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Optimal measures for p-frame energies on spheres

Dmitriy Bilyk, Alexey Glazyrin, Ryan Matzke, Josiah Park and Oleksandr
Vlasiuk

Abstract. We provide new answers about the distribution of mass on spheres so as to
minimize energies of pairwise interactions. We find optimal measures for the p-frame
energies, i.e. energies with the kernel given by the absolute value of the inner product
raised to a positive power p. Application of linear programming methods in the setting
of projective spaces allows for describing the minimizing measures in full in several
cases: we show optimality of tight designs and of the 600-cell for several ranges of
p in different dimensions. Our methods apply to a much broader class of potential
functions, namely, those which are absolutely monotonic up to a particular order.

1. Introduction

An intriguing natural phenomenon is the ubiquitous appearance of certain symmetric
structures and configurations as solutions to optimization problems. In a number of spaces,
highly symmetric configurations of points such as the vertices of the icosahedron on S?
or the minimal vectors of the Leech lattice Ay4 on S?* are optimal codes, a type of best
packing configuration [40]. First papers on spherical designs made important connections
between symmetry and optimality through pioneering work on linear programming bounds
[25]. Since these and new developments we now know several configurations, in addition
to being spherical designs and optimal codes, are also minimizers for a variety of harmonic
energies [1,37,38,65,66].

For a finite configuration of points on the sphere C ¢ S9! (also known as a code), the
discrete f-potential energies are defined as

1

(1.1) Ef(C)= 155
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(The diagonal terms should be excluded if the kernel f is singular at 1, i.e. when x = y.)
Universally optimal point configurations, i.e. collections of points C minimizing the discrete
energies E among all point sets of fixed cardinality |C|, for all absolutely monotonic
functions f on [—1, 1), have been discovered through the linear programming approach of
Cohn and Kumar in [21].
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In contrast to the above setting, in the present paper, rather than considering config-
urations of fixed cardinality, we focus on the problem of minimizing energies over all
Borel probability measures, discovering that surprisingly in many situations the minimizing
measures are discrete. For a kernel function f € C[~1, 1] and a Borel measure x on S9!,
we define the energy integral as

(12 = ] .

One is naturally interested in minimizing these energies over u € P(S41), the set of all
Borel probability measures on S?!, i.e. finding the equilibrium distribution of unit mass
under the interaction given by the potential function f. This definition is compatible with
the discrete energy (1.1) in the sense that

1

(1.3) Ef(C) = If(lc|
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and we shall repeatedly abuse the notation when saying that a configuration C minimizes
the energy I, to mean that the corresponding measure in the right hand side of the above
equation minimizes.

While many classical examples, such as the Riesz energy, feature increasing kernels
f which give rise to energies with repulsive interactions (i.e. f is largest when x =y
and smallest when x and y are antipodal), we will concentrate on the attractive-repulsive
potentials, which decrease at first, but increase eventually, as functions of geodesic distance:
in other words, a pair of points will repel when close together, but attract when far apart.
Such potentials in R¢ appear naturally for self-assembly models in computational chemistry,
emerging collective behavior in population biology, and in many other scientific models
[5,18,19,36,48,60,64].

We will mostly consider attractive-repulsive potentials on the sphere which are symmet-
ric and orthogonalizing, so that f(t) = f(|t|), f(¢) is increasing for ¢t € [0, 1], and f takes
its minimal value at zero. For such potentials, the discrete energy for up to d particles is
minimized by collections of orthogonal vectors. Since in this setting the energy does not
change by replacing any x with Ax, where |A|= 1, its analysis naturally lends itself to the
projective space RP4~!, where the potential becomes repulsive, and we adopt this approach
in the technical parts of the paper.

The main examples of the above potentials, which motivate the current paper, are of
the form f(¢) = |¢t|P, p > 0, which yield the p-frame energies:

(1.4 =[] o dueduo,

where S2! = {x € F | |Ix||= 1}. For F = R or C this type of energy has a rich history.
When p =2 and F = R, the discrete version of this energy, known simply as the
Jframe energy or frame potential, has been introduced by Benedetto and Fickus [11]: they
showed that global (as well as local) minimizers of this energy are precisely unit norm tight
frames. These configurations, which explain the nomenclature “frame energy”, play an
important role in signal processing and other branches of applied mathematics and behave
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like overcomplete orthonormal bases. A finite collection of vectors C ¢ F is a tight frame,
if for any x € F4, and some constant A > 0, one has an analog of Parseval’s identity holding
for C,

(1.5) >y I* = Allx|l”.

yeC

These objects also minimize the continuous energy /¢ for p = 2, but there are also other
minimizers, such as the surface area, or Haar measure o on Sg‘l, and, more generally,
isotropic probability measures on the sphere, i.e. those measures for which

1
[, JwnPauo - 4.
s¢-!

holds for all x € S-1.

When p = 4, this energy plays an important role in connection to complex maximal
equiangular tight frames, also known as symmetric, informationally complete, positive
operator-valued measures (SIC-POVMs), i.e. unit norm tight frames in C¢ which satisfy
|(x, y)|= const for x # y € C and |C|= d? [49]. The existence of these objects is the subject
of Zauner’s conjecture (see [67]), and much of the numerical evidence for this conjecture
comes from the observation that they minimize the 4-frame energy among other energies,
as projective 2-designs, see e.g. [54]. Since we will later work with minimizers over the
skew field of quaternions, we mention that in that setting these equiangular tight frames are
conjectured [22] to not always exist. In the real case, the existence of analogous objects
(i.e. tight projective 2-designs) is also mysterious: they may exist only in dimensions
d=02m-1?%-21[6,7,25,39], but do not exist for infinitely many values of m [9,45].
In what follows, we demonstrate that when these objects do exist, they also minimize the
p-frame energy for 2 < p < 4.

More generally, for even integers p, these energies were considered in earlier works
[55,59,62], and it is known that for F = R or C projective k-designs are precisely the finite
configurations which minimize the p = 2k energy. Unit norm tight frames are then in
fact just equivalent to projective 1-designs (see Section 2.3 for precise definitions), while
spherical 2-designs are exactly those unit norm tight frames, whose center of mass is at the
origin. These were constructively shown to exist for d > 2 precisely when the number of
points N satisfies N > d + 1 and N # d + 2 when d is odd [47]. The last restriction does not
apply to unit norm tight frames, and these exist for all N > d [11]. Surface measure is also
known to be a minimizer for p € 2N: this can be seen either from the definition of k-designs,
or from the fact that the function f is positive definite in this case (see Proposition 2.3),
and was originally proved in the real case in [55].

For p not an even integer, optimal distributions of mass for p-frame energies are much
less studied, to the point of there only being one result on these minimizing measures
readily found in the literature. It states that distributing mass equally on the orthoplex
or cross-polytope, an orthonormal basis and its antipodes, gives the unique symmetric
minimizer, up to orthogonal transformations, for any energy with p € (0, 2) [27].

This result (contained in our Theorem 1.1 below as a special case) points to an interest-
ing distinction. When p is even, the p-frame energy has a multitude of both continuous,
e.g. o, and discrete minimizers. However, this is not the case when p is not an even integer:
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o is no longer a minimizer, since the function f(¢) = |¢|? is not positive definite, and so the
above result, along with our numerical studies, points to existence of discrete minimizers
only.

In this paper we give a first description of minimizers for several dimensions and some
ranges of p. The description relies on the notion of tight designs: designs of high strength,
but with few distinct pairwise distances, see Definition 2.5. We show that if there exists a
tight projective M-design (which in the real case is equivalent to a tight spherical 2M + 1)-
design), then it minimizes the p-frame energy for p € (2M — 2,2M). The 600-cell, despite
not being a tight design, minimizes the p-frame energy for p € (8, 10) among probability
measures on S, as we show in Section 4.

Theorem 1.1. Let f(¢) = |t|?, t € [-1,1].
(i) If there exists a tight spherical 2M + 1)-design C C S, then the measure
1
= — 6)(
ICI

xeC

u

is a minimizer of the p-frame energy Iy with2M —2 < p < 2M over u € P(sah.

(ii) Let F =R, C or H. Assume that there exists a tight projective M-design C c Fp4!,
and let the code C C Sg_l consist of the representers of C in Sg_l according to (2.1).

Then the measure 1
M= = Ox
ol 2

xeC
is a minimizer of the p-frame energy Iy with2M —2 < p < 2M over u € P(Sg_l).
(iii) Let C C S? denote the 600-cell. Then the measure
1
=— o
ICI *

xeC

u

is a minimizer of the p-frame energy Iy with8 < p < 10 over u € P(S?).

