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We present a mixed finite element method for approximating a fourth-order elliptic partial differential
equation (PDE), the Kirchhoff plate equation, on a surface embedded in R3, with or without boundary.
Error estimates are given in mesh-dependent norms that account for the surface approximation and
the approximation of the surface PDE. The method is built on the classic Hellan—Herrmann—Johnson
method (for flat domains), and convergence is established for C**1 surfaces, with degree k (Lagrangian,
parametrically curved) approximation of the surface, for any £k > 1. Mixed boundary conditions are
allowed, including clamped, simply-supported and free conditions; if free conditions are present then
the surface must be at least C>!. The framework uses tools from differential geometry and is directly
related to the seminal work of Dziuk, G. (1988) Finite elements for the Beltrami operator on arbitrary
surfaces. Partial Differential Equations and Calculus of Variations, vol. 1357 (S. Hildebrandt & R. Leis
eds). Berlin, Heidelberg: Springer, pp. 142—-155. for approximating the Laplace—Beltrami equation. The
analysis here is the first to handle the full surface Hessian operator directly. Numerical examples are given
on nontrivial surfaces that demonstrate our convergence estimates. In addition, we show how the surface
biharmonic equation can be solved with this method.

Keywords: surface Kirchhoff plate; surface biharmonic; surface finite elements; open surfaces; mesh-
dependent norms; geometric consistency error; nonconforming method.

1. Introduction

Physical models involving partial differential equations (PDEs) on surfaces have become quite popular,
e.g. surface tension driven droplet motion (Gerbeau & Lelievre, 2009; Walker et al., 2009; Barrett et al.,
2015), surface diffusion (Smereka, 2003; Bénsch et al., 2005), the Stefan problem (Barrett ef al.,
2010; Davis & Walker, 2015, 2017), elastic bending problems (Timoshenko & Woinowsky-Krieger,
1959; Barrett et al., 2007; Bartels et al., 2017, 2012), biomembranes (Zhong-can & Helfrich, 1989; Du
et al., 2004, 2005; Dziuk, 2008; Bonito et al., 2010; Barrett ez al., 2016) and other diffusive processes on
surfaces (Elliott & Stinner, 2010; Elliott ez al., 2012; Elliott & Ranner, 2015). In particular, fourth-order
elliptic operators appear in some of these applications, e.g. biomembranes (Elliott & Stinner, 2010;
Bonito et al., 2011) and the surface Cahn—Hilliard equation (Elliott & Ranner, 2015).

In this paper we develop and analyze a finite element method (FEM) to solve the surface version of
the Kirchhoff plate equation. In addition, we show how the method can be used to solve the surface
bi-Laplace (or bi-harmonic) equation. The main object to approximate here is the fourth-order
differential operator div div- (hesspu) =V, Vﬂ vevPu, where V,, (V%) are covariant (contravariant)
derivatives relative to a given surface I" (see also (A.10), (A.11)). This operator is not the same as
the surface bi-harmonic operator (A F)zu = Vﬁ A (V,V%u) because of the geometry of the surface,
i.e. if the surface has nonzero Gaussian curvature (Eisenhart, 1926; Kreyszig, 1991; do Carmo, 1992).
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Moreover, even for surfaces with vanishing Gaussian curvature, these two operators are not equivalent
with respect to all types of fourth-order boundary conditions.

It is well known that fourth-order elliptic equations present difficulties for FEMs, even in the flat
case. One issue is dealing with the Sobolev space H>. Another is correctly capturing fourth-order-type
boundary conditions; in fact the classic Babuska paradox illustrates this beautifully (Babuska et al.,
1980). Among the various methods for the Kirchhoff plate problem, the Hellan-Herrmann—Johnson
(HHJ) mixed method is one of the most powerful (Brezzi & Marini, 1975; Brezzi & Raviart, 1976;
Arnold & Brezzi, 1985; Babuska et al., 1980; Brezzi et al., 1980; Comodi, 1989; Blum & Rannacher,
1990; Stenberg, 1991; Krendl et al., 2016; Rafetseder & Zulehner, 2018). It yields stable discretizations
of any order and does not succumb to the Babuska paradox (Arnold & Walker, 2020). In this paper
we extend the HHJ method to surfaces, with or without boundary, and analyze the effect of the
approximation of the surface using Lagrange (parametric) elements of any degree.

