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Partial differential equations (PDEs) play a crucial role in studying
a vast number of problems in science and engineering. Numerically
solving nonlinear and/or high-dimensional PDEs is frequently a
challenging task. Inspired by the traditional finite difference and
finite elements methods and emerging advancements in machine
learning, we propose a sequence-to-sequence learning (Seq2Seq)
framework called Neural-PDE, which allows one to automatically
learn governing rules of any time-dependent PDE system from ex-
isting data by using a bidirectional LSTM encoder, and predict the
solutions in next n time steps. One critical feature of our proposed
framework is that the Neural-PDE is able to simultaneously learn
and simulate all variables of interest in a PDE system. We test the
Neural-PDE by a range of examples, from one-dimensional PDEs
to a multi-dimensional and nonlinear complex fluids model. The
results show that the Neural-PDE is capable of learning the initial
conditions, boundary conditions and differential operators defin-
ing the initial-boundary-value problem of a PDE system without
the knowledge of the specific form of the PDE system. In our ex-
periments, the Neural-PDE can efficiently extract the dynamics
within 20 epochs training and produce accurate predictions. Fur-
thermore, unlike the traditional machine learning approaches for
learning PDEs, such as CNN and MLP, which require great quan-
tity of parameters for model precision, the Neural-PDE shares pa-
rameters among all time steps, and thus considerably reduces com-
putational complexity and leads to a fast learning algorithm.

1. Introduction

The research of time-dependent partial differential equations (PDEs) is re-
garded as one of the most important disciplines in applied mathematics.
PDEs appear ubiquitously in a broad spectrum of fields including physics,
biology, chemistry, and finance, to name a few. Despite their fundamental
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importance, most PDEs can not be solved analytically and have to rely
on numerical solving methods. Developing efficient and accurate numerical
schemes for solving PDEs, therefore, has been an active research area over
the past few decades [1, 2, 3, 4, 5, 6]. Still, devising stable and accurate
schemes with acceptable computational cost is a difficult task, especially
when nonlinear and(or) high-dimensional PDEs are considered. Addition-
ally, PDE models emerged from science and engineering disciplines usually
require huge empirical data for model calibration and validation, and de-
termining the multi-dimensional parameters in such a PDE system poses
another challenge [7].

Deep learning is considered to be the state-of-the-art tool in classification
and prediction of nonlinear inputs, such as image, text, and speech [8, 9,
10, 11, 12|. Recently, considerable efforts have been made to employ deep
learning tools in designing data-driven methods for solving PDEs [13, 14, 15,
16]. Most of these approaches are based on fully-connected neural networks
(FCNNs), convolutional neural networks(CNNs) and multilayer perceptron
(MLP). These neural network structures usually require an increment of
the layers to improve the predictive accuracy [16], and subsequently lead
to a more complicated model due to the additional parameters. Recurrent
neural networks (RNNs) are another type of neural network architectures.
RNNs predict the next time step value by using the input data from the
current and previous states and share parameters across all inputs. This
idea [17] of using current and previous step states to calculate the state at
the next time step is not unique to RNNs. In fact, it is ubiquitously used
in numerical PDEs. Almost all time-stepping numerical methods applied
to solve time-dependent PDEs, such as Euler’s, Crank-Nicolson, high-order
Taylor and its variance Runge-Kutta [18] time-stepping methods, update
numerical solution by utilizing solution from previous steps.

This motivates us to think what would happen if we replace the previ-
ous step data in the neural network with numerical solution data to PDE
supported on grids. It is possible that the neural network behaves like a
time-stepping method, for example, forward Euler’s method yielding the nu-
merical solution at a new time point as the current state output [19]. Since
the numerical solution on each of the grid point (for finite difference) or grid
cell (for finite element) computed at a set of contiguous time points can be
treated as neural network input in the form of one time sequence of data,
the deep learning framework can be trained to predict any time-dependent
PDEs from the time series data supported on some grids if the bidirectional
structure is applied [20, 21]. In other words, the supervised training process
can be regarded as a practice of the deep learning framework to learn the
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numerical solution from the input data, by learning the coefficients on neural
network layers.