For parts (i)-(ii) of the above theorem we also prove a uniqueness statement: more
precisely, whenever the corresponding statements hold, and additionally p is not an endpoint
of the interval, i.e. p € 2M —2,2M), all minimizers have to be tight designs (although
not necessarily coinciding with C), in particular, they have to be discrete. Since tight
(2M + 1)-designs on the circle consist just of 2(M + 1) equally spaced points, the above
result fully characterizes the minimizers for d = 2 (for both the sphere and real projective
space). See Section 3.5 for more details.

We observe that part (i) is essentially contained in part (ii) with F = R: indeed, odd-
strength tight spherical designs are necessarily symmetric [25], and by taking one point in
each antipodal pair one obtains a tight projective design (see Sections 2.3-2.4 for a more
extensive discussion).

Minimizing the continuous energy (1.4) over all measures and obtaining discrete min-
imizers allows us to make new conclusions about the minimizing configurations of the
discrete energies (1.1) for certain values of the cardinality N. One directly obtains the
following corollary:
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Corollary 1.2. LetF, d, p, and C be as in any of the parts of Theorem 1.1, and let N = k|C|,
k € N. Then the N-point discrete p-frame energy is minimized by the configuration C
repeated k times, i.e.

1 1

(1.6) min — > [P =1 ,(—Ej(s).
c'esdt N2 2t Y " ICl &
IC' N

Thus, for example, if N is a multiple of 6, then repeated copies of a “half” of the icosahedron
minimize the N-point p-frame energy on S? for p € [2,4]. Some other results about the
minima of discrete p-frame energies have been obtained in [20].

The arguments proving Theorem 1.1 are strongly reminiscent of those appearing in [21]
and are based on the linear programming method which goes back to Delsarte and Yudin
[24,65]. Part (ii) of Theorem 1.1 is a consequence of a much more general Theorem 3.7.
The latter theorem, in fact, demonstrates that tight M-designs possess a certain universality
property: they minimize the energy for all strictly monotonic functions of degree exactly m
over all probability measures, see Section 3 for details.

The proof of optimality for the 600-cell is computer assisted and makes use of the fact
that the averages of spherical harmonics over the 600-cell vanish for a few orders above its
maximal strength as a spherical design — the same idea was used in the proof of universal
optimality of the 600-cell in [21], as well as earlier in [1,2]. This allows us to construct a
collection of interpolating polynomials £ for each p which have the desired properties of
lying below f, agreeing with f on the distances appearing in C, and finally being positive
definite, the last of which is checked using interval arithmetic. The details of the proof are
taken up in Section 4.

We collect all the necessary preliminary material in Section 2: Section 2.1 contains
the discussion of relevant properties of compact 2-point homogeneous connected spaces;
Section 2.2 explains the specifics of minimizing energy functionals over probability meas-
ures on such spaces; Section 2.3 introduces designs, and, in particular, tight designs; and
Section 2.4 describes the transference between energies on projective spaces and spheres,
which connects Theorem 3.7 to Theorem 1.1.

Theorem 1.1 leads us to believe that clustering of minimizers is a general phenomenon
when p is not an even integer and we will present our experimental evidence in favor of
this conclusion in a separate publication [14].

Conjecture 1.3. In all dimensions d > 2 and for all p > 0 such that p ¢ 2N, the minimizing
measures of the p-frame energy (1.4) are discrete.

This conjecture is additionally supported by the fact that discreteness of minimizers
is known for certain attractive-repulsive potentials on R¢ [18] and has been conjectured
for some other potentials on the sphere, e.g. those appearing in [28], see also Section 7. It
is worth noting that in the classical paper [15], it was shown that for f(x, y) = —||x — y||¢
with @ > 2 and any compact domain Q c R<, the energy minimizers are discrete and their
support consists of at most d + 1 points (just two antipodal points if Q = S¢~1). Moreover,
in [18] discreteness has been established for mildly repulsive potentials, i.e. those that
behave as —||x — y||* with @ > 2 when ||x — y|| is small. Observe that for the p-frame
potential, we have |(x, y)|” ~ 1 = £|lx - y||* when x, y € 97! are close, hence the p-frame
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energy falls into the endpoint case @ = 2, and, according to the discussion above, this case
is more subtle.

While we have yet to establish Conjecture 1.3 and prove discreteness, in our companion
paper [13] we show that on S4~!, whenever p is not even, the support of the measure
minimizing the p-frame potential necessarily has empty interior.

Section 5 extends some of our results to non-compact settings. In Section 6 we apply
the results of Theorem 1.1 to the problems of minimizing mixed volumes of convex bodies,
and in Section 7 we apply the methods of linear programming, similar to those employed
in Theorems 1.1 and 3.7, to the optimization of energies related to causal variational
principles, see [28].

We would like to point out that in many papers, the term p-frame potential is usually
used to denote the p-frame energy (1.4) or its discrete counterpart. We find the term
“energy”’ to be more appropriate in this context and reserve the term “potential” for the
kernel f(t) of the energy .

2. Geometry and functions on 2-point homogeneous spaces

2.1. Two-point homogeneous spaces

For convenience, the above discussion mostly assumed the underlying space to be the unit
sphere S9!, This will no longer be the case, as our study concerns energy minimization
on a broader class of spaces. A metric space (€, d) is said to be two-point homogeneous, if
for every two pairs of points x1,x, and yy, y, such that d(x1,x;) = d(y1, y2) there exists an
isometry of Q, mapping x; to y;, i = 1,2. It is known [61] that any such compact connected
space is either a real sphere S4~!, a real projective space RP“~!, a complex projective space
CP4"!, a quaternionic projective space HP?~!, or the Cayley projective plane OP?. Note
that it suffices to consider FP4~! for d > 2 only, as FP' is just S%™=F [4, p. 170], and so
will not be separately considered in what follows.

Below, Q always refers to a compact connected 2-point homogeneous space, equipped
with the geodesic distance ¢, normalized to take values in [0, r]. We let o denote the
unique probability measure invariant under the isometries of Q.

The first three types of projective spaces {FP¢~! : F =R, C,H} have a simple description:
they may be represented as the spaces of lines passing through the origin in F¢,

2.1) xF={xA|1€F\{0}}.

Observe that the isometry groups O(d), U(d), Sp(d) of the corresponding vector spaces
F4 act transitively on each space, and that the stabilizers of a line represented by x € F?
are O(d — 1) x O(1), U(d - 1) xU(1), and Sp(d — 1) x Sp(1), respectively. Thus one has
[63, p. 28] the following quotient representations:

RP! = 0(d)/O(d - 1) x O(1),
CP' = U(d)/U(d - 1) x U(1),
HPY" = Sp(d)/Sp(d — 1) x Sp(1),

where we write O(d), U(d), Sp(d) for the groups of matrices X over the respective algebra,
satisfying XX* = I.
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Using the identification (2.1), one can associate each element of FP4~! (F =R, C, H)
with a unit vector x € F?, ||x||= 1, and we shall often abuse notation by doing so. This
gives, in addition to the Riemannian metric ¢, another metric, the chordal distance between

points x, y € Q, defined by
p(x,y) =4/ 1= 1¢x, )12
d

where (x, y) = Z x;y; is the standard inner product in F¢. The chordal distance p(x, y) is
i=1
related to the geodesic distance J(x, y) by the equation
cosB(x,y) = 1 = 2p(x, y)* = 2|(x, y)|>~1.

Since the algebra of octonions is not associative, the line model of (2.1) fails, and
instead a model given by Freudenthal [29] is used to describe OP4!. 1t is known [4] that
only two octonionic spaces exist: OP' which is just S8, as noted above, and OP? which can
be described as the subset of 3 x 3 Hermitian matrices IT over O, satisfying I1?> = IT and
Tr IT = 1 [4,56]. We note that, while the definition of the p-frame energy does not extend
to OP? (and thus Theorem 1.1 does not include this space), the more general Theorem 3.7
does apply to Q = OP2.