Numerical approximation of fourth-order elliptic surface PDEs, especially the effect of approximat-
ing the geometry, is not as well established as for second-order problems (Dziuk, 1988; Deckelnick
et al., 2005; Dziuk & Elliott, 2013). For instance, the geometric consistency error when solving the
Laplace—Beltrami equation —Au = f on a closed, smooth surface I" has been analyzed in Dziuk
(1988); Demlow & Dziuk (2007); Demlow (2009). The main argument of their analysis is to first
approximate the domain I" with a degree m (Lagrangian) approximation "™ with elements of size
h; the approximation can be generated using a signed distance function (i.e. closest point map) or
interpolation of chart parameterizations. Next, in order to compare approximate solutions obtained on
the approximation domain to the exact solution on the exact domain, we need a diffeomorphic mapping
¥ : ' — I'. Then, the geometric consistency error is estimated by measuring the change in the
metric of the surface from '™ to I" with this mapping. The geometric error reduces to showing the
following estimate for the Jacobian of the map: |V(¥ — idpm)ll o pmy = O(™). Hence, choosing m
to equal or exceed the degree of the finite elements used to approximate the solution guarantees optimal
approximation order.

The surface biharmonic problem has been solved using surface finite elements via splitting the PDE
into two second-order equations, such as in Dziuk & Elliott (2013); Elliott & Ranner (2015) for solving
the surface Cahn—Hilliard equation. The geometric consistency error is estimated in a similar way as
for the Laplace—Beltrami equation. Of particular relevance to our paper is Larsson & Larson (2017),
in which the surface biharmonic problem is discretized more directly using a discontinuous Galerkin
(dG) approach (without splitting the equation) and piecewise linear domain approximation of a closed
surface. Their analysis also involves estimating the Jacobian, as well as accounting for the geometric
error of surface dG operators for the Laplace—Beltrami operator, as well as jump and stabilization terms.

1.1  Main contributions

The surface biharmonic problem. Aside from being the first method to solve the surface Kirchhoff
plate problem, which was first (and possibly last) mentioned in Lasiecka ez al. (2003), it can be used to
solve the biharmonic problem on a surface. In the case of flat domains, any method for the Kirchoff plate
problem can be used to solve the biharmonic problem with clamped, or periodic, boundary conditions.
The same applies to the surface problem, but the Gauss curvature of the surface now appears in the
strong form PDE. In Section 7.4 we show a numerical example for the surface biharmonic problem and
justify the approximation for small negative Gauss curvature.

Approximation of the surface Hessian. The classic HHJ method (for flat domains) involves the full
Hessian of the displacement, in a nonconforming way, and the same is true in our formulation that
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utilizes the surface Hessian. Estimating the geometric consistency error when the Hessian is in the PDE
is difficult because of the second derivatives of the diffeomorphism ¥ : ' — [ that appear in the
analysis (see Ciarlet, 2002, Thm. 4.4.3, and Boffi er al., 2013, pg. 78). For example, let I" and '™
be mapped to a common reference domain using x and ¥, respectively, and note that the Hessian of

an arbitrary smooth v : I' — R maps as V,Vgv = [aa dgv — 0, 171*0;3], where Fa}:‘S are the Christoffel
symbols of the second kind for the induced metric, and v = vo . Since FoZﬂ depend on second derivatives

of the map then comparing Christoffel symbols for x and ¥ yields ||Fa’;3 — Fa):g” [0 = O(hW"™1). Ergo,
an improper handling of this term would yield sub-optimal results or no convergence at all for m = 1.
Another related issue is handling the jump terms (in the mesh dependent 2-norm) when affected by the
nonlinear map. A crucial tool that overcomes these issues and is special to the HHJ formulation is a
Fortin-like operator (5.8). Moreover, we do not require the diffeomorphism to be the closest point map
coming from a signed distance function; interpolants of local charts can be used. Of course one can still
use the closest point map.