Long Short-Term Memory (LSTM) [22] is a neural network built upon
RNNs. Unlike vanilla RNNs, which suffer from losing long term informa-
tion and high probability of gradient vanishing or exploding, LSTM has a
specifically designed memory cell with a set of new gates such as input gate
and forget gate. Equipped with these new gates which control the time to
preserve and pass the information, LSTM is capable of learning long term
dependencies without the danger of having gradient vanishing or exploding.
In the past two decades, LSTM has been widely used in the field of natural
language processing (NLP), such as machine translation, dialogue systems,
question answering systems |23].

Inspired by numerical PDE schemes and LSTM neural network, we pro-
pose a new deep learning framework, denoted as Neural-PDE. It simulates
multi-dimensional governing laws, represented by time-dependent PDESs, from
time series data generated on some grids and predicts the next n time steps
data. The Neural-PDE is capable of intelligently processing related data from
all spatial grids by using the bidirectional [21] neural network, and thus guar-
antees the accuracy of the numerical solution and the feasibility in learning
any time-dependent PDEs. The detailed structures of the Neural-PDE and
data normalization are introduced in Section 3.

The rest of the paper is organized as follows. Section 2 briefly reviews finite
difference method and finite element method for solving PDEs. Section 3
contains detailed description of designing the Neural-PDE. In Section 4,
we apply the Neural-PDE to solve four different PDEs, including the 1-
dimensional(1D) wave equation, the 2-dimensional(2D) heat equation, and
two systems of PDEs: the invicid Burgers’ equations and a coupled Navier
Stokes-Cahn Hilliard equations, which widely appear in multiscale modeling
of complex fluid systems. We demonstrate the robustness of the Neural-PDE,
which achieves accuracy within 20 epochs with an admissible mean squared
error, even when we add Gaussian noise in the input data.

2. Preliminaries
2.1. Time Dependent Partial Differential Equations

A time-dependent partial differential equation is an equation of the form:
(2.1.1)
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where v = wu(xy,...,x,,t) is known, z; € R are spatial variables, and the
operator f maps RY — R. For example, consider the parabolic heat equation:
u; = o?Au, where u represents the temperature and f is the Laplacian
operator A. Eq. (2.1.1) can be solved by finite difference methods, which are
briefly reviewed below for the self-completeness of the paper.

2.2. Finite Difference Method

Consider using a finite difference method (FDM) to solve a two-dimensional
second-order PDE of the form:

(22.1)  wp = f(2, Y, g, Uy, Uge, uyy),  (2,9) €QCR?, teRY U0},
with some proper boundary conditions. Let £ be Q = [z4, zp] X [ya, ¥s], and
(2.2.2) iy = u(i, yj, tn)

where t, = ndt, 0 < n < N, and ot = % for some large integer N.
z; =iz, 0 <@ < Ny, 6z = 252 y; = jdy, OgjgNy,dy:%T‘fb.Ngc
and N, are integers.

The central difference methods approximate the spatial derivatives as fol-

lows [5]:

(2:2.3) Uz (4,5, t) = %(um,j —ui—15) + O(827)
(2.2.4) Uy (74, Yj,t) = 2(15y(ui,j+1 —uij-1) + 006y ,
(2.2.5) Uz (T4, Y5, 1) = T;(uiﬂ’j — 2u;j + uim1;) + O(8x?) |
(2.2.6) Uyy (T3, yj,t) = (S;Q(Wjﬂ = 2uij + uij1) + O(6y%) -

To this end, the explicit time-stepping scheme to update next step solution
ut! is given by:
1

(227) "LLZ] ~ U:j_ = UZ:L] + 5tf(x27y]7 U@T}]a fz,ljfh ir}j+17 ZLJrl,j? iTil,j) )
<228) = F(.’L'Z,y]7(5$7(5y7 5t, UZZ}, Z}]*l’U’Z}]‘i’l’ ZTfFL]’ ’Lnfl,j) 3
where U{fj is the numerical solution at grid point (x;,y;,ty).

