10
11
12
13
14
15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

SIAM J. Sc1. COMPUT. (© XXXX Society for Industrial and Applied Mathematics
Vol. 0, No. 0, pp. 000-000

AN ENERGY STABLE C° FINITE ELEMENT SCHEME FOR A
PHASE-FIELD MODEL OF VESICLE MOTION AND
DEFORMATION*

LINGYUE SHENT, ZHILIANG XU#, PING LINt, HUAXIONG HUANGS,
AND SHIXIN XU9Y

Abstract. A thermodynamically consistent phase-field model is introduced for simulating mo-
tion and shape transformation of vesicles under flow conditions. In particular, a general slip boundary
condition is used to describe the interaction between vesicles and the wall of the fluid domain in the
absence of cell-wall adhesion introduced by ligand-receptor binding. A second-order accurate in both
space and time C? finite element method is proposed to solve the model governing equations. Various
numerical tests confirm the convergence, energy stability, and conservation of mass and surface area
of cells of the proposed scheme. Vesicles with different mechanical properties are also used to explain
the pathological risk for patients with sickle cell disease.

Key words. vesicle, local inextensibility, energy stable scheme, narrow channel
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1. Introduction. Studying dynamic motion and shape transformation of bio-
logical cells is always a point of interest in cell biology because the shapes of the cells
usually relate to their function. For example, many blood-related diseases are known
to be associated with alterations in the geometry and membrane properties of red
blood cells [56]. Red blood cells in diabetes or sepsis patients exhibit impaired cell
deformability [17, 42]. During blood clot formation, an indicator of platelet activation
is its shape change by forming filopodia and lamellipodia. Notably, platelets’ shape
changes facilitate their adhesion to the site of vascular injury and cohesion with other
platelets or erythrocytes [54, 2.

In simulation study, it is vitally important to establish a proper model of cell
membranes for analyzing the dynamical shape transformation of cells in addition to
modeling intracellular and extracellular fluids. Various mathematical models were in-
troduced for predicting cell morphology and function. Dissipative particle dynamics
[33] models of red blood cell were developed in [41, 33, 40] and were used to study ef-
fects of red blood cells on platelet aggregation [41]. Models based on interface tracking
or capturing such as level set method [60, 61, 50] were also developed [6, 29, 25, 24]
to take into consideration the fluid-cell-structure interaction. In numerical treatment,
various methods such as the immersed boundary method [30, 52, 39, 57, 59], immersed

*Submitted to the journal’s Computational Methods in Science and Engineering section April 30,
2021; accepted for publication (in revised form) September 21, 2021; published electronically DATE.

https://doi.org/10.1137/21M 1416631

Funding: This work was supported by NSFC through grants 12071190, 11771040, 11861131004,
and 91430106, by NSF through grants CDS&E-MSS 1854779 and NSF-1821242, and by NSERC.

fDepartment of Mathematics University of Dundee, Dundee DD1 4HN, UK (l.shen@dundee.ac.uk,
P.Lin@dundee.ac.uk).

fDepartment of Applied and Computational Mathematics and Statistics, University of Notre
Dame, 102G Crowley Hall, Notre Dame, IN 46556 USA (zxu2@nd.edu).

§Research Centre for Mathematics, Advanced Institute of Natural Sciences, Beijing Normal
University (Zhuhai), China; BNU- HKBU United International College, Zhuhai, China (hhuang@
uic.edu.cn).

TDuke Kunshan University, 8 Kunshan Street, Kunshan, Jiangsu, China (shixin.xu@
dukekunshan.edu.cn).

B1


https://doi.org/10.1137/21M1416631
mailto:l.shen@dundee.ac.uk
mailto:P.Lin@dundee.ac.uk
mailto:zxu2@nd.edu
mailto:hhuang@uic.edu.cn
mailto:hhuang@uic.edu.cn
mailto:shixin.xu@dukekunshan.edu.cn
mailto:shixin.xu@dukekunshan.edu.cn

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

B2 L. SHEN, Z. XU, P. LIN, H. HUANG, AND S. XU

interface method [26, 31], spectral method [34], and fictitious domain method [24]
using finite difference or finite element formulation have been introduced to solve
governing equations of these models.

The phase-field method considers the material interface as a diffuse layer instead
of a sharp discontinuity. This regularization can be rigorously formulated through a
variational process. The main advantages of the phase-field method are twofold. The
phase-field order parameter identifying the diffuse interface is treated as an additional
primary unknown of the problem to be solved on the whole domain. Consequently,
interface transformations are predicted without the necessity of a remeshing algorithm
to treat the evolution of the interface. The physics mediating the interface dynamics
can be easily incorporated into the phase-field models.

Lots of phase-field—type vesicle models have been introduced lately [27, 65, 35,
11].  Mechanical properties of the vesicle membrane such as bending stiffness and
inextensibility can be incorporated rigorously by the phase-field theory [11, 13, 14, 12]
to establish a realistic mechanistic model. For instance, the bending energy of bending
resistance of the lipid bilayer membrane in the isotropic case (neglecting the proteins
and channels on the membrane) given in the form of the Helfrich bending energy can
be approximated by a modified elastic energy defined on the whole domain in the
phase-field formulation [8, 10, 13, 14]. Constraints conserving cell mass and ensuring
global inextensibility of cell membrane are frequently introduced into vesicle models
to keep the mass and surface area of the vesicle constant [12, 1].

The focus of this paper is to model flowing vesicles interacting with the domain
boundaries which mimics scenarios such as red blood cells passing through a narrowed
blood vessel in the absence of the cell-wall adhesion introduced by ligand-receptor
binding or when the impact of this cell-wall adhesion can be neglected. This involves
considering a moving contact line problem since three different phases meet to form
a triple point [44]. The first goal of this paper thus is to derive a thermodynamically
consistent phase-field model for vesicles’ motion and shape transformation in a closed
spatial domain by using an energy variational method [53, 21]. All the physics taken
into consideration are introduced through definitions of energy functionals and dissi-
pation functional, together with the kinematic assumptions of laws of conservation.
Besides the energy and dissipation terms defined on bulk region of the domain, terms
accounting for boundary effects are also added to the functionals. Then performing
variation of these functionals yields an Allen-Cahn-Navier-Stokes system [58] with
Allen—Cahn general Navier boundary conditions (GNBCs) [45]. This is in contrast to
most previous works [13, 14, 7] in which a dynamic boundary condition was rarely
derived during the course of model derivation. Dirichlet- or Neumann-type condi-
tions were simply added to these models at the end to close the governing equations
[1, 12, 10]. Moreover, in our model derivation, the incompressibility of the fluid, the
local and global inextensibility of the vesicle membrane, and the conservation of vesicle
mass are taken into account by introducing two Lagrangian multipliers, hydrostatic
pressure and surface pressure [39] and penalty terms, respectively.