Surfaces with or without boundary. Our analysis assumes the surface is described by charts that
exactly capture the boundary (if there is one). The approximate surface is built by interpolating these
maps. For smooth, closed, embedded surfaces one can use the closest point map built from a signed
distance function to create the approximate surfaces (Dziuk, 1988; Demlow & Dziuk, 2007; Demlow,
2009); this method is very convenient for the analysis. However, it is not so convenient for approximating
a surface with boundary. In addition, the order of differentiability of the closest point map is one less
than that of the surface, which is a technical annoyance avoided by the use of charts.

Moreover, our analysis allows for a variety of boundary conditions, such as clamped, simply-
supported and free. Using the result from Walker (2021) we establish convergence of the surface HHJ
scheme even if uniform free boundary conditions are used and the discrete surface is piecewise linear.
This is not trivial because of the presence of Killing fields (see Remark 2.2). Our mixed formulation can
also handle ‘point conditions’ (see Section 2.2 and (2.3)).

General error estimates. We make minimal regularity assumptions, in-line with the known regularity
for the plate problem with various mixed boundary conditions. Furthermore, if the surface and solution
are smooth, we obtain optimal convergence of order r + 1, where r 4 1 is the degree of the Lagrange
space used, both for the surface approximation and the displacement variable.

Relation with Arnold & Walker (2020). In our prior work we considered the Kirchhoff plate equation
on a flat domain with curved boundary, where the geometric error in approximating the curved boundary,
using the classic HHJ method with curved triangles, was analyzed. That paper provides a framework,
such as mapping theorems and estimates of geometric consistency terms, for the (more general) analysis
in this paper. However, we note the following differences: (i) previously, only the elements adjacent to
the boundary were curved, which allowed for some minor simplification; (ii) mappings for surfaces
create some extra complication over the flat domain case; (iii) since all elements are curved in this
paper, extra geometric consistency terms (over our prior work) appear due to the co-normal derivative
jumps at internal edges; (iv) free boundary conditions were not considered in the earlier paper; and (v)
this paper accounts for the kernel of the discrete (covariant) surface Hessian, which is not as simple as
in the flat case.
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aq

F1G. 1. Illustration of the surface plate domain I” in R3. The boundary ¥ = dI" decomposes as ¥ = X U X U Xy and has a
finite number of corners with interior angles «;; the corners may (or may not) lie at the intersection of two boundary components.
The boundary X' has (outer) conormal vector, n, and oriented unit tangent vector, £. The oriented normal vector of I” is v. Part of
the exact, curved surface triangulation .7}, is shown with dotted curves.

1.2 Outline

Section 2 presents the Kirchhoff plate problem on a surface and Section 3 presents the mesh-dependent,
mixed formulation that is the surface version of the classic HHJ method. In Section 4 we review
parametric surface elements, describe the surface Matrix Piola transform, which is needed for mapping
HHJ elements, and derive some change of variable results when mapping the bilinear forms. Section 5
presents the FEM for the mesh-dependent, mixed formulation and verifies the well posedness of the
method. Section 6 gives the error analysis. The PDE error is analyzed as in BabuSka ef al. (1980)
and Blum & Rannacher (1990) (for the case of a flat domain), where we use mesh-dependent spaces
and norms; the geometric error is analyzed in the framework of Dziuk (1988); Dziuk & Elliott (2013)
combined with new results we derive here. Section 7 presents numerical results and we conclude in
Section 8 with some comments. In the appendix we give an overview of essential differential geometry
concepts and provide some technical results.

2. The plate equation on a surface

Let I" be a smooth, connected, two-dimensional manifold embedded in R? with continuous, piecewise
smooth boundary dI" =: X' = X U X U X that consists of clamped (X,), simply-supported (%) and
free sections (X); see Fig. 1. In some cases the boundary may be empty, giving a closed manifold.

2.1 Sobolev spaces on surfaces
We adopt standard notation for Sobolev spaces on manifolds. For example, the H!(I") and H 2(I") inner
products on I" are written:
W, Vg == / wv+ Vew - VivdS, W, V) ey = W, V) g1y + / VrVrw: VpVEerdS,
r r
2.1

where Vv = grad v is the surface gradient of v in (A.9) and V-V w = hessjw is the surface
Hessian of v in (A.10).

REMARK 2.1 We emphasize that V-V w is not simply applying the surface gradient V to each
component of Vw. One must account for the fact that V ~w is tangent to the surface, i.e. Vpw € T(I")
(tangent space). If v € T(I") is a tangential vector field, then Vv is a tangential tensor field; its explicit
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computation requires the Christoffel symbols. See Section A.2 for details of the notation and definitions
of the differential operators.

