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We establish several useful estimates for a non-conforming 2-norm posed on piecewise linear surface

triangulations with boundary, with the main result being a Poincaré inequality. We also obtain equiva-

lence of the non-conforming 2-norm posed on the true surface with the norm posed on a piecewise linear

approximation. Moreover, we allow for free boundary conditions. The true surface is assumed to be C2,1

when free conditions are present; otherwise, C2 is sufficient. The framework uses tools from differential

geometry and the closest point map (see Dziuk (1988)) for approximating the full surface Hessian op-

erator. We also present a novel way of applying the closest point map when dealing with surfaces with

boundary. Connections with surface finite element methods for fourth order problems are also noted.

Keywords: surface Hessian ; surfaces with boundary ; mesh-dependent norms ; non-conforming method;

surface finite elements.

1. Introduction

The main goal of this paper is to derive a Poincaré inequality for a mesh dependent H2 norm on piece-

wise linear surfaces with boundary whether or not free boundary conditions are present. The primary

results here are Theorems 4.2 and 4.3, which provide crucial estimates for analyzing finite element

methods (FEMs) for fourth order problems on surfaces, e.g. the FEM in Walker (2020) for the surface

Kirchhoff plate problem. Many scientific and engineering problems involve elliptic partial differential

equations (PDEs) on surfaces, e.g. surface tension Barrett et al. (2015); Gerbeau & Lelièvre (2009);

Walker et al. (2009), surface diffusion Bänsch et al. (2005); Smereka (2003), solidification Barrett et al.

(2010); Davis & Walker (2015, 2017), vesicles Du et al. (2005, 2004); Zhong-can & Helfrich (1989);

Dziuk (2008); Bonito et al. (2010); Barrett et al. (2016), and other types of diffusive processes Elliott &

Ranner (2015); Elliott & Stinner (2010); Elliott et al. (2012). Poincaré inequalities are a necessary tool

in analyzing almost any elliptic PDE.

In particular, fourth order elliptic operators appear in some of these applications, e.g. vesicles Bonito

et al. (2011); Elliott & Stinner (2010) and the surface Cahn-Hilliard equation Elliott & Ranner (2015). It

is well-known that fourth order elliptic equations present difficulties for finite element methods (FEMs),

even on flat domains. The main issues are dealing with the Sobolev space H2 and correctly capturing

fourth order type boundary conditions. In many instances, a non-conforming approach is preferred for

these problems because they avoid C1 elements, e.g. the Hellan-Herrmann-Johnson method Brezzi &

Raviart (1976); Comodi (1989); Blum & Rannacher (1990); Arnold & Walker (2020). Moreover, the
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numerical approximation of fourth order elliptic surface PDEs is not as well established as for second

order problems Deckelnick et al. (2005); Dziuk (1988); Dziuk & Elliott (2013), much less for non-

conforming approximations on non-conforming domains (e.g. piecewise linear surfaces). A particularly

relevant reference is Larsson & Larson (2017), in which they solve the surface biharmonic problem on

a piecewise linear approximation of a closed surface using a discontinuous Galerkin (dG) approach.

1.1 Main Contributions

The main motivation of this paper is to better understand the surface Hessian operator on surface trian-

gulations. In particular, we obtain estimates involving a non-conforming surface Hessian operator (i.e.

a broken Hessian) on piecewise linear surface triangulations. These estimates are crucial for building

effective non-conforming finite element spaces for elliptic problems (posed on surfaces) that require the

Sobolev space H2. For example, see the FEM in Walker (2020) for the Kirchhoff plate problem posed

on a surface.

We establish several useful estimates for a non-conforming H2 norm (see (2.7)) posed on piecewise

linear surface triangulations with boundary. The main result is a Poincaré inequality in Theorem 4.2.

As a byproduct, we obtain equivalence of the non-conforming H2 norm posed on the true surface with

the norm posed on a piecewise linear approximation (see Theorem 4.3). In addition, we allow for free

boundary conditions. These results are directly used in Walker (2020).

Our analysis assumes the surface is described by charts that exactly capture its boundary. The

approximate surface is built by interpolating these charts. For smooth, closed, embedded surfaces,

one can use the closest point map obtained from a signed distance function to create the approximate

surfaces Dziuk (1988); Demlow & Dziuk (2007); Demlow (2009); this method is very convenient for

the analysis. However, it is not so convenient for approximating a surface with boundary. Thus, we

combine the chart approach with the signed distance function approach to obtain our results.

Furthermore, our analysis deals directly with the (covariant) surface Hessian, in a non-conforming

way, which allows for a variety of boundary conditions to be imposed, such as clamped, simply-

supported, and free. In fact, the mesh dependent 2-norm equivalence between the piecewise linear

surface and the true surface (see (4.15)) holds even if uniform free boundary conditions are used. This is

not a trivial result due to the presence of Killing fields (see Section 2.2.2). We also get L∞ estimates for

the mesh dependent 2-norm, i.e. the mesh dependent H2 space can handle “point conditions.” Lastly,

our results hold for continuous Lagrange finite element spaces on surfaces (see Remark 4.2).

1.2 Outline

Section 2 gives the precise surface assumptions, sets up the differential geometry framework, defines

the continuous mesh dependent H2 space, and presents some useful inequalities on the true domain. In

Section 3, we describe how the surface is approximated with a piecewise linear triangulation using either

the parametric approach or the closest point map. More specifically, we show how to apply the closest

point map to surfaces with boundary (see Proposition 3.2); in Burman et al. (2019), they also consider

surfaces with boundary. We also derive a transformation formula (3.12) for mapping the surface Hessian

from a curved triangle in the true (given) surface to a flat triangle in the piecewise linear triangulation.

Section 4 gives the main results of the paper, i.e. L∞ and trace estimates, the Poincaré inequality in

(4.5), and the equivalence of norms (see Theorem 4.3), and we close with some remarks in Section 5.

Appendix A gives a review of essential differential geometry concepts used in this paper.
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FIG. 1. Illustration of the true (given) surface Γ in R
3. The boundary Σ ≡ ∂Γ decomposes as Σ = Σc ∪Σs ∪Σf and has a finite

number of corners with interior angles αi (only one angle is shown); the corners may (or may not) lie at the intersection of two

boundary components. The boundary Σ has (outer) conormal vector, nnn, and oriented unit tangent vector, ttt. The oriented normal

vector of Γ is ννν . Part of the exact, curved surface triangulation Th is shown with dotted curves.

2. Preliminaries

2.1 Domain Assumptions

Let Γ be a connected, 2-dimensional manifold, embedded in R
3, with continuous, piecewise smooth

boundary ∂Γ =: Σ . In some cases, the boundary may be empty, giving a closed manifold. In particular,

Γ is taken to be C2 and Σ is assumed piecewise C2 with a finite number of corners, with interior

angle αi ∈ (0,2π] of the ith corner measured with respect to the Euclidean metric in R
3 (see Figure 1).

In particular, Σ is globally continuous and parameterized by a piecewise curve, i.e., Σ =
⋃

p∈VΣ
p ∪⋃

ζ∈CΣ
ζ , where VΣ is the set of corner vertices and CΣ is the set of (open) C2 curves that make up Σ .

Furthermore, as a technical convenience, we assume that Γ is a sub-manifold of Γ ∗ with Γ ⊂⊂ Γ ∗ (see

Section 3.3).

In addition, we assume Σ = Σc ∪ Σs ∪ Σf partitions into three mutually disjoint one dimensional

components Σc (clamped), Σs (simply supported), and Σf (free). Any of the components can be empty,

but if |Σf|> 0, then we also assume that Γ is at least C2,1. Each open curve ζ ∈ CΣ belongs to only one

of the sets Σc, Σs, or Σf and each curve is maximal such that two distinct curves contained in the same

component do not meet at an angle of π . Furthermore, we have the set of corner vertices contained in

Σf: VΣf
= {p ∈ VΣ | p = ζp+ ∩ζp− , where ζp+ ,ζp− ⊂ Σf,ζp+ 6= ζp−}.

REMARK 2.1 The choice of nomenclature for partitioning the boundary (i.e. clamped, simply sup-

ported, and free) is motivated by bending plate problems. For instance, “linearizing” a geometrically

non-linear bending problem yields a plate-like bending problem posed on a fixed surface. One applica-

tion of the results in this paper is for numerically solving a (fourth order elliptic) plate problem posed

on a surface, e.g. Walker (2020).