The second goal of this paper is to propose an efficient and accurate numeri-
cal scheme for solving the obtained fourth-order nonlinear coupled partial differential
equation system. Over the past decades, a lot of schemes have been developed for
Allen—Cahn— or Cahn—Hilliard—Navier—Stokes systems. As for systems such as vesicle
models introduced in the current and other works which are more sophisticated than
the Allen—Cahn— or Cahn—Hilliard—Navier—Stokes systems, the backward Euler time
discretization method is frequently used [1, 13, 19, 18] leading to a first-order accu-
rate scheme. Later on, decoupled energy stable schemes were proposed by Chen et al.
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[7] and Francisco and Giordano [20] by introducing explicit, convective velocities.
Liu, Song, and Xu [34] introduce a variational framework for an inextensible mem-
brane with immerse boundary formula and propose a spectral method for solving the
obtained problem. In the current work, an efficient, energy-law preserving (thus en-
ergy stable) and second-order accurate C° finite element scheme is proposed to solve
the obtained vesicle system using ideas introduced in [22]. The key idea of this scheme
is to utilize the midpoint method in time discretization to ensure the accuracy in time
and that the form of the discrete energy dissipation law is the same as that of the
continuous model. In order to properly treat the term related to inextensibility of
the membrane, a relaxation term of local inextensibility as in [1] is introduced. The
numerical study of convergence confirms the proposed scheme is second-order conver-
gent in both time and space. Furthermore, vesicle deformation simulations illustrate
that it is energy stable and numerically conserves mass and surface area of vesicles.

The introduction of the GNBC in this work makes it possible to study a broad
class of complicated fluid-structure interaction problems. In this paper, the developed
model is applied to studying vesicles passing through narrow channels. The results
confirm that the more rounded the vesicles (smaller surface-volume ratio) are, the
more likely the vesicles form a blockage when they pass through narrow channels. It
is also worth noting that it is critical to include the local inextensibility of the vesi-
cle membrane in the model when studying this type of problem. Without the local
inextensibility, the vesicle membrane can be falsely stretched or compressed. Lastly,
although membrane structures of vesicles and blood cells are quite different, a blood
cell in many studies can be treated as an elastic capsule with bending rigidity, in
which the membrane is impenetrable to both interior and exterior fluids. Therefore,
our model developed for vesicles can be readily applied for studying a vast body of
blood cell-related problems [37].

The rest of paper is organized as follows. Section 2 of the paper begins with
introducing basic dynamical assumptions that have been used in many papers [12, 44]
and is devoted to model derivation. Dimensionless model governing equations and
the energy decaying law of the model are presented in section 3. In section 4, the
numerical scheme solving the proposed model is developed, and its energy law is
given. Numerical simulation results are described in section 5 to confirm the energy
law of the numerical scheme and the feasibility of our model. A case study of a vesicle
passing through a narrow channel is shown, which is to simulate the motion of red
blood cells in a small blood vessel. Conclusions are drawn in section 6.

2. Model derivation. Derivation of the model for simulating a flowing vesicle
deforming in a channel filled with extracellular fluid is presented in this section. The
phase-field label function ¢ is introduced to track the motion of the vesicle, where
¢(x) = £1 denotes the intracellular and extracellular space and ¢ = 0 is the vesicle
membrane or interface.

The model is derived using an energy variational method [53]. It begins with
defining two functionals for the total energy and dissipation of the system and intro-
ducing the kinematic equations based on physical laws of conservation. The specific
forms of the flux and stress functions in the kinematic equations are obtained by tak-
ing the time derivative of the total energy functional and comparing with the defined
dissipation functional. More details of this method can be found in [53].

In what follows, we detail steps of using this method to derive the model. We
first make the following assumptions about mass and momentum conservation of the
mixture of extracellular fluid and vesicle and interface inextensibility, and we assume
that the dynamics of the phase-field function ¢ is an L? gradient flow:
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9¢

)
(2.1) p<£+(u~V)U>—V~0n+F¢,
V-u=0,
6,(P:Vu) + &’V - (¢°VA) =0

with specific forms of flux gy, stress o, and body force density Fy functions to be
determined. p and u are the density and velocity of the mixture, respectively. In
this paper, we assume that the density is a constant. The first equation is the Allen—
Cahn-type equation to track the interface. The second equation is the conservation
of momentum. The third equation accounts for the fluid incompressibility (or mass
conservation).

The last equation is related to the local inextensibility of the vesicle membrane.
This local inextensibility prevents stretching on any point of the vesicle membrane
surface [5]. In the sharp interface model, the local inextensibility (or mass conservation
on the interface) is represented by Vr -u = 0 defined on the interface I' [35, 37]. This
equation is equivalent to P : Vu = 0, where the projection operator P is defined to
be (I — n,, ® n,,) and n,, = % is the unit outward normal vector of the interface
when it is defined as an implicit surface by the level function. In the phase-field
formulation, the interface is modeled as a diffuse layer. This is different from the
sharp interface concept. For computational convenience using phase-field formulation,
this local inextensibility constraint on the interface I' is extended to the domain €2 by
multiplying with a scalar function

1
(22) 5, = 57190

where V¢ is nonzero only in the diffuse interface layer and v is the thickness of the
diffuse interface layer. Here a relaxation term £72V - (¢2V ) for the local inextensi-
bility near the membrane is introduced as shown in [1]. £ is a parameter independent
of «v, and A is the a function that measures the interface “pressure” induced by the
inextensibility of the membrane.

On the wall boundary 9, of the domain, the following boundary conditions are
assumed:

un=0,

u- T = fr,

(2:3) é:%mrvm:k,
f=0,

871)\:0 5

where an Allen-Cahn-type boundary condition is employed for ¢, u, = u— (u-n)n is
the fluid slip velocity with respect to the wall, 7;,7 = 1, 2 are the tangential directions
of the wall surface (2D), and Vi = V — n(n - V) is the surface gradient operator
on the boundary 0€,,. f;, is the slip velocity of the fluid on the wall along the 7;
direction. And Jr represents the Allen—Cahn type of relaxation on the wall by using
the phase-field method. Here we abuse the notation when there is no confusion, and
the subscript I' refers to 92, and n is its unit outward normal. The meaning of
equation f = 0 will be made explicit after definition of the interface curvature (see

(2.8)).
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The remainder of this section is devoted to deriving the exact forms of ¢4, oy, F4,
fr., and Jr using the energy variational method. By following the works in [58, 11],
the total energy functional Euiq; of a cell- (or vesicle-) fluid system is defined to be
the sum of the kinetic energy Ej;n, the cell membrane energy E..;, and the specific
wall energy F,, due to the cell-wall interaction

(24) Etotal - Ekin + Ecell + E’w .
—— —_——
Macroscale Microscale

The kinetic energy accounts for the transport of the cell-fluid mixture and is
defined as

1
(25) Ekin = / <p|u|2) dx ’
o \ 2

where p is the macroscale density of the mixture and is assumed to be equal to a
constant pg in this work (matched density case).