One feature of spaces € that allows for the application of linear programming methods
is the existence of a decomposition of L?(Q, o), the space of complex-valued square-
integrable functions on :

LX(Q,0) = P Vi,
n>0
where V,, are finite-dimensional irreducible representations of the isometry group of Q (see
[40]). Moreover, these are in correspondence with the eigenspaces of the Laplace—Beltrami
operator on Q corresponding to the n-th eigenvalue in the increasing order. Let Y, ,
k=1,...,dimV,, be an orthonormal basis in V,,. Because of the invariance of V,, and
due to the two-point homogeneity of Q, the reproducing kernel for V,, only depends on the
distance 9(x, y) between points [59]. Furthermore, as a function of

T(x,y) 1= cos (x, y),
the reproducing kernel is a polynomial C,, of degree n, which satisfies

dimV,,
> Yu kY k().
k=1

2.2 Cr(r(e.y)) = 5

Formula (2.2) is known as the addition formula, and shows that functions C,, are positive
definite on Q, that is,

> eCalr(xinx;) 2 0

1<i,j<k

for all coefficients cq, ...,cx € C, and all xq, ..., x; € Q.
The polynomials C,, given by (2.2) satisfy C, (1) = 1 and are orthogonal with respect to
the probability measure

1
y(x,ﬁ

AP = — (1 - (1 + P,
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where a = (d — 1) dimg(F)/2 — 1 and

a, ifQ=gd-1,
2.3) =% . o
dimg(F)/2 -1, if Q=FP¢",

and the normalization factor is given by
Yap =2"FP"Bl@+1,6+1),

where B is the beta function. These polynomials, known as Jacobi polynomials (Gegen-
bauer polynomials in the special case when Q = S¢°1), form an orthogonal basis in
LZ([—I, 1], dv(“’ﬁ)); equivalently, the span of C,(7(x, y)), n > 0, is dense in the sub-
set of L2(Q x Q, o ® ) consisting of functions that depend only on the distance between
x and y.

This allows for expanding functions from L3([-1, 1], dv'®P)) in terms of C,:

o 1
@) =D faCult), where f, =dimV, J FOC,(t) dV' P (1)
-1

n=0

As we have already done above, for a fixed space Q we will not indicate the dependence
of polynomials C,, = Cﬁ,a"g ) on the indices a, B. We refer to f,; as the Jacobi coeflicients
of the function f; the normalization C,(1) = 1 used here is common in the coding theory
community [40, 58].

2.2. Energies on 2-point homogeneous spaces

For the space of probability measures $(£2) supported on €2, and for a lower semi-continuous
function f : [-1,1] — R U oo, the f-energy integral is defined as the functional mapping
M to

If(ﬂ)=J J J(@(x, y)du(x)du(y).
QJQ

Observe that when Q = S?~!, we have 7(x, y) = cos¥(x, y) = (x, y) and the definition above
coincides with (1.2).

We start by introducing the notion of positive definite functions, which plays an import-
ant role in energy minimization and for the linear programming bounds we derive later.
Below C[-1, 1] = Cr[—1, 1] denotes the space of continuous real valued functions on the
interval [—1, 1].

Definition 2.1. Let f € C[—1,1]. We say that f is positive definite on Q if for any
X1,...,XN € Q the matrix [f(T(xi,xj))]f?’Fl is positive semidefinite, i.e. for every collection
c1,...,cN € Cwe have
>, [ xpei; 2 0.
1<i,j<N

We have already seen that the Jacobi polynomials C,, are positive definite on €, and so
their positive linear combinations must also be. It is a classical fact that this implication
can be reversed:
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Proposition 2.2. [16,30,51] A function f € C[-1, 1] is positive definite on Q if and only if
fu=0foralln > 0.

Next we show that positive definite functions f give rise to f-energy integrals which
are minimized over probability measures by the surface (or Haar) measure o~ on Q. This
result appears in a number of papers, see for instance [12,23]. We adapt the proof given in
[12] to our purposes.

Proposition 2.3. Let f € C[-1,1], f(¢) = %o] ﬁCn(t), and p € P(Q). Then, the following
are equivalent: "

(i) fo=0foralln>1,

(ii) the surface measure o is a minimizer of 1.

Moreover, o is the unique minimizer of I 7 if and only lfﬁ, > 0foralln > 1.

To prove this statement we use the following lemma, generalizing the behavior of
Fourier expansions with positive coefficients [30,44] to Jacobi expansions with the same

property.
Lemma 2.4. Assume that f € C[—1, 1] has the Jacobi expansion f(t) = %0] ﬁ,Cn(t) with
n=0

ﬁl > 0 for all n > 1. Then this expansion converges uniformly and absolutely to f on

[-1,1].

Proof of Proposition 2.3. We first show that o~ is a minimizer of /5. Assume that f,; >0
for all n > 1. Then by the lemma above, the Fubini theorem, and the addition formula, we
have

=% L I Cor (e, YD () duy)
n=0

sl 1 dim V,,

- ,,Z:é dimV, Z f" J I .k ()Y, k(y)d/l(x)dﬂ(y)
—~ 1 0 ~ N

= fo+ amv, ; by fn = fo=I7(0).

dim V,
The last inequality holds since b, ;, = UQ " k(x)d,u(x)| >0.If fn >0foralln > 1,

then equality can be achieved above only 1f w is orthogonal to all spaces V,,, n > 1, which
directly implies that 4 = 0. R

Let us assume that for some m € Ny, f,, < 0. For a fixed point p € Q, we see that
Yn1(x) := Cy(t(x, p)) is in V,, and real-valued. Set du(x) = (1 + €Y,,,1(x))do(x), where
€ > 0 1is sufficiently small so that (1 + €Y}, 1(x)) > 0 on Q. Orthogonality and the addition
formula (or Funk-Hecke formula) give that for Y € V,,,

J Frte Y o) = et SALE) andj Y(0)dor = 0,
Q
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Thus,

Tr(u) = Lz IQ F@C,y)A + €Y, 1)) + €Yy, 1(0)do(x)do ()

l(Vn) JQ €2ﬁ1Y3,1(x)dO'(x) < I5(0),

=1s(o)+

(@) dim
implying that o is not a minimizer for /5. If f;, = 0 for some n > 1, the same argument
shows that I ¢(u) = I7(0), i.e. o is not the unique minimizer. [

The p-frame energies correspond to taking Q = FPY~! (F = R, C, or H) and f of the
form
1+1\2
+1
2.4 f() = (T) )
because in this case, since 7(x, y) = cos #(x, y) = 2|(x, y)|>~1, we have

F@@,y) = f2Ie, y)P=1) = [(x, 0.

We shall now prove that, whenever p is an even integer, these energies are minimized by
the uniform measure on Q.

When p = 2k and Q = FP4~! (F = R, C, or H), we have that f(r) = 27 . (1 + 1)¥ is
a polynomial. It is standard to check that this polynomial is positive definite on €: this
could be done by checking that the coefficients in its Jacobi expansion are non-negative,
but it would be perhaps simpler to prove it as follows. Observe that, since C(()a’ﬁ )(t) =1 and

Cia,ﬁ)(t)= af_ | asp2

NarD) t 2arn 1 WE have that

28+ 1
coPy ¢ 2D capy

Lare 2a@+1) ¢
a+f+2

- (@+B+2)

Since @ + 1 = 41 - dimp(F) > 0 and B + 1 = § - dimg(F) > 0, we see that the function 1 + ¢

is positive definite on . The well known Schur’s theorem on Hadamard (elementwise)
products of positive semidefinite matrices implies that if g and & are positive definite
on Q, then so is their product gh, and, in particular, all integer powers g" are positive
definite. Hence, the function f(¢) = 27k 1+ 0k s positive definite on Q, and therefore /¢
is minimized by the uniform surface measure o.

The minimal values of the p = 2k energy may be expressed in terms of elementary
functions for each F. These constants, cg(d, k), are given below

1:3-5...2k=1)

xld k) = Ty d 2k =) F=FR
ex(d k) = 1/(‘“’;‘1), F=C,
cx(d, k) = (k + 1)/(2d +kk - 1), F=H.
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When p is not an even integer, the p-frame energies are not positive definite, due to the
appearance of negative terms in the Jacobi polynomial expansion of f, hence o does not
minimize the p-frame energy for p ¢ 2N, see Lemma 6.2.2 in [46].

2.3. Designs

We now treat the topic of designs in the compact connected two-point homogeneous spaces
Q. A finite, nonempty set (code) C C Q is called an M-design if

1

2.5
2.5 ]

> p) = JQ p(x) do(x)

xeC

holds for all polynomials p of degree at most M. A relaxation of the above identity allows
the configuration to be weighted, so that the equality

(2.6) > wxp(x) = Lz p(x) do(x),

xeC

holds for some weights {wy }xec C Rxo, satisfying X, cc w, = 1, and all polynomials p
of degree at most M. Such weighted formulas are called cubature formulas or weighted
designs. In both of the above equations, it is understood that polynomials p may be
given explicitly as complex-valued functions which are polynomials in coordinates of F¢,
satisfying additionally p(ax) = p(x), for |a|= 1, a € F, in the projective case.