Apparently, the finite difference method (2.2.7) for updating u"*! on a
grid point relies on the previous time steps’ solutions, supported on the grid
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point and its neighbours. The scheme (2.2.7) updates u;"; " using five points
of u™ values (see Figure 1).

Similarly, the finite element method
(FEM) approximates the new solu-

tion by calculating the corresponded

mesh cell coefficient, which is up-
dated by its related nearby coeffi-
cients on the mesh.

From this perspective, one may

regard the numerical schemes for
solving time-dependent PDEs as
methods catching the information Figure 1: updating scheme for central
from neighbourhood data of inter- difference method

est.

2.3. Finite Element Method

Finite element method (FEM) is a powerful numerical method in solving
PDEs. Consider a 1D wave equation of u(z,t):

(2.3.1) Uy — V2 Uge = f, xE€[a,b]=QCR, teRTU{0},
ug(a,t) = ug(b,t) =0 .

The function w is approximated by a FEM function wuy, :

N

(2.3.3) u(x,t) ~ up(z,t) = Y ai(t)ei(z)
=1
(2.3.4)

where v; € V is the basis functions of some FEM space V, and a!' denotes
the coefficients. N denotes the degrees of freedom.

Multiply the equation with an arbitrary test function ; and integral over
the whole domain we have:

(2.3.5) /Q u); dr + v* /Q VuV; dr = /Q f; dx
(2.3.6)



6 Yihao Hu et al.

and approximate u(z,t) by up:

N o2
(237) 8522 / ¢z¢j dx +U22az / vwszj dr = / f% dl‘
| S —

1.] Al »J
(2.3.8) =MTay + ’UQATa =b.

Here M is the mass matrix and A is the stiffness matrix, a = (a1, .., an)’
is a N vector of the coefficients at time ¢t. The central difference method for
time discretization indicates that [6]:

(2.3.9) a"l =2a" —a" ! + M }(b - v*ATa") .

This leads to

(2.3.10) u it = Za"“z/;,

2.4. Long Short-Term Memory

Long Short-Term Memory networks (LSTM) [22, 24| are a class of artifi-
cial recurrent neural network (RNN) architecture that is commonly used for
processing sequence data, and can overcome the gradient vanishing issue in
RNN. Similar to most RNNs [25], LSTM takes a sequence {x1,x2, -, 2}
as input and learns hidden vectors {h1, hg,--- , h;} for each corresponding
input. In order to better retain long distance information, LSTM cells are
specifically designed to update the hidden vectors. The computation process
of the forward pass for each LSTM cell is defined as follows:

x)wt +wh

(2

Z( ht1+W()Ct 1+b;),
Je= U(Wgcz)ﬂft + Wgch)htq + W} Yo+ bs) ,
¢t = fiei—1 + i tanh(W s +W( b 1+b),
o = U(W(() Jx; + Wg )ht—l + W((,C)ct + b,),

h; = o  tanh(¢;) ,

it = O'(W

where o is the logistic sigmoid function, Ws are weight matrices, bs are bias
vectors, and subscripts ¢, f, o and ¢ denote the input gate, forget gate,
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output gate and cell vectors respectively, all of which have the same size as
hidden vector h.

This LSTM structure is used in the paper to simulate the numerical solu-
tions of partial differential equations.

3. Proposed Method
3.1. Mathematical Motivation

Recurrent neural network including LSTM is an artificial neural network
structure of the form [23]:

(3.1.1)

ht = o(Wheg! + Whhp! =L 4 b)) = o, (2!, B Y = oy (a0, &b, 22, - -+ 2h) |

where ' € R? is the input data of the t** state and hf~! € R" denotes the
processed value in its previous state by the hidden layers. The output y’ of
the current state is updated by the current state value h:

(3.1.2) y' = o(W"h! +b,)
2

(3.1.3) =o.(h') = oq(2®, ', 2%, - - | x!) .