The cell energy E..; is defined to be the sum of the bending energy FEjpenq and
two penalty terms in order to preserve the total volume and surface area of the cell:
M, (V(9) =V (¢0))” | M (S(9) — S (¢0))’

2 Vew T2 S

where V(¢) = fQ ¢dx is the volume difference of the cell-fluid system and the value
of S(¢) = [, @dw is used to measure the surface area of the cell with G(¢) =

(2.6) Ecell = Ebend +

fQ 72‘2(15'2 + (1_1’2)2dw. M, and M, are cell volume and surface area constraint
coeflicients, respectively.

If the cell membrane is assumed to be isotropic and only composed of a lipid
bilayer, the bending energy of the bending resistance of the cell membrane can be
modeled by an approximation of the Helfrich bending energy [11] as follows:

2

kp | f(9)
2.7 E ETL - o - )
@7 rend /Q 2v | v
where £ p is the bending modulus and
0G
(2.8) f(¢) == 50 —7*Ad+ (¢* = )¢ .

In order to take into account the interaction at the interface between vesicle, fluid,
and vessel wall on 0, the wall free energy F,, is introduced:

(2.9) E, = fuw(@)ds
Oy,

where f,, is the vesicle-wall interaction energy density.

Remark 2.1. Here we borrow the idea introduced in moving contact line models
[43, 44]:

(2.10) (@) = G sin (5 ) st

with a static contact angle 65 [48, 47] when the cell-wall adhesion is absent or neg-
ligible. This is justified by the fact that a triple point is formed at which wall, cell,
and extracellular fluid meet, and its dynamics can be modeled through a contact
line model. We also note that the choice of contact angle can be subtle and affects
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simulation outcome. Low contact angle values show a tendency of the cell to spread
and “adhere” to the surface (hydrophilic) due to the existence of a wetting force,
whereas high contact angle values represent the surface’s tendency to repel the cell
or an absence of the wetting force (hydrophobic). (See Figure 4 in section 5.2 later.)
In fact, the wall energy f,, can be made more sophisticated in order to faithfully rep-
resent the complicated vesicle-wall interaction in the case that the cell-wall adhesion
by ligand-receptor binding is involved, for example, by introducing a new phase to
represent the wall [18].

The chemical potential s is obtained by taking the variation of Eyyix = Erin+Ecen

with respect to ¢:
0Epur _ RB

2.11 = == M
(2.11) p 56 3 9(¢) + M,
where g(¢) = —2Af + (362 — 1) .

It is assumed in the present work that dissipation of the system energy is due
to fluid viscosity, friction on the wall, and interfacial mixing due to diffuse interface
representation. Accordingly, the total dissipation functional A is defined as follows:

1
A:/Zn\DnPdm—l—/ — \q¢|2da:+/€|'y¢V)\|2dm+/ Bs|ur|?ds
Q oMy Q Oy

V(¢) =V (¢o) n M; S(¢) — S (¢o)
V (¢o) Y S (¢o)

f(9),

(2.12) +/ kr|Jr|?ds .
89’(“

Here the first term is the macroscopic dissipation induced by the fluid viscosity with
D, = 1[Vu + (Vu)T], the second term is the microscopic dissipation induced by
the diffuse interface, the third term is the dissipation induced by the diffuse interface
method for imposing local inextensibility of the interface, the fourth term is the
boundary friction dissipation, where [, is related to the roughness of the vessel wall,
and the last term is the dissipation induced by the diffuse interface contacting the
wall.

By taking the time derivative of the total energy functional (2.4), it is obtained
that (detailed derivation is given in the appendix of this paper)

(2.13)
dEtotal _ d ) d d
dt - %Ekzn + aEcell + aEw
=— / ((on +pI): Vu)de + / (Fy — uVeé — V- (N,P)) - udze +/ ngsde
Q Q Q
+/ E(vpV ) de +/ ((oy +A6,P) - n) - u-ds +/ /i(¢)%¢ds
Q 8, 99, t

=— / ((on +pI): Vu)de + / (Fp — uVé — V- (N0,P)) - udz +/ 1gpdx
Q Q Q

+ /Q E(ydVA) dx + /anw((a'n + A6, P) -n) - u-ds —|—/ L(¢)(—u-Vré¢ + Jr)ds

Qs

=- / ((on +pI): Vu)de + / (Fg —uVeo —V - (A0,P)) - ude +/ ngpde
Q Q Q

4 / E(VN)2da + / (0 + A6,P) -1 — L(6)Vrd) - urds + / L()Jrds,
Q Oy

Oy
where p and A are introduced as Lagrange multipliers accounting for fluid incom-
pressibility and local inextensibility of the cell membrane, respectively. ¢, is defined

n (2.2), and L(¢) = KTB nf"’MSW’Y@@—F %.
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Using the energy dissipation law % = —A [62, 15] and the definition of the
dissipation functional (2.12), it is obtained that
o, =2nD, —pl in Q,
qp = —Mpp in 2,
(2.14) Fy = uVé+ V- (A6, P) inQ .
Jr = —&Flﬁ(qﬁ) on 0Qy ,

Ur, = B (= - (00 + A6, P) - 73) + L(¢)Dr, ) , i =1,2, on 8y .

Here constant My is called the mobility (a phenomenological parameter), £, is the
boundary mobility (a phenomenological parameter), and (s is the wall friction coef-
ficient.

To this end, the proposed phase-field model is composed of the following
equations:

00 4V (u6) = ~Mn,

ot

_ ks V(¢) =V (o) = Ms S(¢)— S (o)
S R T )
9(¢) = =7’ Af + (3¢ — 1) f(9),
(2.15) (@)= =7 Aé + (¢~ g

f(@),

I

P<%+(u-V)u) +Vp=V-(2nD,) + puVé+ V- (\,P) ,
V-u=0,
5,(P: Vu) 4+ 42V - (¢°VA) =0

with the boundary conditions

u-n=0,

_Bsun = (n : (0'7] + )\57?) ' Ti) - E(¢)87L¢ s =12,
f: ;

(2.16) . (aﬁ +u- qus) =-L(¢),

Uy 0y 50) -5 (00)
v ) S (¢o)

0 fw
’Yan¢+ ai(b 5

3. Dimensionless model governing equations and energy dissipation
law. If the viscosity, length, velocity, time, bulk, and boundary chemical potentials
in (2.15)—(2.16) are scaled by their corresponding characteristic values ng, L, U, %

Y and noU, respectively, and if we let ¢ = 7 be the nondimensionalized thickness

L
of the interface (2.15)—(2.16) can be rewritten as

Re <@+(u-V)u) +VP=V-(2nD)+uVe+V-(A6.P) inQ,

ot
V-u=0 in
a—(ﬁ+u~v¢:—/\/lu in Q,
-1 ) (V(¢) = V (¢0)) (S(¢) — S (¢0))
w=rpg(¢) + My V (@0) + M, S (00) fl¢) inQ,
10) = —edo+ g o) = —ar+ L6 -1f6)  mo,