The strength of a (weighted) design is the maximum value of M for which identity (2.5)
(accordingly, (2.6)) holds. An M-design can be equivalently defined as a configuration
C c Q, for which

D, Grx,y)=0 forl<n<M.

x,yeC

Equivalently, C is an M-design in Q if and only if it satisfies

M
ZY(x)=0 forY e @Vn.
=1

xeC n

Similar definitions can be given for weighted designs.

Linear programming bounds [25] imply exact constraints on the size of tight designs,
configurations which, in addition to being M -designs, have the smallest possible number of
pairwise distances between their elements, for a design of strength M. The exact definition
may be given as follows.

Definition 2.5. A discrete set C C Q is called a tight M-design if one of the following
conditions is satisfied.

(i) C is adesign of strength M = 2m — 1 and there are m distances between its distinct
elements, including at least one pair diameter apart;

(ii) C is a design of strength M = 2m and there are m distances between its distinct
elements.



12 D. Bilyk, A. Glazyrin, R. Matzke, J. Park and O. Vlasiuk

Table 1 provides a list of known tight spherical designs (see, e.g., [21]), as well as the
600-cell, which is not a tight design, but will be of interest in Section 4. Each arrangement
labeled ‘kissing’ is the kissing configuration of a set. By centering non-overlapping
congruent spherical caps of maximal radius at each point in a given code, the resulting
points of tangency on a given cap form a spherical code in a lower dimensional space which
we call the kissing configuration for that set.

Tight spherical designs with d > 3 and M > 4 may only exist for M =4, 5, and 7 with the
one exception of the spherical 11-design formed by the Leech lattice minimal vectors [6,7].
The problem of finding tight spherical 5-designs is the same as that of finding maximal
equiangular tight frames, and it is known that existence of a tight spherical 5-design in 47!
is possible only for d = 1,2, 3 and for dimensions of the form d = 2k + 1)2 — 2, where
k > 1; see [6,7,25,39] for details on how these conditions arise. A direct correspondence
with such spherical designs and regular graphs has long been recognized [53], and, in
connection, it is known that for infinitely many values of k, a tight spherical 5-design cannot
exist in dimension d = (2k + 1)> — 2 [9,45].

Table 1. A list of known tight spherical designs (with the 600-cell). Here M denotes the strength of
the design, d the dimension of the ambient space R4, and N is the size of the design.

d N M Inner products Name

d 2 1 +1 two antipodal points
d d+1 2 -1/d,1 regular simplex

d 2d 3 0,=x1 cross-polytope

2 N N-1 cos(2jn/N),0<j<N/2 regular N-gon

3 12 5 +1/V5, £1 icosahedron

4 120 11 0,(x1 = V5)/4,+1/2, x1 600-cell

6 27 4 -1/2,1/4,1 Schlafli config

7 56 5 +1/3,+1 kissing config for Eg
8 240 7 0,+1/2,+1 Eg root system
22 275 4 -1/4,1/6,1 McLaughlin config
23 552 5 +1/5,+1 equiangular lines
23 4600 7 0,+1/3, +1 kissing config for A4
24 196560 11 0,+4,+5, %1 Leech lattice Ap4 minimal vectors

Table 2 lists all known tight projective designs (see [22]), except those for the spaces
FP!, which are congruent to real spheres. Identifying tight projective designs is simple
in the real setting. Tight spherical designs of odd strength must be centrally symmetric
[25], and by choosing points from each antipode in an odd tight design, one arrives at a
real projective tight design. Thus, all tight designs of odd strength in Table 1 correspond to
entries in Table 2.

For the other projective spaces, the vertices of a cross-polytope (i.e. an orthonormal
basis in the projective space) always provide a tight 1-design, as they did in RP4~!. However,
unlike the real case, it is known that no tight 7-designs exist in the complex or quaternionic
setting whenever M > 4 and d > 3 [8,33,44]. In the complex setting, tight 2-designs, also
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known as symmetric, informationally complete, positive operator-valued measures (SIC-
POVMs), are known to exist for d < 16, d = 19, 24, 28, 35, 48, and numerical experiments
suggest that they may exist in every dimension [3,49, 54, 67]. With exception of the (3, 15)
quaternionic and (3, 27) octonionic designs from [22], explicit constructions are readily
found for the other designs mentioned in Table 2 [32].

Table 2. A list of parameters for which projective tight designs are known to exist (besides designs in
FP! for F # R). Here M denotes the strength of the design, d the dimension of the ambient space F4,
and N is the size of the design. For SIC-POVMs, these configurations exist for certain values of d,
and may or may not exist for all values.

d N M [(x, y)|? F Name

d d+1 1 0,1 R cross-polytope/ONB

2 N N-1 cos’(nj/N),1<j<N R regular 2N-gon

3 6 2 1/5,1 R icosahedron

7 28 2 1/9,1 R kissing configuration for Eg
8 120 3 0,1/4,1 R roots of Eg lattice
23 276 2 1/25,1 R equiangular lines
23 2300 3 0,1/9,1 R  kissing configuration for Ay
24 98280 5 0,1/16,1/4,1 R minimal vectors of Apy

d d+1 1 0,1 C cross-polytope/ONB

d d? 2 1/(d+1),1 C SIC-POVM

4 40 3 0,1/3,1 C Eisenstein structure on Eg
6 126 3 0,1/4,1 C Eisenstein structure on K,
d d+1 1 0,1 H cross-polytope/ONB

3 15 2 2/7,1 H equiangular lines

5 165 3 0,1/4,1 H quaternionic reflection group
3 d+1 1 0,1 O cross-polytope/ONB

3 27 2 2/13,1 O equiangular lines

3 819 5 0,1/4,1/2,1 @) generalized hexagon

of order (2, 8)

A weaker property of a design is sharpness, which will not play a role here. The paper
[21] proves that sharp designs, and tight designs in particular, are minimizers for discrete
minimization problems with absolutely monotone kernels. A similar approach allows us to
show that tight designs are optimal for the continuous p-frame energy.

2.4. Antipodal symmetry

We observe that the energy /¢ on the sphere Sg‘l, F =R, C, H, for the kernels f with
F(x, ¥)) = f(|{x, y)|) remains the same after averaging over unit multiples of vectors in
the support of u. Let U(F) be the set of units in F, U(F) = {c € F : |c|= 1}, and 1 be the
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uniform measure on U(F). If one defines, for positive Borel measure i on the sphere Sg"
and Borel sets B ¢ SZ°!,

1
nUE) Jur

then I¢(v) = I ¢(u) for potential functions f as above. This is the primary reason it is natural
to consider projective spaces FP4~! as the optimization spaces for p-frame energies, as
opposed to the spheres, in the cases when the elements x € FP?~! may be represented by
unit vectors in F<.

This discussion shows that a minimizing measure on the sphere for /¢, with f as above,
can be taken to be symmetric, and that the problem of minimizing over symmetric measures
on spheres is equivalent to minimizing energy over projective spaces. In particular, this
explains part (i) of Theorem 1.1, since tight spherical (2M + 1)-designs are necessarily
symmetric [25] and hence correspond to tight real projective M-designs.

v(B) = u(cB)dn(o),

3. Optimality of tight designs for kernels absolutely monotonic to
degree M

3.1. Linear programming

The main goal of this section is to show that for those dimensions and values of ¢ for which
tight designs exist, they are the global minimizers of the p-frame energies for intervals of p
between consecutive even integers. We will use linear programming bounds to this end.

The linear programming method provides bounds for optima in various optimization
problems, and its use is often aided by computational tools, where a problem is approxim-
ated by a finite-dimensional or discretized counterpart, then solved with a computer. It is
surprising that this simple method provides optimal bounds often. This technique applies
to all the 2-point homogeneous spaces Q described above.

Our application of the method can be summed up in the following lemma, which is
a measure-theoretic counterpart of the linear programming bound of Delsarte and Yudin
[24,65].