We denote by Iile(l“) C HY(I") the Sobolev space with vanishing boundary conditions up to degree
£ — 1. We will have special use of the following subspace of HX(I): (") := {we H*(I") | w=
0,on ¥ UX,n-Vrw=0, on X_},ie. with clamped and simply-supported boundary conditions.

Next, let Z(I") :={w € (") | V,V,w = 0} be the nullspace of the (covariant) surface Hessian
operator on I". The maximum dimension of Z°(I") is three for a two dimensional surface; see (Walker,
2021, Sec. 2.2.2). Furthermore, if v € 2(I") is not constant, then Vv is a Killing field (do Carmo,
1992), (Eisenhart, 1926, eqn. (70.2)), (Petersen, 2006, Prop. 27).

REMARK 2.2 Generic manifolds, with nonconstant Gauss curvature, do not have Killing fields. Ergo,
even if 91" = X}, 2°(I") may only contain constants. On the other hand, consider the closed 2-sphere.
It has three Killing fields corresponding to three independent rotations of the sphere, but none of them
come from differentiating a scalar w (so Z°(I") only contains constants).

Next, consider a small spherical cap with boundary (and free boundary conditions). Two of the
Killing fields can be written as a gradient, but the third one is a rotation about a point in the surface so
does not correspond to the gradient of a scalar (see do Carmo, 1992, Ch. 4, exer. 3). In this case Z°(I")
is spanned by three basis functions, i.e. two nonconstant functions whose gradients are killing fields and
the unit constant function. See Section 7.2 for a numerical example.

2.2 The bending energy on a surface

Owing to the continuous embedding HX(I') < C%T) point evaluation is well defined. Therefore, set
J = dim Z°(I") and choose points {pj}]!:1 C I such that {v € Z°(I") | v(p) = 0,1 <j<J}={0}
see Walker (2021, Sec. 2.2.2) for how this can be done. Note that if J = 0, then {pj}]!:1 = (). Moreover,

172
define Z(f) = (Zle V(pj)|2) for all f € HX(I') if J > 0; otherwise, Z(f) = 0. Then, given
f € #* and the duality pairing (-, -) » between #* and #/, the ‘plate energy’ on the surface is given by

Ewl = = (CYpVrw, VieView) o — (fw) o, forallw € #/, (2.2)

N =

where

W) =we&(I')| Ew) =0}, (2.3)

is the space of ‘displacements’, and C is the constitutive 4-tensor:

] LN B
Ct:=D[(l -0t +¢tr(v)], Krt:= D [l 7 T — tr(r)I], 2.4)

defined for all symmetric tensors T € R3%3, with K the inverse of C (¢ is Poisson’s ratio). Note that
C is a symmetric positive-definite operator on the space S(I) of symmetric, fangential 3 x 3 tensors,
provided ¢ € (—1, 1); for general symmetric 3 x 3 tensors, C is positive definite if £ € (—1/2,1).

220z AInr 0z uo Jasn 119 s92UBIOS UESH NS AG $S8YSEY/Z900EIP/WNUBWIEEO L 0 L/10P/SI0Ie-90uBADE/eUfEWI/W0D dNO™dlWspeoe)/:SA]Y WOJj POPEOUMOQ



6 S. W. WALKER

The Kirchhoff plate model on a surface follows by minimizing the energy (2.2), which gives the
weak formulation is as follows: find w € % such that

/ 0:VVpzdS={f,2)p, forallzeW, (2.5)
r

where 0 = CV Vpw. The solvability of (2.5) is guaranteed if ¢ € (—1,1), because (2.2) is a

convex functional with a unique minimizer. Moreover, (CV -V w, V-V w) r = GlVpVv 1~w||i2 e P
C, ||w||12q2 ry by Poincaré (c.f. (4.7)), so the unique solution of (2.5) follows by the Lax—Milgram lemma

(Evans, 1998) with a priori estimate ||w||H2(F) < C|[fllyy+. The strong form PDE is 0 = CV [V w,
and

divpdivie =f, in I\ {p;}_;, andw =0, on X U X,
n-Vew=0,onX, c™=0, on X UZX, (2.6)

—n-(divpo) —t- Vo™ =0,0n X%, EWw) =0,

where 0™ := nTon (6™ := n’at) denotes the conormal-conormal (conormal-tangent) component of
o, the double surface divergence is given in (A.11), and we have the additional corner conditions

T — _ ntpt _ .
—|n"ot| =—0 |p_ =0, atevery corner p in X;. 2.7
p

3. Mixed formulation of the manifold plate problem

After stating the assumptions on the embedded surface domain I” we derive the continuous, mesh-
dependent formulation of the manifold plate problem in the extrinsic setting.

