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Optimal measures for 𝒑-frame energies on spheres

Dmitriy Bilyk, Alexey Glazyrin, Ryan Matzke, Josiah Park and Oleksandr
Vlasiuk

Abstract. We provide new answers about the distribution of mass on spheres so as to
minimize energies of pairwise interactions. We find optimal measures for the 𝑝-frame
energies, i.e. energies with the kernel given by the absolute value of the inner product
raised to a positive power 𝑝. Application of linear programming methods in the setting
of projective spaces allows for describing the minimizing measures in full in several
cases: we show optimality of tight designs and of the 600-cell for several ranges of
𝑝 in different dimensions. Our methods apply to a much broader class of potential
functions, namely, those which are absolutely monotonic up to a particular order.

1. Introduction

An intriguing natural phenomenon is the ubiquitous appearance of certain symmetric
structures and configurations as solutions to optimization problems. In a number of spaces,
highly symmetric configurations of points such as the vertices of the icosahedron on S2

or the minimal vectors of the Leech lattice Λ24 on S23 are optimal codes, a type of best
packing configuration [40]. First papers on spherical designs made important connections
between symmetry and optimality through pioneering work on linear programming bounds
[25]. Since these and new developments we now know several configurations, in addition
to being spherical designs and optimal codes, are also minimizers for a variety of harmonic
energies [1, 37, 38, 65, 66].

For a finite configuration of points on the sphere C ⊂ S𝑑−1 (also known as a code), the
discrete 𝑓 -potential energies are defined as

(1.1) 𝐸 𝑓 (C) =
1

|C|2
∑︁
𝑥,𝑦∈C

𝑓 (⟨𝑥, 𝑦⟩).

(The diagonal terms should be excluded if the kernel 𝑓 is singular at 1, i.e. when 𝑥 = 𝑦.)
Universally optimal point configurations, i.e. collections of points C minimizing the discrete
energies 𝐸 𝑓 among all point sets of fixed cardinality |C|, for all absolutely monotonic
functions 𝑓 on [−1, 1), have been discovered through the linear programming approach of
Cohn and Kumar in [21].
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In contrast to the above setting, in the present paper, rather than considering config-
urations of fixed cardinality, we focus on the problem of minimizing energies over all
Borel probability measures, discovering that surprisingly in many situations the minimizing
measures are discrete. For a kernel function 𝑓 ∈ 𝐶[−1, 1] and a Borel measure 𝜇 on S𝑑−1,
we define the energy integral as

(1.2) 𝐼 𝑓 (𝜇) =
∫
S𝑑−1

∫
S𝑑−1

𝑓 (⟨𝑥, 𝑦⟩)𝑑𝜇(𝑥)𝑑𝜇(𝑦).

One is naturally interested in minimizing these energies over 𝜇 ∈ P(S𝑑−1), the set of all
Borel probability measures on S𝑑−1, i.e. finding the equilibrium distribution of unit mass
under the interaction given by the potential function 𝑓 . This definition is compatible with
the discrete energy (1.1) in the sense that

(1.3) 𝐸 𝑓 (C) = 𝐼 𝑓
( 1
|C|

∑︁
𝑥∈C

𝛿𝑥

)
,

and we shall repeatedly abuse the notation when saying that a configuration C minimizes
the energy 𝐼 𝑓 , to mean that the corresponding measure in the right hand side of the above
equation minimizes.

While many classical examples, such as the Riesz energy, feature increasing kernels
𝑓 which give rise to energies with repulsive interactions (i.e. 𝑓 is largest when 𝑥 = 𝑦

and smallest when 𝑥 and 𝑦 are antipodal), we will concentrate on the attractive-repulsive
potentials, which decrease at first, but increase eventually, as functions of geodesic distance:
in other words, a pair of points will repel when close together, but attract when far apart.
Such potentials in R𝑑 appear naturally for self-assembly models in computational chemistry,
emerging collective behavior in population biology, and in many other scientific models
[5, 18, 19, 36, 48, 60, 64].

We will mostly consider attractive-repulsive potentials on the sphere which are symmet-
ric and orthogonalizing, so that 𝑓 (𝑡) = 𝑓 (|𝑡 |), 𝑓 (𝑡) is increasing for 𝑡 ∈ [0, 1], and 𝑓 takes
its minimal value at zero. For such potentials, the discrete energy for up to 𝑑 particles is
minimized by collections of orthogonal vectors. Since in this setting the energy does not
change by replacing any 𝑥 with 𝜆𝑥, where |𝜆 |= 1, its analysis naturally lends itself to the
projective space RP𝑑−1, where the potential becomes repulsive, and we adopt this approach
in the technical parts of the paper.

The main examples of the above potentials, which motivate the current paper, are of
the form 𝑓 (𝑡) = |𝑡 |𝑝 , 𝑝 > 0, which yield the 𝑝-frame energies:

(1.4) 𝐼 𝑓 (𝜇) =
∫
S𝑑−1
F

∫
S𝑑−1
F

|⟨𝑥, 𝑦⟩|𝑝𝑑𝜇(𝑥)𝑑𝜇(𝑦),

where S𝑑−1
F = {𝑥 ∈ F𝑑 | ∥𝑥∥= 1}. For F = R or C this type of energy has a rich history.

When 𝑝 = 2 and F = R, the discrete version of this energy, known simply as the
frame energy or frame potential, has been introduced by Benedetto and Fickus [11]: they
showed that global (as well as local) minimizers of this energy are precisely unit norm tight
frames. These configurations, which explain the nomenclature “frame energy”, play an
important role in signal processing and other branches of applied mathematics and behave
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like overcomplete orthonormal bases. A finite collection of vectors C ⊂ F𝑑 is a tight frame,
if for any 𝑥 ∈ F𝑑 , and some constant 𝐴 > 0, one has an analog of Parseval’s identity holding
for C,

(1.5)
∑︁
𝑦∈C

|⟨𝑥, 𝑦⟩|2 = 𝐴∥𝑥∥2.

These objects also minimize the continuous energy 𝐼 𝑓 for 𝑝 = 2, but there are also other
minimizers, such as the surface area, or Haar measure 𝜎 on S𝑑−1

F , and, more generally,
isotropic probability measures on the sphere, i.e. those measures for which∫

S𝑑−1
F

|⟨𝑥, 𝑦⟩|2𝑑𝜇(𝑦) =
1
𝑑
,

holds for all 𝑥 ∈ S𝑑−1
F .

When 𝑝 = 4, this energy plays an important role in connection to complex maximal
equiangular tight frames, also known as symmetric, informationally complete, positive
operator-valued measures (SIC-POVMs), i.e. unit norm tight frames in C𝑑 which satisfy
|⟨𝑥, 𝑦⟩|= const for 𝑥 ̸= 𝑦 ∈ C and |C|= 𝑑2 [49]. The existence of these objects is the subject
of Zauner’s conjecture (see [67]), and much of the numerical evidence for this conjecture
comes from the observation that they minimize the 4-frame energy among other energies,
as projective 2-designs, see e.g. [54]. Since we will later work with minimizers over the
skew field of quaternions, we mention that in that setting these equiangular tight frames are
conjectured [22] to not always exist. In the real case, the existence of analogous objects
(i.e. tight projective 2-designs) is also mysterious: they may exist only in dimensions
𝑑 = (2𝑚 − 1)2 − 2 [6, 7, 25, 39], but do not exist for infinitely many values of 𝑚 [9, 45].
In what follows, we demonstrate that when these objects do exist, they also minimize the
𝑝-frame energy for 2 ≤ 𝑝 ≤ 4.

More generally, for even integers 𝑝, these energies were considered in earlier works
[55, 59, 62], and it is known that for F = R or C projective 𝑘-designs are precisely the finite
configurations which minimize the 𝑝 = 2𝑘 energy. Unit norm tight frames are then in
fact just equivalent to projective 1-designs (see Section 2.3 for precise definitions), while
spherical 2-designs are exactly those unit norm tight frames, whose center of mass is at the
origin. These were constructively shown to exist for 𝑑 ≥ 2 precisely when the number of
points 𝑁 satisfies 𝑁 ≥ 𝑑 + 1 and 𝑁 ̸= 𝑑 + 2 when 𝑑 is odd [47]. The last restriction does not
apply to unit norm tight frames, and these exist for all 𝑁 ≥ 𝑑 [11]. Surface measure is also
known to be a minimizer for 𝑝 ∈ 2N: this can be seen either from the definition of 𝑘-designs,
or from the fact that the function 𝑓 is positive definite in this case (see Proposition 2.3),
and was originally proved in the real case in [55].

For 𝑝 not an even integer, optimal distributions of mass for 𝑝-frame energies are much
less studied, to the point of there only being one result on these minimizing measures
readily found in the literature. It states that distributing mass equally on the orthoplex
or cross-polytope, an orthonormal basis and its antipodes, gives the unique symmetric
minimizer, up to orthogonal transformations, for any energy with 𝑝 ∈ (0, 2) [27].

This result (contained in our Theorem 1.1 below as a special case) points to an interest-
ing distinction. When 𝑝 is even, the 𝑝-frame energy has a multitude of both continuous,
e.g. 𝜎, and discrete minimizers. However, this is not the case when 𝑝 is not an even integer:
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𝜎 is no longer a minimizer, since the function 𝑓 (𝑡) = |𝑡 |𝑝 is not positive definite, and so the
above result, along with our numerical studies, points to existence of discrete minimizers
only.

In this paper we give a first description of minimizers for several dimensions and some
ranges of 𝑝. The description relies on the notion of tight designs: designs of high strength,
but with few distinct pairwise distances, see Definition 2.5. We show that if there exists a
tight projective 𝑀-design (which in the real case is equivalent to a tight spherical (2𝑀 + 1)-
design), then it minimizes the 𝑝-frame energy for 𝑝 ∈ (2𝑀 − 2, 2𝑀). The 600-cell, despite
not being a tight design, minimizes the 𝑝-frame energy for 𝑝 ∈ (8, 10) among probability
measures on S3, as we show in Section 4.

Theorem 1.1. Let 𝑓 (𝑡) = |𝑡 |𝑝 , 𝑡 ∈ [−1, 1].

(i) If there exists a tight spherical (2𝑀 + 1)-design C ⊂ S𝑑−1, then the measure

𝜇 =
1
|C|

∑︁
𝑥∈C

𝛿𝑥

is a minimizer of the 𝑝-frame energy 𝐼 𝑓 with 2𝑀 − 2 ≤ 𝑝 ≤ 2𝑀 over 𝜇 ∈ P(S𝑑−1).

(ii) Let F = R, C or H. Assume that there exists a tight projective 𝑀-design C̃ ⊂ FP𝑑−1,
and let the code C ⊂ S𝑑−1

F consist of the representers of C̃ in S𝑑−1
F according to (2.1).

Then the measure
𝜇 =

1
|C|

∑︁
𝑥∈C

𝛿𝑥

is a minimizer of the 𝑝-frame energy 𝐼 𝑓 with 2𝑀 − 2 ≤ 𝑝 ≤ 2𝑀 over 𝜇 ∈ P(S𝑑−1
F ).

(iii) Let C ⊂ S3 denote the 600-cell. Then the measure

𝜇 =
1
|C|

∑︁
𝑥∈C

𝛿𝑥

is a minimizer of the 𝑝-frame energy 𝐼 𝑓 with 8 ≤ 𝑝 ≤ 10 over 𝜇 ∈ P(S3).

For parts (i)-(ii) of the above theorem we also prove a uniqueness statement: more
precisely, whenever the corresponding statements hold, and additionally 𝑝 is not an endpoint
of the interval, i.e. 𝑝 ∈ (2𝑀 − 2, 2𝑀), all minimizers have to be tight designs (although
not necessarily coinciding with C), in particular, they have to be discrete. Since tight
(2𝑀 + 1)-designs on the circle consist just of 2(𝑀 + 1) equally spaced points, the above
result fully characterizes the minimizers for 𝑑 = 2 (for both the sphere and real projective
space). See Section 3.5 for more details.

We observe that part (i) is essentially contained in part (ii) with F = R: indeed, odd-
strength tight spherical designs are necessarily symmetric [25], and by taking one point in
each antipodal pair one obtains a tight projective design (see Sections 2.3–2.4 for a more
extensive discussion).

Minimizing the continuous energy (1.4) over all measures and obtaining discrete min-
imizers allows us to make new conclusions about the minimizing configurations of the
discrete energies (1.1) for certain values of the cardinality 𝑁 . One directly obtains the
following corollary:
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Corollary 1.2. Let F, 𝑑, 𝑝, and C be as in any of the parts of Theorem 1.1, and let 𝑁 = 𝑘 |C|,
𝑘 ∈ N. Then the 𝑁-point discrete 𝑝-frame energy is minimized by the configuration C
repeated 𝑘 times, i.e.