Here Whe ¢ Rhxd Whh ¢ RiXE W ¢ RPN gre the matrix of weights,
vectors by, by € R" are the coefficients of bias, and o, 04, 0y, 0, 04 are corre-
sponded activation and mapping functions. With proper design of input and
forget gate, LSTM can effectively yield a better control over the gradient flow
and better preserve useful information from long-range dependencies |24].

Now consider a temporally continuous vector function u € R"™ given by
an ordinary differential equation with the form:

(310 0 gt

Let u™ = u(t = ndt), a forward Euler’s method for solving u can be
easily derived from the Taylor’s theorem which gives the following first-order
accurate approximation of the time derivative:

du™ un+ 1 _ u™

(3.1.5) = 061)

Then we have:

%‘ — g(w) BVt st g(un) + O(582)



8 Yihao Hu et al.

(3.1.6) — A" = fi(@") = fro fro-- fi(a0)

n

Here @™ ~ u(ndt) is the numerical approximation and f; = u" + §t g(u™) :
R™ — R™. Combining equations (3.1.1) and (3.1.6) one may notice that the
residual networks, recurrent neural network and also LSTM networks can
be regarded as a numerical scheme for solving time-dependent differential
equations if more layers are added and smaller time steps are taken. [19]

Canonical structure for such recurrent neural network usually calculates
the current state value by its previous time step value h*~! and current state
input «’. Similarly, in numerical PDEs, the next step data at a grid point
is updated from the previous (and current) values on its nearby grid points
(see Eq. 2.2.7).

Thus, what if we replace the temporal input h*~! and ! with spatial
information? A simple sketch of the upwinding method for a 1D example of

u(z,t):

(3.1.7) up + vy =0
will be:
(3.1.8)

ut =y y%(u" ")+ 00z, 5t) — Al = fo(aly,al)
(3.1.9) = fo(fy(®i, hioi(u ))) f@,n('&ga A, arg,ag) = ot
(3.1.10) a; = 4P, hi_1(@) = o (a1, hi—a(0)) = fp(al, 4}, a5, 4l ;)

Here we use vf“ to denote the prediction of ﬂ?“ processed by neural net-
work. We replace the temporal previous state h‘~!with spacial grid value
h;—1 and input the numerical solution 4} ~ w(idx,ndt) as current state
value, which indicates the neural network could be seen as a forward Euler
method for equation 3.1.7 [26]. Function f, = 4} — I/gt (ar —ar ;) :R? - R
and the function fy represents the dynamics of the hidden layers in decoder
with parameters 6, and f, specifies the dynamics of the LSTM layer [22, 24]
in encoder withe parameters 7). The function fp, simulates the dynamics of
the Neural-PDE with paramaters 6 and 7. By applying Bidirectional neural
network, all grid data are transferred and it enables LSTM to simulate the
PDEs as :

(3.1.11) o't = fo(fo(hig1 (@), 4, hi_1(4)))
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(3112) h’lJrl(a) = fn(a?+17 ﬂ?—&—Qa a?—l—?ﬁ T 7,&2)

For a time-dependent PDE, if we map all our grid data into an input matrix
which contains the information of dx,dt, then the neural network would
regress such coefficients as constants and will learn and filter the physical
rules from all the k& mesh grids data as:
(3.1.13) ot = fo(ag, At Ay, A

The LSTM neural network is designed to overcome the vanishing gradient
issue through hidden layers, therefore we use such recurrent structure to
increase the stability of the numerical approach in deep learning. The highly
nonlinear function fp, simulates the dynamics of updating rules for u?“,
which works in a way similar to a finite difference mathad (caction 9 9N ar o
finite element method.

3.2. Neural-

In particular, we use the bidirectional LSTM
[22, 24| to better retain the state information
from data on grid points which are neighbour-
hoods in the mesh but far away in input ma-
trix.