2.2 Intrinsic Differential Geometry

The notation of intrinsic differential geometry enables a clear characterization of the null space of the

surface Hessian operator (Section 2.2.2). It is also convenient for computing tangential differential

operators of any order (see Remark 2.3). Thus, the arguments in this section use tensor notation with
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special attention paid to upper and lower indices. For instance, using Greek letters, the α-th component

of a vector (co-vector) v is denoted as vα (vα ). Sometimes we write va (va) to emphasize whether v is

a vector or co-vector, where a is a non-numerical label. When ∂Γ 6= /0, its outer conormal vector has

components nα , while tα denotes the components of any tangent vector of ∂Γ . See Section A for a

review of tensor notation and differential geometry.

2.2.1 Sobolev Spaces on Manifolds. We write |vc| and |vc| to be the “length” with respect to the

metric, i.e. |vc|2 = vα gαβ vβ and |vc|2 = vα gαβ vβ , where gαβ is the metric tensor and gαβ is the inverse

metric. In particular, for covariant derivatives, we have

|∇cw|2 = gαβ ∇α w∇β w, |∇a∇cw|2 = gαβ gγρ ∇α ∇γ w∇β ∇ρ w. (2.1)

We use standard definitions for Sobolev spaces on manifolds (see Hebey (1996)), i.e. the Sobolev space

W k,p(Γ ) is the completion of C∞(Γ ) with respect to the norm ‖w‖p

W k,p(Γ )
=∑

k
j=0

∫
Γ |∇a1

· · ·∇a j
w|p dS(g),

where there are j covariant derivatives in the integrand, and g denotes the determinant of the metric ten-

sor (see Section A). When p = 2, the inner product on W k,2(Γ )≡ Hk(Γ ) is given by

(w,v)Hk(Γ ) :=
k

∑
j=0

∫

Γ
gα1β1 · · ·gα jβ j(∇α1

· · ·∇α j
w)(∇β1

· · ·∇β j
v)dS(g). (2.2)

From (Hebey, 1996, Prop. 2.3), if Γ is compact, then W k,2(Γ ) does not depend on the Riemannian

metric gab; the same holds for a bounded Ck manifold with piecewise Ck boundary. We denote by

H̊k(Γ ) ⊂ Hk(Γ ) the Sobolev space with vanishing boundary conditions up to degree k − 1. We will

have special use of the following subspace of H2(Γ )

Y (Γ ) := {w ∈ H2(Γ ) | w = 0, on Σc ∪Σs, nα ∇α w = 0, on Σc}, (2.3)

i.e. with clamped and simply-supported boundary conditions.

2.2.2 Null-space of the Hessian. We say a covector field va on Γ is a Killing field if ∇α vβ +∇β vα =
0, for all 16α,β 6 d (Eisenhart, 1926, eqn. (70.2)), (Petersen, 2006, Prop. 27). In addition, the number

of independent Killing fields on Γ does not exceed d(d+1)/2, where d is the topological dimension of

the manifold (Petersen, 2006, Thm. 35). Next, let Z (Γ ) := {w ∈Y (Γ ) | ∇α ∇β w = 0,∀ 1 6 α,β 6 d}
be the nullspace of the covariant Hessian operator ∇a∇b(·) on Γ . Then, va := ∇aw is a Killing field for

any w ∈ Z (Γ ), because the Hessian is symmetric. So dimZ (Γ ) 6 1+ d(d + 1)/2 since Z (Γ ) also

contains constants. If ∂Γ ≡ /0, then Z (Γ ) only contains constants. Moreover, if |Σc| > 0 or ∂Γ ≡ Σs,

then Z (Γ ) is trivial.

Otherwise, when d = 2 or 3, the maximum dimension of Z (Γ ) is d +1, which we now show. Let

{p j}d+1
j=1 be the vertices of a d-dimensional “simplex” contained in Γ where each pair of vertices is

connected by a unique shortest geodesic path. Thus, there are d geodesics emanating from each vertex

p j, and we assume that the simplex is chosen so that the tangent vectors of the geodesics, at p j, span the

tangent space Tp j
(Γ ) for all 1 6 j 6 d +1.

Owing to the continuous embedding H2(Γ ) ↪→ C0(Γ ), point evaluation is well-defined. Thus, let

w ∈ Z (Γ ) be such that w(p j) = 0, for 1 6 j 6 d + 1, and set va := ∇aw. Since ∇bva vanishes, if va
vanishes at a point, then va must vanish everywhere (do Carmo, 1992, Ch. 3, exer. 6). Thus, if va does

not vanish at the vertex p j, there is another vertex pk (with k 6= j), with geodesic path ϒ connecting them
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whose tangent vector qa satisfies vα qα = c 6= 0 at p j. In addition, vα qα = c along the entire geodesic

path ϒ (do Carmo, 1992, Ch. 5, Prop. 3.6 and exer. 8). Since 0 = w(pk)−w(p j) =
∫
ϒ vα qα ds = c|ϒ |,

we have that va must vanish, and so w must also vanish. Therefore, w(p j) = 0, for 16 j 6 d, are linearly

independent conditions, i.e. the maximum dimension of Z (Γ ) is d +1.

REMARK 2.2 Generic manifolds, with non-constant Gauss curvature, do not have Killing fields. Ergo,

even if ∂Γ ≡ Σf, Z (Γ ) may only contain constants. On the other hand, consider the closed 2-sphere. It

has 3 Killing fields corresponding to 3 independent rotations of the sphere, but none of them come from

differentiating a scalar w (so Z (Γ ) only contains constants).

Next, consider a small spherical cap with boundary (and free boundary conditions). Two of the

Killing fields can be written as a gradient, but the third one is a rotation about a point in the surface so

does not correspond to the gradient of a scalar (see (do Carmo, 1992, Ch. 4, exer. 3.)). In this case,

Z (Γ ) is spanned by three basis functions, i.e. two non-constant functions whose gradients are Killing

fields and the unit constant function.

2.3 Extrinsic Differential Geometry

We use the embedding space and make explicit use of the parametrization of the manifold (i.e. its atlas

of charts). This is often more practical for computations, especially when the manifold is defined by an

explicit parametrization. Throughout the rest of the paper, we assume d = 2 (intrinsic dimension) and

n = 3 (embedding dimension). Extrinsic vectors and tensors are denoted with bold-face (see Figure 1).

Moreover, the H1(Γ ) inner product on Γ can be written (c.f. (2.2)):

(w,v)H1(Γ ) :=
∫

Γ
wv+∇Γ w ·∇Γ vdS, (w,v)H2(Γ ) := (w,v)H1(Γ )+

∫

Γ
∇Γ ∇Γ w : ∇Γ ∇Γ vdS, (2.4)

where ∇Γ v is the surface gradient of v in (A.6) and ∇Γ ∇Γ v is the surface Hessian in (A.7); later, we

consider a piecewise (broken) Hessian (see (2.6) and (2.7)). See Section A.2 for details of the notation

and differential operator definitions.

REMARK 2.3 A popular way to define the surface gradient ∇Γ v uses the ambient space and projects

the standard Euclidean gradient onto the tangent plane of the surface (see Delfour & Zolésio (2011);

Demlow (2009); Dziuk & Elliott (2013); Walker (2015); Larsson & Larson (2017); Burman et al. (2019),

and many others). However, we stress that ∇Γ ∇Γ v is not the surface gradient ∇Γ applied to each

component of ∇Γ v. Computing in this way would yield a matrix that is not symmetric and is not

tangential.

Therefore, we opt for the standard differential geometry approach that uses charts and the induced

metric tensor. In this framework, differential operators (e.g. covariant derivatives), of any order, are

necessarily tangential. In addition, the covariant Hessian is a symmetric tensor. One obtains the extrinsic

operator, e.g. ∇Γ ∇Γ v, by contracting the covariant operator with the contravariant basis vectors of the

tangent space; this preserves tangential-ness of the operator and symmetry. An important contribution

of this paper is to demonstrate the effectiveness of the intrinsic approach for analyzing and computing

with surface finite elements. See Appendix A for more details.

2.3.1 Skeleton Mesh. We partition Γ with a mesh Th = {T} of triangles such that Γ =
⋃

T∈T
h

T ,

where hT := diam(T ) and h := maxT hT , and assume throughout that the mesh is quasi-uniform and

shape regular. We also assume the corners of the domain are captured by vertices of the mesh. Note that

these triangles are, in general, curved. See Figure 1.
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Next, we have the skeleton of the mesh, i.e. the set of mesh edges Eh := ∂Th, which may be curved.

Let E∂ ,h ⊂ Eh denote the subset of edges that are contained in the boundary Σ and respect the boundary

condition partition of Σ . The internal edges are given by E0,h := Eh \E∂ ,h.