3.1 Domain assumptions

The surface I is taken to be C¥*!, where k > 1. If I" has a boundary dI" := X we assume X
is piecewise Ckt1 with a finite number of corners, with interior angle o; € (0,2n] of the ith corner
measured with respect to the Euclidean metric in R? (see Fig. 1). In particular, X is globally continuous
and parameterized by a piecewise curve, ie. ¥ = U,cyy P U Upegy ¥, Where 75 is the set of

corner vertices and €'y, is the set of (open) C*1 curves that make up ¥. Furthermore, as a technical
convenience, we assume that I” is a sub-manifold of I'* (also C¥*1) with T" cc I'*.

In addition, we assume X~ = fc U fs U ff partitions into three mutually disjoint one-dimensional
components X (clamped), X (simply supported) and X; (free). Any of the components can be empty,
but if | X} > 0, then we also assume that I" is at least C>!. Each open curve 9 € %5, belongs to only
one of the sets X, X or X}, and each curve is maximal such that two distinct curves contained in the
same component do not meet at an angle of 7. Furthermore, we have the set of corner vertices contained
in X

Vs, =pe€Vs | p=0,0N0,-, where 9,9, C T, 0, #0,-). (3.1)
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3.2 Continuous mesh-dependent formulation

The main difficulty in solving (2.5) numerically is that % C H>(I") and so C' elements are required for
a conforming discretization. This is especially difficult in the case of a surface, e.g. one would need a
surface version of the Argyris element (Brenner & Scott, 2008). Thus, we adopt the approach in Brezzi
& Raviart (1976); Babuska et al. (1980); Arnold & Brezzi (1985); Blum & Rannacher (1990); Arnold
& Walker (2020) and use a mesh-dependent version of H>(I"). We partition I” with a mesh .7, = {T'} of
triangles such that I = (J7¢ g, T, where hy := diam(7) and i := maxy h7, and assume throughout that
the mesh is quasi-uniform and shape regular. We also assume the corners of the domain are captured by
vertices of the mesh. Note that these triangles are, in general, curved (recall Fig. 1). See Section 4.1 for
how this domain partitioning can be created.

Next, we have the skeleton of the mesh, i.e. the set of mesh edges &), := 9.7}, which may be curved.
Let &, , C &, denote the subset of edges that are contained in the boundary X and respect the boundary
condition partition of X'. The internal edges are given by &, := &, \ &3 .

The spaces in the following sections are infinite dimensional, but ‘mesh dependent’. Thus, we use
standard dG notation for writing inner products and norms over the triangulation, e.g. (f,8) g, =

ZTE% . 87 ”fnip(%) = Zre% |V||p,(T), etc. The following scaling/trace estimate is used
judiciously (Agmon, 1965, Thm. 3.10):

V1727, < € (h*‘ V1172 ) + h||vpv||§zm) .WeH(I). T e, (3:2)

3.2.1 Skeleton spaces. We follow Babuska et al. (1980) in defining infinite-dimensional, but mesh-
dependent, spaces and norms. A mesh-dependent version of H>(I") is given by

H}(I') := {ve H'(I") |v|; € HX(T), for T € ), (3.3)

with the following seminorm
2 . 2 -1 2 —1 2
W12 = 1V Vvl g + 0 0 Vvl g, + 0 1T Vvl s, (3.4)

where [n] is the jump in quantity n across mesh edge E, and n is the unit co-normal on E € &,
Hence, if the edge E is shared by two triangles 7 and 7, with outward co-normals n; and n,, then
[n-Vrv] =n;- Vvl +n,- Vvly, on E. For E a boundary edge, we set [n] = 1.