Lemma 3.1. Let h € C[—1, 1] be a positive-definite function, i.e. h(t) = ;} ﬁnCn(t) and
n=0
T > 0 foralln > 0.
(i) Assume that h(t) < f(t) forallt € [-1, 1], then for any u € P(Q),

Iy(u) 2 o = In(0r).
(ii) Assume further that h is a polynomial of degree k and that there exists a k-design
C C Q such that h(t) = f(t) for each t € {t(x,y): x,y € C}. Then for any u € P(Q),
1
Ie(u) 2 Ip| — Ox )
(fci 22

i.e. Iy is minimized by the uniform distribution on C.
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Proof. For the first part observe that

Ip(u) > In(p) > In(or) = ho,

where the first inequality follows from the fact that f > h, while the second one is due to
Proposition 2.3, since 4 is positive definite.
For the second part, one can continue as follows

In(o) = Ih(ﬁ x;?ax) - If(ﬁ xzegax).

The first equality follows from the fact that C is a k-design, and the second one from the
fact that f and & coincide on the set {7(x, y) : x,y € C}. Together with part (i) this proves
the statement in part (ii). [ ]

This lemma provides insights in two different ways for how the linear programming
method can be applied.

If a candidate C is available, one can apply part (ii) of Lemma 3.1 by constructing a
polynomial & < f as a Hermite interpolant of the function f at the points of {7(x,y): x,y €
C}. This reasoning, which lies behind the proof of Theorems 3.7 and 1.1, explains the
appearance of tight designs: indeed, the number of elements in the set of interpolation points
(i.e. distinct distances between the points of C) determines the degree of the interpolant & —
hence one wants a design of high strength, but with few mutual distances.

The same reasoning as above applies to the emergence of sharp designs as universally
optimal sets in [21], and it also explains why this slightly weaker notion does not suffice for
our purposes: since we are working with general measures rather than point sets with fixed
cardinality, we cannot avoid interpolating at the point ¢t = 1, which requires a design of
higher strength. The main technical difficulty in this setting is proving positive definiteness
of the Hermite interpolating polynomial 4. We take this approach to Theorem 3.7 and carry
out the technicalities in Sections 3.2-3.4.

If a suitable candidate is not available, one can still rely on part (i) of Lemma 3.1
and attempt to optimize the value of the energy I,(o) over auxiliary positive definite
polynomials %, obtaining a lower bound for the energy over all probability measures. If the
degree of an auxiliary function £ is bounded by D, we have D + 1 non-negative variables
h;i, 0 <i < D, and infinitely many linear constraints A(t) S,f (t)forall t € [—-1, 1]. In order
to get the best possible lower bound, we need to maximize h( given these linear conditions.

3.2. Properties of orthogonal polynomials

Recall that, for fixed Q, we write simply C,(t) = Cf,”’ﬁ )(t) with C, (1) = 1. In some of the
arguments in Section 3.4 we will instead use the monic polynomials proportional to C,; we
therefore introduce notation Q,,(t) = QE,”’B )(t) for these Jacobi polynomials.

In this subsection we collect several results about orthogonal polynomials relevant
to the proof of our main theorem. Fix a space €, and let o and S be the corresponding
parameters of the associated Jacobi polynomials. According to Proposition 2.3, a function
being positive definite on € is equivalent to having positive coeflicients in the Jacobi

expansion in terms Q'
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It will be useful to consider adjacent Jacobi polynomials, defined as one of the three
sequences QX' = QP with k,1 € {0,1}, k +1 > 0. Specifically, we will need the
following corollary which comes out of representing Q};O through Q?,’O [40, equation (3.4)]:

Proposition 3.2. Adjacent Jacobi polynomials Q:,’O are positive definite on Q.

On the other hand, adjacent polynomials Q},’l, defined as orthogonal with respect to the
measure (1 — %) dv(®P), are not positive definite. The following property, a special case of
the strengthened Krein condition [41, Lemma 3.22], can serve as a substitute.

Lemma 3.3. (r + I)Qi,’l(t) are positive definite on Q for n > 0.

Proof. For all n € Ny, (¢ + 1)Ql;] is orthogonal to all polynomials of degree less than n
with respect to the measure (1 — )dv( @R = ¢, sdv @*1P) 50 it can be expressed through
the orthogonal polynomials corresponding to dv(@*!-#) as

(t+ 10, (1) = 0,0 (1) + b0, (),
for some constant b. Since all the roots of Ql;o lie in (-1, 1), sgn Q};O(—l) =(-D".
Substituting t = —1 in the last equation gives Qil’fl -+ bQi,’O(—l) =0, and so b > 0. By
Proposition 3.2, each Q,l;o(t) is positive definite, and thus (¢ + I)Q,l,’l(t) is also positive

definite. [

Lastly, we will need the strict positive-definiteness of polynomials annihilated by subsets
of roots of p, + yp,—1. We recall the following result.

Proposition 3.4 ([21, Theorem 3.1]). Consider a sequence of orthogonal monic polynomi-
als po(t), p1(t), p2(1), ..., such that deg px = k for all k € No, and let t| < ... < t, be the
zeros of pn + ypn-1 for some fixed y. Then the polynomials

k

|BGD) 1<k<n,

i=1

can be represented as a linear combination of po(t), p1(t), . . ., pn(t) with positive coeffi-
cients.

3.3. Hermite interpolation

Let f € CK[a, b], for some K € Ny, and let a collection | < ... < t,, C [a, b], as well as
positive integers ki, . .., k,,, be given with

max{ky,...,kn} < K+1.

There exists a polynomial p of degree less than D = 37", k;, such that for 1 </ < m and
0<k <k,

PP = O
Such a p is called the Hermite interpolating polynomial of f; it always exists and is unique
because the linear map that takes a polynomial p of degree less than D to

(P, p't1), ..., p* 7)), p(t2), p'(12), . .., PP tm))
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is bijective.
It is convenient to organize both the collection #; < ... < t,, and the orders of derivatives
ki, ...,k into a polynomial g(¢). Given such a polynomial

gy =] [a-t)",
i=1

where D = deg(g) > 1, we write H [ f, g] for the interpolating polynomial of degree less
than D that agrees with f at each #; to the order k;. Similarly, we let

JO-H[f.gl®
g(®) ’
be the divided difference associated with the polynomial g. Under the above hypotheses,

for every t € [a, b] and a collection t; < t; < ... < t,, as above, there exists & € (a, b) such
that min(z, 1) < & < max(t, t,,,), and

olf. gl =

FP)E)
3.1 OLf, 8)0) = =7

Enumerate the roots of g with multiplicities in increasing order, and denote these by
sj,1 < j <D, wheres; <sj,1. Let g, be the polynomial annihilated on the first # elements
of the sequence s1,...,sp:

n
g =]JGt-s). 1<n<D.
j=1

The usual assignment of the empty product applies here: go(7) = 1.
By the Newton’s formula [26, Chapter 4.6—7], the Hermite interpolating polynomial
H [f, g] can be represented as

D-1

(3.2) Hf, 81 (1) = f(s1)+ >, ;1) QLS. g;1(s)1)-
j=1

p/2
The relevant property of the p-frame kernel (%) considered on a projective space

FP4-1 (for F = R, C, H), is that its first several derivatives are nonnegative on (-1, 1),
followed by a negative one. Positivity of the derivatives implies, due to (3.1), that the
divided differences in formula (3.2) for the p-frame kernel are nonnegative. It will be
convenient to introduce notation for this number of nonnegative derivatives of a function.

Definition 3.5. Let f € CM(a, b). We say that f is absolutely monotonic of degree M if
FfOU) > 0for0 <k < M andt € (a, b). If these derivatives are positive, we say that F is
strictly absolutely monotonic of degree M.

The usefulness of this new class of functions lies in that the Hermite interpolant of an
absolutely monotonic function f of degree M with (M + 1)st derivative negative, will stay
below f, as shown in the following observation [65].
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Lemma 3.6. Let f : [-1,1] — R be absolutely monotonic of degree M, and f™*D (1) <0
forallt € (—1,1). If the roots of a polynomial g of degree M + 1 are contained in [-1, 1],
and in addition g(t) < 0 fort € [—1, 1], then,

f@ = H[f, gl®), te[-1,11.

Proof. According to (3.1), there exists & € (—1, 1) such that min(z, f9) < & < max(t, fyr),
where the roots of g are fyp < ... < fps, and

fMDE)
t)y—H[f, t) = —m—g(1).
Jf@) - HLf, gl(0) (MH)!g()
The expression on the right is nonnegative, so the conclusion of the lemma follows. ]

3.4. Optimality of tight designs

As above, Q is a compact, connected two-point homogeneous space and Qq, Q1, Q», . . .
are the corresponding orthogonal polynomials. Recall that Q,, are orthogonal with respect
to the measure dv(@# = ﬁ(l — 1)@(1 + t)Pdt, where the parameters a, 8 are chosen as

in Section 2.1. The main result of this section is the following.