2.3.2 Continuous Mesh-dependent Spaces. The main difficulty in building finite element subspaces

of H2(Γ ) is that C1 elements are required for a conforming discretization. This is especially difficult

in the case of a surface, e.g. one would need a surface version of the Argyris element Brenner &

Scott (2008). Instead, we introduce a mesh-dependent version of H2(Γ ) (see Brezzi & Raviart (1976);

Babuška et al. (1980); Arnold, D. N. & Brezzi, F. (1985); Blum & Rannacher (1990); Arnold & Walker

(2020)).

The following spaces are infinite dimensional, but “mesh dependent.” Thus, we use standard dG

notation for writing inner products and norms over the triangulation, e.g. ( f ,g)
T

h
:= ∑T∈T

h
( f ,g)T ,

‖ f‖p

Lp(T
h
)

:= ∑T∈T
h
‖ f‖p

Lp(T )
, etc. The following scaling/trace estimate is used judiciously (Agmon,

1965, Thm 3.10):

‖v‖2
L2(∂T ) 6C

(
h−1‖v‖2

L2(T )+h‖∇Γ v‖2
L2(T )

)
, ∀v ∈ H1(T ), T ∈ Th. (2.5)

We follow Babuška et al. (1980) in defining infinite dimensional, but mesh dependent spaces and

norms. A mesh-dependent version of H2(Γ ) is given by

H2
h (Γ ) := {v ∈ H1(Γ ) | v|T ∈ H2(T ), for T ∈ Th}, (2.6)

with the following semi-norm

‖v‖2
2,h := ‖∇Γ ∇Γ v‖2

L2(T
h
)+h−1 ‖Jnnn ·∇Γ vK‖2

L2(E0,h)
+h−1 ‖Jnnn ·∇Γ vK‖2

L2(Σc)
, (2.7)

where JηK is the jump in quantity η across mesh edge E. More specifically, if the edge E is shared by two

triangles T1 and T2 with outward co-normals nnn1 and nnn2, then Jnnn ·∇Γ vK |E = nnn1 ·∇Γ v|T1∩E +nnn2 ·∇Γ v|T2∩E .

For E ∈ E∂ ,h, with E ⊂ ∂T , we set JηK |E = η |T∩E .

Suppose {p j}d+1
j=1 ⊂ Γ are chosen as discussed in Section 2.2.2. Set J = dimZ (Γ ) and let Ξ( f ) :=

(
∑

J
j=1 | f (p j)|2

)1/2

for all f ∈H2
h (Γ ) if J > 0; otherwise, Ξ( f )≡ 0. Next, introduce the following mesh

dependent subspace

Wh := {w ∈ H2
h (Γ ) | w = 0 on Σc ∪Σs, Ξ(w) = 0} ⊂ H1(Γ ), (2.8)

where Wh is a mesh-dependent version of Y (Γ ). The point condition Ξ(w) = 0 makes sense because of

the continuous embedding H2
h (Γ ) ↪→C0(Γ ) (see (2.9)), and is needed to avoid a non-trivial null space

of the Hessian (recall the discussion on Killing fields in Section 2.2.2). Note that the slope condition in

(2.3) is not imposed in (2.8), but is “enforced” through the norm (2.7). The space in (2.8) appears in the

finite element method discussed in Walker (2020).

2.4 Inequalities on the True Manifold

The proofs of the following propositions utilize standard compactness arguments and convolution on

surfaces (see Adams & Fournier (2003); Hebey (1996)). Hence, we only give the proof of Proposition

2.3; the others are similar. Recall that if Γ has a boundary, then we assume Γ is compactly contained in

a larger surface Γ ∗.
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PROPOSITION 2.1 On the true manifold, Γ , define |||v|||2•,h := ‖v‖2
H1(Γ )

+ ‖∇Γ ∇Γ v‖2
L2(T

h
)
, for any v ∈

H2
h (Γ ). Then, for all h > 0,

‖v‖L∞(Γ ) 6Cinf|||v|||•,h, ∀v ∈ H2
h (Γ ), (2.9)

‖∇Γ v‖L2(∂Γ ) 6Ctr

(
‖∇Γ v‖2

L2(Γ )+‖∇Γ ∇Γ v‖2
L2(T

h
)

)1/2

, for all v ∈ H2
h (Γ ), (2.10)

with constants Cinf,Ctr > 0 that depend on Γ and the shape regularity of Th, but do not depend on h.

Next, we have two Poincaré type inequalities posed on the true manifold Γ .

PROPOSITION 2.2 Recall the definition of ‖ · ‖2,h in (2.7). Then, ‖ · ‖2,h is a norm on Wh in (2.8).

Moreover, define |||v|||2h := ‖v‖2
2,h + ‖v‖2

L2(Σc∪Σs)
+Ξ 2(v), for any v ∈ H2

h (Γ ). Then, there is a constant

C∗ > 0, depending only on Γ and the shape regularity of Th (but independent of h), such that

‖v‖L2(Γ ) 6C∗
(
‖∇Γ v‖2

L2(Γ )+ |||v|||2h
)1/2

, for all v ∈ H2
h (Γ ). (2.11)

PROPOSITION 2.3 Adopt the hypothesis of Proposition 2.2. Then there is a constant CP > 0, depending

only on Γ and the shape regularity of Th (but independent of h), such that

‖∇Γ v‖L2(Γ ) 6CP|||v|||h, for all v ∈ H2
h (Γ ). (2.12)

Proof. From the discussion in Section 2.2.2, it is clear that (for a fixed h), one can use a standard

compactness argument to show that ‖∇Γ v‖L2(Γ ) 6 C1|||v|||h, for all v ∈ H2
h (Γ ), where C1 = C1(h) > 1

may depend on h. Suppose that (2.12) is false; then, there exists a sequence {wh}h>0, with wh ∈ H2
h (Γ ),

such that ‖∇Γ wh‖L2(Γ ) >
1

δ (h) |||wh|||h, where δ (h)→ 0 as h → 0. Define

uh :=
wh

‖∇Γ wh‖L2(Γ )

⇒ ‖∇Γ uh‖L2(Γ ) = 1, ∀h, and |||uh|||h < δ (h), ∀h. (2.13)

In addition, we have a bound on the L2(Γ ) norm via (2.11), i.e. ‖uh‖L2(Γ ) 6C uniformly for all h. Next,

for each fixed h, given ε > 0, construct uh,ε ∈ H2(Γ ) such that

|uh −uh,ε |H2(T
h
) 6 ε, ‖uh −uh,ε‖H1(Γ ) 6 ε,

h−1‖nnn ·∇Γ (uh −uh,ε)‖L2(Σc)
6 ε, |uh(pi)−uh,ε(pi)|6 ε,

(2.14)

for i = 1, ...,J (e.g. use convolution on surfaces; see Adams & Fournier (2003); Hebey (1996)); the

last relation is possible because uh ∈ C0(Γ ) for all h. The normal derivative bound follows by a trace

inequality on elements attached to Σc (and taking a sufficiently tight convolution).

Now, define

ũh := uh,εh
∈ H2(Γ ), where εh = δ (h). (2.15)

Then, by combining the above results, ‖ũh‖H2(Γ ) 6C, uniformly for all h, i.e.

‖ũh‖H2(Γ ) 6 ‖ũh‖L2(Γ )+‖∇Γ ũh‖L2(Γ )+ |ũh|H2(T
h
)

6 3εh +‖uh‖L2(Γ )+‖∇Γ uh‖L2(Γ )+ |uh|H2(T
h
)

6 3δ (h)+C+1+ |||uh|||h < 4δ (h)+C+1.

(2.16)
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Ergo, ũh converges weakly in H2(Γ ), and ũh → ũ strongly in H1(Γ ). Moreover,

|ũh|H2(Γ ) = |ũh|H2(T
h
) 6 |uh − ũh|H2(T

h
)+ |||uh|||h 6 εh +δ (h) = 2δ (h), (2.17)

so ∇Γ ∇Γ ũh → 0 in L2(Γ ). By the definition of the weak derivative, and weak convergence, ∇Γ ∇Γ ũ≡ 0,

meaning that ũh → ũ strongly in H2(Γ ).
By standard trace inequalities, ũ = 0 on Σc ∪ Σs (because ‖uh‖L2(Σc∪Σs)

→ 0). Moreover, using

(2.14), we have that h−1‖nnn ·∇Γ ũh‖L2(Σc)
6 2δ (h), i.e. nnn ·∇Γ ũ = 0 on Σc. Thus, ũ is in the nullspace

Z (Γ ). In addition, in a similar fashion as above, we can show ũ(pi) = 0 for i = 1, ...,J. So, based on

the discussion in Section 2.2.2, it must be that ũ ≡ 0.