The right frame of Figure 3 shows the
overall design of the Neural-PDE. Denote
the time series data at collocation points as
al¥,all, - ,aév with a¥ = [a0, 4}, -, 4]
at i point. The superscript represents dif-
ferent time points. The Neural-PDE takes the
past states {al’,ad’, - ,a,iv} of all colloca-
tion points, and outputs the predicted fu-
ture states {b{w,b%,u- ,bﬂ/l}, where bM =
[wNHL oNF2 o N TM s the Neural-PDE
prediction for the it collocation point at time Figure 2: An  example of
points from N +1 to N 4+ M. The data from maping 2d data matrix into
time point 0 to N are the training data set.  1d vector where k = Ny x N,

The Neural-PDE is an encoder-decoder and Ny and Ny are the num-
style sequence model that first maps the in- bers of grid points on x and
put data to a low dimensional latent space ¥, respectively.

that

2d PDE data at time t

data

(3.2.1) h; = LSTM(a;) ® LSTM(ay),



N+1 N+2 N+ N+1 N+2 N+
[171 , U] ,...,vl“’i [vz , Vb ,...,vz"i

! [ Dense Layer --.-.- ) :
f

[ Self Attention Layer (Optional) )

u(t)

Figure 3: Neu-PDE

where @ denotes concatenation and h; is the latent embedding of point a;
under the environment.
One then decoder, another bi-lstm with a dense layer:

(3.2.2) v; = (LSTM(hi) @f;STM(hi)) W,

where W is the learnable weight matrix in the dense layer. Moreover, the
final decode layers could also have an optional self attention [27] layer, which
makes the model easier to learn long-range dependencies of the mesh grids.

During training process, mean squared error (MSE) loss £ is used as we
typically don’t know the specific form of the PDE.

N+M k

(3.2.3) L= 3" Y [l

t=N+1 =1

3.3. Data Initialization and Grid Point Reshape

In order to feed the data into our sequence model framework, we map the
PDE solution data onto a K x N matrix, where K € Z™ is the dimension of
the grid points and N € Z7 is the length of the time series data on each grid
point. There is no regularization for the input order of the grid points data

BiLSTM
Decoder

BiLSTM
Encoder
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in the matrix because of the bi-directional structure of the Neural-PDE. For
example, a 2D heat equation at some time ¢ is reshaped into a 1D vector
(See Fig. 2). Then the matrix is formed accordingly.

For a nm-dimensional time-dependent partial differential equation with K
collocation points, the input and output data for ¢t € (0,7) will be of the
form:

a}) ay  ad ap ad
(3.3.1) A(K,N) = a:gV = ug u} . ug - uév

a.% @% ﬂ}{ cee A @%

bt U(J)VH U(Z)V+2 U(J)V+m U(1)V+M
(3.3.2) B(K,M) = béw = vév'ﬂ v,{#” UéV;Lm v,?;M

Here N = % and each row /¢ represents the time series data at the ("
mesh grid, and M is the time length of the predicted data.

By adding Bidirectional LSTM encoder in the Neural-PDE; it will auto-
matically extract the information from the time series data as:
(3.3.3)

B(K,M) = PDESolver(A(K,N)) = PDESolver(all,al,--- al¥,--- ,a}¥

4. Computer Experiments

Table 1: Error analysis models

Wave Heat Burgers’

. 2
Bquation gy = rbstips U =gy 2% +udt =012
IC sin(4mx) 6sin(rz) w(0<ax<L,t=0)=09
BC periodic periodic periodic

Since the Neural-PDE is a sequence to sequence learning framework which
allows to predict within any time period by the given data. One may test
the Neural-PDE using different permutations of training and predicting time
periods for its efficiency, robustness and accuracy. In the following examples,
the whole dataset is randomly splitted in 80% for training and 20% for
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Table 2: L2 error for model evaluation.