Theorem 3.7. Let f be absolutely monotonic of degree M, with f™M*D (1) <0 fort € (-1, 1).

Then for a tight M-design C,
1

He="5 2,0
ol 24>

is a minimizer of

If(ﬂ)=f I f(x(x, y)) du(x)du(y)
QJQ

over P (L), the set of probability measures on Q.

First of all, we show that this statement implies part (ii) of Theorem 1.1.

Proof of part (1) of Theorem 1.1. Recall that, according to (2.4), the p-frame energy on
Sg‘l corresponds to the kernel f(¢) = (1%’)% in the projective setting Q = FP?~!. One
can easily check that fP/2#D(r) < 0, =1 < ¢ < 1, and all derivatives of smaller order
are nonnegative. Thus Theorem 3.7 applies with M = [p/2], i.e. tight projective M-
designs minimize /¢ on FP-! for 2M — 2 < p < M (the case p = 2M — 2 is easy, since
f is a positive definite polynomial, so o is a minimizer and hence so are tight designs).
Transferring the problem back to the sphere Sg‘], as explained in Section 2.4, finishes the
proof of part (ii) of Theorem 1.1. ]

In what follows we give a proof of Theorem 3.7, splitting it into two separate cases,
depending on whether the design C contains two points separated by the diameter of Q;
equivalently, depending on the parity of the strength M of C.

Proposition 3.8. Theorem 3.7 holds when M = 2m, m > 1.
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Proof. Lett) < ... <ty <ty = 1 be the values of 7(x, y) = cos(¥(x, y)) occurring in C.
Let further

k
g =]]e-t), 1<k<m+1.
i=1
and

(3.3) 8(t) = gm(®) gma1 (t) = (t = Dg2(D).

To prove the statement of the theorem, we verify the following chain of inequalities, satisfied
for arbitrary u € P(Q), similar to the proof of Lemma 3.1,

(3.4 Ir(u) 2 THip,g1(1) = TH{f,q1(0) = IH[f,q1(0c) = Lr(uc)-

Since g(¢) < 0 fort € [-1, 1], Lemma 3.6 implies that f(¢) > H[f, gl(?), t € [-1, 1],
which gives the first inequality. The equality /g7 ¢1(07) = IH[f,¢1(1c) s satisfied since
C is a design of strength 2m > deg H[ f, g]. The last equality holds since the interpolant
HI[f, g] agrees with f at the cosines of distances occurring in C. All that remains to show
is the second inequality: by Proposition 2.3, it will follow from the positive definiteness of
HI[f, g], which we will now demonstrate.

For any n < m, the degree of g,,+1(1)Q,(¢) is at most 2m. As C is a 2m-design, for
every fixed y € C there holds

1
J gl O)Qn(t)dv' P = L a1 (T, ))Qn(T(x, ¥))dor(x)

1
=1 > 8me1 (T, ¥)Qn((x, )
xeC
m+1
=i > cigmn(t)Qn(ti) =0,
i=1

since, by construction, g,,+; is annihilated on all the #;. The constants ¢; are given by, for
any fixed y € C,
ci={xeC|tlx,y) =1t}

Both g,,+1 and Q,,,+1 are monic, so we conclude that

gm+1(1) = Oms1(1) + yOm (),

for some y € R. By Proposition 3.4, subproducts of zeros of g,,+1, which we denote by g,
1 < k < m, can be expressed as linear combinations of Q,, with positive coefficients, and
therefore are positive definite.

According to the Newton’s formula (3.2), the Hermite interpolant of f can be expressed
as the sum of partial products of factors of g multiplied by the appropriate divided difference.
We will use this formula to show that H[f, g] is positive definite. Indeed, (3.2) gives

(3.5) H[f. gl =ft)+ > |gx®gr-1t) O [ f. gkgk-1] (1x) + ge (D Q | £, 83 ] (txs) |-
k=1
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where as usual, go = 1. Observe that the divided differences in the last equation are
nonnegative due to (3.1), as the function f is absolutely monotonic of degree 2m. Since
we have shown that each g is positive definite, Schur’s theorem implies that so are gi and
gk 8k-1, and it follows that H[ f, g] is positive definite as well.

(]

Before turning to the proof of Theorem 3.7 for tight designs of odd strength, recall

the definition of the adjacent polynomials Q,I;1 = Q;‘”l’ﬁ D forn > 0. They are monic,
orthogonal with respect to the measure
(@+1,8+1) 1 a+l B+1 Ya.p 2y 7. (@,B)
dvTTPT () = ——— A =) A+ )T dt = ———(1 = t)dv' P (1),
Ya+1,6+1 Ya+1,6+1

since the polynomials fo”ﬁ )(t) are orthogonal with respect to measure dv(®-5),

Proposition 3.9. Theorem 3.7 holds when M =2m — 1, m > 1.

Proof. Suppose that C C Q is a tight (2m — 1)-design. As discussed in Section 2.3 tight
designs of odd strength necessarily contain antipodal points, i.e. there exist x, y € C such
that #(x, y) =m and thus —1 € A(C) = {7(x,y)|x,y € C}. Let =1 =) < ... <ty <ty =1
be the values of 7(#(x, y)) for x, y € C, and set

wt) =] [ -1

J=2

and
(3.6) g(t) = w @) - 1).

As in the proof of Proposition 3.8, we need to verify the inequalities (3.4). Applying
Lemma 3.6 to H[ f, g] gives the first inequality; it remains to show positive-definiteness of
HLIf. gl.

For n < m — 1, the degree of (1 — t2)w(t)Qi;l(t) is at most 2m — 1, so forany y € C
there holds

1
”;;Z‘ I w00} Dy = ng — 2 ), Y)Y (x(x, y)der(x)
1
=1 DA =7, y)w(re, y)Oy (r(x, y))
xeC

m+1

1
=G z]] cj(1 = tHuw)Qy' () =0,
<

as (1 — t*)w(t) is annihilated on the cosines of distances from C. Because w(¢) is a degree
m — 1 monic polynomial, the above implies w(¢) = ernl_ ,(®). By Proposition 3.4, this also
means that for2 < k <m — 1, polynomials 1"[".=2(t — t;) are linear combinations of Q,ll’1 with
nonnegative coefficients. Since the cone of f]unctions with nonnegative Jacobi coefficients
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with respect to Q,I;I is closed under multiplication, polynomials Hf=2(t —t j)2 and (r —

tr) Hf;zl (t—t j)z also have nonnegative Jacobi coefficients in Q};l. Due to Lemma 3.3,
since t — t; =t + 1, we obtain that

k=1 k
(3.7) ar@) =@ -t —-1)[ [, and bp(0) = —1)[ [t —1;),
j=2 j=2

are linear combinations of Qﬁla"g ) with positive coefficients, that is, they are positive definite
onQforl <k <m.

We conclude by the same observations as in the proof of Proposition 3.8; in particular,
the positive definiteness of the Hermite interpolant H[ f, g] follows from the representation
(3.8)

HIf,g1(1)=f)+bi®)Q[f,b1] (12) + D |arx® Q[ f. ai] (tx) + i) Q [ f, bic] (txs1) |,
k=2

combined with the absolute monotonicity of f to degree 2m — 1, which implies positivity
of the divided differences Q. (]

3.5. Uniqueness of minimizers supported on tight designs

The proofs in the last section left the question of uniqueness of minimizers open. Are there
any other minimizers for p-frame energies when tight designs minimize and p is not an
even integer? The answer, as this section details, is no.

In general, whenever a tight design minimizes /¢ for some kernel f that is strictly
absolutely monotonic of degree M and which satisfies f™*D(r) < 0, 1 € (-1, 1), the energy
is minimized only by a tight design, although such designs are not necessarily unique up to
equivalence, as mentioned in Section 2.3. Before stating our result in full, we introduce a
couple standard lemmas (in slightly simplified form adapted to our needs).

Let Njs denote the cardinality of a tight M-design in Q or, more precisely, the linear
programming lower bound on the cardinality of M-designs [25, 32], which is well-defined
even if tight M-designs do not exist and coincides with the cardinality of a tight design
when they do. In fact, tight designs are often equivalently defined in terms of this quantity.

The first lemma, which can be found in [41, Theorem 4.4], states that tight designs have
the smallest cardinality among all weighted designs of given strength.