Therefore, ũh → 0 in H2(Γ ). But recall that 1 = ‖∇Γ uh‖L2(Γ ) for all h, so then

1 = ‖∇Γ uh‖L2(Γ ) 6 ‖∇Γ (uh − ũh)‖L2(Γ )+‖∇Γ ũh‖L2(Γ ) → 0, (2.18)

because ‖∇Γ (uh− ũh)‖L2(Γ ) 6 δ (h) from (2.14). Obviously, (2.18) is a contradiction, so we have estab-

lished (2.12). �

3. Domain Approximation and Mappings

Our main goal is to show that the Poincaré inequality (2.12) still holds when Γ is replaced by a piecewise

linear approximation Γ 1. In particular, given our embedded manifold Γ , with or without boundary, and

a piecewise linear triangulation Γ 1 that interpolates Γ at its vertices, we need certain approximation

results when mapping flat triangles in Γ 1 to Γ .

Any closed C2 surface may be represented as the zero level set of a signed distance function. This

is especially convenient for defining the closest point map, which enjoys nice approximation properties

(see Demlow & Dziuk (2007); Demlow (2009); Dziuk & Elliott (2013); Dziuk (1988)). However, it is

not so convenient for dealing with surfaces with boundary. On the other hand, any C2 surface may be

parametrized by an atlas of charts {(Ui,χχχ i)} which captures the boundary exactly. The following sec-

tions combine these two approaches to yield new estimates on mapping the full surface Hessian operator

from Γ 1 to Γ . In the following, we assume we have access to an atlas of charts {(Ui,χχχ i)}, where Ui is

the reference domain and χχχ i is the corresponding map, that parameterizes Γ , and its boundary, exactly.

3.1 Piecewise Linear Triangulations and the True Domain

Given our embedded manifold Γ , with or without boundary, we assume that a conforming, shape regular,

piecewise linear triangulation T 1
h of a polyhedral domain Γ 1 that interpolates Γ at its vertices can be

generated provided the mesh size is sufficiently small; we refer to Demlow & Dziuk (2007); Demlow

(2009); Dziuk & Elliott (2013); Dziuk (1988) for more discussion on these basic issues. Furthermore,

we assume the boundary vertices of Γ 1 (namely Σ 1 := ∂Γ 1) lie on the boundary of Γ . Let T 1
∂ ,h be the

set of triangles with one side on Σ 1 and, for convenience, assume the triangulation satisfies the following

property.

Property 1 Each triangle in T 1
h has at most two vertices on the boundary and so has at most one edge

contained in Σ 1.

We denote by E 1
h the set of edges of the triangulation T 1

h , which is partitioned into interior edges E 1
0,h

and boundary edges E 1
∂ ,h. Thus Σ 1 :=

⋃
E1∈E 1

∂ ,h
E1 is a 1st order approximation of Σ . We also assume
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T 1
h is homeomorphic to an exact triangulation Th of Γ in the following sense. For each T 1 ∈T 1

h , there

is a chart (U,χχχ), and a straight-edged triangle T ′ ⊂U , such that the following holds.

(i) T 1 = (Ihχχχ)(T ′), where Ih is the standard continuous linear, nodal Lagrange interpolation oper-

ator with the usual approximation properties.

(ii) There is a unique T ∈ Th such that T = χχχ(T ′).

With the above considerations, one can generate another atlas of charts {(T̂ ,χχχT )}T∈T
h
, where for

each T ∈Th, T = χχχT (T̂ ), where T̂ is the standard reference triangle. Next, for each T 1 ∈T 1
h , we define

the mapping FFF : Γ 1 → Γ through the diffeomorphism FFFT ≡ FFF |T 1 := χχχT ◦ (IhχχχT )
−1. The true domain,

and its corresponding triangulation, can be viewed as an “infinite order” approximation. Ergo, we adopt

the following notations Γ ∞ ≡ Γ , T ∞
h ≡ Th, FFF∞

T ≡ FFFT , etc., which will sometimes be convenient (it is

merely a choice of notation).

The main approximation properties for these maps are summarized in the next theorem.

THEOREM 3.1 The map FFFT described above satisfies

‖∇s
T 1(FFFT − idT 1)‖L∞(T 1) 6Ch2−s, for s = 0,1,2,

1−Ch 6 ‖[∇T 1 FFFT ]
−1‖L∞(T 1) 6 1+Ch, ‖[∇T 1 FFFT ]

−1 − III‖L∞(T 1) 6Ch,
(3.1)

where all constants depend on the C2 norm of Γ .

3.2 Element-wise Parametrization

It is useful to consider the map FFFT : T 1 → T from Section 3.1 as a parametrization of T in the following

sense. Apply a rigid rotation of coordinates x to x′ so that T s → T s′ (for s = 1 or ∞) and T 1′ ⊂ R
2. In

the rotated coordinates, we view FFFT
′ as a function of two variables, so that (T 1′,FFFT

′) is a local chart

for T ′. Next, let JJJ′ = [∂1FFFT
′,∂2FFFT

′] be the 3×2 Jacobian matrix with induced metric ggg′ = (JJJ′)T JJJ′. In

addition, define the 3×2 matrix P̄PP?
′
= [a1,a2], where {a1,a2,a3} are the canonical basis vectors of R3,

(P̄PP?
′
)T P̄PP?

′
= III2, and P̄PP?

′
(P̄PP?

′
)T = P̄PP

′
:= III3 − ν̄νν ′⊗ ν̄νν ′, where ν̄νν ′ ≡ a3 is the unit normal of T 1′.

All results derived in the rotated coordinates can be mapped back to the original coordinates. For

example, let P̄PP? = [b1,b2], where b1, b2 are any two orthogonal unit vectors in R
3 pointing in the plane

of T 1, and note that P̄PP?
T

P̄PP? = III2, and P̄PP?P̄PP?
T
= P̄PP := III3 − ν̄νν ⊗ ν̄νν (see (A.11)), where ν̄νν = b1 ×b2 is the

unit normal of T 1. Then, JJJ = (∇T 1 FFFT )P̄PP?, ggg = JJJT JJJ, and by (3.1),

|JJJ− P̄PP?|= O(h), ggg = P̄PP?
T

P̄PP
T

P̄PPP̄PP?+O(h) = III2 +O(h), (3.2)

so ggg is invertible for h sufficiently small. Note that, in terms of FFFT , the surface gradient (A.6) of

f : T → R can be written as (∇T f ) ◦FFFT = (∇T 1 f̄ )P̄PP?ggg−1JJJT , where f̄ := f ◦FFFT . Moreover, using the

parametrization above, in the rotated coordinates the Christoffel symbols (A.1) have a more explicit

form: Γ
γ

αβ

′
= ((ggg′)−1(JJJ′)T ai)

γ ∂α ∂β (FFFT
′ · ai). Ergo, the surface Hessian (A.7), in the original coordi-

nates, can be written as

(∇T ∇T f )◦FFFT = JJJggg−1P̄PP?
T [

∇T 1 ∇T 1 f̄
]

P̄PP?ggg−1JJJT

−
(
(∇T 1 f̄ )P̄PP?ggg−1JJJT ai

)
JJJggg−1P̄PP?

T
[∇T 1 ∇T 1(FFFT ·ai)] P̄PP?ggg−1JJJT .

(3.3)
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3.3 Closest Point Map

The results in this section are crucial to prove the Poincaré inequality (4.5) when Γ has a boundary

where part of the boundary imposes free conditions (i.e. |Σf|> 0).

Γ

νx1

a1

Γ
∗

ν

x2

a2

NΓ

̺

φ > 0

φ < 0

FIG. 2. Diagram of Γ ⊂⊂ Γ ∗ and the tubular neighborhood NΓ . The solid curve is Γ and the dotted curve is Γ ∗; the dashed

curve denotes the boundary of NΓ . The closest point map is illustrated by clp∗(xxxi) = aaai, for i = 1,2, and is characterized by

clp∗(x)≡ x−φ(x)ννν∗(x), where φ(x) is a signed distance function for Γ ∗ that is well-defined in NΓ .

Let Γ ⊂ R
n be a d = n− 1 dimensional C2 embedded manifold, possibly with C2 boundary ∂Γ ,

and let clp : Rn → Γ be the closest point map, i.e. |clp(x)− x| = dist(x,Γ ). Define the “tubular”

neighborhood NΓ (c) := {x ∈ R
n | dist(x,Γ )< c}, for any positive constant c. If ∂Γ 6= /0, then we also

assume that Γ ⊂⊂ Γ ∗, where Γ ∗ is an extended d dimensional, C2 manifold, with boundary ∂Γ ∗ and

corresponding closest point map clp∗ : Rn → Γ ∗. See Figure 2.