0(P:Vu) + £°V - (°VA) =0 in Q



262

263

264

265

266

267

268

269

277

278

279

280

281

282

283

284

285

286

287

288

289

B8 L. SHEN, Z. XU, P. LIN, H. HUANG, AND S. XU

with the boundary conditions

K+ L(¢) =0 on 89,
L(¢) = kponf + EMSM&L(b + ozwdf—w on 0Q,, ,

(3.2) S (¢0) d¢
. _zs—luﬂ. =7 (277D77 +A6P) n—L(¢)0, ¢, i=1,2, on Iy, ,
f=0 on 09, ,
OnA=0 on 0y, ,

where V(¢) = [, ¢dx, S(¢) = [, 5IVe|]* + 1-(¢? — 1)%dx, and 6. = £¢2|V¢|?. The
dimensionless constants in (3.1)—(3.2) are given by e = I, Re = poﬁ%, M = Myno,

i i M,L
HB:L%]BUUak*nUBLyl( 7[3L’Oé“’:nU’M 77]U7andM“:no7U'
If we define the Sobolev spaces as [22, 53]
(3.3) whd = (w2

: Wh(Q) = {u = (ug,uy)" € WHu-n =0, on 99,} ,
(3.5) Wiy = WH3(Q) x WH(Q) x WH3(Q) x WH/2(Q) x WH/2(0) x WH(Q)

and let || - || = (f;,|-|*dz)? and | - | = (fo, |- |?ds)% denote the L? norm defined
in the domain and on the domain boundary, respectively, then the system (3.1)—(3.2)
satisfies the following energy law.

THEOREM 3.1. If (¢, f, u, A, P, u) € W, are smooth solutions of the above
system (3.1)—(3.2), then the following energy law is satisfied:

d d
%gtotal - %(gkzn + gcell + gw)

1 ; _
(36) = (202D, = Ml = €lledVAI? = rlIBIZ - 17 2w 13

where gtotal - gkzn + gcell + gw: gkzn = %‘/‘Q |u|2dx; gcell = %fg |f‘2diB +

(V(¢)=V(¢0))? (5(¢)=S(¢0))* _ o
M, ZReV(EﬁOO)) + M, 2ReS(E;500) , and &, = Efaﬂw fuwds.

Proof. Multiplying the first equation in (3.1) with u and integration by parts
yield

d 1 5
i&cm— Re{—/9277|D,7| d:c+/ (o-n~n)-u7ds—|—/9uv¢~uda:

Qu

AP : Vudzx +/ (A6P - n) - qus}

Q 2w
- 1{/277|Dn|2da:/ A&P:Vudmfl;l/ [u[*ds
Re Q Q 0y
(3.7) +/ L(¢)8T¢-urd8+/ PV - ude }
IO Q

where the slip boundary condition in (3.2) is applied.
Taking the inner product of the third equation in (3.1) with £ results in

(3.8) 1 g‘f +—/u vwdwf——M/ |p|?de .
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Multiplying the fourth equation in (3.1) with 1 and integration by parts give rise
to

(3.9)
b e e 5 ()
S )(%)wo) 2
5 [ (Faes 5@ —as))dm—ﬁ 0u 2 as
+i (e w%m))?) +Msdt <( (fz)%e_sw(sff ")

-t (P55 [, oo

_d (KB I dm) L4 ( " <v<¢> - (%))2)

d 2Rec 2ReV (o)
(S(¢) — S (¢0))* L(¢) 99 w d
+Msdt ( 2ReS (o) ) */aﬂw Fe 5t e di e, T

_d _ L(¢) 99
= gy (Eeen + Ew) /(m Re 01%

where the definitions of f(¢), g(¢) and the boundary conditions of ¢ and f are utilized.
Multiplying the last equations with Ae and integration by parts lead to

1
(3.10) T (>\6 P): Vude — — / £e?¢* (V)2 =
Finally, the energy d15$1pat10n law (3.6) is obtained by combining (3.7), (3.8),
(3.9), and (3.10). 0

4. Numerical scheme and discrete energy law.

4.1. Time-discrete primitive method. The numerical scheme for solving
(3.1)—(3.2) uses the midpoint method for temporal discretization. Let At denote
the time step size, and let ()"*1 and ()" denote the value of the variables at times
(n + 1)At and nAt, respectively. The semidiscrete in time equations are as follows:
in €,

(4.1)
u"t —un ntl npl 1 nl 1 n il neloT
Atl‘f'(u 2-V)u12+R6VP Q—EV'(’I] (Vu 2+(Vu 2) ))
L n+i n+4 L L . n+il.n
+Reu Ve 2+Rev (/\ P 66) ’
V.ou'tz =0 ,
¢n+1 _¢n

+ (u”+% .v) "t = —MutE

(v (673) =V (40)
Mo V (6)
~ S(0))

At

Pt = kpg (6", ¢")
(s(e

n+1 n
S( 0) f(¢ 7¢) ) )
1

(e,
£V - ((¢n)2VA"+%) L0 VU =0 .

+

+MS

Qv

fn+% = —6A¢n+% +

VRS
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The numerical boundary conditions can be written as

(4.2)
H(Z'snjté _ 7Ln+%
¢n+ ) 0 fn+1 f”
L"te =g On nty —I—./\/lse( On nty + oy =
B f o ¢ ¢n+1 ¢n
1
Tt = (77" <Vu"+§ + (VUHJF%) ) + /\"+§66P”> ‘n
— LTI, 9" | =12,

(43)  F(" ") = a4 L

on 0¥y,

on 082y,

on 08y,

on 0¥,
on 08y,

((0™1)" + (6?2 —2) (6" +97).

(4.4) g (",0") = (‘Af g (6 4+ 60 e 1) f”*) ,

1 A4 (L . Vo™
(_)TL+2 — %7 and Pn =] — nf’n ®nﬁl with n;Ll = \Vz"\'

The above scheme obeys the following theorem of energy stability.

THEOREM 4.1. If (¢™,u™, P™) are smooth solutions of the above system (4.1)—

(4.2), then the following energy law is satisfied:

gg);r;l tnotal (gnJrl 5ZLeJlrl1 —+ 5n+1) - (gl?zn + g:éll + 53)

kin

At

n—‘,—l 1 1
= 2L (a2 — MR = g oAt

Re
1 nal _ +1
(15 LRI - 1 R )

n
where E[L, .1 = EL,

+EN  +ED with £ :%HunHQ gn — rwelf” [ +M, (V(¢™) =V (¢0))*

kin cell —  2Ree

S(¢p")—S 2 n__ n
1+ M, B8 =5(0))" <<§R>6S( y;” . and El=%[,, frds.

kin

2ReV (¢0)

The following two lemmas are needed for proving Theorem 4.1. Proofs of these

two lemmas can be found in the appendix.
LEMMA 4.2. Let

(46) f(¢n+17¢n) _ _EA(bn-i—% + i ((¢n+1)2 + (¢n)2 _2> (d)n—&-l +¢n) )

Then f(¢™+L ¢™) satisfies
(4.7)

/ f (¢n+1,¢n) (¢n+1 _ ¢n) d(E _ Sn+1 _ Sn _/ Ean(bn—i-% (¢n+l _
Q

Oy

where S"T = [, G(¢"TY)dx, S™ = [, G(¢™)dz.

gb") ds

LEMMA 4.3. Let g(¢™ ", ¢") = —Afn+§+?((¢”+1)2+(¢n)2+¢n+1¢n_1)fn+%.