Next, recall that S(I") is the set of symmetric (extrinsic) tangential tensors on I, i.e. S(I') := {¢ €
R3%3 | ¢ = T, @v = 0}, where v is the unit normal vector of I" (see (A.8)). We shall usually make
the abbreviation S = S(I"). For any ¢ € H'(I"; S) define

2

2
+h HnTgon 25’ 3.5)

2 2 T
= +h Hn n
”‘p”(),h ”(p”LZ([‘) (p Lz(éa(),h)

and define H,? to be the completion: H,?(F;S) = Hl(F;S)H‘”O’h. Following Babuska er al. (1980,

pg. 1043) and Arnold & Walker (2020, eqn. (2.11)), because of the completion and definition of the norm,
HQ(F;S) =LX(I";9) ® L2(c§’h;R), ie. @ € Hg(F;S) is actually @ = (¢, ™), where ¢’ € L>(I'; S)
and ™ € L?(&),), with no connection between ¢’ and ¢™. We also have that p € H'(I";S) C Hg(F; S)
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implies nT(p/ n| & = @™ (see Babuska et al., 1980, and Arnold & Walker, 2020). Furthermore, we have
a scalar valued function version of || - || ,:

WIGs = V172 cp + RlIVIT2 g, forallve H'(I), (3.6)

which satisfies the estimate: ||v||(2),h <C (Ilvlliz(m + K2 Vrv||iz(1,)), for some independent constant C
(this follows from (3.2)).
Next, introduce the following skeleton subspaces

W), = {weHXI) |w=0on3.UX, 8w =0}cCH (),
3.7)
¥, =1{p € H(I';S) | " = 0on X, U Xy},

where ), is a mesh-dependent version of (2.3) and ¥}, is used for the stress o'; note that the point
condition = (w) = 0 makes sense because of the continuous embedding H}%(F) — C%T) (see (4.6)).
Note that (3.7) imposes essential and natural boundary conditions differently than in (2.3).

3.2.2 Mixed skeleton formulation. The mixed method for the plate equation on an extrinsic manifold
is a surface version of the classic HHJ method. Its derivation is essentially the same as for flat domains
(Arnold & Walker, 2020, Sec. 2), which we briefly summarize. Start by multiplying the first equation in
(2.6) by a test function v € %, integrate over a triangle 7', apply integration by parts (twice) and sum

over all triangles. This yields the weak form b, (o,v) = — (f,v) for all v € #}, where
b, (9,v) == — z (@.hessyv), + Z (@™ [ - Vpyl) (3.8)
TeI, Ecé,

forall ¢ € H}?(F :S)andv e H,zz(l“). Furthermore, define
a(t,9) = Kr,@)p, forallz,¢c H,?(F;S). 3.9)

Using that ¢ = CV [V, and the continuity of n - Vw, we have a (o,¢) + b, (¢p,w) = 0 for all
¢ € ¥}, Therefore, let Hcls(F) ={veHY(I')|v=0, on Y. U X}, and assume f € (HCIS(F))*. Then,
the solution (o, w) € ¥, x #}, of (2.5) satisfies the pair of equations:

a(o,9)+b,(p,w) =0, Yo € V),
by(o,v)=—{f,v)ip, Yve¥, (3.10)

where (-, -) - is the duality pairing between (HCIS(F ))* and Hcls(l" ). In the case of polygonal domains in
RR? this method has been analyzed by numerous authors with different techniques. The mesh-dependent
analysis we give is based on techniques in Babuska et al. (1980); Blum & Rannacher (1990), which
were generalized to piecewise curved domains in Arnold & Walker (2020). The equivalence of (3.10)
for flat domains is described in Babuska ez al. (1980), (Blum & Rannacher, 1990, Sec. 3) and Arnold &
Walker (2020); the equivalence in the case of surfaces is similar.
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4. Domain approximation and mappings

Given an embedded manifold I, with or without boundary, we assume we have access to an atlas of
charts {(U;, x;)} that parameterizes I", and that we can generate a piecewise linear triangulation, with
some mesh size i, which interpolates I" at the vertices. Furthermore, we assume # is sufficiently small
so that the triangulation lies within a ‘tubular neighborhood’ of I" where the closest point map is well
defined; see Dziuk (1988); Demlow & Dziuk (2007); Demlow (2009); Dziuk & Elliott (2013) for more
discussion on these basic issues. The following sections review the basic theory of curved elements and
describe how tangential tensors transform under a diffeomorphism, followed by a transformation rule
for the forms in (3.8) and (3.9).

