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Floquet solitons in square lattices: Existence, stability, and dynamics

Ross Parker * and Alejandro Aceves†

Department of Mathematics, Southern Methodist University, Dallas, Texas 75275, USA

Jesús Cuevas-Maraver
Grupo de Física No Lineal, Departamento de Física Aplicada I, Universidad de Sevilla. Escuela Politécnica Superior,

C/ Virgen de Africa, 7, 41011-Sevilla, Spain
and Instituto de Matemáticas de la Universidad de Sevilla (IMUS). Edificio Celestino Mutis. Avda. Reina Mercedes s/n, 41012-Sevilla, Spain

P. G. Kevrekidis ‡

Department of Mathematics and Statistics, University of Massachusetts, Amherst Massachusetts 01003, USA

(Received 21 December 2021; accepted 22 March 2022; published 22 April 2022)

In the present work, we revisit a recently proposed and experimentally realized topological two-dimensional
lattice with periodically time-dependent interactions. We identify the fundamental solitons, previously observed
in experiments and direct numerical simulations, as exact, exponentially localized, periodic in time solutions.
This is done for a variety of phase-shift angles of the central nodes upon an oscillation period of the coupling
strength. Subsequently, we perform a systematic Floquet stability analysis of the relevant structures. We analyze
both their point and their continuous spectrum and find that the solutions are generically stable, aside from
the possible emergence of complex quartets due to the collision of bands of continuous spectrum. The relevant
instabilities become weaker as the lattice size gets larger. Finally, we also consider multisoliton analogs of these
Floquet states, inspired by the corresponding discrete nonlinear Schrödinger (DNLS) lattice. When exciting
initially multiple sites in phase, we find that the solutions reflect the instability of their DNLS multi-soliton
counterparts, while for configurations with multiple excited sites in alternating phases, the Floquet states are
spectrally stable, again analogously to their DNLS counterparts.
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I. INTRODUCTION

The study of topological features and their interplay with
the dynamics is a theme of growing significance in a diverse
variety of fields including photonics [1], cold atom physics
[2], as well as phononics [3,4] and metamaterials [5], among
others. While much of the relevant emphasis has been on
linear features of relevant models, progressively there is an
increasing number of studies at the interface between nonlin-
earity and topology [6,7]; see also the corresponding chapter
of Ref. [8].

In the context of nonlinear systems, there has been progress
in a number of pertinent directions. For instance, nonlinear-
ity has been leveraged in order to modulate the frequency
and generate the harmonics of edge states [9–15]. Moreover,
coherent nonlinear wave structures that are dynamically ro-
bust and potentially propagate on edges of domains in the
context of models with suitable topology have been identi-
fied [16–20]. Among the numerous further states that have
been explored, one can mention nonlinear Dirac cones [21],
gap solitons induced by topological bands [22–26], as well
as domain walls [27–29]. Features such as the uninhibited
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unidirectional, scatter-free (around lattice defects) propaga-
tion of nonlinear edge modes in topological lattices (such as
Lieb, Kagomé, etc.) [30], as well as the absence of Peierls-
Nabarro, discreteness-induced barriers in nonlinear Floquet
topological insulators [31] have been manifested. These sug-
gest the particular promise of topological nonlinear media in
overcoming some of the limitations of conventional nonlinear
modes. Recently, relevant topological phase transitions have
been extended to entire soliton lattices [32].

In the present work, our aim is to explore systematically a
model of an anomalous Floquet topological insulator that has
not only been recently proposed, but also experimentally im-
plemented in Ref. [26]. In the relevant context, a periodically
modulated waveguide lattice was produced, with the Floquet
(periodic) driving inducing a nonvanishing winding number.
This, in turn, was argued to produce topological edge modes
in the relevant spectrum. The topological band gap produced
in such a medium, in the presence of cubic nonlinearity due
to the optical Kerr effect, was found to lead to the formation
of solitary waves that could be experimentally observed in
Ref. [26]. While such waves were identified and the extent
of their spatial localization was examined for different input
powers in this work, an understanding of such states is still
rather limited from the nonlinear and dynamical systems point
of view.