(1.6) min
C′⊂S𝑑−1

F
|C′ |=𝑁

1
𝑁2

∑︁
𝑥,𝑦∈C′

|⟨𝑥, 𝑦⟩|𝑝 = 𝐼 |𝑡 |𝑝
( 1
|C|

∑︁
𝑥∈C

𝛿𝑥

)
.

Thus, for example, if 𝑁 is a multiple of 6, then repeated copies of a “half” of the icosahedron
minimize the 𝑁-point 𝑝-frame energy on S2 for 𝑝 ∈ [2, 4]. Some other results about the
minima of discrete 𝑝-frame energies have been obtained in [20].

The arguments proving Theorem 1.1 are strongly reminiscent of those appearing in [21]
and are based on the linear programming method which goes back to Delsarte and Yudin
[24,65]. Part (ii) of Theorem 1.1 is a consequence of a much more general Theorem 3.7.
The latter theorem, in fact, demonstrates that tight 𝑀-designs possess a certain universality
property: they minimize the energy for all strictly monotonic functions of degree exactly 𝑚
over all probability measures, see Section 3 for details.

The proof of optimality for the 600-cell is computer assisted and makes use of the fact
that the averages of spherical harmonics over the 600-cell vanish for a few orders above its
maximal strength as a spherical design – the same idea was used in the proof of universal
optimality of the 600-cell in [21], as well as earlier in [1, 2]. This allows us to construct a
collection of interpolating polynomials ℎ for each 𝑝 which have the desired properties of
lying below 𝑓 , agreeing with 𝑓 on the distances appearing in C, and finally being positive
definite, the last of which is checked using interval arithmetic. The details of the proof are
taken up in Section 4.

We collect all the necessary preliminary material in Section 2: Section 2.1 contains
the discussion of relevant properties of compact 2-point homogeneous connected spaces;
Section 2.2 explains the specifics of minimizing energy functionals over probability meas-
ures on such spaces; Section 2.3 introduces designs, and, in particular, tight designs; and
Section 2.4 describes the transference between energies on projective spaces and spheres,
which connects Theorem 3.7 to Theorem 1.1.

Theorem 1.1 leads us to believe that clustering of minimizers is a general phenomenon
when 𝑝 is not an even integer and we will present our experimental evidence in favor of
this conclusion in a separate publication [14].

Conjecture 1.3. In all dimensions 𝑑 ≥ 2 and for all 𝑝 > 0 such that 𝑝 ̸∈ 2N, the minimizing
measures of the 𝑝-frame energy (1.4) are discrete.

This conjecture is additionally supported by the fact that discreteness of minimizers
is known for certain attractive-repulsive potentials on R𝑑 [18] and has been conjectured
for some other potentials on the sphere, e.g. those appearing in [28], see also Section 7. It
is worth noting that in the classical paper [15], it was shown that for 𝑓 (𝑥, 𝑦) = −∥𝑥 − 𝑦∥𝛼
with 𝛼 > 2 and any compact domain Ω ⊂ R𝑑 , the energy minimizers are discrete and their
support consists of at most 𝑑 + 1 points (just two antipodal points if Ω = S𝑑−1). Moreover,
in [18] discreteness has been established for mildly repulsive potentials, i.e. those that
behave as −∥𝑥 − 𝑦∥𝛼 with 𝛼 > 2 when ∥𝑥 − 𝑦∥ is small. Observe that for the 𝑝-frame
potential, we have |⟨𝑥, 𝑦⟩|𝑝 ≈ 1 − 𝑝

2 ∥𝑥 − 𝑦∥
2 when 𝑥, 𝑦 ∈ S𝑑−1 are close, hence the 𝑝-frame
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energy falls into the endpoint case 𝛼 = 2, and, according to the discussion above, this case
is more subtle.

While we have yet to establish Conjecture 1.3 and prove discreteness, in our companion
paper [13] we show that on S𝑑−1, whenever 𝑝 is not even, the support of the measure
minimizing the 𝑝-frame potential necessarily has empty interior.

Section 5 extends some of our results to non-compact settings. In Section 6 we apply
the results of Theorem 1.1 to the problems of minimizing mixed volumes of convex bodies,
and in Section 7 we apply the methods of linear programming, similar to those employed
in Theorems 1.1 and 3.7, to the optimization of energies related to causal variational
principles, see [28].

We would like to point out that in many papers, the term 𝑝-frame potential is usually
used to denote the 𝑝-frame energy (1.4) or its discrete counterpart. We find the term
“energy” to be more appropriate in this context and reserve the term “potential” for the
kernel 𝑓 (𝑡) of the energy 𝐼 𝑓 .

2. Geometry and functions on 2-point homogeneous spaces

2.1. Two-point homogeneous spaces

For convenience, the above discussion mostly assumed the underlying space to be the unit
sphere S𝑑−1. This will no longer be the case, as our study concerns energy minimization
on a broader class of spaces. A metric space (Ω, 𝑑) is said to be two-point homogeneous, if
for every two pairs of points 𝑥1, 𝑥2 and 𝑦1, 𝑦2 such that 𝑑(𝑥1, 𝑥2) = 𝑑(𝑦1, 𝑦2) there exists an
isometry of Ω, mapping 𝑥𝑖 to 𝑦𝑖 , 𝑖 = 1, 2. It is known [61] that any such compact connected
space is either a real sphere S𝑑−1, a real projective space RP𝑑−1, a complex projective space
CP𝑑−1, a quaternionic projective space HP𝑑−1, or the Cayley projective plane OP2. Note
that it suffices to consider FP𝑑−1 for 𝑑 > 2 only, as FP1 is just SdimR F [4, p. 170], and so
will not be separately considered in what follows.

Below, Ω always refers to a compact connected 2-point homogeneous space, equipped
with the geodesic distance 𝜗, normalized to take values in [0, 𝜋]. We let 𝜎 denote the
unique probability measure invariant under the isometries of Ω.

The first three types of projective spaces {FP𝑑−1 : F =R,C,H} have a simple description:
they may be represented as the spaces of lines passing through the origin in F𝑑 ,

(2.1) 𝑥F = {𝑥𝜆 | 𝜆 ∈ F \ {0}}.

Observe that the isometry groups 𝑂(𝑑), 𝑈(𝑑), 𝑆𝑝(𝑑) of the corresponding vector spaces
F𝑑 act transitively on each space, and that the stabilizers of a line represented by 𝑥 ∈ F𝑑
are 𝑂(𝑑 − 1) ×𝑂(1),𝑈(𝑑 − 1) ×𝑈(1), and 𝑆𝑝(𝑑 − 1) × 𝑆𝑝(1), respectively. Thus one has
[63, p. 28] the following quotient representations:

RP𝑑−1 = 𝑂(𝑑)/𝑂(𝑑 − 1) ×𝑂(1),

CP𝑑−1 = 𝑈(𝑑)/𝑈(𝑑 − 1) ×𝑈(1),

HP𝑑−1 = 𝑆𝑝(𝑑)/𝑆𝑝(𝑑 − 1) × 𝑆𝑝(1),

where we write 𝑂(𝑑),𝑈(𝑑), 𝑆𝑝(𝑑) for the groups of matrices 𝑋 over the respective algebra,
satisfying 𝑋𝑋∗ = 𝐼.
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Using the identification (2.1), one can associate each element of FP𝑑−1 (F = R,C,H)
with a unit vector 𝑥 ∈ F𝑑 , ∥𝑥∥= 1, and we shall often abuse notation by doing so. This
gives, in addition to the Riemannian metric 𝜗, another metric, the chordal distance between
points 𝑥, 𝑦 ∈ Ω, defined by

𝜌(𝑥, 𝑦) =
√︃

1 − |⟨𝑥, 𝑦⟩|2,

where ⟨𝑥, 𝑦⟩ =
𝑑∑︁
𝑖=1

𝑥𝑖𝑦𝑖 is the standard inner product in F𝑑 . The chordal distance 𝜌(𝑥, 𝑦) is

related to the geodesic distance 𝜗(𝑥, 𝑦) by the equation

cos 𝜗(𝑥, 𝑦) = 1 − 2𝜌(𝑥, 𝑦)2 = 2|⟨𝑥, 𝑦⟩|2−1.

Since the algebra of octonions is not associative, the line model of (2.1) fails, and
instead a model given by Freudenthal [29] is used to describe OP𝑑−1. It is known [4] that
only two octonionic spaces exist: OP1 which is just S8, as noted above, and OP2 which can
be described as the subset of 3 × 3 Hermitian matrices Π over O, satisfying Π2 = Π and
Tr Π = 1 [4, 56]. We note that, while the definition of the 𝑝-frame energy does not extend
to OP2 (and thus Theorem 1.1 does not include this space), the more general Theorem 3.7
does apply to Ω = OP2.

One feature of spaces Ω that allows for the application of linear programming methods
is the existence of a decomposition of 𝐿2(Ω, 𝜎), the space of complex-valued square-
integrable functions on Ω:

𝐿2(Ω, 𝜎) =
⊕
𝑛≥0

𝑉𝑛,

where 𝑉𝑛 are finite-dimensional irreducible representations of the isometry group of Ω (see
[40]). Moreover, these are in correspondence with the eigenspaces of the Laplace–Beltrami
operator on Ω corresponding to the 𝑛-th eigenvalue in the increasing order. Let 𝑌𝑛,𝑘 ,
𝑘 = 1, . . . , dim𝑉𝑛, be an orthonormal basis in 𝑉𝑛. Because of the invariance of 𝑉𝑛 and
due to the two-point homogeneity of Ω, the reproducing kernel for 𝑉𝑛 only depends on the
distance 𝜗(𝑥, 𝑦) between points [59]. Furthermore, as a function of

𝜏(𝑥, 𝑦) := cos 𝜗(𝑥, 𝑦),

the reproducing kernel is a polynomial 𝐶𝑛 of degree 𝑛, which satisfies

(2.2) 𝐶𝑛(𝜏(𝑥, 𝑦)) =
1

dim𝑉𝑛

dim𝑉𝑛∑︁
𝑘=1

𝑌𝑛,𝑘(𝑥)𝑌𝑛,𝑘(𝑦).

Formula (2.2) is known as the addition formula, and shows that functions 𝐶𝑛 are positive
definite on Ω, that is, ∑︁

1≤𝑖, 𝑗≤𝑘
𝑐𝑖𝑐 𝑗𝐶𝑛(𝜏(𝑥𝑖 , 𝑥 𝑗 )) ≥ 0

for all coefficients 𝑐1, ..., 𝑐𝑘 ∈ C, and all 𝑥1, ..., 𝑥𝑘 ∈ Ω.
The polynomials 𝐶𝑛 given by (2.2) satisfy 𝐶𝑛(1) = 1 and are orthogonal with respect to

the probability measure

𝑑𝜈(𝛼,𝛽) =
1

𝛾𝛼,𝛽
(1 − 𝑡)𝛼(1 + 𝑡)𝛽𝑑𝑡,
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where 𝛼 = (𝑑 − 1) dimR(F)/2 − 1 and

(2.3) 𝛽 =

{
𝛼, if Ω = S𝑑−1;
dimR(F)/2 − 1, if Ω = FP𝑑−1,

and the normalization factor is given by

𝛾𝛼,𝛽 = 2𝛼+𝛽+1𝐵(𝛼 + 1, 𝛽 + 1),

where 𝐵 is the beta function. These polynomials, known as Jacobi polynomials (Gegen-
bauer polynomials in the special case when Ω = S𝑑−1), form an orthogonal basis in
𝐿2([−1, 1], 𝑑𝜈(𝛼,𝛽)); equivalently, the span of 𝐶𝑛(𝜏(𝑥, 𝑦)), 𝑛 ≥ 0, is dense in the sub-
set of 𝐿2(Ω ×Ω, 𝜎 ⊗ 𝜎) consisting of functions that depend only on the distance between
𝑥 and 𝑦.

This allows for expanding functions from 𝐿2([−1, 1], 𝑑𝜈(𝛼,𝛽)) in terms of 𝐶𝑛:

𝑓 (𝑡) =
∞∑︁
𝑛=0

𝑓̂𝑛𝐶𝑛(𝑡), where 𝑓̂𝑛 = dim𝑉𝑛

∫ 1

−1
𝑓 (𝑡)𝐶𝑛(𝑡) 𝑑𝜈(𝛼,𝛽)(𝑡).

As we have already done above, for a fixed space Ω we will not indicate the dependence
of polynomials 𝐶𝑛 = 𝐶(𝛼,𝛽)

𝑛 on the indices 𝛼, 𝛽. We refer to 𝑓̂𝑛 as the Jacobi coefficients
of the function 𝑓 ; the normalization 𝐶𝑛(1) = 1 used here is common in the coding theory
community [40, 58].