Then g(¢™ Tt ¢") satisfies
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/Qg (¢n+1’¢n) ((bn—&-l _ ¢n)d$
49 = [ e [ ot - s,

) 2€ loM
where [Pt = —eAg" T 4 L((¢"T1)2 = 1)gn !, f1 = —eA¢™ 4+ L((¢™)? — 1)¢".

Proof of Theorem 4.1. Multiplying the first equation in system (4.1) by Atutz
gives
(4.9)

/Q%((u"“)2 - (u")2)dw+/ Atu™t3 . ((u"+%V) -u”+%) dx

At/PrL+’L’V u"t 2 dg

/ V 7L+2 :nn <Vun+% 4 (Vun+2 >d + 7‘/ 7L+2 V¢7L+1Mn+1dw
At AntHE (6cP™ - m) - uy Eds
O

n %/ uts " ((Vu"+§ + (Vu""'%)T) n) ds.

/A(SP Va2 de +

Multiplying the fourth equation in system (4.1) by w and integration by
parts lead to
(4.10)
1 n+1/2 (n+l _ n 7@/i n+1\2 [ pny2
o L@ =y de =52 [ (Y - (7))
L Mo (V™) = Vo)" = (V9™ = Vo) | M. (S (9" = So)” = (S(8") — So)°
Re 2Vo Re 250

_EB [ g (g gy ds — 2 M

n+% n+1_ n d
Re o, RE o0, SO 68n¢ (¢ ¢) S.

Multiplying the third equation in system (4.1) by ur At A and integration by parts
yield

1
ﬁ/ﬂurﬂrl (¢n+1 d:B—Ff/ n+1 n+1/2 v)¢n+ldm
MAE
4.11 = "2 0.
(411) o [ e

l
Multiplying the last equation in system (4. 1) by 7A

(4.12) —E/§2562(¢")2’V)\"+%

The discretized energy dissipation law (4.5) is obtained by combining (4.9)—(4.12) and
organizing the terms according to the boundary conditions L(¢) as shown in (4.2). O

and integration by parts give

da + 5 /Q()\”Jr%éepn) : Vutide = 0.

Remark 4.4. The system (4.1) is second-order accurate in time except for the
last equation. It can be changed to be second-order accurate as well by using ¢"11/2
and P"+1/2. However, this change makes the Newton iteration discussed in the next
section very complicated. For simplicity of computer implementation, a first-order
accurate treatment for the last equation is adopted here.
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4.2. Fully discrete C° finite element scheme. The spatial discretization
using C° finite element is straightforward. Let € be the domain of interest with
a Lipschitz-continuous boundary 9. Let W," C W, be a finite element space
with respect to the triangulation of the domain 2. The fully discrete scheme of the
system is to find (@™, L, £ AT pr w1 € W such that for

any (¢h7 Xhs Ch) @h7 qdh; V}L) € Wl];7
(4.13)

un+1 u';LL n+l n+ na
/ hT—F(uh 2V) 2+R7VP 2>~vhdw

Q
1 n+3 n+i

= — n, | Vu, * 4+ (Vu,, 2 >>:Vvdaz

/QR (h( e ) "

1 n+2 n+i / 1 n+
— \Y 2 dx — 2Ppoe : vpd
+/Q M ¢y ° - Vrdx | Re Pilde : vpdx

1 n n+i n+3 n+3.5n
+/€m En~ (nh (Vuh + (Vuh ) )+)\h Ph55) - vipde
V uh qhda:—O
"+1— n 1 ntl ntl
(“b oh + (w7 v) h“)whdm/Muh*whdm,
1 1y 2 n n+3
i xdw—/(ﬁBZ(( P 4 (00 + e 1)
Q €

(v (574 - v o)
+M’U n+}/(¢0)
et B O) e 3) (o0t o) | v

ntg\
(S (¢h S()GO) S (¢0)) v ;H_% Vxndz

s\:o\b

n 1
+/ IiBth+2+M56
Q

n+3 .
7/89 KkB0n fn+2 + Mge (S( " S(>GO)S(¢O)) On ZJF% Xndx ,
/f,?*zch—/ew”“ v(w/g% ((qﬁZ*%) )¢h+2chdx

- 58n¢h Chdx
89“7

/ e (6 ON 1) Vepda = / 5.2 Va0 de
n / ¢ ((qﬁh) Ve )@hdm.
0w

THEOREM 4.5. If (™%, w0, £ ™ oL w1 € W are solu-
tions of the above system, then the following energy law is satisfied:
At

n n n+3 n+3 n n+i
gtojalzh total,h — Re( QH( )1/2D 2||2 M”Hh 2||2 ¢l €¢hV)‘h 2||2

n+1 n+
(4.14) L@ - e 2||w).



381

382

383

384

385

386

387

388

389

390

391

392

398

399

400

401

402

403

404

405

406

407

408

409
410

411

412

413

414

415

416

417

PHASE-FIELD MODEL OF VESICLE MOTION B13

Atpn+1 n+1l

It is easy to prove this theorem by letting v, = Atuzﬂ, qn=—p—,Yn= “h T h ,
n n+1
Xh = %, O = At;’; and following the process of proving Theorem 4.1. Details

of the proof are presented in the appendix.

4.3. Linearization and unique solvability. Note that the energy stable
scheme (4.13) is a coupled nonlinear system. Newton’s method [22] is used to solve
the scheme equations. First, the scheme (4.13) can be written into the form

Fitt=c

by relocating all of the constant terms to the right-hand side and the terms containing
unknown variables to the left-hand side.

For the sake of simplification, we let U, s h
uy,"THF p,"tLF) be the solution at time (n + 1)At in the kth iteration of Newton’s
method, and we let the variation between iterations be

n+1,k n+1,k 1,k n+1,k n+1,k
= (¢én LR fh s A ;

(6U)Z+1,k —_ ((5¢h)n+1,k+1, (5‘uh)n+1,k+1’ (5fh)n+1’k+1, (6)\h)n+1,k+1,

(5uh)n+1,k+1’ (5ph)n+1,k+1) )

Here (8-) stands for the amount of change of the value, (§-)" 1% = (LAl _(ntlk
Newton’s method can be formally written as

Frr U HE) 4 Vi a I U ) - (SU) = c(Uy)

The solution is updated by UZH’]CH = UZH’k + §Uz+1’k, where TUZH’O =TUj.

Then we have the following theorem for the solvability.

THEOREM 4.6. If the time step At is small enough, then the equations of the
scheme (4.13) are uniquely solvable.