Lemma 3.10. Let (8, w) be a weighted M -design in Q. Then |B|> Ny and equality holds
if and only if w(x) = ﬁ forall x € B and B is a tight M-design.

The second lemma shows that tight designs have the largest cardinality among all sets
with a given number of distinct distances.

Lemma 3.11. Let B C Q be an m-distance set, i.e. | A(B)|=m. Then |B|< Ny, Moreover,
if B is antipodal (contains a pair of points diameter apart), then |B|< Noy—1.

This lemma was proved in [25] for the sphere and in [32] for projective spaces. We are
now ready for the uniqueness result.
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Theorem 3.12. Suppose that a tight M -design C minimizes the f-energy integral, for f
strictly absolutely monotonic of degree M and such that fM*D(r) <0, t € (-1, 1). Then
any minimizer of Iy must be a tight M-design.

Proof. The argument developed to prove Theorem 3.7 may be described concisely through
the following string of inequalities

Ir(u) 2 Ipir,o/() 2 Ipiy.e1(0) = Ipir,e(uc) = Ir(uc),

where g is of the form (3.3) or (3.6), as is appropriate. In order for I ¢(u) = Ir(uc) to hold,
the inequalities must be equalities. The first inequality can only be an equality in the case
that A(supp(w)) € A(C). This follows from the fact that H[ f, g](¢t) < f(¢) forall t ¢ A(C)
by the remainder formula from Lemma 3.6. In particular, this shows that |supp(u)| is finite.
Moreover, Lemma 3.11 then guarantees that [supp(u)|< Nas = |C|, since Ny is increasing
with M.

Now assume that the second inequality above is an equality. We first note that since f is
strictly absolutely monotonic of degree M, f(¢;) > 0, and the divided differences appearing
in (3.5) or (3.8) are all positive due to (3.1). Thus, H[f, g] is a linear combination (possibly
modulo a constant), with positive coefficients, of positive definite polynomials of degrees
1,....,M,so H[f,g]l = ap + Zﬁ1 a;jCj, wherea; > 0 for j > 1 and ag > 0. We see that u
must then be a weighted M-design, and due to Lemma 3.10, we have |[supp(u)|> Nps = |C|.

Therefore, |supp(u)|= Ny = |C|, and the second part of Lemma 3.10 implies that
supp(u) is a tight M-design and u has equal weights. ]

4. Optimality of the 600-cell

This section concerns only the p-frame kernels; it will be shown here that the 600-cell
minimizes the p-frame energy on S> for a certain range of p. The 600-cell is one of the six
4-dimensional convex regular polytopes; it has 600 tetrahedral faces, which explains the
origin of its name. When its 120 vertices are identified with unit quaternions, they give a
representation of the elements of a group known as the binary icosahedral group [57].

As discussed above (2.4), optimization of p-frame energy on the sphere S3 is equivalent
to optimization of the expression ff(RP3)2 f(t(x,y)) du(x)du(y) over measures  on RP3,
where the kernel f is given by

P
1+2)?
f@) = ( > ) .
We therefore assume for the rest of this section the underlying space to be RP*, and use the
corresponding Jacobi polynomials Cfl_l/ 21/ 2)(t). Following the approach of the previous
section, we will establish a sequence of inequalities similar to (3.4).

The 600-cell is only a projective 5-design and therefore not tight. The authors in [21],
motivated by an approach found in the paper [1], found means to prove universal optimality
of the 600-cell by using a higher degree interpolating polynomial. The 600-cell has the
notable property that 7th, 8th, and 9th degree harmonic averages over it vanish, although the
6th degree average does not. This allows for constructing a degree 8 polynomial ~ which is
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less than or equal to f, positive definite, and agrees with f at the distances appearing in the
600-cell, and which finally has the property that its 6th Jacobi coefficient vanishes.
For a polynomial A of the form,

8 —_
@1 h=> kPP o),

n=0
n#6

the coefficients %, can be uniquely determined as functions of p by setting

h(t;) =f (i), 1<i<5
B (t) =f'(t), 2<i<4,

where —1 =1; <t, < ... <t5 =1 are the values of 7(x, y) when vectors x, y vary over
the vertices Qf the 600-cell, see the proof of Theorem 4.2 below. It turns out that for all
p €[8,10], h,(p) =2 0when 0 < n < 8,n # 6. We apply a computer-assisted approach to
verify this positivity; specifically, using interval arithmetic, we compute values of Zn(p)
on a grid fine enough to guarantee that 4, (p) > 0. The details of this computation are
available in the auxiliary files of the arXiv submission of this paper. Even though the
computations performed are carried out in finite floating point precision, interval arithmetic
guarantees that the results of these computations lie in precisely defined intervals (using
libraries [34,50,68]). The computer-assisted argument yields the following.

Lemma 4.1. If p € [8,10] and the polynomial h is constructed as above, the coefficients
h in the Jacobi expansion (4.1) satisfy h a(p) = 0.

Using this fact we show optimality of the 600-cell on the range p € [8, 10].

Theorem 4.2. The 600-cell minimizes the p-frame energy for p € [8, 10] over Borel
probability measures on S* or RP3.

Proof. Let f(t) = (Ll)p/2 forsome 8 < p < 10,1 = —1,1p = =01 1= 1 1 = ¥,
and t5 = 1. Let h(z) be the 8th degree polynomial given by (4.1), such that h(z;) = p(t)
for 1 <i <5,and A'(¢;) = p’(t;) for 2 < i < 4. By Lemma 4.1, the coefficients #,, are
non-negative for p € [8, 10].

Let p(t) = (t* = 1) [T,(t — t;)* and h(t) = H[f, pI(t). Then we also have h(t) =
HIh, p](?). This gives
f<8 (f)

[ = h) = p) =

and

(8)
h() = h(t) = ( )

p(0) <0.

We thus have f(¢) — h(t) = f(¢) — @) + k(@) - h(t) > 0. Since h(?) is positive definite and
he = 0, for the 600-cell Cgpp, we have the following sequence of inequalities

Te(p) = In(p) = In(0) = In(cey) = 1 (Hcgn)s

implying that equally weighted vertices of Cgoo minimize p-frame energy. ]
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5. p-frame energies in non-compact spaces

In the previous sections, we used linear programs to bound energies on compact two-point
homogeneous spaces. This approach can be extended to p-frame energies in non-compact
spaces as well. Just as above, we consider F = R, C, or H. In this setting, we consider the
set of probability measures P (F¢) with the additional restriction

5.1) I xPdpt) = 1
]pd

for each u € P(F4). This normalization allows us to obtain a direct extension of above
results for the spherical case, and by scaling, solutions to more general problems can be
obtained from these results. A similar problem of finding maximizers for p-frame energies
for p < 2, subject to the condition that measures be isotropic, was investigated in [31].

For a potential functionf = f((x, y)) = f(2|(x, y)|?~1) we define the energy with
respect to measure u € P(FY) :

I(u) = I I J@(x, y)du(x)du(y).
Fd J d
We will be concerned in this section only with the case that f(7(x, y)) = |[{x, y)|?. The
Jacobi polynomials for the projective spaces FP4~!, as above, are denoted C,,,.
D o
Lemma 5.1. For p > 2, assume f(t) = (%) T2 h(t) = Y hmCo(t) forall t € [-1,1],
m=0
where Em > 0forallm > 0. Then Iy(u) > ngor all pu € P(F?) satisfying (5.1).

Proof. Since discrete masses are weak-* dense in P(F4), it is sufficient to prove the
N

inequality for them only. Let u take the form 1 = 3, X ;. x; € F¥ and set y; = % (Note,
=1 v

L
if x; is O then we can assign an arbitrary unit vector for y;). Then,

1 1 X 1
If(,u) N2 Z|<xl9xj |p_ _2 Z |p|x]|p|<yl’yj>|p_ N2 Z|x1|p|lepf(7(y”y]))
i,j=1 i,j=1 i,j=1

1 N 1 &~ N
~—5 2 il xP (i y ) = vl 20 20 Wil P 1P Con (T (i v )

ij=1 m=0  i,j=1

N
Forany m > 1, C,, is positive definite on FP4~!, so each sum 3 |x;|? Jx; 1P Con(T(yis ¥ )
i,j=1
is non-negative. Thus,

~ 1 N . 1 N
T5(w) = hogs D il PP Co(r(vin y)) = ho (ﬁ leil”) :
i=1

i,j=1
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Since p > 2,
=D ilP> =Dl
N = N

N
holds by Jensen’s inequality. The constraint 5.1 is equivalent to % > |xi|?= 1, and so
i=1

combining all inequalities, we complete the proof of the lemma. ]

Lemma 5.1 gives that any linear programming bounds for p-frame energies applicable to
the spherical/projective case will work in the non-compact setting as well. As a consequence
of this approach we obtain the following result.