Az =0.1 Wave Heat Burgers’

At =0.1 4385 x 1072 6.912x 1075 9.450 x 10~*
At=0.01 3351 x107° 5.809x 1075 5.374 x 1073
At =0.001 1.311x107® 3.757 x 10~° 1.244 x 1073

Table 3: L? error for model evaluation.

At =0.1 Wave Heat Burgers’

Az =0.1 2.190 x 1075  1.162 x 10~* 2.561 x 10~*
Az =0.01 6.059%x 1075 7.706 x 10~* 4.206 x 10~*
Az =0.001 1.498 x 1075 1.400 x 10~° 3.700 x 10~*

testing. We will predict the next ¢, € [31 x dt, 40 x 6t]| PDE solution by using
its previous t; € [0, 30 x dt] data as:

(4.0.1) B(K,10) = PDESolver(A(K, 30))

We tested Neu-PDE using three classical PDE models with different Az
and At, Table 1 summarizes the information of these models. Table 2 and
Table 3 show the experimental results of the Neural-PDE model solving the
above three different PDEs. We used the Neural-PDE which only consists of
3 layers: 2 bi-lstm (encoder-decoder) layers with 20 neurons each and 1 dense
output layer with 10 neurons and achieved MSEs from O(1073) to O(1079)
within 20 epochs, a MLP based neural network such as Physical Informed
Neural Network [16] usually will have more layers and neurons to achieve
similar L? errors. Additional examples are also discussed in this section.

Example: Wave equation

Consider the 1D wave equation:

(4.0.2) U = ClUgg, x € [0,1], t €0,2],

(4.0.3) u(z,0) = sin(4rz)

(4.0.4) u(0,t) = u(1,t)

Let ¢ = 16;2 and use the analytical solution given by the characteristics for

the training and testing data:
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(4.0.5) u(z,t) = %(81’71(47@ +1t) + sin(drx — t)) .

Here we used 6z = 1 x 1072, §t = 1 x 1072, and the mesh grid size is 101.
We obtained a MSE 3.5401 x 107°. The test dataset batch size is 25 and
thus the total discrete testing time period is 250. Figures 4(a) and 4(b) are
the heat map for the exact test data and our predicted test data. Figure 4(c)
shows both training and cross-validation errors of Neural-PDE convergent
within 20 epochs.

We selected the final four states for computation and compared them
with analytic solutions. The result indicates that the Neural-PDE is robust
in capturing the physical laws of wave equation and predicting the sequence

time period. See Figure 5.

. Exact Data _1.00 0 Predicted Data -1.00
28 28

a ® -075 o ¥ -0.75
o 84 o 84
w12 wn 12

® 110 050 g .o -0.50
g 168 E 168

L -0.25 g -0.25
24 24

-0.00 -0.00

CCeR8YIBNE S8 3 CPeRBLIBRNEE S
X (grid point) X (g |d point)
(a) Exact Test Dataset (b) Predicted Test Dataset

Model...Log...Loss

—— train
-4
cv
-5
3
3 -6
-7
_8 X\
-9 \/\;\__
0 5 10 15
epoch

(¢) Training Metrics

Figure 4: The Neural-PDE for solving the wave equation.
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1.0 1.0
== predict === predict
—— exact —— exact

0.5 0.5
— —

o0 £ o0
=} 5

-0.5 -0.5

-1.0 -1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
(a) t = 1.991 (b) t = 1.994
1.0 1.0
w— predict === predict
—— exact — exact

0.5 0.5
— —

< o0 < o0
S =}

-0.5 -0.5

-1.0 -1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X
(c) t =1.997 (d) t=2

Figure 5: Comparison between exact solution and Neural-PDE prediction of
the 1D wave equation at various time points.