4.1 Curved triangulations

We review the parametric approach to approximating a manifold with a curvilinear triangulation .7,
of order m > 1. We start with a conforming, shape-regular, piecewise linear triangulation ﬂhl of a
polyhedral domain I"! that interpolates I" at the vertices; furthermore, the boundary vertices of I
(namely X'!) lie on the boundary of I'. Let %lh be the set of triangles with one side on X! and, for
convenience, assume the triangulation satisfies the following property.

ProOPERTY 1 Each triangle in yhl has at most two vertices on the boundary and so has at most one edge
contained in X!

We assume yhl is homeomorphic to an exact triangulation .7}, of I' in the following sense. For each
T! e ghl there is a chart (U, x), and a straight-edged triangle 7" C U, such that the following holds.

() T'= (x'y)(T"), where 7! is the standard continuous linear, nodal Lagrange interpolation operator
with the usual approximation properties.

(ii) There is a unique 7 € .9}, such that T = x(T).

With the above considerations one can generate another atlas of charts {(T, X1)}re 7, Where for
eachT € 9, T = xT(T), where 7 is the standard reference triangle. Thus, we can define a family of
curved triangulations, ﬂh’”, for m > 1 (all homeomorphic to .7,) by

G ={T" | T" = (I" x;)(T), for some unique T € .7}, 4.1)

where 9™ : CO (?) — ,@m(?) is any degree m Lagrange interpolation operator on 7T that yields a
globally continuous interpolant .7 : cO(r'y - %' in the following sense. For any f € CO(I'!)
define .#;" element-wise by .7}"f|71 = [jm(fh*l o (ﬁ XT))] o (ﬁ XT)’I. Thus, .#;" has the usual
approximation properties, (Lenoir, 1986; Brenner & Scott, 2008). Later, we use a specific choice for
;" given by (5.2).

Therefore, .7, is a conforming, shape-regular triangulation that approximates I by I'"" :=
Urme g ", for allm > 1 (where G is the closure of the set G). We also denote by é",:” the set of
edges of the triangulation .7,", which is partitioned into interior edges &y, and boundary edges &3),.

Thus 2™ := {Jpnc ém E™ is an mth order approximation of X.

Next, for each T' € le, we define the mapping F : I'' — I through the diffeomorphism
Fy = Flp = xr o (Fxp) 7!, as well as the map F™ : I'' — '™ by F™ := #"F, i.e. the map
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10 S. W. WALKER

FiG. 2. Illustration of the mappings between approximate triangles T! and T™, and the exact curved triangle 7. The dashed
triangle is Tl

is defined by specifying the images of the Lagrange nodes of degree m on T'. Note that F IT = idp.
Moreover, we define maps (see Fig. 2) between approximate domains, of degrees / and m by

@M. = @M T! — T™ where @4 := F o (F})™!, so )" = F7. 4.2)

We also require a map from the approximate domain 7" to the exact domain I". Specifically, given
a triangle 7™ € .7}, we define a diffeomorphism ¥’ : T — T € .7, by W' := F o (F/)~!, so then
T, = {'I’r#(Tm)}T'"eZ["- The ¥’ may be pieced together to give a global map ¥ : I'"* — T.

The notation I" and I'™ is inconvenient because the exact domain has no superscript, but the
polynomial approximation does. Thus, for convenience in later statements, we will abuse notation and
make the identification ' = I, <7h°° =9, ¢° =yl F > = Ww! etc. This is motivated by the fact
that for most C* surfaces I, the polynomial approximate domain /", with triangulation .7, would
converge to I" as m — oo with h fixed. Of course we do not claim (in general) that I"™ converges I,
for fixed h, as m — 00, especially when I" is not C*°.

The main approximation properties for these maps are summarized in the next theorem.