Here, we offer a systematic exploration of the existence
and stability of such states. Imposing a Floquet, time-periodic
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modulation of the waveguide coupling emulating that of the
experiment, we seek and are able to identify such states as
numerically exact solutions, up to a prescribed numerical
accuracy. This is done for a variety of phase shifts aris-
ing for each period of the coupling modulation (such as,
π , π/2, etc.), extending in this way the direct simulations
and experiments of Ref. [26]. Once the relevant waveforms
have been identified, a natural subsequent question is that
of their dynamical stability. The experimental observation
of such states predisposes towards their stability and hence
observability, yet the parametric range of such a feature is
of particular interest. Indeed, here we report a systematic
Floquet analysis which reveals that the relevant fundamental
states are spectrally stable, featuring multipliers purely on
the unit circle for wide parametric intervals. Interestingly, the
relevant spectrum is found to consist of a continuous spectrum
surrounding (1,0) in the Floquet multiplier plane, and of a few
point-spectrum multipliers associated with the excitations of
the core of the relevant solitary wave. Instabilities emerge as a
byproduct of the finite size of the numerical computations and
have been dynamically monitored, yet relevant features of the
continuous spectrum are found to weaken for progressively
larger lattices and hence are expected to be absent in the
infinite lattice limit. Finally, another question that stems from
a well-rounded understanding of the corresponding non-time-
modulated analog of the model, namely the discrete nonlinear
Schrödinger (DNLS) equation [33], is whether additional co-
herent structures may exist in such a setting. Indeed, here
we illustrate a systematic prescription to produce multisoliton
states, which is motivated from the corresponding multisoliton
states of the DNLS. In particular, we show that an initial
excitation of multiple sites (adjacent or diagonally) produces a
corresponding multisite Floquet topological soliton. Further-
more, the stability structure of the DNLS is found to carry over
to the temporally modulated coupling model: in-phase excited
sites are associated with a real pair of Floquet multipliers.
On the other hand, out-of-phase excited states, the so-called
twisted modes, are associated with a stable Floquet spectrum
and long-lived multisoliton periodic orbits. All of the above
results have been corroborated by systematic numerical simu-
lations.

The presentation of our results is structured as follows.
In Sec. II, we discuss the model and the specific choices
of initial and boundary conditions, as well as the concrete
temporal modulation of the coupling. In Sec. III, we explore
the fundamental breather states of the lattice inspired by (and
substantially extending the results of) Ref. [26]. In Sec. IV,
we leverage the detailed understanding of the DNLS model
to extend considerations to multipeak Floquet solitons and
to examine their stability properties. Finally, in Sec. V, we
summarize our findings and present some directions for future
study.

II. MATHEMATICAL MODEL

The propagation of light through an optical lattice with
nearest-neighbor coupling in the presence of a third-order
Kerr nonlinearity can be described by the discrete nonlinear

(a) (b)

FIG. 1. (a) Drawing of z-dependent nearest-neighbor couplings.
(b) Coupling functions Jj (z) over one period of the coupling for the
choice of the period T = 2π with steepness parameter k = 20.

Schrödinger equation

i
d

dz
φs(z) = C

∑
〈s′〉

Hss′ (z)φs′ − γ |φs|2φs, (1)

where C is the coupling strength, γ is the strength of
the nonlinearity, which we will always take to be 1. This
nondimensional version represents experimental conditions
for nonlinear modes of milliwatts peak power and millimeter
effective nonlinear length [that is, the nondimensional inten-
sity |φs|2 = O(mm−1)] [26]. Hss′ (z) is the linear tight-binding,
nearest-neighbor coupling, which depends on the propagation
distance z [26] [and has an explicit form shown in Eqs. (2)
below]. The summation is over nearest neighbors only. We
consider here a square lattice of waveguides in which the
strengths of the nearest-neighbor couplings vary periodically
in z with fundamental period T in such a way that for each z,
every waveguide only interacts with one of its four neighbors
[Fig. 1(a)]. For the two-dimensional integer lattice Z2, Eq. (1)
becomes

i
d

dz
φm,n(z)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C(J1(z)φm+1,n(z) + J2(z)φm,n−1(z)
J3(z)φm−1,n(z) + J4(z)φm,n+1(z))
−γ |φm,n(z)|2φm,n(z) m + n even

C(J1(z)φm−1,n(z) + J2(z)φm,n+1(z)
+J3(z)φm+1,n(z) + J4(z)φm,n−1(z))
−γ |φm,n(z)|2φm,n(z) m + n odd.