Example: Heat equation

The 1D wave equation case maps the data into a matrix (3.3.1) with its
original spatial locations. In this test, we solve the 2D heat equation describ-
ing how the motion or diffusion of a heat flow evolves over time. Here the
2-dimensional PDE grid in space is mapped into matrix without regulariza-
tion of the position. The experimental results show that the Neural-PDE is
able to capture the valuable features regardless of the order of the grid points
in the matrix. Let’s start with a 2D heat equation as follows:

(4.0.6) Ut = Ugy + Uyy ,

0.9, if (z—1)2+(y—1)2<0.25
(4.0.7) u(z,y,0) = {0.1, otherwise
(4.0.8) Q=10,2] x [0,2], t € [0,0.15] .

Figures 6 and 7 show the test of the Neural-PDE using the 2D heat equa-
tion. We obtained a MSE O(1079).
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Exact Data 0 Preicted ata

0 -1.0 -1.0
238 238
v 08 08
Q. 952 Q. 952
% 190 06 2 1190 0.6
1428 1428
E 1666 04 g 1060 04
= 1904 = 1004 I
2142 2142
2380 02 2380 02
2618 2618
O S o N © O S 0 N © © < 0.0 O < 0o N © O ¢ 0 N © O 0.0
CRBIIBELE 5 CLEBITBBE8RES
X (grid point) X (grid point)
(a) Exact Test Dataset (b) Predicted Test Dataset

Figure 6: Heatmaps of the heat equation data. édz = 0.02,dy = 0.02, 6t =
10~4, MSE: 2.1551 x 1076,

Exact Predicted

0.48 ' 0.48
0.42 0.42
0.36 0.36
0.30 0.30
0.24 0.24
0.18 0.18
0.12 0.12
0.06 0.06
0.00 0.00

X X

(a) (b)

Model...Log...Loss

—— train

0 5 10 15

epoch
(c) (d) Training Metrics

Figure 7: The Neural-PDE for solving the 2D heat equation. (a) is the exact
solution u(x,y,t = 0.15) at the final state. (b) is the Neural-PDE prediction.
(c) is the corresponding error map and (d) shows the training and cross-
validation errors.
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Example: Inviscid Burgers’ Equation

Inviscid Burgers’ equation is a classical nonlinear PDE in fluid dynamics.
In this example, we consider a 2D invicid Burgers’ equation which has the

following hyperbolic form:

ou ou ou ov ou ou
4.0. LSt e = D e =
(4.0.9) 8t+u8x+vay 0, 8t+u6x+vc')y 0,
(4.0.10) Q=1[0,1 x[0,1],t € [0,1] ,

and with the initial and boundary conditions:

(4.0.11) w(0.25 < & < 0.75, 0.25 <y < 0.75,t = 0) = 0.9 ,
(4.0.12) 0(0.25 < 2 < 0.75, 0.25 <y < 0.75,t =0) = 0.5 ,
(4.0.13) u(0,y,t) = u(l,y,t) = v(x,0,t) =v(z,1,t) =0 .

The invicid Burgers’ equation is difficult to solve due to the discontinuities
(shock waves) in the solutions. We use a upwinding finite difference scheme
to create the training data and put the velocity w, v in to the input matrix.
Let 0z = dy = 1072,8t = 1073, our empirical results (see Figure 9) show
that the Neural-PDE is able to learn the shock waves, boundary conditions
and the rules of the equation, and predict u and v simultaneously with an
overall MSE of 2.3070 x 1076, The heat maps of exact solution and predicted

solution are shown in Figure 8.
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Figure 8: Neural-PDE prediction on the 2D Burgers’ equation.



18 Yihao Hu et al.

U Exact Data at time: 1.0 U Predict Data at time: 1.0

: x 08 15 00
(a) Exact u(t =1) (b) Predicted u(t = 1)
V Exact Data at time: 1.0 V Predict Data at time: 1.0

1.0

(c) Exact v.(t =1) (d) Predicted v(t = 1)

Figure 9: Neural-PDE shows accurate prediction on Burgers’ equation.

