27] J. Hua, P. Lin, C. Liu, and Q. Wang, Energy law preserving c0 finite element schemes716

for phase field models in two-phase flow computations, J. Comput. Phys., 230 (2011),717

pp. 7115–7131.718

[28] G. B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid, Proc. A, 102719

(1922), pp. 161–179.720

[29] J. T. Jenkins, The equations of mechanical equilibrium of a model membrane, SIAM J. Appl.721

Math., 32 (1977), pp. 755–764.722

[30] Y. Kim and M.-C. Lai, Simulating the dynamics of inextensible vesicles by the penalty im-723

mersed boundary method, J. Comput. Phys., 229 (2010), pp. 4840–4853.724

[31] E. M. Kolahdouz and D. Salac, A numerical model for the trans-membrane voltage of725

vesicles, Appl. Math. Lett., 39 (2015), pp. 7–12.726

[32] A. Laadhari, P. Saramito, and C. Misbah, Vesicle tumbling inhibited by inertia, Phys.727

Fluids, 24 (2012), 031901.728

[33] Z. Li, X. Bian, Y.-H. Tang, and G. E. Karniadakis, A dissipative particle dynamics method729

for arbitrarily complex geometries, J. Comput. Phys., 355 (2018), pp. 534–547.730

[34] X. Liu, F. Song, and C. Xu, An efficient spectral method for the inextensible immersed731

interface in incompressible flows, Commun. Comput. Phys., 25 (2019), pp. 1071–1096.732

[35] J. S. Lowengrub, A. Rätz, and A. Voigt, Phase-field modeling of the dynamics of multi-733

component vesicles: Spinodal decomposition, coarsening, budding, and fission, Phys. Rev.734

E, 79 (2009), 031926.735

[36] R. Malka, D. M. Nathan, and J. M. Higgins, Mechanistic modeling of hemoglobin glycation736

and red blood cell kinetics enables personalized diabetes monitoring, Sci. Transl. Med., 8737

(2016), 359ra130.738

[37] W. Marth, S. Aland, and A. Voigt, Margination of white blood cells: a computational739

approach by a hydrodynamic phase field model, J. Fluid Mech., 790 (2016), pp. 389–406.740

[38] A. Namvar, A. J. Blanch, M. W. Dixon, O. M. Carmo, B. Liu, S. Tiash, O. Looker,741

D. Andrew, L.-J. Chan, W.-H. Tham, P. V. S. Lee, V. Rajagopal, and L. Tilley,742

Surface area-to-volume ratio, not cellular viscoelasticity, is the major determinant of red743

blood cell traversal through small channels, Cell. Microbiol., 23 (2021), e13270.744

[39] K. C. Ong and M.-C. Lai, An immersed boundary projection method for simulating the inex-745

tensible vesicle dynamics, J. Comput. Phys., 408 (2020), 109277.746

[40] I. V. Pivkin and G. E. Karniadakis, Accurate coarse-grained modeling of red blood cells,747

Phys. Rev. Lett., 101 (2008), 118105.748

[41] I. V. Pivkin, P. D. Richardson, and G. E. Karniadakis, Effect of red blood cells on platelet749

aggregation, IEEE Eng. Med. Biol. Mag., 28 (2009), pp. 32–37.750
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