(2)

The functions Jj (z) model the switching of neighbor cou-
pling as follows. For period T , we define the smoothed bump
function

J (z) = 1

2

[
tanh(kz) − tanh

(
k

(
z − T

4

))]
, (3)

where the parameter k quantifies the steepness of the bump,
with steepness increasing with k. The four coupling functions
in Fig. 1 are then given by J1(z) = J (z), J2(z) = J (z − T/4),
J3(z) = J (z − T/2), and J4(z) = J (z − 3T/4). Notice that ef-
fectively on any propagation distance interval of length T/4,
there is only one active coupling in place [see Fig. 1(b)].

III. FUNDAMENTAL BREATHER

The system Eq. (1) has a fundamental breather solution
in which the optical intensity is localized in a square of four
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FIG. 2. (a) Color map of the log10 max intensity at each site
of the fundamental breather over one period. (b) Intensity of the
solution at the four central sites of the fundamental breather over one
period T ; the four sites are labeled in (a). (c) Floquet spectrum of the
fundamental breather, with top inset showing the four isolated modes
associated with the point spectrum of the solution, and bottom inset
detailing the spectrum near (1,0). (d) Color map of the log10 intensity
of the isolated Floquet mode at z = 0 of the fundamental breather so-
lution corresponding to λ = 0.5953 + 0.8035i; intensity maps of the
other isolated Floquet modes are similar. 20 × 20 lattice, coupling
constant C = 1, period T = 2π , phase shift θ = π , steepness factor
k = 10.

lattice sites (which we call the fundamental unit square) and
rotates counterclockwise around these sites [Figs. 2(a) and
2(b)]. After one period T , the solution reproduces itself except
for a phase shift θ . Numerical simulations demonstrate that
this solution can be found with phase shifts of θ = π , π/2,
π/3, and π/4, but θ = 0 is not possible. (Numerical simula-
tions suggest that solutions for θ = π/n for integers n > 4 can
be obtained, but this was practically found to be increasingly
more difficult to do using a shooting method for larger n.) In
line with the original work of Ref. [26], the phase θ = 0 is
associated with a quasienergy resonant with the linear band
of extended excitations and hence is not possible. The overall
period of the breather is then given by τ = mT , where m = 2π

θ

is the number of periods T needed to return to the starting
condition. We will consider herein only the phase shifts θ = π

and π/2, but will briefly comment on what occurs in the other
cases.

We use a shooting method to construct a breather solution
numerically. We first choose the period T and the phase shift
θ . For all of our simulations, we will use a period T = 2π

of the coupling time dependence. If θ = π , for example,
the overall period of the breather will be τ = 4π . Starting
with an initial guess φ(0), we evolve the solution forward
using a fourth-order Runge-Kutta scheme. To obtain a so-
lution with period T and phase shift θ , we iteratively solve
φ(0)eiθ − φ(T ) = 0. We also compute the Floquet spectrum
of the breather solution by determining the eigenvalues of

(a) (b)

FIG. 3. (a) Floquet spectrum of the fundamental breather solu-
tion with inset showing the isolated modes. (b) Floquet spectrum
of background state. 20 × 20 lattice, coupling constant C = 1.05,
period T = 2π , phase shift θ = π , steepness factor k = 10.

the monodromy matrix over one full breather period τ . For
efficiency of computation, we run the simulation on a 20 × 20
lattice with periodic boundary conditions. For the fundamen-
tal breather, a single lattice site is excited for the initial guess.

A. Phase shift θ = π

First, we consider the case when the phase shift is given by
θ = π . Figures 2(a) and 2(b) show the fundamental breather
solution for coupling strength C = 1 and phase shift θ = π ,
which is exponentially localized at the four central sites of the
lattice. The Floquet spectrum for C = 1 is located on the unit
circle (relative error less than 10−5), which suggests that this
solution is stable. There is a small continuous spectrum band
near (1,0) on the unit circle [bottom inset in Fig. 2(c)]; as the
steepness parameter k of the coupling functions Jj increases,
the continuous spectrum band for C = 1 approaches a single
point at (1,0). We explore this in the Appendix, which presents
a relevant discussion as we approximate Jj by step functions.
In addition, there is a set of four isolated Floquet eigenmodes
[top inset in Fig. 2(c), as well as Fig. 3(a)], together with their
complex conjugates. These isolated modes are spatially local-
ized [Fig. 2(d)], as opposed to the nonlocalized continuous
spectrum modes.