2.2. Energies on 2-point homogeneous spaces

For the space of probability measures P(Ω) supported on Ω, and for a lower semi-continuous
function 𝑓 : [−1, 1] → R ∪∞, the 𝑓 -energy integral is defined as the functional mapping
𝜇 to

𝐼 𝑓 (𝜇) =
∫
Ω

∫
Ω

𝑓 (𝜏(𝑥, 𝑦))𝑑𝜇(𝑥)𝑑𝜇(𝑦).

Observe that when Ω = S𝑑−1, we have 𝜏(𝑥, 𝑦) = cos𝜗(𝑥, 𝑦) = ⟨𝑥, 𝑦⟩ and the definition above
coincides with (1.2).

We start by introducing the notion of positive definite functions, which plays an import-
ant role in energy minimization and for the linear programming bounds we derive later.
Below 𝐶[−1, 1] = 𝐶R[−1, 1] denotes the space of continuous real valued functions on the
interval [−1, 1].

Definition 2.1. Let 𝑓 ∈ 𝐶[−1, 1]. We say that 𝑓 is positive definite on Ω if for any
𝑥1, ..., 𝑥𝑁 ∈ Ω the matrix [ 𝑓 (𝜏(𝑥𝑖 , 𝑥 𝑗 ))]𝑁𝑖, 𝑗=1 is positive semidefinite, i.e. for every collection
𝑐1, . . . , 𝑐𝑁 ∈ C we have ∑︁

1≤𝑖, 𝑗≤𝑁
𝑓 (𝜏(𝑥𝑖 , 𝑥 𝑗 ))𝑐𝑖𝑐 𝑗 ≥ 0.

We have already seen that the Jacobi polynomials 𝐶𝑛 are positive definite on Ω, and so
their positive linear combinations must also be. It is a classical fact that this implication
can be reversed:
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Proposition 2.2. [16,30,51] A function 𝑓 ∈ 𝐶[−1, 1] is positive definite on Ω if and only if
𝑓̂𝑛 ≥ 0 for all 𝑛 ≥ 0.

Next we show that positive definite functions 𝑓 give rise to 𝑓 -energy integrals which
are minimized over probability measures by the surface (or Haar) measure 𝜎 on Ω. This
result appears in a number of papers, see for instance [12, 23]. We adapt the proof given in
[12] to our purposes.

Proposition 2.3. Let 𝑓 ∈ 𝐶[−1, 1], 𝑓 (𝑡) =
∞∑
𝑛=0

𝑓̂𝑛𝐶𝑛(𝑡), and 𝜇 ∈ P(Ω). Then, the following

are equivalent:

(i) 𝑓̂𝑛 ≥ 0 for all 𝑛 ≥ 1,

(ii) the surface measure 𝜎 is a minimizer of 𝐼 𝑓 .

Moreover, 𝜎 is the unique minimizer of 𝐼 𝑓 if and only if 𝑓̂𝑛 > 0 for all 𝑛 ≥ 1.

To prove this statement we use the following lemma, generalizing the behavior of
Fourier expansions with positive coefficients [30,44] to Jacobi expansions with the same
property.

Lemma 2.4. Assume that 𝑓 ∈ 𝐶[−1, 1] has the Jacobi expansion 𝑓 (𝑡) =
∞∑
𝑛=0

𝑓̂𝑛𝐶𝑛(𝑡) with

𝑓̂𝑛 ≥ 0 for all 𝑛 ≥ 1. Then this expansion converges uniformly and absolutely to 𝑓 on
[−1, 1].

Proof of Proposition 2.3. We first show that 𝜎 is a minimizer of 𝐼 𝑓 . Assume that 𝑓̂𝑛 ≥ 0
for all 𝑛 ≥ 1. Then by the lemma above, the Fubini theorem, and the addition formula, we
have

𝐼 𝑓 (𝜇) =
∞∑︁
𝑛=0

𝑓̂𝑛

∫
Ω

∫
Ω

𝐶𝑛(𝜏(𝑥, 𝑦))𝑑𝜇(𝑥)𝑑𝜇(𝑦)

=
∞∑︁
𝑛=0

1
dim𝑉𝑛

dim𝑉𝑛∑︁
𝑘=1

𝑓̂𝑛

∫
Ω

∫
Ω

𝑌𝑛,𝑘(𝑥)𝑌𝑛,𝑘(𝑦)𝑑𝜇(𝑥)𝑑𝜇(𝑦)

= 𝑓̂0 +
1

dim𝑉𝑛

∞∑︁
𝑛=1

𝑏𝑛,𝜇 𝑓̂𝑛 ≥ 𝑓̂0 = 𝐼 𝑓 (𝜎).

The last inequality holds since 𝑏𝑛,𝜇 =
dim𝑉𝑛∑
𝑘=1

���∫
Ω
𝑌𝑛,𝑘(𝑥)𝑑𝜇(𝑥)

���2 ≥ 0. If 𝑓̂𝑛 > 0 for all 𝑛 ≥ 1,

then equality can be achieved above only if 𝜇 is orthogonal to all spaces 𝑉𝑛, 𝑛 ≥ 1, which
directly implies that 𝜇 = 𝜎.

Let us assume that for some 𝑚 ∈ N0, 𝑓̂𝑛 < 0. For a fixed point 𝑝 ∈ Ω, we see that
𝑌𝑛,1(𝑥) := 𝐶𝑛(𝜏(𝑥, 𝑝)) is in 𝑉𝑛 and real-valued. Set 𝑑𝜇(𝑥) = (1 + 𝜖𝑌𝑛,1(𝑥))𝑑𝜎(𝑥), where
𝜖 > 0 is sufficiently small so that (1 + 𝜖𝑌𝑛,1(𝑥)) ≥ 0 on Ω. Orthogonality and the addition
formula (or Funk-Hecke formula) give that for 𝑌 ∈ 𝑉𝑛,∫

Ω

𝑓 (𝜏(𝑥, 𝑦))𝑌 (𝑥)𝑑𝜎(𝑥) =
1

dim(𝑉𝑛)
𝑓̂𝑛𝑌 (𝑦) and

∫
Ω

𝑌 (𝑥)𝑑𝜎 = 0.
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Thus,

𝐼 𝑓 (𝜇) =
∫
Ω

∫
Ω

𝑓 (𝜏(𝑥, 𝑦))(1 + 𝜖𝑌𝑛,1(𝑥))(1 + 𝜖𝑌𝑛,1(𝑦))𝑑𝜎(𝑥)𝑑𝜎(𝑦)

= 𝐼 𝑓 (𝜎) +
1

dim(𝑉𝑛)

∫
Ω

𝜖2 𝑓̂𝑛𝑌
2
𝑛,1(𝑥)𝑑𝜎(𝑥) < 𝐼 𝑓 (𝜎),

implying that 𝜎 is not a minimizer for 𝐼 𝑓 . If 𝑓̂𝑛 = 0 for some 𝑛 ≥ 1, the same argument
shows that 𝐼 𝑓 (𝜇) = 𝐼 𝑓 (𝜎), i.e. 𝜎 is not the unique minimizer.

The 𝑝-frame energies correspond to taking Ω = FP𝑑−1 (F = R, C, or H) and 𝑓 of the
form

(2.4) 𝑓 (𝑡) =
(
1 + 𝑡

2

) 𝑝

2

,

because in this case, since 𝜏(𝑥, 𝑦) = cos 𝜗(𝑥, 𝑦) = 2|⟨𝑥, 𝑦⟩|2−1, we have

𝑓 (𝜏(𝑥, 𝑦)) = 𝑓 (2|⟨𝑥, 𝑦⟩|2−1) = |⟨𝑥, 𝑦⟩|𝑝 .

We shall now prove that, whenever 𝑝 is an even integer, these energies are minimized by
the uniform measure on Ω.

When 𝑝 = 2𝑘 and Ω = FP𝑑−1 (F = R, C, or H), we have that 𝑓 (𝑡) = 2−𝑘 · (1 + 𝑡)𝑘 is
a polynomial. It is standard to check that this polynomial is positive definite on Ω: this
could be done by checking that the coefficients in its Jacobi expansion are non-negative,
but it would be perhaps simpler to prove it as follows. Observe that, since 𝐶(𝛼,𝛽)

0 (𝑡) = 1 and
𝐶

(𝛼,𝛽)
1 (𝑡) = 𝛼−𝛽

2(𝛼+1) + 𝛼+𝛽+2
2(𝛼+1) · 𝑡, we have that

1 + 𝑡 =
2(𝛼 + 1)

(𝛼 + 𝛽 + 2)
𝐶

(𝛼,𝛽)
1 (𝑡) +

2(𝛽 + 1)
𝛼 + 𝛽 + 2

𝐶
(𝛼,𝛽)
0 (𝑡).

Since 𝛼 + 1 = 𝑑−1
2 · dimR(F) > 0 and 𝛽 + 1 = 1

2 · dimR(F) > 0, we see that the function 1 + 𝑡
is positive definite on Ω. The well known Schur’s theorem on Hadamard (elementwise)
products of positive semidefinite matrices implies that if 𝑔 and ℎ are positive definite
on Ω, then so is their product 𝑔ℎ, and, in particular, all integer powers 𝑔𝑛 are positive
definite. Hence, the function 𝑓 (𝑡) = 2−𝑘 · (1 + 𝑡)𝑘 is positive definite on Ω, and therefore 𝐼 𝑓
is minimized by the uniform surface measure 𝜎.

The minimal values of the 𝑝 = 2𝑘 energy may be expressed in terms of elementary
functions for each F. These constants, 𝑐F(𝑑, 𝑘), are given below

𝑐F(𝑑, 𝑘) =
1 · 3 · 5 . . . (2𝑘 − 1)

𝑑 · (𝑑 + 2) . . . (𝑑 + 2(𝑘 − 1))
, F = R,

𝑐F(𝑑, 𝑘) = 1/
(
𝑑 + 𝑘 − 1

𝑘

)
, F = C,

𝑐F(𝑑, 𝑘) = (𝑘 + 1)/
(
2𝑑 + 𝑘 − 1

𝑘

)
, F = H.
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When 𝑝 is not an even integer, the 𝑝-frame energies are not positive definite, due to the
appearance of negative terms in the Jacobi polynomial expansion of 𝑓 , hence 𝜎 does not
minimize the 𝑝-frame energy for 𝑝 ̸∈ 2N, see Lemma 6.2.2 in [46].

2.3. Designs

We now treat the topic of designs in the compact connected two-point homogeneous spaces
Ω. A finite, nonempty set (code) C ⊂ Ω is called an 𝑀-design if

(2.5)
1
|C|

∑︁
𝑥∈C

𝑝(𝑥) =
∫
Ω

𝑝(𝑥) 𝑑𝜎(𝑥)

holds for all polynomials 𝑝 of degree at most 𝑀 . A relaxation of the above identity allows
the configuration to be weighted, so that the equality

(2.6)
∑︁
𝑥∈C

𝜔𝑥 𝑝(𝑥) =
∫
Ω

𝑝(𝑥) 𝑑𝜎(𝑥),

holds for some weights {𝜔𝑥}𝑥∈C ⊂ R≥0, satisfying ∑
𝑥∈C 𝜔𝑥 = 1, and all polynomials 𝑝

of degree at most 𝑀. Such weighted formulas are called cubature formulas or weighted
designs. In both of the above equations, it is understood that polynomials 𝑝 may be
given explicitly as complex-valued functions which are polynomials in coordinates of F𝑑 ,
satisfying additionally 𝑝(𝛼𝑥) = 𝑝(𝑥), for |𝛼 |= 1, 𝛼 ∈ F, in the projective case.

The strength of a (weighted) design is the maximum value of 𝑀 for which identity (2.5)
(accordingly, (2.6)) holds. An 𝑀-design can be equivalently defined as a configuration
C ⊂ Ω, for which ∑︁

𝑥,𝑦∈C
𝐶𝑛(𝜏(𝑥, 𝑦)) = 0 for 1 ≤ 𝑛 ≤ 𝑀.

Equivalently, C is an 𝑀-design in Ω if and only if it satisfies∑︁
𝑥∈C

𝑌 (𝑥) = 0 for 𝑌 ∈
𝑀⊕
𝑛=1

𝑉𝑛.

Similar definitions can be given for weighted designs.
Linear programming bounds [25] imply exact constraints on the size of tight designs,

configurations which, in addition to being 𝑀-designs, have the smallest possible number of
pairwise distances between their elements, for a design of strength 𝑀 . The exact definition
may be given as follows.

Definition 2.5. A discrete set C ⊂ Ω is called a tight 𝑀-design if one of the following
conditions is satisfied.

(i) C is a design of strength 𝑀 = 2𝑚 − 1 and there are 𝑚 distances between its distinct
elements, including at least one pair diameter apart;

(ii) C is a design of strength 𝑀 = 2𝑚 and there are 𝑚 distances between its distinct
elements.
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Table 1 provides a list of known tight spherical designs (see, e.g., [21]), as well as the
600-cell, which is not a tight design, but will be of interest in Section 4. Each arrangement
labeled ‘kissing’ is the kissing configuration of a set. By centering non-overlapping
congruent spherical caps of maximal radius at each point in a given code, the resulting
points of tangency on a given cap form a spherical code in a lower dimensional space which
we call the kissing configuration for that set.