3.3.1 Signed Distance Function. Next, we construct a signed distance function for Γ ∗. Letting ννν∗ :

Γ ∗ → R
n be the oriented normal of Γ ∗, we define φ(x) := sgn(∇ϖ(x) · (ννν∗ ◦ clp∗(x)))ϖ(x), for all x

in R
n, where ϖ(x) := dist(x,Γ ∗) (see Figure 2). Now assume there exists a ρ > 0, with NΓ (ρ)≡ NΓ ,

such that φ ∈C2(NΓ ) and |∇φ |= 1 in NΓ Gromov (1991), (Delfour & Zolésio, 2011, pg. 75); clearly,

ρ depends on Γ (e.g. its curvature) and how far Γ can be extended with Γ ∗. Thus, Γ ∗ ∩NΓ ≡ {x ∈
NΓ | φ(x) = 0}, and ννν∗(x) = (∇φ)T (x) on Γ ∗ ∩NΓ . Indeed, we define the extended normal vector

by ννν∗(x) = (∇φ)T (x) for all x ∈ NΓ , and the extended tangent space projection by PPP∗ = III −ννν∗⊗ννν∗.

Moreover, the following relation holds uniquely: x = clp∗(x) + φ(x)ννν∗(x), for all x ∈ NΓ . We can

extend a function u, defined on Γ ∗, to NΓ via the signed distance function, i.e.

ue(x) := u◦Φ(x), ∀x ∈ NΓ , where Φ(x) := clp∗(x)≡ x−φ(x)ννν∗(x), (3.4)

which is known as a constant extension in the normal direction.

REMARK 3.1 In Burman et al. (2019), they also consider a surface with boundary. They assume that the

given surface is contained in a closed surface that has a well-defined closest point map. Thus, mapping

to the original surface is done using the map generated from the closed surface. The approach we take

here is more general.

For any piecewise linear triangulation T 1
h of Γ , whose domain is denoted Γ 1 and contained in NΓ ,

we can “lift” it to a subset of Γ ∗ using Φ . In other words, define T̆h := {Φ(T 1) | T 1 ∈ T 1
h } to be an
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“exact” triangulation and set Γ̆ := ∪
T̆∈T̆h

T̆ ⊂ Γ ∗. In addition, from T̆h, we have the following related

sets: T̆∂ ,h, Ĕ0,h, and Ĕ∂ ,h (see Sections 2.3.2, 3.1).

Note that Γ̆ is not necessarily contained in Γ , nor vice-versa, but are close in the following sense. For

each T 1 ∈T 1
∂ ,h such that ∂T 1 = E1∪S1, where E1 ⊂ ∂Γ 1 and S1 are the interior edges, let T̆ := Φ(T 1),

Ĕ := Φ(E1), S̆ := Φ(S1), and E := FFFT (E
1) ⊂ ∂Γ (see Figure 3). Since E, Ĕ and E1 interpolate Γ at

the vertices of Γ 1, then dist(x,E) = O(h2) for all x ∈ Ĕ.

T 1 T̆

E1 ĔÉ E

S1

S̆

Φ

FIG. 3. Illustration of the closest point mapping of T 1 to Γ ∗. The pre-image of the boundary edge E ⊂ ∂Γ (dotted curve) is É.

Next, for h > 0 sufficiently small and by the properties of Φ(·), there is a unique curve É that

lies in the plane of T 1 such that E ≡ Φ(É). Moreover, for h sufficiently small, É = Θ(E1), where

Θ(x̄) := x̄+υ(x̄)n̄nn(x̄) for all x̄ ∈ E1, where n̄nn is the outer co-normal of T 1 and υ ∈C2(E1;R) such that

υ |∂E1 = 0. Therefore, there exists a unique flat triangle T́ in the plane of T 1 such that ∂ T́ = É ∪ S1.

This induces a triangle Ṫ in Γ such that Ṫ := Φ(T́ ) and ∂ Ṫ = E ∪ S̆. It is straightforward to prove the

following result.

PROPOSITION 3.2 Consider the triangles T̆ , Ṫ defined above from any given T 1 ∈ T 1
∂ ,h. Assume that

h > 0 is small enough (depending on ρ) so that Γ 1 ⊂ NΓ and the construction of Ṫ is well-defined.

Then,

Ṫ ⊂ Γ , ∂ Ṫ ∩∂Γ ∈ E∂ ,h, |T̆ 4 Ṫ |= O(h3). (3.5)

Furthermore, let Ṫ∂ ,h := {Ṫ} be generated from all T 1 ∈ T 1
∂ ,h, and define Ṫh := {T̆ ∈ T̆h | T̆ 6∈ T̆∂ ,h}∪

Ṫ∂ ,h. Then, Ṫh gives an exact, conforming, shape regular triangulation of Γ .

Next, we have a procedure to “lift” a function from T 1 ∈ T 1
h to the corresponding T̆ ∈ T̆h. Let

v : T 1 → R be given and define the lifted version v̆ : T̆ → R (uniquely) such that v̆ ◦Φ(x) = v(x), for

all x ∈ T 1. And v : Γ 1 → R is lifted to v̆ : Γ̆ → R, element-wise. Furthermore, recalling (3.5), for any

v ∈C2(T̆ ∪ Ṫ ) we have the estimates

‖v‖L2(E) = [1+O(h2)]‖v‖L2(Ĕ)+O(h5/2)‖∇Γ ∗v‖L∞(T̆4Ṫ ),

‖∇Γ v‖L2(E) = [1+O(h2)]‖∇Γ̆ v‖L2(Ĕ)+O(h5/2)‖∇Γ ∗∇Γ ∗v‖L∞(T̆4Ṫ ),
(3.6)

where we map Ĕ to E ⊂ ∂Γ using the closest point map to E.

3.3.2 Element-wise Parametrization by the Closest Point Map. The Jacobian has a nice structure

when using Φ . For simplicity, we drop “∗” from ννν∗, and note ∇Φ(x) = III3−ννν(x)⊗ννν(x)−φ(x)HHH(x) =
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PPP(x)−φ(x)HHH(x), where HHH = ∇ννν is a symmetric matrix, PPPHHH = HHHPPP = HHH, and further note that ∇T 1Φ =
(∇Φ)P̄PP, and JJJ = (∇T 1 Φ)P̄PP?. Moreover, we have the identity

JJJ− P̄PP? =
[
PPP(x)P̄PP−φ(x)HHH(x)P̄PP− III3

]
P̄PP? =− [φ(x)HHH(x)+ννν(x)⊗ (ννν(x)− ν̄νν)] P̄PP?. (3.7)

In addition, the metric also has a nice structure:

ggg = JJJT JJJ = P̄PP?
T

P̄PP
[
PPP−2φHHH +φ 2(HHH)2

]
P̄PPP̄PP? = III2 + P̄PP?

T
P̄PP
[
PPP− P̄PP

]
P̄PPP̄PP?+O(h2)

= III2 + P̄PP?
T

P̄PP [(ννν − ν̄νν)⊗ (ννν − ν̄νν)] P̄PPP̄PP?+O(h2) = III2 +O(h2).
(3.8)

Hence, for any v̄ : T 1 → R, the above results give the “lifted” surface gradient:

∇T̆
˘̄v◦Φ(x) = (∇T 1 v̄)P̄PP?ggg−1JJJT = (∇T 1 v̄)P̄PP?ggg−1P̄PP?

T
+(∇T 1 v̄)P̄PP?ggg−1(JJJ− P̄PP?)

T

= ∇T 1 v̄
[
III3 − (ννν(x)− ν̄νν)⊗ννν(x)+O(h2)

]
,

(3.9)

and note that nnn ·∇T̆
˘̄v◦Φ(x) = n̄nn ·∇T 1 v̄+O(h2).