Proof. From the last three equations we find p ™' = p(epth), i = f(op™),

AP = Aupt!). With the first and the second equations, P;'t! can be expressed

as P,?H = P(u "+1,¢"+1). Then the first and the third equations can be solved
separately. Applying Newton’s method to the first three equations, we have their
linearized form:

(4.15)

n+1 n+1,k n+1,k
Zt ()

T
1 1,k 1,k 1,k+1 1,k 1,k+1 1,k
nt1 kf}?+ (uZ+ e ) . (uZ+ T uZ+ notbkdl Z+ ) =C.

+VUZ+1’k7¢h h o

Note that u ™ 1 =t 0F ntBEHD) Nultiplying At to (4.15) yields

I — AtAy, AtAi AtAqs uz+17k+1
(416) AtAQl I — AtAQQ AtA23 ,U;Ll+1,k+l — C/7
AtA31 AtA32 I— AtA33 ¢’Z+l,k¢+1

where
Al = i(u2+1’k8&h+3 huzﬂ k+u2 z,h+8$7huﬁ+6‘ th+1 k) 21138 (28x7h(772817h)+

By (710 1))+ 5 O @en PPTER) 1 000 O (02,0 00)?)+0y AT 00 n 07 Oy n b))
y,h TR Oy, h 2Re ™ pLuptlF IRe ouyTLF ’

nt+1,k 1 1 On(@enPPTHR)
Arp = *Uh Oy.h = 57 O h Oy n + 372 azvg+hl=k
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1 OB O (00,0 07)2))+0y n O 00 1 dR 0y no})
" 4Re (%;Hrl,k ’

n+1,k +1,k w
Az = 4Re (,uh Ozn + 8¢n+1 7 O, h¢n + 5, O p + 8¢n+1 7 02 n )
n+1 ka 1 3h(8y,hpﬂ+1 k)

ok — 510210y h + T ahu;m,k

I N O R C NS i DR A ORI Ry R
" 4Re QuptLF )
1, n+lk n+1,k L y n+1,k 1
Azz = 5 (v, Oy n + 0y nvy T F R0y n + Oy vy +Opnty ) = 5c (On,n (1 0z,n) +
20, 1 (110 1))+ 52 @y n Pl ) 1 @y AT 0y )2 ) +0an Op T 0 Oy )
Y h™y,n

2Re Opv "+1 k 4Re @U”L+1vk
3

A21 = Uh

1,k Lk oup Tk
Agg = 411%6 (ﬂh+ Oy,n + 8¢”+1 SAnFLE y,h¢n+ + upOy,n + W%,Wﬁ) )
Az = 10, (op e,
Agy = 13 y(Op T ap)
n+1 k
A33 = 1(( n+1 F + uh)ar h+ (UZJFI ok + 'Uh) Y, h) + M8¢n+l E -

Using Gaussian elimination, the left side of the above matrix system can be
transformed as follows:

4.17)
I — AtAqq AtAqo AtAq3
0 I — AtAgs — (At)z(f — AtA11)71A21A12 AtAgz — (At)z(l — AtA11)71A21A13 y
0 0 Aga

where Aé?) =1—AtAs3 — (At)z(l — AtAgy — (At)z(l — AtAll)_lAglAlz)_lAg;gAQg.
C,C’" are constant matrices. When At is small enough, I — AtA;(i = 1,2,3) is
invertible. Thus the given matrix is invertible; we can obtain the unique solution of

(uZH’kH, Zﬂ’kﬂ) with given boundary condition, which means (4.13) is uniquely
solvable. ]

5. Simulation results. Numerical simulations using the model introduced in
the paper are presented in this section. The first example is used to illustrate the
convergence and energy stability of the proposed numerical scheme. Then feasibility
of the proposed model and the model simulation scheme for studying vesicle motion
and shape transformation are assessed by cell tank treading and tumbling tests. The
last simulation is devoted to studying effects of mechanical and geometric properties
of a vesicle on its deformability when it passes through a narrow channel.

5.1. Convergence study. The initial condition of the convergence test is set to
be a 2D tear-shaped vesicle in a closed cube with intercellular and extracellular fluid
velocity being 0. The initial conditions are

(5.1)

[ —tanh[(15(y — 0.185)(y — 0.065) — = + 0.125)/+/2¢], x < 0.125
do(z) = { —tanh[(y/(z — 0.125)2 + (y — 0.125)% — 0.06) //2¢], = >= 0.125,
Up = (0,0)

Thanks to the bending force of the cell membrane, the shape of the vesicle grad-
ually transforms into a perfect circle to minimize the total energy (see Figure 1).
The parameter values used for this simulation are chosen as follows: Re = 2 x 104
M=5x10"° kp=8x10"", e =25x10"2, M, =20, M, =2, £ = 1.6 x 10°,
k=8x10710 [, =5x 1073

In the simulations, the numerical solution computed with a mesh size h = 1/240
is treated as the reference solution or “the true solution.” As shown in Table 1, our
scheme is second-order accurate in space.

3
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0.2 0.2
0.15 0.15
0.1 0.1
0.05 0.05

0.05 01

t=0

015 0.2

TABLE 1

B15

0.05 0.1

0.156

t=0.02

Fic. 1. Relazation of a tear-shaped vesicle.

02

L2 norm of the error and convergence rate for velocity u = (ug,uy), phase-field function ¢, at
time t = 0.02 with both intercellular and extracellular fluid viscosity being 1.

Spat.lal mesh P2 element
size h
Convergence Convergence Convergence
Err(uz) rate(ug) Brr(uy) rate(uy) Err(¢) rate(¢)

1/47 1.3e-1 1.5e-1 1.4e-2

1/71 8.3e-2 1.15 7.6e-2 1.71 6.1e-3 1.97
1/107 3.8e-2 1.94 3.7e-2 1.83 2.3e-3 2.45
1/160 1.5e-2 2.35 1.3e-2 2.59 5.7e-4 3.42

TABLE 2

L? norm of the error and convergence rate for velocity u = (uz,uy), phase-field function ¢, at
time t = 0.05 with both intercellular and extracellular fluid viscosities being 1.

Time step At P2 element
Convergence Convergence Convergence
Brr(uz) rate(szm) Brr(uy) rate(iy) Err(¢) rate(g¢5)

0.025 - - -

0.0125 8.12¢-6 8.13e-6 9.92¢-6

0.00625 2.90e-6 1.49 2.97e-6 1.45 2.42e-6 2.04
0.003125 1.03e-6 1.48 1.07e-6 1.48 5.98e-7 2.01
0.0015625 2.53e-7 2.03 2.60e-7 2.03 1.49e-7 2.01

The time convergence rate of the scheme is obtained by comparing the numerical

errors calculated using each pair of successively reduced time step sizes. The purpose
of doing so is to eliminate the influence from the error of the reference solution which
is also a numerical result. Larger Reynolds number Re and interface thickness € and a
smoother initial profile of the interface are applied to ensure that the convergence rate
is not affected by any sharp changes in the phase-field label function ¢(x). Results in
Table 2 confirm that our scheme is also second-order accurate in time.

Remark 5.1. During the convergence test, we mainly focus on the convergence
rates of the velocity and the phase-field function. The local inextensibility is neglected,
and only the global area and volume constraints are taken into consideration.