Tight spherical designs with 𝑑 ≥ 3 and 𝑀 ≥ 4 may only exist for 𝑀 = 4,5, and 7 with the
one exception of the spherical 11-design formed by the Leech lattice minimal vectors [6, 7].
The problem of finding tight spherical 5-designs is the same as that of finding maximal
equiangular tight frames, and it is known that existence of a tight spherical 5-design in S𝑑−1

is possible only for 𝑑 = 1, 2, 3 and for dimensions of the form 𝑑 = (2𝑘 + 1)2 − 2, where
𝑘 ≥ 1; see [6, 7, 25, 39] for details on how these conditions arise. A direct correspondence
with such spherical designs and regular graphs has long been recognized [53], and, in
connection, it is known that for infinitely many values of 𝑘 , a tight spherical 5-design cannot
exist in dimension 𝑑 = (2𝑘 + 1)2 − 2 [9, 45].

Table 1. A list of known tight spherical designs (with the 600-cell). Here 𝑀 denotes the strength of
the design, 𝑑 the dimension of the ambient space R𝑑 , and 𝑁 is the size of the design.

𝑑 𝑁 𝑀 Inner products Name

𝑑 2 1 ±1 two antipodal points
𝑑 𝑑 + 1 2 −1/𝑑, 1 regular simplex
𝑑 2𝑑 3 0,±1 cross-polytope
2 𝑁 𝑁 − 1 cos (2 𝑗𝜋/𝑁), 0 ≤ 𝑗 ≤ 𝑁/2 regular 𝑁-gon
3 12 5 ±1/

√
5,±1 icosahedron

4 120 11 0, (±1 ±
√

5)/4,±1/2,±1 600-cell
6 27 4 −1/2, 1/4, 1 Schläfli config
7 56 5 ±1/3,±1 kissing config for 𝐸8
8 240 7 0,±1/2,±1 𝐸8 root system
22 275 4 −1/4, 1/6, 1 McLaughlin config
23 552 5 ±1/5,±1 equiangular lines
23 4600 7 0,±1/3,±1 kissing config for Λ24
24 196560 11 0,± 1

4 ,±
1
2 ,±1 Leech lattice Λ24 minimal vectors

Table 2 lists all known tight projective designs (see [22]), except those for the spaces
FP1, which are congruent to real spheres. Identifying tight projective designs is simple
in the real setting. Tight spherical designs of odd strength must be centrally symmetric
[25], and by choosing points from each antipode in an odd tight design, one arrives at a
real projective tight design. Thus, all tight designs of odd strength in Table 1 correspond to
entries in Table 2.

For the other projective spaces, the vertices of a cross-polytope (i.e. an orthonormal
basis in the projective space) always provide a tight 1-design, as they did in RP𝑑−1. However,
unlike the real case, it is known that no tight 𝑡-designs exist in the complex or quaternionic
setting whenever 𝑀 ≥ 4 and 𝑑 ≥ 3 [8, 33, 44]. In the complex setting, tight 2-designs, also
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known as symmetric, informationally complete, positive operator-valued measures (SIC-
POVMs), are known to exist for 𝑑 ≤ 16, 𝑑 = 19, 24, 28, 35, 48, and numerical experiments
suggest that they may exist in every dimension [3, 49, 54, 67]. With exception of the (3, 15)
quaternionic and (3, 27) octonionic designs from [22], explicit constructions are readily
found for the other designs mentioned in Table 2 [32].

Table 2. A list of parameters for which projective tight designs are known to exist (besides designs in
FP1 for F ̸= R). Here 𝑀 denotes the strength of the design, 𝑑 the dimension of the ambient space F𝑑 ,
and 𝑁 is the size of the design. For SIC-POVMs, these configurations exist for certain values of 𝑑,
and may or may not exist for all values.

𝑑 𝑁 𝑀 |⟨𝑥, 𝑦⟩|2 F Name

𝑑 𝑑 + 1 1 0, 1 R cross-polytope/ONB
2 𝑁 𝑁 − 1 cos2(𝜋 𝑗/𝑁), 1 ≤ 𝑗 ≤ 𝑁 R regular 2𝑁-gon
3 6 2 1/5, 1 R icosahedron
7 28 2 1/9, 1 R kissing configuration for 𝐸8
8 120 3 0, 1/4, 1 R roots of 𝐸8 lattice
23 276 2 1/25, 1 R equiangular lines
23 2300 3 0, 1/9, 1 R kissing configuration for Λ24
24 98280 5 0, 1/16, 1/4, 1 R minimal vectors of Λ24

𝑑 𝑑 + 1 1 0, 1 C cross-polytope/ONB
𝑑 𝑑2 2 1/(𝑑 + 1), 1 C SIC-POVM
4 40 3 0, 1/3, 1 C Eisenstein structure on 𝐸8
6 126 3 0, 1/4, 1 C Eisenstein structure on 𝐾12

𝑑 𝑑 + 1 1 0, 1 H cross-polytope/ONB
3 15 2 2/7, 1 H equiangular lines
5 165 3 0, 1/4, 1 H quaternionic reflection group

3 𝑑 + 1 1 0, 1 O cross-polytope/ONB
3 27 2 2/13, 1 O equiangular lines
3 819 5 0, 1/4, 1/2, 1 O generalized hexagon

of order (2, 8)

A weaker property of a design is sharpness, which will not play a role here. The paper
[21] proves that sharp designs, and tight designs in particular, are minimizers for discrete
minimization problems with absolutely monotone kernels. A similar approach allows us to
show that tight designs are optimal for the continuous 𝑝-frame energy.

2.4. Antipodal symmetry

We observe that the energy 𝐼 𝑓 on the sphere S𝑑−1
F , F = R, C,H, for the kernels 𝑓 with

𝑓 (⟨𝑥, 𝑦⟩) = 𝑓 (|⟨𝑥, 𝑦⟩|) remains the same after averaging over unit multiples of vectors in
the support of 𝜇. Let𝑈(F) be the set of units in F,𝑈(F) = {𝑐 ∈ F : |𝑐 |= 1}, and 𝜂 be the
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uniform measure on𝑈(F). If one defines, for positive Borel measure 𝜇 on the sphere S𝑑−1
F

and Borel sets 𝐵 ⊂ S𝑑−1
F ,

𝜈(𝐵) =
1

𝜂(𝑈(F))

∫
𝑈(F)

𝜇(𝑐𝐵)𝑑𝜂(𝑐),

then 𝐼 𝑓 (𝜈) = 𝐼 𝑓 (𝜇) for potential functions 𝑓 as above. This is the primary reason it is natural
to consider projective spaces FP𝑑−1 as the optimization spaces for 𝑝-frame energies, as
opposed to the spheres, in the cases when the elements 𝑥 ∈ FP𝑑−1 may be represented by
unit vectors in F𝑑 .

This discussion shows that a minimizing measure on the sphere for 𝐼 𝑓 , with 𝑓 as above,
can be taken to be symmetric, and that the problem of minimizing over symmetric measures
on spheres is equivalent to minimizing energy over projective spaces. In particular, this
explains part (i) of Theorem 1.1, since tight spherical (2𝑀 + 1)-designs are necessarily
symmetric [25] and hence correspond to tight real projective 𝑀-designs.

3. Optimality of tight designs for kernels absolutely monotonic to
degree 𝑴

3.1. Linear programming

The main goal of this section is to show that for those dimensions and values of 𝑡 for which
tight designs exist, they are the global minimizers of the 𝑝-frame energies for intervals of 𝑝
between consecutive even integers. We will use linear programming bounds to this end.

The linear programming method provides bounds for optima in various optimization
problems, and its use is often aided by computational tools, where a problem is approxim-
ated by a finite-dimensional or discretized counterpart, then solved with a computer. It is
surprising that this simple method provides optimal bounds often. This technique applies
to all the 2-point homogeneous spaces Ω described above.

Our application of the method can be summed up in the following lemma, which is
a measure-theoretic counterpart of the linear programming bound of Delsarte and Yudin
[24, 65].

Lemma 3.1. Let ℎ ∈ 𝐶[−1, 1] be a positive-definite function, i.e. ℎ(𝑡) =
∞∑
𝑛=0

ℎ̂𝑛𝐶𝑛(𝑡) and

ℎ̂𝑛 ≥ 0 for all 𝑛 ≥ 0.

(i) Assume that ℎ(𝑡) ≤ 𝑓 (𝑡) for all 𝑡 ∈ [−1, 1], then for any 𝜇 ∈ P(Ω),

𝐼 𝑓 (𝜇) ≥ ℎ̂0 = 𝐼ℎ(𝜎).

(ii) Assume further that ℎ is a polynomial of degree 𝑘 and that there exists a 𝑘-design
C ⊂ Ω such that ℎ(𝑡) = 𝑓 (𝑡) for each 𝑡 ∈ {𝜏(𝑥, 𝑦) : 𝑥, 𝑦 ∈ C}. Then for any 𝜇 ∈ P(Ω),

𝐼 𝑓 (𝜇) ≥ 𝐼 𝑓

( 1
|C|

∑︁
𝑥∈C

𝛿𝑥

)
,

i.e. 𝐼 𝑓 is minimized by the uniform distribution on C.
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Proof. For the first part observe that

𝐼 𝑓 (𝜇) ≥ 𝐼ℎ(𝜇) ≥ 𝐼ℎ(𝜎) = ℎ̂0,

where the first inequality follows from the fact that 𝑓 ≥ ℎ, while the second one is due to
Proposition 2.3, since ℎ is positive definite.

For the second part, one can continue as follows

𝐼ℎ(𝜎) = 𝐼ℎ
( 1
|C|

∑︁
𝑥∈C

𝛿𝑥

)
= 𝐼 𝑓

( 1
|C|

∑︁
𝑥∈C

𝛿𝑥

)
.

The first equality follows from the fact that C is a 𝑘-design, and the second one from the
fact that 𝑓 and ℎ coincide on the set {𝜏(𝑥, 𝑦) : 𝑥, 𝑦 ∈ C}. Together with part (i) this proves
the statement in part (ii).

This lemma provides insights in two different ways for how the linear programming
method can be applied.

If a candidate C is available, one can apply part (ii) of Lemma 3.1 by constructing a
polynomial ℎ ≤ 𝑓 as a Hermite interpolant of the function 𝑓 at the points of {𝜏(𝑥, 𝑦) : 𝑥, 𝑦 ∈
C}. This reasoning, which lies behind the proof of Theorems 3.7 and 1.1, explains the
appearance of tight designs: indeed, the number of elements in the set of interpolation points
(i.e. distinct distances between the points of C) determines the degree of the interpolant ℎ –
hence one wants a design of high strength, but with few mutual distances.

The same reasoning as above applies to the emergence of sharp designs as universally
optimal sets in [21], and it also explains why this slightly weaker notion does not suffice for
our purposes: since we are working with general measures rather than point sets with fixed
cardinality, we cannot avoid interpolating at the point 𝑡 = 1, which requires a design of
higher strength. The main technical difficulty in this setting is proving positive definiteness
of the Hermite interpolating polynomial ℎ. We take this approach to Theorem 3.7 and carry
out the technicalities in Sections 3.2–3.4.

If a suitable candidate is not available, one can still rely on part (i) of Lemma 3.1
and attempt to optimize the value of the energy 𝐼ℎ(𝜎) over auxiliary positive definite
polynomials ℎ, obtaining a lower bound for the energy over all probability measures. If the
degree of an auxiliary function ℎ is bounded by 𝐷, we have 𝐷 + 1 non-negative variables
ℎ̂𝑖 , 0 ≤ 𝑖 ≤ 𝐷, and infinitely many linear constraints ℎ(𝑡) ≤ 𝑓 (𝑡) for all 𝑡 ∈ [−1, 1]. In order
to get the best possible lower bound, we need to maximize ℎ̂0 given these linear conditions.

3.2. Properties of orthogonal polynomials

Recall that, for fixed Ω, we write simply 𝐶𝑛(𝑡) = 𝐶(𝛼,𝛽)
𝑛 (𝑡) with 𝐶𝑛(1) = 1. In some of the

arguments in Section 3.4 we will instead use the monic polynomials proportional to 𝐶𝑛; we
therefore introduce notation 𝑄𝑛(𝑡) = 𝑄(𝛼,𝛽)

𝑛 (𝑡) for these Jacobi polynomials.
In this subsection we collect several results about orthogonal polynomials relevant

to the proof of our main theorem. Fix a space Ω, and let 𝛼 and 𝛽 be the corresponding
parameters of the associated Jacobi polynomials. According to Proposition 2.3, a function
being positive definite on Ω is equivalent to having positive coefficients in the Jacobi
expansion in terms 𝑄(𝛼,𝛽)

𝑛 .
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It will be useful to consider adjacent Jacobi polynomials, defined as one of the three
sequences 𝑄𝑘,𝑙𝑛 = 𝑄(𝛼+𝑘,𝛽+𝑙)

𝑛 with 𝑘, 𝑙 ∈ {0, 1}, 𝑘 + 𝑙 > 0. Specifically, we will need the
following corollary which comes out of representing 𝑄1,0

𝑛 through𝑄0,0
𝑛 [40, equation (3.4)]:

Proposition 3.2. Adjacent Jacobi polynomials 𝑄1,0
𝑛 are positive definite on Ω.