Next, we lift the surface Hessian (recall (3.3)); for this, we need the surface Γ to be C2,1. We start

with

∇(Φ ·ai) = aT
i − (ai ·ννν)νννT −φ(x)aT

i HHH(x),

∇∇(Φ ·ai) =−ννν ⊗HHHai −HHHai ⊗ννν − (ai ·ννν)HHH −φ(x)∇(HHHai),
(3.10)

and note that ∇T 1 ∇T 1(Φ ·ai) = P̄PP(∇∇(Φ ·ai))P̄PP. We now apply basic estimates to (3.3):

(∇T̆ ∇T̆
˘̄v)◦Φ = ∇T 1∇T 1 v̄(1+O(h))+O(h)

(
(∇T̆

˘̄v◦Φ(x)) ·ai

)
∇∇(Φ ·ai)

−
(
(∇T̆

˘̄v◦Φ(x)) ·PPPai

)
PPP(∇∇(Φ ·ai))PPP,

(3.11)

and the second term equals φ
(
(∇T̆

˘̄v◦Φ(x)) ·PPPai

)
PPP(∇(HHHai))PPP, where we note that

∑
3
i=1

(
(∇T̆

˘̄v◦Φ(x)) ·PPPai

)
(ai ·ννν) = 0. Thus, we obtain

(∇T̆ ∇T̆
˘̄v)◦Φ = ∇T 1 ∇T 1 v̄(1+O(h))+O(h)|∇T 1 v̄|III, (3.12)

where the constants depend on |HHH| and |h∇HHH|. If we had used the standard chart map, we would have

obtained a similar estimate, except the lower order |∇T 1 v̄| term would have an O(1) factor instead.

4. Mesh-dependent Estimates on Piecewise Linear Surfaces

The results in this section are an extension of the results in Section 2.4 to piecewise linear approxima-

tions of Γ . Let ‖ · ‖2,h,1 denote the norm in (2.7) but defined on Γ 1. Theorem 4.1 gives an elementary

estimate for how ‖ · ‖2,h transforms between Γ 1 and Γ .

THEOREM 4.1 Set m, l ∈ {1,∞} with m 6= l. Let v ∈ H2
h (Γ

m), and define ṽ = v◦FFF ∈ H2
h (Γ

l) if l = 1 or

ṽ = v◦FFF−1 ∈ H2
h (Γ

l) if l = ∞. Then,

‖∇Γ m∇Γ m v‖L2(T m
h
) 6C

(
‖∇Γ l ∇Γ l ṽ‖L2(T l

h
)+‖∇Γ l ṽ‖L2(Γ l)

)
,

‖v‖2,h,m 6C
(
‖ṽ‖2,h,l +‖∇Γ l ṽ‖L2(Γ l)

)
,

(4.1)

for some constant C > 0 depending only on the domain.
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Proof. W.L.O.G., assume m = ∞, l = 1. A surface version of (Lenoir, 1986, Prop. 4) gives ‖v‖Hs(T m) ≈
‖ṽ‖Hs(T l) for s > 0. More specifically, ‖∇Γ v‖L2(T

h
) ≈ ‖∇Γ 1 ṽ‖L2(T 1

h
) and

‖∇Γ ∇Γ v‖L2(T
h
) 6C

(
‖∇Γ 1 ∇Γ 1 ṽ‖L2(T 1

h
)+‖∇Γ 1 ṽ‖L2(T 1

h
)

)
.

Applying a change of variables to the jump term in (2.7) gives

‖Jnnn ·∇Γ vK‖L2(E
h
) 6Ch‖∇Γ 1 ṽ‖L2(E 1

h
)+‖Jn̂nn ·∇Γ 1 ṽK‖L2(E 1

h
), (4.2)

where we emphasize that we cannot put a jump in the first term on the right-hand-side because different

Jacobians appear on either side of the edge. Next, we have the following scaling estimate (see (2.5))

‖∇Γ 1 ṽ‖2
L2(∂T 1)

6C0

(
h−1‖∇Γ 1 ṽ‖2

L2(T 1)
+h‖∇Γ 1 ∇Γ 1 ṽ‖2

L2(T 1)

)
, which leads to

h−1/2‖Jnnn ·∇Γ vK‖L2(E
h
) 6

C1‖∇Γ 1 ṽ‖L2(T 1
h
)+C1h‖∇Γ 1∇Γ 1 ṽ‖L2(T 1

h
)+h−1/2‖Jn̂nn ·∇Γ 1 ṽK‖L2(E 1

h
),

(4.3)

and implies ‖v‖2,h 6C2

(
‖ṽ‖2,h,1 +‖∇Γ 1 ṽ‖L2(Γ 1)

)
, giving the second inequality in (4.1). �

Theorem 4.2 yields useful trace and Poincaré inequalities for the ‖ · ‖2,h,1 norm on piecewise linear

surfaces; in particular, (4.5) is the main result of this paper when free boundary conditions are present

(i.e. |Σf|> 0).

THEOREM 4.2 Let m = 1 or ∞. For all v ∈ H2
h (Γ

m), there holds

‖v‖L∞(Γ m) 6Cinf

(
‖v‖2

H1(Γ m)+‖∇Γ m∇Γ mv‖2
L2(T m

h
)

)1/2

,

‖∇Γ m v‖L2(∂Γ m) 6Ctr

(
‖∇Γ mv‖2

L2(Γ m)+‖∇Γ m∇Γ mv‖2
L2(T m

h
)

)1/2

,

(4.4)

for constants Cinf,Ctr > 0 independent of h. Moreover, ‖ · ‖2,h,m is a norm on W m
h , and for h > 0 suffi-

ciently small (depending only on Γ ), there is a constant CP > 0, depending only on Γ and independent

of h, such that

‖v‖L2(Γ m)+‖∇Γ mv‖L2(Γ m) 6CP‖v‖2,h,m, for all v ∈ W
m

h . (4.5)

Proof. The m = ∞ case is done in Propositions 2.1, 2.2, and 2.3, so we only consider m = 1. Let

ṽ ∈ H2
h (Γ ) and v be the corresponding mapped function in H2

h (Γ
1). Then, using (2.9), we have

‖v‖L∞(Γ 1) = ‖ṽ‖L∞(Γ ) 6C
(
‖ṽ‖2

H1(Γ )+‖∇Γ ∇Γ ṽ‖2
L2(T

h
)

)1/2

6C
(
‖v‖2

H1(Γ 1)+‖∇Γ 1∇Γ 1v‖2
L2(T 1

h
)

)1/2

,

(4.6)

where we used (4.1) and that ‖v‖H1(Γ 1) ≈ ‖ṽ‖H1(Γ ); this proves the first inequality in (4.4). The trace in-

equality follows by noting ‖∇Γ 1 v‖L2(∂Γ 1) ≈ ‖∇Γ ṽ‖L2(∂Γ ), ‖∇Γ 1 v‖L2(Γ 1) ≈ ‖∇Γ ṽ‖L2(Γ ) and using (2.10)

together with (4.1).

Next, specialize v ∈ H2
h (Γ

1) to be a continuous, piecewise linear function on Γ 1 and lift it to Γ̆ ,

i.e. v̆ ∈ H2
h (Γ̆ ,T̆h), where v̆◦Φ = v, with Φ the closest point map from Section 3.3.1. Since v is linear
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on each T 1 ∈ T 1
h , there is a natural way to continuously extend v̆ to Γ , wherever necessary. Ergo,

v̆ ∈ H2
h (Γ ,Ṫh). Thus, we can apply (2.12)

‖∇Γ v̆‖L2(Γ ) 6 ĊP

(
‖∇Γ ∇Γ v̆‖2

L2(Ṫh)
+‖v̆‖2

L2(Σc∪Σs)
+Ξ 2(v̆)

+h−1‖Jn̆nn ·∇Γ v̆K‖2
L2(Ĕ0,h)

+h−1‖n̆nn ·∇Γ v̆‖2
L2(Σc)

)1/2

,
(4.7)

where ĊP depends on the shape regularity of Ṫh; note that the boundary terms are on ∂Γ . Accounting

for the “skin” Ṫ \ T̆ , where necessary, and using (3.6), we get

‖∇Γ v̆‖L2(Γ ) 6C
(
‖∇Γ̆ ∇Γ̆ v̆‖2

L2(T̆h)
+‖v̆‖2

L2(Σ̆c∪Σ̆s)
+Ξ 2(v̆)

+h−1‖
q

n̆nn ·∇Γ̆ v̆
y
‖2

L2(Ĕ0,h)
+h−1‖n̆nn ·∇Γ̆ v̆‖2

L2(Σ̆c)

)1/2

+A1,
(4.8)

where

A2
1 6C ∑

T̆∈T̆∂ ,h

(
‖∇Γ ∇Γ v̆‖2

L2(Ṫ\T̆ )
+h5‖∇Γ ∗ v̆‖2

L∞(T̆4Ṫ )
+h4‖∇Γ ∗∇Γ ∗ v̆‖2

L∞(T̆4Ṫ )

)
.