Let σcont(C) be the continuous spectrum band, which we
compute using the method described in Appendix; this agrees
with the spectrum determined by computing the eigenvalues
of the monodromy matrix. Using this method, we verify nu-
merically that σcont(C) has the following properties:

(1) σcont(−C) = σcont(C) [explained by the invariance
u(z;C) → u∗(z; −C) in Eq. (A1)].

(2) σcont(C + ω) = σcont(C), where ω = 2π/T is the fun-
damental frequency of the system.

(3) For C ∈ [−ω/2, ω/2], σc ∈ [−α, α], where α = Cτ

[Fig. 4(b)]. This extends periodically in C with period ω for C
outside this interval. The band is filled out as the lattice size
increases, and is a continuum for the limiting lattice Z2.

In particular, since the continuous spectrum band is a single
point at (1,0) when C = 1, it follows from the ω periodicity of
the bands that they collapse into a single point at (1,0) (in the
limiting case when the coupling functions Jj are step func-
tions) whenever C is an integer multiple of ω. This explains
what occurs at C = 1 in Fig. 2(c).

Using parameter continuation, we can compute solutions
for other values of C by gradually increasing (or decreasing)
C [Fig. 4(a)]. It is relevant to note here that in the experimental
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(a) (b)

FIG. 4. (a) Norm of solution at z = 0 vs. C, representing the con-
tinuation of the fundamental solutions as a function of the coupling
strength, for phase shifts θ = π, π/2. (b) Continuous spectrum angle
α vs C, for phase shifts θ = π, π/2, π/3, π/4. This is periodic in
C, with period ω = 2π/T . 20 × 20 lattice, coupling period T = 2π ,
steepness factor k = 10.

setting of interest [26], by controlling the separation between
waveguides during the fabrication process, it is, in principle,
possible to control the lattice spacing, and, accordingly, to
enable the manifestation of the dynamical features reported
herein. As C is increased from 1, some Floquet multipliers
in the continuous spectrum band collide and leave the unit
circle [Fig. 5(a) and Fig. 5(b)]. In particular, we see from
Fig. 5(a) that the isolated modes are not involved in these
collisions. Although the Floquet multiplier with maximum
absolute value increases with C, the rate of growth decreases
as the lattice size increases [Fig. 5(c)]; the latter suggests
that this type of instability disappears in the infinite lattice

(a) (b)

(c) (d)

FIG. 5. (a)–(b) Floquet spectrum of the fundamental breather for
(a) C = 1.0625 and (b) C = 1.5. (c) Maximum absolute value of
Floquet multiplier λ vs C for increasing grid size. (d) Log of the max-
imum absolute difference between the perturbed solution u(z) and
the fundamental breather φ(z); initial condition for perturbation is
φ(0) + εv, where ε = 10−10 and v is the eigenfunction correspond-
ing to the largest Floquet multiplier (|λ| = 1.033 for C = 1.25). The
line represents the least-squares regression line of the early growth
stage of the dynamics. 20 × 20 lattice, period T = 2π , phase shift
θ = π , steepness factor k = 10.

(a) (b)

(c) (d)

FIG. 6. (a)–(d) Solution at the four central sites for evolution in
z of the perturbed fundamental breather (a) C = 1, (b) C = 1.0625,
(c) C = 1.125, and (d) C = 1.2083. Initial condition is a single ex-
cited lattice site with the same intensity as the fundamental breather.
Fourth-order Runge-Kutta scheme, step size π/50. Lattice size 20 ×
20, period T = 2π , phase shift θ = π , steepness factor k = 10.

limit, in line, e.g., with what is known from the classic work
of Ref. [34]. We can see the consequences of this unstable
Floquet eigenmode by perturbing the fundamental breather
with a small multiple of the eigenfunction corresponding to
the largest Floquet multiplier [Fig. 5(d)]. The slope of the
least-squares regression line in the figure is within 2% of
log |λ|1/τ , where λ is the largest Floquet multiplier, confirming
the results of our spectral stability analysis. At longer times,
the solution continues to slowly deviate from the unstable
initial condition, yet does not settle into a clearly discernible
pattern for the z interval of our numerical computations.