On the other hand, adjacent polynomials 𝑄1,1
𝑛 , defined as orthogonal with respect to the

measure (1 − 𝑡2) 𝑑𝜈(𝛼,𝛽), are not positive definite. The following property, a special case of
the strengthened Krein condition [41, Lemma 3.22], can serve as a substitute.

Lemma 3.3. (𝑡 + 1)𝑄1,1
𝑛 (𝑡) are positive definite on Ω for 𝑛 ≥ 0.

Proof. For all 𝑛 ∈ N0, (𝑡 + 1)𝑄1,1
𝑛 is orthogonal to all polynomials of degree less than 𝑛

with respect to the measure (1 − 𝑡)𝑑𝜈(𝛼,𝛽) = 𝑐𝛼,𝛽𝑑𝜈(𝛼+1,𝛽), so it can be expressed through
the orthogonal polynomials corresponding to 𝑑𝜈(𝛼+1,𝛽) as

(𝑡 + 1)𝑄1,1
𝑛 (𝑡) = 𝑄1,0

𝑛+1(𝑡) + 𝑏𝑄1,0
𝑛 (𝑡),

for some constant 𝑏. Since all the roots of 𝑄1,0
𝑛 lie in (−1, 1), sgn𝑄1,0

𝑛 (−1) = (−1)𝑛.
Substituting 𝑡 = −1 in the last equation gives 𝑄1,0

𝑛+1(−1) + 𝑏𝑄1,0
𝑛 (−1) = 0, and so 𝑏 ≥ 0. By

Proposition 3.2, each 𝑄1,0
𝑛 (𝑡) is positive definite, and thus (𝑡 + 1)𝑄1,1

𝑛 (𝑡) is also positive
definite.

Lastly, we will need the strict positive-definiteness of polynomials annihilated by subsets
of roots of 𝑝𝑛 + 𝛾𝑝𝑛−1. We recall the following result.

Proposition 3.4 ([21, Theorem 3.1]). Consider a sequence of orthogonal monic polynomi-
als 𝑝0(𝑡), 𝑝1(𝑡), 𝑝2(𝑡), . . ., such that deg 𝑝𝑘 = 𝑘 for all 𝑘 ∈ N0, and let 𝑡1 < . . . < 𝑡𝑛 be the
zeros of 𝑝𝑛 + 𝛾𝑝𝑛−1 for some fixed 𝛾. Then the polynomials

𝑘∏
𝑖=1

(𝑡 − 𝑡𝑖), 1 ≤ 𝑘 < 𝑛,

can be represented as a linear combination of 𝑝0(𝑡), 𝑝1(𝑡), . . . , 𝑝𝑛(𝑡) with positive coeffi-
cients.

3.3. Hermite interpolation

Let 𝑓 ∈ 𝐶𝐾 [𝑎, 𝑏], for some 𝐾 ∈ N0, and let a collection 𝑡1 < . . . < 𝑡𝑚 ⊂ [𝑎, 𝑏], as well as
positive integers 𝑘1, . . . , 𝑘𝑚 be given with

max{𝑘1, . . . , 𝑘𝑚} ≤ 𝐾 + 1.

There exists a polynomial 𝑝 of degree less than 𝐷 = ∑𝑚
𝑖=1 𝑘𝑖 , such that for 1 ≤ 𝑖 ≤ 𝑚 and

0 ≤ 𝑘 < 𝑘𝑖 ,
𝑝(𝑘)(𝑡𝑖) = 𝑓 (𝑘)(𝑡𝑖).

Such a 𝑝 is called the Hermite interpolating polynomial of 𝑓 ; it always exists and is unique
because the linear map that takes a polynomial 𝑝 of degree less than 𝐷 to

(𝑝(𝑡1), 𝑝′(𝑡1), . . . , 𝑝(𝑘1−1)(𝑡1), 𝑝(𝑡2), 𝑝′(𝑡2), . . . , 𝑝𝑘𝑚−1(𝑡𝑚))
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is bijective.
It is convenient to organize both the collection 𝑡1 < . . . < 𝑡𝑚 and the orders of derivatives

𝑘1, . . . , 𝑘𝑚 into a polynomial 𝑔(𝑡). Given such a polynomial

𝑔(𝑡) =
𝑚∏
𝑖=1

(𝑡 − 𝑡𝑖)𝑘𝑖 ,

where 𝐷 = deg(𝑔) ≥ 1, we write 𝐻 [ 𝑓 , 𝑔] for the interpolating polynomial of degree less
than 𝐷 that agrees with 𝑓 at each 𝑡𝑖 to the order 𝑘𝑖 . Similarly, we let

𝑄[ 𝑓 , 𝑔](𝑡) =
𝑓 (𝑡) − 𝐻 [ 𝑓 , 𝑔] (𝑡)

𝑔(𝑡)
,

be the divided difference associated with the polynomial 𝑔. Under the above hypotheses,
for every 𝑡 ∈ [𝑎, 𝑏] and a collection 𝑡1 < 𝑡2 < . . . < 𝑡𝑚 as above, there exists 𝜉 ∈ (𝑎, 𝑏) such
that min(𝑡, 𝑡1) < 𝜉 < max(𝑡, 𝑡𝑚), and

(3.1) 𝑄[ 𝑓 , 𝑔](𝑡) =
𝑓 (𝐷)(𝜉)
𝐷!

.

Enumerate the roots of 𝑔 with multiplicities in increasing order, and denote these by
𝑠 𝑗 , 1 ≤ 𝑗 ≤ 𝐷, where 𝑠 𝑗 ≤ 𝑠 𝑗+1. Let 𝑔𝑛 be the polynomial annihilated on the first 𝑛 elements
of the sequence 𝑠1, . . . , 𝑠𝐷:

𝑔𝑛(𝑡) =
𝑛∏
𝑗=1

(𝑡 − 𝑠 𝑗 ), 1 ≤ 𝑛 ≤ 𝐷.

The usual assignment of the empty product applies here: 𝑔0(𝑡) = 1.
By the Newton’s formula [26, Chapter 4.6–7], the Hermite interpolating polynomial

𝐻 [ 𝑓 , 𝑔] can be represented as

(3.2) 𝐻 [ 𝑓 , 𝑔] (𝑡) = 𝑓 (𝑠1) +
𝐷−1∑︁
𝑗=1

𝑔 𝑗 (𝑡)𝑄[ 𝑓 , 𝑔 𝑗 ](𝑠 𝑗+1).

The relevant property of the 𝑝-frame kernel
(
𝑠+1
2

) 𝑝/2
considered on a projective space

FP𝑑−1 (for F = R, C, H), is that its first several derivatives are nonnegative on (−1, 1),
followed by a negative one. Positivity of the derivatives implies, due to (3.1), that the
divided differences in formula (3.2) for the 𝑝-frame kernel are nonnegative. It will be
convenient to introduce notation for this number of nonnegative derivatives of a function.

Definition 3.5. Let 𝑓 ∈ 𝐶𝑀 (𝑎, 𝑏). We say that 𝑓 is absolutely monotonic of degree 𝑀 if
𝑓 (𝑘)(𝑡) ≥ 0 for 0 ≤ 𝑘 ≤ 𝑀 and 𝑡 ∈ (𝑎, 𝑏). If these derivatives are positive, we say that 𝐹 is
strictly absolutely monotonic of degree 𝑀 .

The usefulness of this new class of functions lies in that the Hermite interpolant of an
absolutely monotonic function 𝑓 of degree 𝑀 with (𝑀 + 1)st derivative negative, will stay
below 𝑓 , as shown in the following observation [65].
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Lemma 3.6. Let 𝑓 : [−1, 1] → R be absolutely monotonic of degree 𝑀 , and 𝑓 (𝑀+1)(𝑡) ≤ 0
for all 𝑡 ∈ (−1, 1). If the roots of a polynomial 𝑔 of degree 𝑀 + 1 are contained in [−1, 1],
and in addition 𝑔(𝑡) ≤ 0 for 𝑡 ∈ [−1, 1], then,

𝑓 (𝑡) ≥ 𝐻[ 𝑓 , 𝑔](𝑡), 𝑡 ∈ [−1, 1].

Proof. According to (3.1), there exists 𝜉 ∈ (−1, 1) such that min(𝑡, 𝑡0) < 𝜉 < max(𝑡, 𝑡𝑀 ),
where the roots of 𝑔 are 𝑡0 ≤ . . . ≤ 𝑡𝑀 , and

𝑓 (𝑡) − 𝐻[ 𝑓 , 𝑔](𝑡) =
𝑓 (𝑀+1)(𝜉)
(𝑀 + 1)!

𝑔(𝑡).

The expression on the right is nonnegative, so the conclusion of the lemma follows.

3.4. Optimality of tight designs

As above, Ω is a compact, connected two-point homogeneous space and 𝑄0, 𝑄1, 𝑄2, . . .
are the corresponding orthogonal polynomials. Recall that 𝑄𝑛 are orthogonal with respect
to the measure 𝑑𝜈(𝛼,𝛽) = 1

𝛾𝛼,𝛽
(1 − 𝑡)𝛼(1 + 𝑡)𝛽𝑑𝑡, where the parameters 𝛼, 𝛽 are chosen as

in Section 2.1. The main result of this section is the following.

Theorem 3.7. Let 𝑓 be absolutely monotonic of degree 𝑀 , with 𝑓 (𝑀+1)(𝑡) ≤ 0 for 𝑡 ∈ (−1,1).
Then for a tight 𝑀-design C,

𝜇C =
1
|C|

∑︁
𝑥∈C

𝛿𝑥

is a minimizer of

𝐼 𝑓 (𝜇) =
∫
Ω

∫
Ω

𝑓 (𝜏(𝑥, 𝑦)) 𝑑𝜇(𝑥)𝑑𝜇(𝑦)

over P(Ω), the set of probability measures on Ω.

First of all, we show that this statement implies part (ii) of Theorem 1.1.

Proof of part (ii) of Theorem 1.1. Recall that, according to (2.4), the 𝑝-frame energy on
S𝑑−1
F corresponds to the kernel 𝑓 (𝑡) = ( 1+𝑡

2 )
𝑝

2 in the projective setting Ω = FP𝑑−1. One
can easily check that 𝑓 ( ⌈𝑝/2⌉+1)(𝑡) ≤ 0, −1 < 𝑡 < 1, and all derivatives of smaller order
are nonnegative. Thus Theorem 3.7 applies with 𝑀 = ⌈𝑝/2⌉, i.e. tight projective 𝑀-
designs minimize 𝐼 𝑓 on FP𝑑−1 for 2𝑀 − 2 < 𝑝 ≤ 𝑀 (the case 𝑝 = 2𝑀 − 2 is easy, since
𝑓 is a positive definite polynomial, so 𝜎 is a minimizer and hence so are tight designs).
Transferring the problem back to the sphere S𝑑−1

F , as explained in Section 2.4, finishes the
proof of part (ii) of Theorem 1.1.

In what follows we give a proof of Theorem 3.7, splitting it into two separate cases,
depending on whether the design C contains two points separated by the diameter of Ω;
equivalently, depending on the parity of the strength 𝑀 of C.

Proposition 3.8. Theorem 3.7 holds when 𝑀 = 2𝑚, 𝑚 ≥ 1.
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Proof. Let 𝑡1 < . . . < 𝑡𝑚 < 𝑡𝑚+1 = 1 be the values of 𝜏(𝑥, 𝑦) = cos(𝜗(𝑥, 𝑦)) occurring in C.
Let further

𝑔𝑘(𝑡) =
𝑘∏
𝑖=1

(𝑡 − 𝑡𝑖), 1 ≤ 𝑘 ≤ 𝑚 + 1.

and

(3.3) 𝑔(𝑡) = 𝑔𝑚(𝑡) 𝑔𝑚+1(𝑡) = (𝑡 − 1)𝑔2
𝑚(𝑡).

To prove the statement of the theorem, we verify the following chain of inequalities, satisfied
for arbitrary 𝜇 ∈ P(Ω), similar to the proof of Lemma 3.1,

(3.4) 𝐼 𝑓 (𝜇) ≥ 𝐼𝐻[ 𝑓 ,𝑔](𝜇) ≥ 𝐼𝐻[ 𝑓 ,𝑔](𝜎) = 𝐼𝐻[ 𝑓 ,𝑔](𝜇C) = 𝐼 𝑓 (𝜇C).