Example: Multiscale Modeling: Coupled
Cahn—Hilliard—Navier—Stokes System

Finally, let’s consider the following 2D Cahn-Hilliard—Navier—Stokes system
widely used for modeling complex fluids:

(4.0.14) u; +u-Vu=—-Vp+vAu — oV,
(4.0.15) ¢t + V- (up) = MAp ,

(4.0.16) 1= A—-A¢+ %(qﬁ? -1),

(4.0.17) V-u=0.

In this example we use the following initial condition:

(4.0.18)
6(z,9,0) = (% — 50tanh(fi — 0.1)) + (% — 50tanh(f, — 0.1)) , where
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-

Figure 10: Predicted data by the Neural-PDE (15! row) and the exact data
(2”d row) of volume fraction ¢, predicted pressure p (3“’[ row) and exact
pressure(4® row). The graphs of columns 1-4 represent the time states of
t1,to, 13,14, respectively, where 0 <t <t <tz <ty <1.

|
|

(4.0.19)
filz,y) = V(@ +0.12)% + ()2, folz,y) = V(z — 0.12)% + (y)?

(4.0.20)
with z € [-0.5,0.5], y € [-0.5,0.5], t € [0,1], M = 0.1, v = 0.01, n = 0.1.

This fluid system can be derived by the energetic variational approach [28|.
Here w is the velocity and ¢(z,y,t) € [0,1] is the labeling function of the
fluid phase. M is the diffusion coefficient, and pu is the chemical potential of
¢. Equation (4.0.17) indicates the incompressibility of the fluid. Solving such
PDE system is notorious because of its high nonlinearity and multi-physical
and coupled features. A challenge of deep learning in solving a system like
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this is how to process the data to improve the learning efficiency when the
input matrix consists of variables such as ¢ € [0, 1] with large magnitude
value and variable of very small values such as p ~ 107°. For the Neural-
PDE to better extract and learn the physical features of variables in different
spatial-temporal scales, we normalized the p data with a sigmoid function.
We set 0t = 5 x 10~%. Here the training dataset is generated by the FEM
solver FreeFem++ [29] using a Crank-Nicolson in time C° finite element
scheme. Our Neural-PDE prediction shows that the physical features of p
and ¢ have been successfully captured with an overall MSE: 6.1631 x 10~
(see Figure 10). In this example, we only coupled p and ¢ together to show
the learning ability of the Neural-PDE. Another approach is to couple p, ¢
and the velocity w together in the training data to predict all the related
variables (p, ¢, ), which would need more normalization and regularization,
techniques such as batch normalization would be helpful, please see recent
research on PINN based neural network in solving such system [30].

5. Conclusions

In this paper, we proposed a novel sequence recurrent deep learning frame-
work: Neural-PDE, which is capable of intelligently filtering and learning
solutions of time-dependent PDEs. One key innovation of our method is
that the time marching method from the numerical PDEs is applied in the
deep learning framework, and the neural network is trained to explore the
accurate numerical solutions for prediction.

Our experiments show that the Neural-PDE is capable of simulating from
1D to multi-dimensional scalar PDEs to highly nonlinear and coupled PDE
systems with their initial conditions, boundary conditions without knowing
the specific forms of the equations. Solutions to the PDEs can be either
continuous or discontinuous.

The state-of-the-art researches have shown the promising power of deep
learning in solving high-dimensional nonlinear problems in engineering, bi-
ology and finance with efficiency in computation and accuracy in prediction.
However, there are still unresolved issues in applying deep learning in PDEs.
For instance, the stability and convergence of the traditional numerical algo-
rithms have been rigorously studied by applied mathematicians. Due to the
high nonlinearity of the neural network system , theorems guiding stability
and convergence of solutions predicted by the neural network are yet to be
revealed.

Lastly, it would be helpful and interesting if one can theoretically charac-
terize a numerical scheme from the neural network coefficients and learn the
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Figure 11: Neural-PDE shows ideal prediction on Fluid System.

forms or mechanics from the scheme and prediction. We leave these questions
for future study. The code and data for this paper will become available at
https://github.com/YihaoHu/Neural PDE upon publication.
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