Long-term evolution numerical experiments provide fur-
ther evidence that the fundamental breather solution is stable
for θ = π and C close to 1. As an initial condition, we start
with all of the intensity confined to a single lattice site. The
magnitude of this intensity is chosen to be the maximal inten-
sity of the fundamental breather. Results of this evolution for
C = 1, C = 1.0625, and C = 1.125 are shown in Fig. 6. For
larger values of C, this initial condition is found to disperse
over longer intervals of evolution in z [Fig. 6(d)]. This effect
persists with larger lattice sizes.

B. Phase shift θ = π/2

Next, we consider the case when the phase shift is θ =
π/2, in which case the breather period is τ = 8π . When
C = 1, numerical simulations, both from spectral computa-
tions and evolution experiments, suggest that the fundamental
breather solution is stable. The behavior is qualitatively the
same as when θ = π . However, when C is increased from
1 by parameter continuation (Fig. 4), an unstable Floquet
eigenmode appears at a critical value of C [between C = 1.16
and C = 1.17 for our chosen parameters; see Fig. 7(a)]. This
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(a) (b)

FIG. 7. (a) Maximum absolute value of Floquet multiplier λ

vs C. Inset shows Floquet spectrum of fundamental breather for
C = 1.17. (b) Unstable Floquet eigenmodes for C = 1.17, 1.18, and
1.19. 20 × 20 lattice, period T = 2π , phase shift θ = π/2, steepness
factor k = 10.

unstable eigenmode is not on the real axis, i.e., it corresponds
to a complex quartet [see inset in Fig. 7(a), as well as Fig. 7(b),
which shows the growth of this mode in C], and it does not
depend on the size of the grid (in contrast with what occurs for
θ = π ). Its spatial profile is shown in Fig. 8(a). In addition, the
unstable mode is not part of the continuous spectrum, in that it
is not present in the linearization about the background state.
Once again, we can see the consequences of this unstable
Floquet eigenmode by perturbing the fundamental breather
through adding a small multiple of the corresponding eigen-
function [Fig. 8(b)]. The slope of the least-squares regression
line in the figure is within 2% of log |λ|1/τ , where λ is the
unstable Floquet multiplier. The log power spectrum of a
single central site in the unperturbed and perturbed funda-
mental breather is shown in Fig. 9. While in both cases the
fundamental frequency is the rotation frequency 1/(2π ), it is
evident that the unstable regime leads to a genuinely distinct
evolution at longer times that involves the excitation of each
node (via multiple intensity peaks) throughout the period, as
is clear from the left panels of the figure. The right panels
also show a discernibly distinct (and much faster in its decay)
tail of the frequency dependence of the intensity. A closer
inspection of the relevant spectrum over a narrow frequency
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FIG. 8. (a) Color map of the log10 intensity of the unstable Flo-
quet mode (λ = 3.6748 + 0.1238i, |λ = 3.6769|). (b) Log of the
maximum absolute difference between the perturbed solution u(z)
and the fundamental breather φ(z); initial condition for perturbation
is φ(0) + εv, where ε = 10−5 and v is the eigenfunction correspond-
ing to the most unstable Floquet eigenmode. The line represents
the least squares regression fit of the growth portion of the curve.
20 × 20 lattice, C = 1.19, period T = 2π , phase shift θ = π/2,
steepness factor k = 10.

(a) (b)

(c) (d)

FIG. 9. (a)–(b) Evolution in z (a) and log power spectrum (b) of
central site 1 [see Fig. 2(a)] for the unperturbed fundamental breather
on z interval [0, 10π ]. (c)–(d) Evolution in z (c) and log power
spectrum (d) of central site 1 for the perturbed fundamental breather
from Fig. 8(b) on the z interval [250π, 500π ]; this corresponds to the
flat part of Fig. 8(b), after the perturbation growth has sufficiently
saturated. Only the end of this interval is shown in (c). 20 × 20
lattice, C = 1.19, period T = 2π , phase shift θ = π/2, steepness
factor k = 10.

range reveals the growth of sidebands, which is in line with
the apparent quasiperiodic behavior observed in Fig. 9(c).