Since 𝑔(𝑡) ≤ 0 for 𝑡 ∈ [−1, 1], Lemma 3.6 implies that 𝑓 (𝑡) ≥ 𝐻[ 𝑓 , 𝑔](𝑡), 𝑡 ∈ [−1, 1],
which gives the first inequality. The equality 𝐼𝐻[ 𝑓 ,𝑔](𝜎) = 𝐼𝐻[ 𝑓 ,𝑔](𝜇C) is satisfied since
C is a design of strength 2𝑚 ≥ deg𝐻[ 𝑓 , 𝑔]. The last equality holds since the interpolant
𝐻[ 𝑓 , 𝑔] agrees with 𝑓 at the cosines of distances occurring in C. All that remains to show
is the second inequality: by Proposition 2.3, it will follow from the positive definiteness of
𝐻[ 𝑓 , 𝑔], which we will now demonstrate.

For any 𝑛 < 𝑚, the degree of 𝑔𝑚+1(𝑡)𝑄𝑛(𝑡) is at most 2𝑚. As C is a 2𝑚-design, for
every fixed 𝑦 ∈ C there holds∫1

−1
𝑔𝑚+1(𝑡)𝑄𝑛(𝑡)𝑑𝜈(𝛼,𝛽) =

∫
Ω

𝑔𝑚+1(𝜏(𝑥, 𝑦))𝑄𝑛(𝜏(𝑥, 𝑦))𝑑𝜎(𝑥)

=
1
|C|

∑︁
𝑥∈C

𝑔𝑚+1(𝜏(𝑥, 𝑦))𝑄𝑛(𝜏(𝑥, 𝑦))

=
1
|C|

𝑚+1∑︁
𝑖=1

𝑐𝑖𝑔𝑚+1(𝑡𝑖)𝑄𝑛(𝑡𝑖) = 0,

since, by construction, 𝑔𝑚+1 is annihilated on all the 𝑡𝑖 . The constants 𝑐𝑖 are given by, for
any fixed 𝑦 ∈ C,

𝑐𝑖 = |{𝑥 ∈ C | 𝜏(𝑥, 𝑦) = 𝑡𝑖}|.

Both 𝑔𝑚+1 and 𝑄𝑚+1 are monic, so we conclude that

𝑔𝑚+1(𝑡) = 𝑄𝑚+1(𝑡) + 𝛾𝑄𝑚(𝑡),

for some 𝛾 ∈ R. By Proposition 3.4, subproducts of zeros of 𝑔𝑚+1, which we denote by 𝑔𝑘 ,
1 ≤ 𝑘 ≤ 𝑚, can be expressed as linear combinations of 𝑄𝑛 with positive coefficients, and
therefore are positive definite.

According to the Newton’s formula (3.2), the Hermite interpolant of 𝑓 can be expressed
as the sum of partial products of factors of 𝑔 multiplied by the appropriate divided difference.
We will use this formula to show that 𝐻[ 𝑓 , 𝑔] is positive definite. Indeed, (3.2) gives

(3.5) 𝐻 [ 𝑓 , 𝑔] (𝑡) = 𝑓 (𝑡1) +
𝑚∑︁
𝑘=1

(
𝑔𝑘(𝑡)𝑔𝑘−1(𝑡)𝑄 [ 𝑓 , 𝑔𝑘𝑔𝑘−1] (𝑡𝑘) + 𝑔2

𝑘(𝑡)𝑄
[
𝑓 , 𝑔2

𝑘

]
(𝑡𝑘+1)

)
,
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where as usual, 𝑔0 = 1. Observe that the divided differences in the last equation are
nonnegative due to (3.1), as the function 𝑓 is absolutely monotonic of degree 2𝑚. Since
we have shown that each 𝑔𝑘 is positive definite, Schur’s theorem implies that so are 𝑔2

𝑘
and

𝑔𝑘𝑔𝑘−1, and it follows that 𝐻[ 𝑓 , 𝑔] is positive definite as well.

Before turning to the proof of Theorem 3.7 for tight designs of odd strength, recall
the definition of the adjacent polynomials 𝑄1,1

𝑛 = 𝑄(𝛼+1,𝛽+1)
𝑛 for 𝑛 ≥ 0. They are monic,

orthogonal with respect to the measure

𝑑𝜈(𝛼+1,𝛽+1)(𝑡) =
1

𝛾𝛼+1,𝛽+1
(1 − 𝑡)𝛼+1(1 + 𝑡)𝛽+1𝑑𝑡 =

𝛾𝛼,𝛽

𝛾𝛼+1,𝛽+1
(1 − 𝑡2)𝑑𝜈(𝛼,𝛽)(𝑡),

since the polynomials 𝑄(𝛼,𝛽)
𝑛 (𝑡) are orthogonal with respect to measure 𝑑𝜈(𝛼,𝛽).

Proposition 3.9. Theorem 3.7 holds when 𝑀 = 2𝑚 − 1, 𝑚 ≥ 1.

Proof. Suppose that C ⊂ Ω is a tight (2𝑚 − 1)-design. As discussed in Section 2.3 tight
designs of odd strength necessarily contain antipodal points, i.e. there exist 𝑥, 𝑦 ∈ C such
that 𝜗(𝑥, 𝑦) = 𝜋 and thus −1 ∈ A(C) = {𝜏(𝑥, 𝑦)| 𝑥, 𝑦 ∈ C}. Let −1 = 𝑡1 < . . . < 𝑡𝑚 < 𝑡𝑚+1 = 1
be the values of 𝜏(𝜗(𝑥, 𝑦)) for 𝑥, 𝑦 ∈ C, and set

𝑤(𝑡) =
𝑚∏
𝑗=2

(𝑡 − 𝑡 𝑗 )

and

(3.6) 𝑔(𝑡) = 𝑤2(𝑡)(𝑡2 − 1).

As in the proof of Proposition 3.8, we need to verify the inequalities (3.4). Applying
Lemma 3.6 to 𝐻[ 𝑓 , 𝑔] gives the first inequality; it remains to show positive-definiteness of
𝐻[ 𝑓 , 𝑔].

For 𝑛 < 𝑚 − 1, the degree of (1 − 𝑡2)𝑤(𝑡)𝑄1,1
𝑛 (𝑡) is at most 2𝑚 − 1, so for any 𝑦 ∈ C

there holds

𝛾𝛼+1,𝛽+1

𝛾𝛼,𝛽

∫1

−1
𝑤(𝑡)𝑄1,1

𝑛 (𝑡)𝑑𝜈(𝛼+1,𝛽+1) =
∫
Ω

(1 − 𝜏2(𝑥, 𝑦))𝑤(𝜏(𝑥, 𝑦))𝑄1,1
𝑛 (𝜏(𝑥, 𝑦))𝑑𝜎(𝑥)

=
1
|C|

∑︁
𝑥∈C

(1 − 𝜏2(𝑥, 𝑦))𝑤(𝜏(𝑥, 𝑦))𝑄1,1
𝑛 (𝜏(𝑥, 𝑦))

=
1
|C|

𝑚+1∑︁
𝑗=1

𝑐 𝑗 (1 − 𝑡2𝑗 )𝑤(𝑡 𝑗 )𝑄1,1
𝑛 (𝑡 𝑗 ) = 0,

as (1 − 𝑡2)𝑤(𝑡) is annihilated on the cosines of distances from C. Because 𝑤(𝑡) is a degree
𝑚 − 1 monic polynomial, the above implies 𝑤(𝑡) = 𝑄1,1

𝑚−1(𝑡). By Proposition 3.4, this also
means that for 2 ≤ 𝑘 ≤ 𝑚 − 1, polynomials ∏𝑘

𝑗=2(𝑡 − 𝑡 𝑗 ) are linear combinations of𝑄1,1
𝑛 with

nonnegative coefficients. Since the cone of functions with nonnegative Jacobi coefficients
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with respect to 𝑄1,1
𝑛 is closed under multiplication, polynomials ∏𝑘

𝑗=2(𝑡 − 𝑡 𝑗)2 and (𝑡 −
𝑡𝑘)

∏𝑘−1
𝑗=2 (𝑡 − 𝑡 𝑗)2 also have nonnegative Jacobi coefficients in 𝑄1,1

𝑛 . Due to Lemma 3.3,
since 𝑡 − 𝑡1 = 𝑡 + 1, we obtain that

(3.7) 𝑎𝑘(𝑡) := (𝑡 − 𝑡1)(𝑡 − 𝑡𝑙)
𝑘−1∏
𝑗=2

(𝑡 − 𝑡 𝑗 )2 and 𝑏𝑘(𝑡) := (𝑡 − 𝑡1)
𝑘∏
𝑗=2

(𝑡 − 𝑡 𝑗 )2,

are linear combinations of𝑄(𝛼,𝛽)
𝑛 with positive coefficients, that is, they are positive definite

on Ω for 1 ≤ 𝑘 ≤ 𝑚.
We conclude by the same observations as in the proof of Proposition 3.8; in particular,

the positive definiteness of the Hermite interpolant 𝐻[ 𝑓 , 𝑔] follows from the representation
(3.8)

𝐻 [ 𝑓 , 𝑔] (𝑡) = 𝑓 (𝑡1) + 𝑏1(𝑡)𝑄 [ 𝑓 , 𝑏1] (𝑡2) +
𝑚∑︁
𝑘=2

(
𝑎𝑘(𝑡)𝑄 [ 𝑓 , 𝑎𝑘] (𝑡𝑘) + 𝑏𝑘(𝑡)𝑄 [ 𝑓 , 𝑏𝑘] (𝑡𝑘+1)

)
,

combined with the absolute monotonicity of 𝑓 to degree 2𝑚 − 1, which implies positivity
of the divided differences 𝑄.

3.5. Uniqueness of minimizers supported on tight designs

The proofs in the last section left the question of uniqueness of minimizers open. Are there
any other minimizers for 𝑝-frame energies when tight designs minimize and 𝑝 is not an
even integer? The answer, as this section details, is no.

In general, whenever a tight design minimizes 𝐼 𝑓 for some kernel 𝑓 that is strictly
absolutely monotonic of degree 𝑀 and which satisfies 𝑓 (𝑀+1)(𝑡) < 0, 𝑡 ∈ (−1, 1), the energy
is minimized only by a tight design, although such designs are not necessarily unique up to
equivalence, as mentioned in Section 2.3. Before stating our result in full, we introduce a
couple standard lemmas (in slightly simplified form adapted to our needs).

Let 𝑁𝑀 denote the cardinality of a tight 𝑀-design in Ω or, more precisely, the linear
programming lower bound on the cardinality of 𝑀-designs [25, 32], which is well-defined
even if tight 𝑀-designs do not exist and coincides with the cardinality of a tight design
when they do. In fact, tight designs are often equivalently defined in terms of this quantity.

The first lemma, which can be found in [41, Theorem 4.4], states that tight designs have
the smallest cardinality among all weighted designs of given strength.

Lemma 3.10. Let (B, 𝑤) be a weighted 𝑀-design in Ω. Then |B|≥ 𝑁𝑀 and equality holds
if and only if 𝑤(𝑥) = 1

|B | for all 𝑥 ∈ B and B is a tight 𝑀-design.

The second lemma shows that tight designs have the largest cardinality among all sets
with a given number of distinct distances.

Lemma 3.11. Let B ⊂ Ω be an 𝑚-distance set, i.e. |A(B)|= 𝑚. Then |B|≤ 𝑁2𝑚. Moreover,
if B is antipodal (contains a pair of points diameter apart), then |B|≤ 𝑁2𝑚−1.

This lemma was proved in [25] for the sphere and in [32] for projective spaces. We are
now ready for the uniqueness result.
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Theorem 3.12. Suppose that a tight 𝑀-design C minimizes the 𝑓 -energy integral, for 𝑓
strictly absolutely monotonic of degree 𝑀 and such that 𝑓 (𝑀+1)(𝑡) < 0, 𝑡 ∈ (−1, 1). Then
any minimizer of 𝐼 𝑓 must be a tight 𝑀-design.

Proof. The argument developed to prove Theorem 3.7 may be described concisely through
the following string of inequalities

𝐼 𝑓 (𝜇) ≥ 𝐼𝐻[ 𝑓 ,𝑔](𝜇) ≥ 𝐼𝐻[ 𝑓 ,𝑔](𝜎) = 𝐼𝐻[ 𝑓 ,𝑔](𝜇C) = 𝐼 𝑓 (𝜇C),

where 𝑔 is of the form (3.3) or (3.6), as is appropriate. In order for 𝐼 𝑓 (𝜇) = 𝐼 𝑓 (𝜇C) to hold,
the inequalities must be equalities. The first inequality can only be an equality in the case
that A(supp(𝜇)) ⊆ A(C). This follows from the fact that 𝐻[ 𝑓 , 𝑔](𝑡) < 𝑓 (𝑡) for all 𝑡 ̸∈ A(C)
by the remainder formula from Lemma 3.6. In particular, this shows that |supp(𝜇)| is finite.
Moreover, Lemma 3.11 then guarantees that |supp(𝜇)|≤ 𝑁𝑀 = |C|, since 𝑁𝑀 is increasing
with 𝑀 .