Theorem 5.2. Let C be a set of arbitrary unit representatives of a tight projective M -design,
M > 2, in FP4" and f(t(x,y)) = |(x, y)|P with p € [2M —2,2M]. Then

1
=— S,
He = 1q >

xeC
is a minimizer of

Ir(p) = Ld L:d J(@(x, y)du(x)du(y)

over the set of probability measures on F¢ satisfying the constraint 5.1.

P
Proof. For the proof, we take f(¢) = (%) * hto be the interpolating polynomial H[ f, g]

used in the proof of Theorem 3.7 or & used in the proof of Theorem 4.2, and A*(x, y) =
|x|P |y|”h(‘r(ﬁ, ﬁ)) for all x, y € F4. We follow the same line of reasoning as before to
find

(5.2 Ir(p) 2 Ine () 2 In+ (o) = In=(ptc) = Iy(pc),

where o* is the uniform probability measure on the unit sphere in F¢ (and so projects to
the Haar measure on FP41).

All inequalities are verified in a similar manner as in the previous section, except for
I+ (1) = I+ (o). This part follows from Lemma 5.1 applied to " because I+ (™) = I(07)
is precisely hg for positive definite functions 4. ]

Note: A similar result may be derived in the same manner as above for C, a set of
arbitrary unit representatives of the 600-cell in RP3 and p € [8, 10], in light of Theorem
4.2.

6. Mixed volume inequalities
In this section we demonstrate an intriguing connection between the p-frame energy and

convex geometry. We begin by briefly recalling some of the basic notions from convex
geometry. See [35, Ch. 2] for a more thorough development.
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Let K be a convex body and ok (u) be the surface measure of K, that is, a measure
supported on the unit sphere S¢~!, satisfying

ok (B) = [{x € 0K, the outer unit normal to K at x belongs to B}|4-;

for all Borel sets B ¢ S4~!, where |-|4_; denotes the (d — 1)-dimensional Hausdorff measure.
For example, if K is a polytope with faces {K;}" | and normals {n;}" , ok is atomic with
mass |K;|4—1 at each n;,

m
ok = > |Kila-16n,,
i=1
and if K = B is the d-dimensional unit ball, then ox simply coincides with the standard

272

(unnormalized) uniform surface area measure o (B) = |B|4-1= nd_/z)o'(B)'

Recall that for a convex body, K ¢ R¥, the support function hi (u) of K takes the form

hi(u) = sup{u, v).
veK

Given two convex bodies K and L, and p > 1, define

|K +, eL|-|K]|

P ..
R

where K +), €L is the convex body with support function Ak, 1 (1) satisfying
his,er@)? = hxg @) + €hp ()’ .

Note that for L = B is the unit ball and p = 1, the above quantity is just the definition of
the surface area of K. In general, V,(K, L) is known as the L ,-mixed volume of K and L.
The following alternative integral representation for V,,(K, L) is known

1
V,(K,L) = EJ

hp ()P dog (w),

Sd
where dof (u) = hx () "P dok (u), so that in particular dog (1) = dog (u) .

Now, call a probability measure u supported on S?~! admissible, if it is symmetric
and not concentrated on a subspace. A classical result which follows from Minkowski’s
theorem, says that any admissible measure can be realized as the surface area measure of a
symmetric convex body; see more in [52, Ch. 7].

The projection body 11K of a convex body K is defined to be a body such that for each
ue st

hng () = |K|u*|,
that is, the support function of I1K equals the volume of the projection of K onto the
hyperplane orthogonal to u [17]. Since

1
(Kl = 5 L [(u, 0)]dor (),
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the identities
tieo=[ | Kol docdocw =2 [ K, dow
Sd—l Sd—l Sd‘l
=2J hnK(bt) dO'K(I/t) =2dV1(K,HK)
Sd*]

finally establish the connection between L;-mixed volumes and 1-frame energies.

Our main theorem, Theorem 1.1, shows that all minimizers of /};|» (1) over probability
measures are admissible when a corresponding tight design exists, as this measure is both
discrete and can be taken to be symmetric. From this, we obtain what appears to be a new
observation, namely the following:

Proposition 6.1. The minimum of the quantity

Vi(K,TIK)
|0K]?

over all symmetric convex bodies in R? is achieved when K is a cube.

Indeed, it is easy to see that, when K is a cube, the surface measure ok is equally
distributed on the vertices of a cross-polytope, which minimizes the p-frame energy for
p=1

One may also define LP-intersection bodies I1,,K [42,43] in a similar fashion and
obtain analogous relations for other values of p. Doing so allows one to infer similar
statements for V,(K,I1,K)/|0K |? for the several dimensions and ranges of p considered in
this manuscript (for which tight designs exist), as well as pose conjectures corresponding
to the numerically obtained minimizers. We anticipate, in particular, in accordance with
Conjecture 1.3, that whenever p is not an even integer, this quantity is always minimized
by a convex body which is polyhedral (with discrete surface measure).

7. Causal variational principle

We now turn to another application of the linear programming method. Define the kernel
(7.1) F(t) = F(t) == max{0,272(1 + 1) (2 — 7>(1 — 1)) }.

for 7 > 0. The minimization problem for the energy

(7.2) Ir(u) = ng ISZ F((x, y))du(x)du(y)

is known as the causal variational principle on the sphere and is connected to relativistic
quantum field theory. It is conjectured in [28] that there exist discrete minimizers for
7 > 1 and, moreover, that all the minimizers of (7.2) are discrete whenever 7 > V2. The
background on this problem can be found in [10,28].

Here we confirm this conjecture for two values of 7 > 0, for which we can show that
the cross-polytope (or orthoplex) and the icosahedron indeed minimize the energy, which
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was suggested by numerical experiments in [28]. The proofs are another application of the
linear programming framework. In this instance, Hermite interpolation is unavailable to us
as F is not differentiable on (-1, 1). However, since we are dealing with a single kernel,
instead of a class of them as in the previous section, we need only construct the correct
auxiliary function.

We address the cross-polytope first. When 7 = V2, we have

Fo(f) = max{0, 87> + 8¢},

3
(6ei + 6—ei )’
i=1

where {ej, €2, e3} is an orthonormal basis of R3, i.e. Veross IS @ measure whose mass is
equally concentrated in the vertices of a cross-polytope, we have the following:

and thus F;(0) = 0. Setting the measure

1
Veross = 6

Proposition 7.1. The measure v¢oss is a minimizer for the energy I 5 over P(S?).

Proof. The function
h(r) = 8¢% + 8r.

is positive definite on S? (hence, I, is minimized by o) and clearly satisfies h(t) < F ‘/E(t)
forallz € [-1,1], and h(-1) = F 5(=1) = 0, h(0) = F5(0) = 0, A(1) = F,;5(1) = 16, so that
I, (Veross) = Ir ﬁ(vcmss). Moreover, I,(07) = In(Veross), since the cross-polytope is a 3-design.

Therefore, for any measure y € P(S?),

IF\/Q(M) 2 In(u) = In(o) = In(Veross) = IFﬁ(Vcross)’

which finishes the proof. ]
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Let C c S? consist of the vertices of a regular icosahedron and let vicos = 1—12 Yixec Ox be
the uniform measure on the vertices of the icosahedron.

‘We now focus on the case of the icosahedron. Here we set 7 = so that F T(\L@) =0.

Proposition 7.2. The measure vicos minimizes the energy I, over P(S?) fort =, / «zfs_\ﬁ

Proof. The proof is almost identical to that of Proposition 7.1 except 4 is instead taken to
be

1 1-+5
—f+
8 32

5(5 — _
36-V3) \/g)t“ N 3V5-5 3,2
32 8 16

5-5 1 20+3V5
STy GO0 T

h(t) =

1 1
G0 + G0 + 75 Co0),

1
where Cj are the standard Legendre polynomials (i.e. the Gegenbauer polynomials C; ).
One may verify that & is positive definite and satisfies h(¢) < F(¢) for —1 <t < 1 with
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equality for ¢t € {£1/ 5, +1}, so that I}, (Vicos) = IF, (Vicos). Since the icosahedron is a

5-design, the same argument as in the proof of Proposition 7.1 finally shows that the
2v5

icosahedron minimizes the energy I, for 7> = R
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