C. Other phase shifts

Numerical computations suggests that the fundamental
breather solution exists for phase shifts of π/3 and π/4.
However, in both of these cases, computation of the Floquet
spectrum for C = 1 shows the presence of an unstable Floquet
multiplier on the real axis, hence we do not further pursue
such waveforms herein.

IV. TWO-SITE BREATHERS ON THE UNIT SQUARE

Multibreather solutions can be found for which the initial
intensity is localized at more than one site in the lattice. Here,
in line with the discussion in the Supplemental Material of
Ref. [26], we envision a scenario whereby light is launched
initially on two waveguides rather than a single one. We will
consider here two-site breathers, in which the initial intensity
is localized at a pair of sites within the fundamental unit
square. For all of these solutions, we will take θ = π . There
are two possibilities for these two-site breathers, in terms of
location: adjacent (sites 1 and 2 in Fig. 2) and diagonal (sites
1 and 3 in Fig. 2). In addition, for each of the two-site breather
possibilities, there are two scenarios in terms of the relative
phase between the sites. If the two sites are initialized in
phase, there is a Floquet eigenvalue outside the unit circle,
thus this solution is unstable. If the two sites are initialized out
of phase, the Floquet eigenvalues all lie on the unit circle (for
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FIG. 10. (a) Color map of the log10 max intensity at each site
of the diagonal breather over one period. Note that the intensity is
the same for the in-phase and out-of-phase breathers. (b) Floquet
spectrum of diagonal breather for opposite sites initialized out-of-
phase (top) and in-phase (bottom). For the unstable in-phase breather,
the largest Floquet multiplier is λ = 1.1770. (c)–(d) Intensity of the
solution at the primary sites where the breather is localized. Note that
the intensity at site 3 partially overlaps with site 1 in (c) and with site
6 in (d). The intensity in (a), (c), and (d) is the same for in-phase
and out-of-phase breathers, although their stability is not. 20 × 20
lattice, coupling constant C = 1, period T = 2π , phase shift θ = π ,
steepness factor k = 10.

C close to 1), which suggests that this solution is stable. [See
Fig. 10(b) and Fig. 11(b)]. Of course, as is well documented
for their DNLS analogs [33], as C is increased such structures
can eventually become unstable through complex instabilities
due to multiplier quartets.

We consider the diagonal breather first, in which the initial
intensity is localized at two diagonally opposite sites in the
fundamental unit square (sites 1 and 3 in Fig. 10). Due to
the nature of the coupling, since each is only connected to a
single neighboring site for a given z, the two components
of the breather practically act independently. Over one pe-
riod, the initial intensity at site 1 rotates counterclockwise
around the fundamental unit square (sites 1, 2, 3, 4 in Fig. 10).
Since the edge between sites 3 and 5 is also active at z = 0 (see
Fig. 1), the initial intensity at site 3 rotates counterclockwise
around the unit square located one position to the northeast
(sites 3, 5, 6, 7 in Fig. 10). Since site 3 is shared between both
components of the multibreather, its frequency is twice that of
the other sites [Fig. 10(c) and Fig. 10(d)].

For the adjacent breather, the initial intensity is localized at
two adjacent sites in the fundamental unit square (sites 1 and 2
in Fig. 11). The initial intensity at site 1 rotates counterclock-
wise around the fundamental unit square as before (sites 1, 2,
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FIG. 11. (a) Color map of the log10 max intensity at each site
of the adjacent breather over one period. (b) Floquet spectrum of
the adjacent breather for adjacent sites initialized out-of-phase (top)
and in-phase (bottom). For the unstable in-phase breather, the largest
Floquet multiplier is λ = 32.8933. (c) Intensity of the solution at the
primary sites where the breather is localized. The intensity in (a) and
(c) is the same for in-phase and out-of-phase breathers, although their
stability is not. (d) Log of maximum absolute difference between
the perturbed solution u(z) and the in-phase adjacent breather φ(z);
initial condition for perturbation is φ(0) + εv, where ε = 10−5 and v

is the eigenfunction corresponding to the largest Floquet multiplier.
The least-squares linear regression line is also shown with slope
0.2783. 20 × 20 lattice, coupling constant C = 1, period T = 2π ,
phase shift θ = π , steepness factor k = 10.