Now assume that the second inequality above is an equality. We first note that since 𝑓 is
strictly absolutely monotonic of degree 𝑀 , 𝑓 (𝑡1) ≥ 0, and the divided differences appearing
in (3.5) or (3.8) are all positive due to (3.1). Thus, 𝐻[ 𝑓 , 𝑔] is a linear combination (possibly
modulo a constant), with positive coefficients, of positive definite polynomials of degrees
1, ..., 𝑀 , so 𝐻[ 𝑓 , 𝑔] = 𝑎0 + ∑𝑀

𝑗=1 𝑎 𝑗𝐶 𝑗 , where 𝑎 𝑗 > 0 for 𝑗 > 1 and 𝑎0 ≥ 0. We see that 𝜇
must then be a weighted 𝑀-design, and due to Lemma 3.10, we have |supp(𝜇)|≥ 𝑁𝑀 = |C|.

Therefore, |supp(𝜇)|= 𝑁𝑀 = |C|, and the second part of Lemma 3.10 implies that
supp(𝜇) is a tight 𝑀-design and 𝜇 has equal weights.

4. Optimality of the 600-cell

This section concerns only the 𝑝-frame kernels; it will be shown here that the 600-cell
minimizes the 𝑝-frame energy on S3 for a certain range of 𝑝. The 600-cell is one of the six
4-dimensional convex regular polytopes; it has 600 tetrahedral faces, which explains the
origin of its name. When its 120 vertices are identified with unit quaternions, they give a
representation of the elements of a group known as the binary icosahedral group [57].

As discussed above (2.4), optimization of 𝑝-frame energy on the sphere S3 is equivalent
to optimization of the expression

∬
(RP3)2 𝑓 (𝜏(𝑥, 𝑦)) 𝑑𝜇(𝑥)𝑑𝜇(𝑦) over measures 𝜇 on RP3,

where the kernel 𝑓 is given by

𝑓 (𝑡) =
(
1 + 𝑡

2

) 𝑝

2

.

We therefore assume for the rest of this section the underlying space to be RP3, and use the
corresponding Jacobi polynomials 𝐶(−1/2,1/2)

𝑛 (𝑡). Following the approach of the previous
section, we will establish a sequence of inequalities similar to (3.4).

The 600-cell is only a projective 5-design and therefore not tight. The authors in [21],
motivated by an approach found in the paper [1], found means to prove universal optimality
of the 600-cell by using a higher degree interpolating polynomial. The 600-cell has the
notable property that 7th, 8th, and 9th degree harmonic averages over it vanish, although the
6th degree average does not. This allows for constructing a degree 8 polynomial ℎ which is
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less than or equal to 𝑓 , positive definite, and agrees with 𝑓 at the distances appearing in the
600-cell, and which finally has the property that its 6th Jacobi coefficient vanishes.

For a polynomial ℎ of the form,

(4.1) ℎ =
8∑︁
𝑛=0
𝑛 ̸=6

ℎ̂𝑛 𝐶
(1/2,−1/2)
𝑛 (𝑡),

the coefficients ℎ̂𝑛 can be uniquely determined as functions of 𝑝 by setting

ℎ(𝑡𝑖) = 𝑓 (𝑡𝑖), 1 ≤ 𝑖 ≤ 5
ℎ′(𝑡𝑖) = 𝑓 ′(𝑡𝑖), 2 ≤ 𝑖 ≤ 4,

where −1 = 𝑡1 < 𝑡2 < . . . < 𝑡5 = 1 are the values of 𝜏(𝑥, 𝑦) when vectors 𝑥, 𝑦 vary over
the vertices of the 600-cell, see the proof of Theorem 4.2 below. It turns out that for all
𝑝 ∈ [8, 10], ℎ̂𝑛(𝑝) ≥ 0 when 0 ≤ 𝑛 ≤ 8, 𝑛 ̸= 6. We apply a computer-assisted approach to
verify this positivity; specifically, using interval arithmetic, we compute values of ℎ̂𝑛(𝑝)
on a grid fine enough to guarantee that ℎ̂𝑛(𝑝) ≥ 0. The details of this computation are
available in the auxiliary files of the arXiv submission of this paper. Even though the
computations performed are carried out in finite floating point precision, interval arithmetic
guarantees that the results of these computations lie in precisely defined intervals (using
libraries [34, 50, 68]). The computer-assisted argument yields the following.

Lemma 4.1. If 𝑝 ∈ [8, 10] and the polynomial ℎ is constructed as above, the coefficients
ℎ̂𝑛 in the Jacobi expansion (4.1) satisfy ℎ̂𝑛(𝑝) ≥ 0.

Using this fact we show optimality of the 600-cell on the range 𝑝 ∈ [8, 10].

Theorem 4.2. The 600-cell minimizes the 𝑝-frame energy for 𝑝 ∈ [8, 10] over Borel
probability measures on S3 or RP3.

Proof. Let 𝑓 (𝑡) =
(
𝑡+1
2

) 𝑝/2
for some 8 < 𝑝 < 10, 𝑡1 = −1, 𝑡2 = −

√
5−1
4 , 𝑡3 = − 1

2 , 𝑡4 =
√

5−1
4 ,

and 𝑡5 = 1. Let ℎ(𝑡) be the 8th degree polynomial given by (4.1), such that ℎ(𝑡𝑖) = 𝑝(𝑡𝑖)
for 1 ≤ 𝑖 ≤ 5, and ℎ′(𝑡𝑖) = 𝑝′(𝑡𝑖) for 2 ≤ 𝑖 ≤ 4. By Lemma 4.1, the coefficients ℎ̂𝑛 are
non-negative for 𝑝 ∈ [8, 10].

Let 𝑝(𝑡) = (𝑡2 − 1) ∏4
𝑖=2(𝑡 − 𝑡𝑖)2 and ℎ̃(𝑡) = 𝐻[ 𝑓 , 𝑝](𝑡). Then we also have ℎ̃(𝑡) =

𝐻[ℎ, 𝑝](𝑡). This gives

𝑓 (𝑡) − ℎ̃(𝑡) =
𝑓 (8)(𝜉)

8!
𝑝(𝑡) ≥ 0,

and
ℎ(𝑡) − ℎ̃(𝑡) =

ℎ(8)(𝜈)
8!

𝑝(𝑡) ≤ 0.

We thus have 𝑓 (𝑡) − ℎ(𝑡) = 𝑓 (𝑡) − ℎ̃(𝑡) + ℎ̃(𝑡) − ℎ(𝑡) ≥ 0. Since ℎ(𝑡) is positive definite and
ℎ̂6 = 0, for the 600-cell C600, we have the following sequence of inequalities

𝐼 𝑓 (𝜇) ≥ 𝐼ℎ(𝜇) ≥ 𝐼ℎ(𝜎) = 𝐼ℎ(𝜇C600 ) = 𝐼 𝑓 (𝜇C600 ),

implying that equally weighted vertices of C600 minimize 𝑝-frame energy.
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5. 𝒑-frame energies in non-compact spaces

In the previous sections, we used linear programs to bound energies on compact two-point
homogeneous spaces. This approach can be extended to 𝑝-frame energies in non-compact
spaces as well. Just as above, we consider F = R,C, or H. In this setting, we consider the
set of probability measures P(F𝑑) with the additional restriction

(5.1)
∫
F𝑑
|𝑥 |2𝑑𝜇(𝑥) = 1

for each 𝜇 ∈ P(F𝑑). This normalization allows us to obtain a direct extension of above
results for the spherical case, and by scaling, solutions to more general problems can be
obtained from these results. A similar problem of finding maximizers for 𝑝-frame energies
for 𝑝 ≤ 2, subject to the condition that measures be isotropic, was investigated in [31].

For a potential function 𝑓 = 𝑓 (𝜏(𝑥, 𝑦)) = 𝑓 (2|⟨𝑥, 𝑦⟩|2−1) we define the energy with
respect to measure 𝜇 ∈ P(F𝑑) :

𝐼 𝑓 (𝜇) =
∫
F𝑑

∫
F𝑑
𝑓 (𝜏(𝑥, 𝑦))𝑑𝜇(𝑥)𝑑𝜇(𝑦).

We will be concerned in this section only with the case that 𝑓 (𝜏(𝑥, 𝑦)) = |⟨𝑥, 𝑦⟩|𝑝 . The
Jacobi polynomials for the projective spaces FP𝑑−1, as above, are denoted 𝐶𝑚.

Lemma 5.1. For 𝑝 ≥ 2, assume 𝑓 (𝑡) =
(
𝑡+1
2

) 𝑝

2 ≥ ℎ(𝑡) =
∞∑
𝑚=0

ℎ̂𝑚𝐶𝑚(𝑡) for all 𝑡 ∈ [−1, 1],

where ℎ̂𝑚 ≥ 0 for all 𝑚 ≥ 0. Then 𝐼 𝑓 (𝜇) ≥ ℎ̂0 for all 𝜇 ∈ P(F𝑑) satisfying (5.1).

Proof. Since discrete masses are weak-∗ dense in P(F𝑑), it is sufficient to prove the

inequality for them only. Let 𝜇 take the form 𝜇 = 1
𝑁

𝑁∑
𝑖=1
𝛿𝑥𝑖 , 𝑥𝑖 ∈ F𝑑 and set 𝑦𝑖 = 𝑥𝑖

|𝑥𝑖 | . (Note,

if 𝑥𝑖 is 0 then we can assign an arbitrary unit vector for 𝑦𝑖). Then,

𝐼 𝑓 (𝜇) =
1
𝑁2

𝑁∑︁
𝑖, 𝑗=1

|⟨𝑥𝑖 , 𝑥 𝑗⟩|𝑝=
1
𝑁2

𝑁∑︁
𝑖, 𝑗=1

|𝑥𝑖 |𝑝 |𝑥 𝑗 |𝑝 |⟨𝑦𝑖 , 𝑦 𝑗⟩|𝑝=
1
𝑁2

𝑁∑︁
𝑖, 𝑗=1

|𝑥𝑖 |𝑝 |𝑥 𝑗 |𝑝 𝑓 (𝜏(𝑦𝑖 , 𝑦 𝑗 ))

≥ 1
𝑁2

𝑁∑︁
𝑖, 𝑗=1

|𝑥𝑖 |𝑝 |𝑥 𝑗 |𝑝ℎ(𝜏(𝑦𝑖 , 𝑦 𝑗 )) =
1
𝑁2

∞∑︁
𝑚=0

ℎ̂𝑚

𝑁∑︁
𝑖, 𝑗=1

|𝑥𝑖 |𝑝 |𝑥 𝑗 |𝑝𝐶𝑚(𝜏(𝑦𝑖 , 𝑦 𝑗 )).

For any𝑚 ≥ 1,𝐶𝑚 is positive definite on FP𝑑−1, so each sum
𝑁∑
𝑖, 𝑗=1

|𝑥𝑖 |𝑝 |𝑥 𝑗 |𝑝𝐶𝑚(𝜏(𝑦𝑖 , 𝑦 𝑗 ))

is non-negative. Thus,

𝐼 𝑓 (𝜇) ≥ ℎ̂0
1
𝑁2

𝑁∑︁
𝑖, 𝑗=1

|𝑥𝑖 |𝑝 |𝑥 𝑗 |𝑝𝐶0(𝜏(𝑦𝑖 , 𝑦 𝑗 )) = ℎ̂0

(
1
𝑁

𝑁∑︁
𝑖=1

|𝑥𝑖 |𝑝
)2

.
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Since 𝑝 ≥ 2,

1
𝑁

𝑁∑︁
𝑖=1

|𝑥𝑖 |𝑝≥
(

1
𝑁

𝑁∑︁
𝑖=1

|𝑥𝑖 |2
) 𝑝

2

,

holds by Jensen’s inequality. The constraint 5.1 is equivalent to 1
𝑁

𝑁∑
𝑖=1

|𝑥𝑖 |2= 1, and so

combining all inequalities, we complete the proof of the lemma.

Lemma 5.1 gives that any linear programming bounds for 𝑝-frame energies applicable to
the spherical/projective case will work in the non-compact setting as well. As a consequence
of this approach we obtain the following result.

Theorem 5.2. Let C be a set of arbitrary unit representatives of a tight projective 𝑀-design,
𝑀 ≥ 2, in FP𝑑−1 and 𝑓 (𝜏(𝑥, 𝑦)) = |⟨𝑥, 𝑦⟩|𝑝 with 𝑝 ∈ [2𝑀 − 2, 2𝑀]. Then

𝜇C =
1
|C|

∑︁
𝑥∈C

𝛿𝑥

is a minimizer of

𝐼 𝑓 (𝜇) =
∫
F𝑑

∫
F𝑑
𝑓 (𝜏(𝑥, 𝑦))𝑑𝜇(𝑥)𝑑𝜇(𝑦)

over the set of probability measures on F𝑑 satisfying the constraint 5.1.