Finally, the energy law (Theorem 4.1) and conservation of mass and surface area of
vesicles are tested by simulating the relaxation of a bent vesicle. The vesicle gradually
evolves back to its equilibrium biconcave shape. Figure 2 shows the snapshots of the
vesicle profile at different times ¢t = 0,0.25,0.5, and 1.25. The parameter values used
here are as follows:



488
489

490
491

479

480

481

482

483

484

485

486

487

492

493

495

496

497

498

499

503

504

B16 L. SHEN, Z. XU, P. LIN, H. HUANG, AND S. XU

1
aﬂ
02 04 06 08 02 04 08

=0 =0.25

LUn

02 04 06 D08 02 04 08
=075 t=1

Fi1G. 2. Relazxation of a bent vesicle. The fluid viscosities are 1 and 50 for intercellular and

extracellular fluids, respectively.

14 Conservation law of mass and surface area

Mass
Surface area

0 0.5 1 1.5 2 25 3
Time (s)

FiG. 3. The test case of relaxation of a bent vesicle. Left: Change of mass and surface area vs.

time. Right: Change of discrete energy vs. time.

Re =2x107* M =25x10"3, kg =2, e =75 x 1073, M, =20, M, = 2,

E=71x10% k=2x10"1 1, =0.5.
The initial conditions are

(5.2)

a

08

n Us
0
s
el

08

0z 04 08

Energy decay

0.0:

0.015

0.005

Total energy

bola) = { —tanh[(5(y — 0.7)(y — 0.3) — x + 0.5)//2¢],
OV = —tanh[(400(y — 0.7)(y — 0.3)(y — 0.5)% + & — 0.5)/V/2e], o >=0.5,

Uy = (0, 0)

The changes of vesicle mass and surface area and the change of total discrete
energy of this test case computed by the scheme (3.1)—(3.2) are shown in Figure 3. It
is evident that the vesicle mass and surface area are almost perfectly preserved, and

the total energy decays over the course of time as expected.

5.2. Vesicle-wall interaction. This example is used to investigate the effect of
the contact line model used for describing vesicle-wall interaction. As shown in Figure
4, a vesicle is initially placed at a location with a pointwise vesicle-wall contact, and
a shear flow from left to right is introduced to the system. The parameter values of

this simulation are listed as follows:

Re=2x10"* M =15x10"3,kp = 0.1, = 0.03, M, = 200, M, = 2x 10°,& =
104,k = 1 x 1071° oy, = 80,l; = 0.5. 6, is set to be 85° (or 180°) for different

interactions between the vesicle and the vessel wall.

Remark 5.2. As can be seen in Figure 4, when the contact angle is 180° high, the
cell is carried away by the flow due to an absence of “attraction” between the cell

08

r < 0.5
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1
05 05
0 05 0
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40 1
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2
=0.92 =184
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o |05 0
0.5 { z 05
0 10 i
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4 9

0
4
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- »
05 1 15 2 25 3
=0

F1G. 4. The top three pictures show the result of no wetting force modeled using a contact angle
180°. The bottom three pictures show the result of an existing cell-wall wetting condition modeled
using a contact angle 85°.

1 15 2 25 3

and the wall by a wetting force which is introduced by the contact line model. When
the contact angle is significantly lower, say 85°, the vesicle membrane is torn apart
at the vesicle-wall contact location due to the existence of a wetting force. We point
out that the simulation using an 85° contact angle is not biologically relevant. This
shows the limitation of our current model based only on hydrophobicity in considering
interaction. The idea of modeling cell-wall adhesion by forming ligand-receptor bonds
from [18] could be a good way to model the adhesion force by introducing a wall phase
and its interacting potential with the vesicle phase. We will thus use a significantly
higher contact angle, i.e., 8, = 180°, in the rest of the simulations presented in the

paper.

5.3. Tank treading and tumbling. The vesicle motion in a Couette flow
changes with respect to the ratio of the viscosities 7;, and 7y, of intracellular and
extracellular fluids [32, 4, 16, 24]. When this viscosity ratio is small, the vesicle is
prone to move in the tank treading mode, while the tumbling mode is preferred when
the viscosity ratio is large. The parameter values utilized for this vesicle motion
simulation are set as follows:

Re=2x10"% 6. = |V¢" |2, M =1073, kp =5x 1073, e = 7.5x 1073, M,, = 20,
M, =200, =1.78x10", k=2x 10712, 1, =0.2.

The upper and bottom walls of the domain are set to move in opposite directions
horizontally with velocities —20 and 20, respectively. The simulation domain is 2 x 1,
and the initial shape of the vesicle is chosen to be an ellipse with eccentricity /3.
The ratios of viscosities of the intracellular and extracellular fluids are set to be 1: 1
and 1 : 500, respectively. Figure 5 shows the interfaces of tank treading vesicle (low
viscosity ratio case) and tumbling vesicle (high viscosity ratio case) and corresponding
fluid velocity fields at different times, respectively. A point on the interface (black
solid) is tracked to illustrate these two different types of motion. For the tank treading
motion, the angle between the long axis of the vesicle and the horizontal axis is fixed
when the vesicle is at equilibrium, but the tracer point rotates in a counterclockwise
direction along the membrane. For the tumbling motion, the vesicle keeps rotating,
and the tracer point does not move with respect to the membrane shape.

Remark 5.3. Tracking of the marker point (the black solid dot) is done by the
following steps:
1. Determine a marker point P that is located on the interface with coordinate
(,y).
2. Compute the velocity u(P) = (uy(P),u,(P)) of the marker point by inter-
polation.
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Fi1c. 5. Top: Tank treading with viscosity ratio 1 : 1. The orientation of the vesicle and the
velocity field are kept stable when the system comes to equilibrium. Bottom: Tumbling with viscosity
ratio 1 : 500. The vesicle keeps rotating in the flow. Position of the tracer point (in black) is fized
with respect to the vesicle membrane.

Jeffery orbit

150

° simulation result
theortical value

angle

0.2 0.4 0.6 0.8 1
time

Fi1c. 6. Comparison between theoretical and simulation results of the flipping ellipse. The blue
line is the angle between the long axis of the ellipse and the horizontal axis predicted by the Jeffery
orbit theory, and the red circles are the angle from the simulation.

3. Update the marker point position at the next time point by (z 4w, (P)At, y+
uy (P)At).
4. Go to step 2.
This tracking gives the trajectory of the marker point.

Next, the simulation result of tumbling motion of a rigid ellipse is compared with
the theoretical solution obtained using Jeffery’s orbit theory [28]. Specifically, the
angle between the long axis of the ellipse and the horizontal axis is compared. As
shown in Figure 6, our simulation result is in close agreement with the analytical
Jeffery orbit.

Remark 5.4. The long axis of the rigid ellipse during the tumbling motion is
determined as follows:
1. Determine the interface location of the ellipse by ¢ = 0.
2. Find the point on the interface that is farthest away from the center of the
vesicle in the upper domain.
3. Match these two points, and the line is considered as the long axis of the
ellipse.