3, 4 in Fig. 11). Since the only active connection involving
site 2 at z = 0 is that between sites 2 and 1 (see Fig. 1), the
initial intensity at site 2 also rotates counterclockwise around
the unit square located one position to the south (sites 2, 1, 5,
6 in Fig. 11). This means that sites 1 and 2 are active for the
first half of the period [Fig. 11(c)].

In both cases, if the two sites are initialized in phase, there
is a Floquet eigenvalue outside the unit circle; this eigenvalue
is much larger for the adjacent breather than for the diagonal
breather. If the two adjacent sites are initialized with opposite
phases, the Floquet spectrum lies on the unit circle (for C close
to 1). The Floquet eigenfunctions corresponding to the largest
Floquet multiplier for both the unstable diagonal breather and
unstable adjacent breather are shown in Fig. 12.

For the unstable adjacent two-site breathers, we can see
how perturbations evolve by adding a small amount of the
unstable Floquet eigenfunction to the initial condition [see
Fig. 11(d)]. The slope of the least-squares linear regression
line is 0.2783, which is a relative error of less than 10−3

from the predicted value of log |λ|1/τ , where λ = 32.8933 is
the value of the largest Floquet multiplier, and τ = 4π is the
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FIG. 12. (a)–(b) Color map of the log10 max intensity at each site
for the Floquet eigenfunction corresponding to the largest Floquet
multiplier for the unstable diagonal breather (a) and the unstable
adjacent breather (b). One can note the different spatial structure of
the corresponding eigenfunctions. 20 × 20 lattice, coupling constant
C = 1, period T = 2π , phase shift θ = π , steepness factor k = 10.

period of the breather. Similar results can be obtained for the
unstable opposite two-site breather.

Long-term evolution numerical experiments confirm these
results, and provide evidence that the diagonal breather with
opposite sites initialized out of phase is dynamically robust
(for the parameter range and propagation distance considered
herein). For the initial condition, we take two diagonally op-
posite sites in the unit square which have the same intensities,
but are out of phase by π . This initial amplitude is chosen to be
the maximum amplitude of the diagonal breather. Results of
this evolution are shown in Fig. 13(a). Similarly, the diagonal
breather with opposite sites initialized in phase is unstable,
although it takes many steps for a perturbation of this solution
to break apart and lead to a distinct nearly periodic orbit, as
indicated in Fig. 13(b). Similarly, numerical evolution exper-
iments for the adjacent breather confirm that it is stable for
the out-of-phase configuration [Fig. 14(a)] and unstable for
the in-phase configuration [Fig. 14(b)]. In fact, the instability
of the adjacent breather with in-phase initialization manifests
itself in a way such that it breaks apart by z = 2000π .

V. CONCLUSIONS AND FUTURE CHALLENGES

In the present work, we have explored a wide set of
Floquet solitary wave structures in a system bearing a topo-
logical band gap. In particular, we were motivated by direct
numerical simulations and experimental observations in a

(a) (b)

FIG. 13. (a)–(b) Solution for four of the seven central sites at
the end of the z interval for the evolution of the perturbed opposite
breather with out-of-phase initialization (a) and in-phase initializa-
tion (b). Initial condition is two adjacent sites initialized with the
same intensity. 20 × 20 lattice, coupling constant C = 1, period T =
2π , phase shift θ = π , steepness factor k = 10.

(a) (b)

FIG. 14. (a)–(b) Solution for four of the six central sites at
the end of the z interval for the evolution of the perturbed adja-
cent breather with out-of-phase initialization on [0, 105π ] (a) and
the unperturbed adjacent breather with in-phase initialization on
[0, 2000π ] (b). Initial condition is two adjacent sites initialized with
the same intensity. 20 × 20 lattice, coupling constant C = 1, period
T = 2π , phase shift θ = π , steepness factor k = 10.