(4.9)

Since v̆ is a (mapped) piecewise linear function, using an inverse estimate and (3.5) shows that ‖∇Γ ∇Γ v̆‖2
L2(Ṫ\T̆ )

=

O(h)‖∇Γ̆ ∇Γ̆ v̆‖2
L2(T̆ )

and

Ch2‖∇Γ ∗ v̆‖2
L∞(T̆4Ṫ )

= ‖∇Γ̆ v̆‖2
L2(T̆ )

, Ch2‖∇Γ ∗∇Γ ∗ v̆‖2
L∞(T̆4Ṫ )

= ‖∇Γ̆ ∇Γ̆ v̆‖2
L2(T̆ )

. (4.10)

Thus, A2
1 6 Ch

(
‖∇Γ̆ ∇Γ̆ v̆‖2

L2(T̆∂ ,h)
+h2‖∇Γ̆ v̆‖2

L2(T̆∂ ,h)

)
. Now, by mapping from Γ̆ to Γ 1 and utilizing

(3.9) and (3.12), the estimate (4.8) reduces to

‖∇Γ v̆‖L2(Γ ) 6C
(
‖∇Γ 1∇Γ 1v‖2

L2(T 1
h
)
+‖v‖2

L2(Σ1
c ∪Σ1

s )
+Ξ 2(v)+h−1‖Jn̄nn ·∇Γ 1vK‖2

L2(E 1
0,h)

+h−1‖n̄nn ·∇Γ 1 v‖2
L2(Σ1

c )

)1/2

+Ch‖∇Γ 1 v‖L2(Γ 1),

(4.11)

where we note that Ξ(v̆)≡Ξ(v). Since ‖∇Γ 1 v‖L2(Γ 1) 6C‖∇Γ v̆‖L2(Γ ), for h sufficiently small depending

on the C2,1 norm of Γ , we obtain

‖∇Γ 1 v‖L2(Γ 1) 6C′
P|||v|||h,1, (4.12)

for all continuous, piecewise linear functions on Γ 1, where |||·|||h,1 is the same as |||·|||h in Proposition 2.2

except defined on Γ 1.

Next, let w be any function in H2
h (Γ

1). Then, by (4.12) and approximation theory,

‖∇Γ 1 w‖L2(Γ 1) 6 ‖∇Γ 1Ihw‖L2(Γ 1)+‖∇Γ 1 (w−Ihw)‖L2(Γ 1)

6C′
P|||Ihw|||h,1 +Ch‖w‖2,h,1 6C|||w|||h,1,

(4.13)

where Ih is the standard continuous linear, nodal Lagrange interpolation operator. Note that the point-

wise terms in |||·|||h,1 vanish when restricting to the space W m
h . This proves the H1 inequality in (4.5).
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Note: in the case that ∂Γ = /0, or Σf = /0, the result can be derived by a simple integration by parts

argument, and Γ only need be C2. Lastly, applying similar mapping arguments to (2.11) yields

‖v‖L2(Γ 1) 6C
(
‖∇Γ 1 v‖2

L2(Γ 1)+ |||v|||2h,1
)1/2

. (4.14)

Ergo, the L2 inequality in (4.5) follows by combining (4.14) with the H1 inequality (4.13). �

REMARK 4.1 (kernel of the Hessian) The purpose of the point condition Ξ(w) = 0 is to control the

kernel of the broken Hessian ∇Γ m ∇Γ m . Alternative conditions could also be used. For example, if

m = ∞ and uniformly free conditions, Σ ≡ Σf, are imposed, then one can set Wh := H2
h (Γ )/ker(∇Γ ∇Γ )

(quotient space). This gives the space of H2
h (Γ ) functions that are orthogonal to constants and any

Killing fields that Γ may have. However, setting point conditions are usually more convenient with

conforming finite element spaces (see (4.16)).

Furthermore, in general, ker(∇Γ ∇Γ ) 6= ker(∇Γ 1 ∇Γ 1), i.e. the kernel of the broken Hessian on the

true domain Γ is usually not the same as on the piecewise linear approximation Γ 1. In fact, it is possible

that dim(ker(∇Γ ∇Γ )) 6= dim(ker(∇Γ 1∇Γ 1)). The kernel of the broken Hessian on a triangulated surface

involves jump conditions of the co-normal derivative across the edges. Indeed, the topology of the mesh

could affect the kernel. Therefore, it is better to simply set point conditions, that do not depend on h,

that are known to control ker(∇Γ ∇Γ ) on the true domain. This ensures convergence, e.g. for a finite

element discretization of a 4th order elliptic problem on surfaces, see Walker (2020).

THEOREM 4.3 Assume the hypothesis of Theorem 4.1. Then, for h > 0 sufficiently small,

C−1‖v̂‖2,h,l 6 ‖v‖2,h,m 6C‖v̂‖2,h,l , for all v ∈ W
m

h , (4.15)

where C > 0 depends only on Γ .

Proof. Inequality (4.15) follows by combining (4.1) and (4.5). �

REMARK 4.2 Let r > 0 be an integer and m = 1 or ∞. The (continuous) Lagrange finite element space

of degree r+1 on Γ m is defined via the mapping QQQT := FFFT , if m = ∞, or QQQT := idT 1 , if m = 1:

Sm
h ≡ Sm

h (Γ
m) := {v ∈ H2

h (Γ
m) | v|T ◦QQQT ∈ Pr+1(T

1), ∀T ∈ T
m

h }. (4.16)

For the case m = ∞ (i.e. the true domain) we simply write Sh. Clearly, Sm
h ⊂ H2

h (Γ
m). Thus, W m

h :=
Sm

h ∩{v ∈ H1(Γ ) | v = 0 on Σc ∪Σs, Ξ(v) = 0} is a subspace of W m
h and so the above results apply to

the finite element space W m
h as well.

5. Conclusion

We presented several useful estimates for mesh dependent H2 spaces on piecewise linear surface tri-

angulations with boundary. Our analysis used the closest point map, which enjoys nice properties, to

establish a crucial Poincaré inequality in (4.5) when free boundary conditions are present (see Sec-

tion 3.3). In doing this, we adapted the (classic) closest point map technique to work on surfaces with

boundary. The results presented here should be useful for analyzing non-conforming H2 type FEMs, i.e.

for approximating fourth order elliptic problems on surfaces with boundary by non-conforming FEMs

posed on piecewise linear triangulations, or even piecewise polynomial surfaces. For example, see the

surface finite element scheme in Walker (2020) for the Kirchhoff plate problem posed on a surface.

REFERENCES



16 of 20 S. W. WALKER

ADAMS, R. A. & FOURNIER, J. J. F. (2003) Sobolev Spaces. Pure and Applied Mathematics Series, vol. 140,

2nd edn. Elsevier.

AGMON, S. (1965) Lectures on elliptic boundary value problems. Van Nostrand mathematical studies: no. 2. Van

Nostrand.

ARNOLD, D. N. & WALKER, S. W. (2020) The hellan–herrmann–johnson method with curved elements. SIAM

Journal on Numerical Analysis, 58, 2829–2855.

ARNOLD, D. N. & BREZZI, F. (1985) Mixed and nonconforming finite element methods : implementation,

postprocessing and error estimates. ESAIM: M2AN, 19, 7–32.
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A. Differential Geometry

In this appendix, we review the differential geometry tools needed for working on manifolds Kreyszig

(1991); do Carmo (1992, 1976); Ciarlet (2013); Hebey (1996). Specifically, we review the basic notation
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of covariant, contravariant, and other differential geometry concepts.

A.1 Intrinsic

For the sake of generality, consider a d-dimensional Riemannian manifold (Γ ,gab), where gab is the

given metric tensor (discussed in Section A.1.2) defined over a (reference) domain U ⊂R
d ; for simplic-

ity of exposition, assume only one reference domain is needed to define the manifold (of course, this is

not necessary). A point in U is denoted by (u1,u2, ...,ud); in the special case of d = 2 that we are mainly

concerned with, we may use (u,v) ∈U . We refer to variables defined on U as intrinsic quantities.

A.1.1 Tensor Index Notation. We use lower-case Greek indices (α,β ,γ , etc.), which take values

in {1,2, ...,d} when referring to intrinsic variables. For example, ∂α is the partial derivative with re-

spect to the coordinate uα for α ∈ {1,2, ...,d}. Covariant vectors are denoted with lower indices, e.g.

(v1,v2, ...,vd) and contravariant vectors are denoted with upper indices, e.g. (v1,v2, ...,vd). The β -th

component of a covariant (contravariant) derivative is denoted by ∇β (∇β ).

Moreover, covariant and contravariant components of general tensor quantities use lower and upper

Greek indices, respectively, e.g. wαβ (covariant tensor), wαβ (contravariant tensor), w
β

α , wα
β (mixed

tensor). We adopt the Einstein summation convention, i.e. repeated indices are summed over, e.g.

wα rα ≡ ∑
d
α=1 wα rα , where one index is lower and the other is upper. E.g. it is not allowed to sum

over two repeated lower indices. We use the Kronecker delta δαβ , δ αβ , δ
β
α , etc., with appropriate

upper/lower indices depending on the context.