Proof. For the proof, we take 𝑓 (𝑡) =
(
𝑡+1
2

) 𝑝

2 , ℎ to be the interpolating polynomial 𝐻[ 𝑓 , 𝑔]
used in the proof of Theorem 3.7 or ℎ used in the proof of Theorem 4.2, and ℎ∗(𝑥, 𝑦) =
|𝑥 |𝑝 |𝑦 |𝑝ℎ(𝜏( 𝑥|𝑥 | ,

𝑦

|𝑦 | )) for all 𝑥, 𝑦 ∈ F𝑑 . We follow the same line of reasoning as before to
find

(5.2) 𝐼 𝑓 (𝜇) ≥ 𝐼ℎ∗ (𝜇) ≥ 𝐼ℎ∗ (𝜎∗) = 𝐼ℎ∗ (𝜇C) = 𝐼 𝑓 (𝜇C),

where 𝜎∗ is the uniform probability measure on the unit sphere in F𝑑 (and so projects to
the Haar measure on FP𝑑−1).

All inequalities are verified in a similar manner as in the previous section, except for
𝐼ℎ∗ (𝜇) ≥ 𝐼ℎ∗ (𝜎∗). This part follows from Lemma 5.1 applied to ℎ∗ because 𝐼ℎ∗ (𝜎∗) = 𝐼ℎ(𝜎)
is precisely ℎ̂0 for positive definite functions ℎ.

Note: A similar result may be derived in the same manner as above for C, a set of
arbitrary unit representatives of the 600-cell in RP3 and 𝑝 ∈ [8, 10], in light of Theorem
4.2.

6. Mixed volume inequalities

In this section we demonstrate an intriguing connection between the 𝑝-frame energy and
convex geometry. We begin by briefly recalling some of the basic notions from convex
geometry. See [35, Ch. 2] for a more thorough development.
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Let 𝐾 be a convex body and 𝜎𝐾 (𝑢) be the surface measure of 𝐾, that is, a measure
supported on the unit sphere S𝑑−1, satisfying

𝜎𝐾 (𝐵) = |{𝑥 ∈ 𝜕𝐾, the outer unit normal to 𝐾 at 𝑥 belongs to 𝐵}|𝑑−1

for all Borel sets 𝐵 ⊂ S𝑑−1, where |·|𝑑−1 denotes the (𝑑 − 1)-dimensional Hausdorff measure.
For example, if 𝐾 is a polytope with faces {𝐾𝑖}𝑚𝑖=1 and normals {𝑛𝑖}𝑚𝑖=1, 𝜎𝐾 is atomic with
mass |𝐾𝑖 |𝑑−1 at each 𝑛𝑖 ,

𝜎𝐾 =
𝑚∑︁
𝑖=1

|𝐾𝑖 |𝑑−1𝛿𝑛𝑖 ,

and if 𝐾 = B is the 𝑑-dimensional unit ball, then 𝜎𝐾 simply coincides with the standard
(unnormalized) uniform surface area measure 𝜎𝐾 (𝐵) = |𝐵|𝑑−1= 2𝜋𝑑/2

Γ(𝑑/2)𝜎(𝐵).
Recall that for a convex body, 𝐾 ⊂ R𝑑 , the support function ℎ𝐾 (𝑢) of 𝐾 takes the form

ℎ𝑘(𝑢) = sup
𝑣∈𝐾

⟨𝑢, 𝑣⟩.

Given two convex bodies 𝐾 and 𝐿, and 𝑝 ≥ 1, define

𝑉𝑝(𝐾, 𝐿) =
𝑝

𝑑
lim
𝜖→0

|𝐾 +𝑝 𝜖𝐿 |−|𝐾 |
𝜖

,

where 𝐾 +𝑝 𝜖𝐿 is the convex body with support function ℎ𝐾+𝑝 𝜖 𝐿(𝑢) satisfying

ℎ𝐾+𝑝 𝜖 𝐿(𝑢)𝑝 = ℎ𝐾 (𝑢)𝑝 + 𝜖ℎ𝐿(𝑢)𝑝 .

Note that for 𝐿 = B𝑑 is the unit ball and 𝑝 = 1, the above quantity is just the definition of
the surface area of 𝐾 . In general, 𝑉𝑝(𝐾, 𝐿) is known as the 𝐿𝑝-mixed volume of 𝐾 and 𝐿.
The following alternative integral representation for 𝑉𝑝(𝐾, 𝐿) is known

𝑉𝑝(𝐾, 𝐿) =
1
𝑑

∫
S𝑑−1

ℎ𝐿(𝑢)𝑝𝑑𝜎𝑝
𝐾

(𝑢),

where 𝑑𝜎𝑝
𝐾

(𝑢) = ℎ𝐾 (𝑢)1−𝑝𝑑𝜎𝐾 (𝑢), so that in particular 𝑑𝜎1
𝐾

(𝑢) = 𝑑𝜎𝐾 (𝑢) .

Now, call a probability measure 𝜇 supported on S𝑑−1 admissible, if it is symmetric
and not concentrated on a subspace. A classical result which follows from Minkowski’s
theorem, says that any admissible measure can be realized as the surface area measure of a
symmetric convex body; see more in [52, Ch. 7].

The projection body Π𝐾 of a convex body 𝐾 is defined to be a body such that for each
𝑢 ∈ S𝑑−1

ℎΠ𝐾 (𝑢) =
��𝐾 |𝑢⊥��

𝑑−1 ,

that is, the support function of Π𝐾 equals the volume of the projection of 𝐾 onto the
hyperplane orthogonal to 𝑢 [17]. Since��𝐾 |𝑢⊥��

𝑑−1 =
1
2

∫
S𝑑−1

|⟨𝑢, 𝑣⟩|𝑑𝜎𝐾 (𝑣),
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the identities

𝐼 |𝑡 |(𝜎𝐾 ) =
∫
S𝑑−1

∫
S𝑑−1

|⟨𝑢, 𝑣⟩| 𝑑𝜎𝐾 (𝑢)𝑑𝜎𝐾 (𝑣) = 2
∫
S𝑑−1

��𝐾 |𝑢⊥��
𝑑−1 𝑑𝜎𝐾 (𝑢)

= 2
∫
S𝑑−1

ℎΠ𝐾 (𝑢) 𝑑𝜎𝐾 (𝑢) = 2𝑑 𝑉1(𝐾,Π𝐾)

finally establish the connection between 𝐿1-mixed volumes and 1-frame energies.
Our main theorem, Theorem 1.1, shows that all minimizers of 𝐼 |𝑡 |𝑝 (𝜇) over probability

measures are admissible when a corresponding tight design exists, as this measure is both
discrete and can be taken to be symmetric. From this, we obtain what appears to be a new
observation, namely the following:

Proposition 6.1. The minimum of the quantity

𝑉1(𝐾,Π𝐾)
|𝜕𝐾 |2

over all symmetric convex bodies in R𝑑 is achieved when 𝐾 is a cube.

Indeed, it is easy to see that, when 𝐾 is a cube, the surface measure 𝜎𝐾 is equally
distributed on the vertices of a cross-polytope, which minimizes the 𝑝-frame energy for
𝑝 = 1.

One may also define 𝐿 𝑝-intersection bodies Π𝑝𝐾 [42, 43] in a similar fashion and
obtain analogous relations for other values of 𝑝. Doing so allows one to infer similar
statements for 𝑉𝑝(𝐾,Π𝑝𝐾)/|𝜕𝐾 |2 for the several dimensions and ranges of 𝑝 considered in
this manuscript (for which tight designs exist), as well as pose conjectures corresponding
to the numerically obtained minimizers. We anticipate, in particular, in accordance with
Conjecture 1.3, that whenever 𝑝 is not an even integer, this quantity is always minimized
by a convex body which is polyhedral (with discrete surface measure).

7. Causal variational principle

We now turn to another application of the linear programming method. Define the kernel

(7.1) 𝐹(𝑡) = 𝐹𝜏(𝑡) := max{0, 2𝜏2 (1 + 𝑡) (2 − 𝜏2(1 − 𝑡))}.

for 𝜏 > 0. The minimization problem for the energy

(7.2) 𝐼𝐹(𝜇) =
∫
S2

∫
S2
𝐹(⟨𝑥, 𝑦⟩)𝑑𝜇(𝑥)𝑑𝜇(𝑦)

is known as the causal variational principle on the sphere and is connected to relativistic
quantum field theory. It is conjectured in [28] that there exist discrete minimizers for
𝜏 ≥ 1 and, moreover, that all the minimizers of (7.2) are discrete whenever 𝜏 >

√
2. The

background on this problem can be found in [10, 28].
Here we confirm this conjecture for two values of 𝜏 > 0, for which we can show that

the cross-polytope (or orthoplex) and the icosahedron indeed minimize the energy, which
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was suggested by numerical experiments in [28]. The proofs are another application of the
linear programming framework. In this instance, Hermite interpolation is unavailable to us
as 𝐹 is not differentiable on (−1, 1). However, since we are dealing with a single kernel,
instead of a class of them as in the previous section, we need only construct the correct
auxiliary function.

We address the cross-polytope first. When 𝜏 =
√

2, we have

𝐹𝜏(𝑡) = max{0, 8𝑡2 + 8𝑡},

and thus 𝐹𝜏(0) = 0. Setting the measure

𝜈cross =
1
6

3∑︁
𝑖=1

(
𝛿𝑒𝑖 + 𝛿−𝑒𝑖

)
,

where {𝑒1, 𝑒2, 𝑒3} is an orthonormal basis of R3, i.e. 𝜈cross is a measure whose mass is
equally concentrated in the vertices of a cross-polytope, we have the following:

Proposition 7.1. The measure 𝜈cross is a minimizer for the energy 𝐼𝐹√2
over P(S2) .

Proof. The function
ℎ(𝑡) = 8𝑡2 + 8𝑡.

is positive definite on S2 (hence, 𝐼ℎ is minimized by 𝜎) and clearly satisfies ℎ(𝑡) ≤ 𝐹√2(𝑡)
for all 𝑡 ∈ [−1, 1], and ℎ(−1) = 𝐹√2(−1) = 0 , ℎ(0) = 𝐹√2(0) = 0, ℎ(1) = 𝐹√2(1) = 16, so that
𝐼ℎ(𝜈cross) = 𝐼𝐹√2

(𝜈cross). Moreover, 𝐼ℎ(𝜎) = 𝐼ℎ(𝜈cross), since the cross-polytope is a 3-design.
Therefore, for any measure 𝜇 ∈ P(S2),

𝐼𝐹√2
(𝜇) ≥ 𝐼ℎ(𝜇) ≥ 𝐼ℎ(𝜎) = 𝐼ℎ(𝜈cross) = 𝐼𝐹√2

(𝜈cross),

which finishes the proof.

We now focus on the case of the icosahedron. Here we set 𝜏 =
√︂

2
√

5√
5−1

so that 𝐹𝜏( 1√
5
) = 0.

Let C ⊂ S2 consist of the vertices of a regular icosahedron and let 𝜈icos = 1
12

∑
𝑥∈C 𝛿𝑥 be

the uniform measure on the vertices of the icosahedron.

Proposition 7.2. The measure 𝜈icos minimizes the energy 𝐼𝐹𝜏
over P(S2) for 𝜏 =

√︂
2
√

5√
5−1

.

Proof. The proof is almost identical to that of Proposition 7.1 except ℎ is instead taken to
be

ℎ(𝑡) =
5(5 −

√
5)

32
𝑡4 +

5
8
𝑡3 +

3
√

5 − 5
16

𝑡2 − 1
8
𝑡 +

1 −
√

5
32

=
5 −

√
5

28
𝐶4(𝑡) +

1
4
𝐶3(𝑡) +

20 + 3
√

5
84

𝐶2(𝑡) +
1
4
𝐶1(𝑡) +

1
12
𝐶0(𝑡),

where 𝐶𝑘 are the standard Legendre polynomials (i.e. the Gegenbauer polynomials 𝐶
1
2
𝑘

).
One may verify that ℎ is positive definite and satisfies ℎ(𝑡) ≤ 𝐹(𝑡) for −1 ≤ 𝑡 ≤ 1 with
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equality for 𝑡 ∈ {±1/
√

5, ±1}, so that 𝐼ℎ(𝜈icos) = 𝐼𝐹𝜏
(𝜈icos). Since the icosahedron is a

5-design, the same argument as in the proof of Proposition 7.1 finally shows that the
icosahedron minimizes the energy 𝐼𝐹𝜏

for 𝜏2 = 2
√

5√
5−1

.
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