photonic implementation of system with waveguides bearing
a time-modulated coupling structure in two spatial dimen-
sions. We were able to identify prototypical time-periodic
solutions of the system in the form of fundamental breathers
bearing different phase shifts upon completion of a period of
the time variation of the coupling. We analyzed the Floquet
spectrum of such solitons, distinguishing their continuous
spectrum (and its dependence on the coupling parameter),
as well as the point spectrum associated with the excited
sites of the relevant coherent structure. We found that, aside
from lattice-size-dependent oscillatory instabilities, the fun-
damental breathers were spectrally, as well as dynamically,
robust. We then moved one step further, exploring multipeak
(excited) structures. We leveraged a detailed understanding
of the spectral picture of such structures in the stationary
DNLS limit to explain the corresponding stability analysis
of excited, multipeaked time-periodic states. In particular, we
found that double-peaked states are unstable if the two sites
are initialized in phase, and spectrally stable if the two sites
are initialized out of phase. This relationship between phase
and stability is similar to what is observed for multipeaked
standing wave solutions in DNLS lattices, both in one and
two dimensions [35,36], as well as breather solutions in Klein-
Gordon lattices [37].

Naturally, this is not a full outcome in this ongoing effort
to explore the existence, stability, and dynamical properties of
topological solitonic structures. For instance, one can consider
different types of lattices, including Lieb and Kagomé ones,
and further explore the wave patterns that arise therein and
their corresponding spectra. Another aspect in which topo-
logical features may have a strong imprint is the mobility of
nonlinear modes. Indeed, it has been argued in recent works,
including Refs. [30,31,38], that topology may control and,
indeed, even enhance (when suitably leveraged) the mobil-
ity of states that might not be otherwise particularly mobile
(e.g., due to Peierls-Nabarro and associated barriers [31,33])
in conventional discrete settings. It is intriguing to consider
if mobility of photonic modes can be achieved in a similar
way to what is seen in the propagation of nonlinear elastic
waves in flexible structures, which provides opportunities for
locomotion of mechanical robots [39]. Having focused herein
on stationary states, such features are worthwhile of further
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exploration and we defer corresponding studies to future pub-
lications.
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APPENDIX: CONTINUOUS SPECTRUM BANDS

We compute the continuous spectrum bands in the limiting
case where the coupling functions Jj (z) are step functions.
We note that although these step functions are not everywhere
differentiable, we can treat the z-dependent term Hss′ in (1)
as piecewise constant. First, we linearize Eq. (1) about the
solution φs = 0, which is equivalent to only considering the
linear terms. We then take the Floquet ansatz φs(z) = eλzus(z),
where us(z) is periodic in z with period τ = mT , and m = 2π

θ
.

Substituting this into (1) and simplifying, we obtain the se-
quence of equations

d

dz
us(z) = −(iCAj + λ)us(z) z ∈

[
( j − 1)T

4
,

jT

4

)

(A1)

for j = 1, . . . , 4, which is extended periodically for all z. The
Aj are piecewise constant linear operators which implement
the lattice couplings in Fig. 1(a). When C = 0, the only so-
lutions with period τ are when λτ is an integer multiple of
2π , which implies that there is a single Floquet multiplier at
μ = 1 with infinite multiplicity. Over one period τ = mT , the
solution to Eq. (A1) is given by

us(τ ) = e−4mλ T
4 Bm(C)us(0), (A2)

where

B(C) = e−iCA4
T
4 e−iCA3

T
4 e−iCA2

T
4 e−iCA1

T
4 . (A3)

We note that the exponentials in this product do not commute,
since the operators Aj do not commute. For λ to be in the con-
tinuous spectrum, we require us(τ ) = us(0), i.e. the operator
on the right-hand side of Eq. (A2) must be the identity. This is
equivalent to

Bm(C) = eλτ , (A4)

thus the Floquet multipliers μ are exactly the eigenvalues of
Bm.

We can compute these by approximating the integer lat-
tice Z2 with successively larger finite lattices. For a square
lattice of size 2N × 2N , with periodic boundary conditions
imposed on the couplings, the operators Aj are represented
by 4N2 × 4N2 symmetric adjacency matrices. Computing the
eigenvalues of B(C)m numerically, we verify properties (i)–
(iii) of the continuous spectrum in Sec. III A. These results
do not depend on how the lattice points are arranged in the
adjacency matrices Aj .
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