Furthermore, we use the letters a-h (with a different font for emphasis) as a non-numerical label to

indicate a covariant, contravariant, or mixed tensor. For example, va refers to a covariant vector (not

just a single component), i.e. va ≡ (v1, ...,vd). Similarly, ∇cz = (∇1z, ...,∇dz) refers to a contravariant

vector, where z is a scalar quantity. For non-numerical labels, the specific symbol does not matter; it

is simply a placeholder. When convenient, we use bold-face for vector and tensor quantities instead of

writing out indices.

A.1.2 Main Concepts. The given metric gab is a symmetric, covariant tensor with component func-

tions gαβ : U → R, for 1 6 α,β 6 d, which we assume are at least C1, and is uniformly positive

definite. We write g := detgab and the inverse metric tensor gab is contravariant with components

denoted gαβ , where gαγ gγβ = δ
β
α . Note that va may be converted to vb via vβ = gβα vα ; similarly,

wb may be converted to wa by wα = gαβ wβ . When convenient, we write gab ≡ ggg = [gαβ ]
2
α,β=1

and

gab ≡ ggg−1 = [gαβ ]2α,β=1
in standard matrix notation for the metric and inverse metric, respectively. Let

T2 = T2(Γ ) (T2 = T2(Γ )) be the set of covariant (contravariant) 2-tensors on Γ . Moreover, S2 ⊂ T2

and S2 ⊂ T2 are subsets of symmetric tensors; so then gab ∈ S2 and gab ∈ S2.

The Christoffel symbols Γ k
i j (of the second kind) are defined by

Γ
γ

αβ
:=

1

2
gµγ

(
∂α gβ µ +∂β gµα −∂µ gαβ

)
, 1 6 α,β ,γ 6 2, (A.1)

where Γ
γ

αβ
=Γ

γ
βα

do Carmo (1992, 1976). With this, we recall the definition of covariant (contravariant)

derivatives, denoted ∇α (∇α ), where f is a scalar, vb is a covariant vector, and vc is a contravariant
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vector:

∇α f = ∂α f , ∇α ∇β f = ∂α ∂β f − (∂γ f )Γ
γ

αβ
,

∇α vβ = ∂α vβ − vγΓ
γ

βα
, ∇α vγ = ∂α vγ + vβ Γ

γ
βα

, ∇α vα = (
√

g)−1∂α(v
α√g).

(A.2)

The metric satisfies do Carmo (1992) ∇γ gαβ = 0, ∇γ gαβ = 0, ∇γ g = 0, for 1 6 α,β ,γ 6 2. The

“area” element on the manifold Γ is denoted dS(g) =
√

gduuu≡√
gdu1 · · ·dud , where duuu is the Lebesgue

measure on R
d . Viewing na as a “vector” in R

d , it has unit length under the R
d Euclidean metric. If

d = 2, let ta be the oriented (contravariant) tangent vector of ∂U , which has unit length in the Euclidean

metric and satisfies nα tα = 0. Moreover, g = tµ tµ/(n
µ nµ), which implies that ds(g) :=

√
tµ tµ dl for

d = 2, and we have the following “orthogonal” decomposition

δ α
β =

nα nβ

nµ nµ
+

tα tβ

tµ tµ
. (A.3)

A.2 Extrinsic

Suppose that the manifold Γ is embedded in R
n, with n > d, and that it is represented by a family of

charts {(Ui,χχχ i)}, where a single chart consists of a pair (U,χχχ), with U ⊂ R
d (reference domain) and

χχχ : U →R
n do Carmo (1992). For simplicity of exposition, assume there is only one chart (U,χχχ), where

Γ = χχχ(U). We refer to variables in R
n as extrinsic quantities.

A.2.1 Tensor Index Notation. We use lower-case Latin letters starting with i (i.e. i, j,k, l, etc.), which

take values in {1,2, ...,n}, when referring to components of extrinsic (ambient space) quantities. For

example, χχχ = (χ1, ...,χn)T ∈ R
n, and χ i : U → R for each i ∈ {1,2, ...,n}. A point x ∈ R

n has its j-th

coordinate denoted by x j. Moreover, ∂k is the partial derivative with respect to coordinate xk. Repeated

indices are summed over. We typically bold-face extrinsic vectors and tensors, e.g. let www be a (covariant)

2-tensor in R
n with components wi j for i, j ∈ {1,2, ...,n}. The canonical (orthonormal) basis in R

n, is

denoted by {ak}n
k=1, where a1 = (1,0, ...,0)T (column vector), etc. With the Kronecker delta δ

j
i , we

have the dual basis {ak} of {ak} by the formula ai ·a j = δ
j

i .

A.2.2 Differential Geometry in the Ambient Space. The tangent space Tx(Γ ), at a point x ∈ Γ , is a

subspace of Rn spanned by {e1,e2, ...,ed} (the covariant basis) where

eα = ∂α χχχ(ua), 1 6 α 6 d, where ua ≡ (u1, ...,ud) = χχχ−1(x). (A.4)

In this case, the metric tensor gab is given by gαβ = eα ·eβ , for 1 6 α,β 6 d. The contravariant tangent

basis is given by {e1,e2, ...,ed}, where eβ = eα gαβ = (∂α χχχ)gαβ Ciarlet (2013). Sometimes, we express

gab ≡ ggg = JJJT JJJ, where JJJ = [e1, ...,ed ] is an n×d matrix.

Given a vector v ∈R
n, it is in the tangent space Tx(Γ ) if there exists a (contravariant) vector va such

that v(x) = vα eα ◦χχχ−1(x). Alternatively, one can write it in terms of a co-vector va and the contravariant

basis: v(x) = vα eα ◦χχχ−1(x). Moreover, any covariant (contravariant) vector va (va) has a corresponding

extrinsic version given by v = vα eα (v = vα eα ). We define the tangent bundle:

T(Γ ) = {(x,v) | x ∈ Γ ,v(x) ∈ Tx(Γ )}, (A.5)
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thus, we say v ∈ T(Γ ) if v(x) ∈ Tx(Γ ) for every x ∈ Γ ; in this case, we write v : Γ → T(Γ ).
Next, we introduce extrinsic differential operators via their intrinsic counterpart, starting with the

surface gradient ∇Γ f : Γ → T(Γ ) defined in local coordinates by

(∇Γ f )◦χχχ = (∇α f )gαβ eT
β = ∂α( f ◦χχχ)gαβ (∂β χχχ)T ≡ ∇( f ◦χχχ)ggg−1JJJT . (A.6)

The (covariant) surface Hessian (a symmetric tensor) is given by

(∇Γ ∇Γ f )◦χχχ := eµ gµα [∇α ∇β f ]gβρ eT
ρ = eµ gµα [∂α ∂β ( f ◦χχχ)−∂γ( f ◦χχχ)Γ

γ
αβ

]gβρ eT
ρ . (A.7)

A.2.3 Special Case of a Surface. Suppose d = 2 and n = 3. We have the following integration by

parts relation:

∫

Γ
f ∇Γ ·vdS =

∫

∂Γ
f v ·nnnds−

∫

Γ
(∇Γ f ) ·vdS,

∫

Γ
(divΓ r) ·∇Γ f dS =

∫

∂Γ
(nnnT r) ·∇Γ f ds−

∫

Γ
r : ∇Γ ∇Γ f dS,

(A.8)

where we suppress the g dependence in the differential measure and nnn is the extrinsic conormal vector

of ∂Γ , given by

nnn◦χχχ
∣∣∣
∂U

=
nβ eβ

|nβ eβ | , (A.9)

where |a| denotes the Euclidean length of the vector a ∈ R
n. Next, let ttt be the unit tangent vector of a

1-d curve ϒ ⊂ Γ with conormal vector nnn, where ϒ = χχχ(Y ) and Y ⊂U . In local coordinates, it is given

by

ttt ◦χχχ
∣∣∣
Y
=

tα eα

|tα eα |
, (A.10)

where ta is the (contravariant) tangent vector of Y . Furthermore, let ννν : Γ → R
3 be the surface unit

normal vector of Γ , which satisfies nnn= ttt×ννν Walker (2015) on ∂Γ . With the ambient space R3 available,

the tangent space projection PPP : R3 → R
3, defined on Γ , is given by

PPP = III −ννν ⊗ννν = ttt ⊗ ttt +nnn⊗nnn, (A.11)

and note that (in local coordinates) JJJggg−1JJJT = PPP◦χχχ Walker (2015).