Since the ellipse is located at the center of the domain at the initial time point,
and the motion of the fluid is centrosymmetric according to the specified boundary
condition, it is expected that the center of the ellipse is kept at the center of the
domain €. Therefore the determination of the long axis of the ellipse based on its
geometry character is acceptable.
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5.4. Vesicle passing through a narrow fluid channel. Finally, the cali-
brated model is used to study the effects of mechanical properties of the membrane
of the vesicle on its circulating through constricting micro channels [23]. The vesicle
shape is described by an ellipse with eccentricity v/3, and the width of the squeezing
section of the narrow channel is 0.3 by default. A pressure drop boundary condition
is applied at the inlet (left) and outlet (right) of the domain by setting the pressure
on the inlet and outlet to be P = 50 and P = —50, respectively. The fluid viscosity
ratio is set to be 1 : 10 for extracellular and intracellular fluids, respectively. The
other parameters are as follows:

Re=2x107% 5. =10 x |[V¢"|>, M =5x10"% kp =4 x 1072, e = 7.5 x 1073,
My =20, My, =100, £ =71x10% k=4 x 1071, 1, =5 x 1073,

The effect of the local inextensibility of the vesicle membrane is assessed by com-
paring vesicle simulations with and without using the local inextensibility constraint
P : Vu = 0 in the model. Snapshots of these simulations at different times are shown
in Figure 7. They illustrate that a vesicle modeled without using the local inextensi-
bility can pass through the channel by introducing large extension and deformation
of its body with a relatively small value of global inextensibility coefficient M, while
a vesicle modeled with the local inextensibility hardly exhibits large extension and
deformation of its body and blocks the channel. This is also confirmed by Figure 8. It
shows that under otherwise identical conditions, the total arc length of the membrane
of the vesicle modeled without the local inextensibility increases significantly when it
passes through the channel, and the vesicle with the local inextensibility preserves its
membrane arc length well during the course of the simulation.

Although the total arc length of a vesicle without the local inextensibility and with
a very large M value could maintain almost unchanged as shown in Figures 7(c) and
8, the morphological changes of vesicles with and without the local inextensibility are
drastically different. For the vesicles modeled without the local inextensibility, Figure
9(b) and (c) illustrates that the vesicle membranes are stretched (red) or compressed
(blue) everywhere, even though the total arc length of the vesicle modeled using a large
modulus M value could be preserved, and the vesicle forms a blockage. For the vesicle
modeled with the local inextensibility, Figure 9(c) confirms that there is almost no
local extension or compression of the membrane, which is consistent with experimental
observations. All simulations described below use the local inextensibility.

(a) (b) (c)

Fic. 7. Snapshots of vesicles passing through a marrowed channel with different surface area
constraints at times t = 0.08,2, and 4, respectively. (a) My = 100 with the local inextensibility; (b)
M = 100 without the local inextensibility; (c) Ms = 20000 without the local inextensibility. The
curves on the top and bottom ceiling are the wall boundary of the narrowed channel.
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low Ms with inextensibility
— = = “low Ms without inextensibility

- high Ms without inextensibility

arc length

o
~
w
~

Fic. 8. Total arc length of vesicle membrane with the local inextensibility (blue line) and the
total arc lengths of vesicle membranes with low (100) (red dashed line) and high (20000) (black
point) M and no local inextensibility, respectively, during vesicles passing through the constriction
of the micro channel with otherwise identical parameter values and settings.

| A ) A |

| e a—

S -_— | ‘,>- '

) -_— | ~— |

(O ) [

| -_ | -— |
(a) (b) (c)

F1G. 9. Effects of the local inextensibility P : Vu = 0. Snapshots of membrane forces of vesicles:
(a) Ms = 100 with the local inextensibility, (b) My = 100 without the local inextensibility, and (c)
M = 20000 without the local inextensibility.

Fic. 10. Side view of a vesicle with surface-volume ratio 1.5 : 1 at different times.

Both experiments and clinical reports have shown that the cell bending modu-
lus and surface-volume ratio play important roles in determining the deformability
of vesicles, especially when they pass through narrow channels [55, 38, 49]. The lat-
est results reveal that a moderate decrease in the surface-volume ratio has a more
significant effect than varying the cell bending stiffness. This surface-volume ratio
effect is tested by increasing the ratio value slightly from 1.5 : 1 to 2 : 1. Results in
Figures 10 and 11 confirm that the more rounded vesicles are much harder to pass
through the narrow channel and can easily form a blockage. This is consistent with
the experimental observations.



627

628
629

623

624

625

626

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

PHASE-FIELD MODEL OF VESICLE MOTION B21

0.5 O 0.5 ( D

Fic. 11. Side view of a vesicle with surface-volume ratio 2 : 1 at different times.

0.5 O 0.5 ; 5
) . 1 ) .
t=

FIG. 12. Side view of a vesicle with large bending modulus kg = 4 x 101 and surface-volume
ratio 2 : 1 at different times.

The effect of the bending modulus is assessed by increasing its value 10 times.
The surface-volume ratio of the vesicle is 2 : 1 in this test. Figure 11 illustrates that
this more rigid vesicle can also pass through the same size channel but exhibits very
different shape transformation.

6. Conclusion. In this paper, an energy variational method is used to derive
a thermodynamically consistent phase-field model for simulating vesicle motion and
deformation under flow conditions. Corresponding Allen—-Cahn GNBCs accounting
for the vesicle-wall (or fluid-structure) interaction are also proposed by introducing
the proper boundary dissipation and vesicle-wall interaction energy.

Then an efficient scheme using C° finite element spatial discretization and the
midpoint temporal discretization is proposed to solve the obtained model equations.
Thanks to the midpoint temporal discretization, the obtained numerical scheme is
unconditionally energy stable. The numerical experiments confirm that this scheme is
second-order accurate in both space and time. Simulations of the vesicle tank treading
and tumbling motions reproduce experimental observations. And the flipping ellipse
simulation agrees with the analytical solution well. Finally, the model is used to
investigate how vesicles’ mechanical properties affect the vesicles’ capability to pass
through narrow channels. It is shown that whether a vesicle can pass through a
narrow channel is largely determined by the surface-volume ratio of the vesicle, which
is consistent with in vitro experiments.
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Our model can be used to study the impaired dynamics of red blood cells due
to altered mechanical properties of red blood cell membranes in sickle cell disease [3]
and in diabetes [36]. Combining with the restricted diffusion model [46], our model
can be generalized to model the mass transfer through a semipermeable membrane,
for example, oxygen delivering [57].

There are limitations in our model if we need to consider an adhesion based on the
ligand-receptor binding. When the static contact angle is lower than 180°, the vesicle
is torn apart due to the wetting effect. In [18], the authors proposed an adhesion
model by introducing a new phase label for vascular wall and an adhesion energy
functional using labels of wall phase and cell. In the future, we will combine the
adhesion model with the contact line model and more realistic submodels for cell-wall
and cell-cell interactions to model the cell aggregation [63, 64], cell crawling, and
invasion problems [51, 9].
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