THEOREM 4.1 Suppose I is a C**! surface for some fixed k > 1, i.e. I" is parameterized by an atlas
of charts {(U;, x;)} and x; € Ck“(Ui) for all i. Then, for all 1 < < m < k and m = oo (see notation
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N
R

n

FIG. 3. Mapping unit vectors on 7" back to T'. We sometimes abuse notation and write = ¥ o FT, etc.

above), the maps F7, F' IT described above satisfy

V3, (F — idg) |l e 1y < CH*™F, for 5 =0, 1,2,
IV3a (FF = Fp)ll oy < CHFIS, for 0<s <+, (4.3)

1= Ch < [V Rl ey < 1+ Chy IIVpFR™ =1 joo 1y < Ch,

where all constants depend on max; ”ijl-”Loo(Ui), forj=0,1,...,1+ 1.

Next, recall the tangent ¢, co-normal n and surface normal vectors v from Fig. 1 and let ~, * or ~
denote quantities defined on 7%, or using F>., for s = m, [, or 1, respectively; e.g. ¥ is the surface normal
of T™ (see Fig. 3). Then, the following estimate holds:

IFo F} — 20 Fill sy + i o Ff — i 0 Flpl| ooy + 19 0 FF — % 0 Fipll o1y < Ch'. (4.4)

We close with some results on how the mesh-dependent norms || - |, and || - ||, ;, transform between

different domain approximations I” Iand I'™. Thus, let || - 2 pms 1|+ llopm denote the norms in (3.4),
(3.6), but defined on I"™. The proof of Proposition 4.2 is a straightforward application of basic mapping
arguments and estimating Jacobians.

PROPOSITION 4.2 Let v € H7(I'™) and define i = vo @ € HX(I'!), ®| := & for any choice of
I,me{1,2, ..,k 0o}. Then,

~ i -1 N
||V1~,nv1~mv||L2(Zlm) <C (”VFIVFIVHLZ({ZII) + hmm(l,m) ”VF]V”LZ(FI)) ,

' 4.5)
IVll2 o < € (||f’||2,h,1 + pmindm ||Vrl‘7||L2(rl)) ,
for some constant C > 0 depending only on the domain.
ProrosiTioN 4.3 Letl < m < kandm = oo. Forall v € H}zl(l“ ") there holds
5 5 1/2
||V||L00(1"m) < Cipg (”V”Hl(pm) + ||Vrmvrmv||L2(yhm)) >
(4.6)
5 2 1/2
||VFmV||L2(3rm) < Gy (”VI"”’V”LZ(Fm) + ||Vrmvrmv||L2(yhm)) >
for constants Cy,r, C,; > 0 independent of i. Moreover, || - |l is @ norm on #}", and for h >

0 sufficiently small (depending only on I"), there is a constant Cp > 0, depending only on I” and
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12 S. W. WALKER
independent of A, such that

IVl z2crmy + 1V pmvll2rmy < Cpllvllg gy, forallv € 7" 4.7)
Proof. When m = 1, the proof is given in (Walker, 2021, Thm. 4.2). For m > 1 the m = 1 case is

combined with (4.5). Il

PROPOSITION 4.4 Assume the hypothesis of Proposition 4.2, and let u € H'(I"™) and define &t =
uod c H! (FI). Then, for 4 > 0 sufficiently small,

N A
C() ”"‘HO,h,l < ””‘HO,h,m < CO”“”O,h,l’ (4.8)
and
1A ~
Gy Wllopg < WVlppm < ColVligpy, forallv e ", 4.9

where C,;, C, > 0 depend only on I".

Proof. Inequality (4.8) follows by standard mapping arguments, and (4.9) follows by combining (4.5)
and (4.7). O

4.2 The Piola transform

Recall the space of tangential, tensor-valued functions H,?(F’";S’") (see Section 3.2.1), where
S™ = §™(I'™) is the space of symmetric, tangential tensors on I'™. Note that the tangent space
on I'™ is element-wise defined through the mesh .7,". We require a transformation rule that relates
functions in Hg(]" m- 8" to H?;(F I;Sl) (with m # 1), such that conormal-conormal continuity is
preserved; this is crucial to ensure that the HHJ finite element space in (5.4) is continuous. We first
recall the matrix Piola transform from Arnold & Walker (2020).

DEFINITION 4.5 (Standard matrix Piola transform). Let @ : ¥ — 2 be an orientation-preserving
diffeomorphism between domains in R". Given ¢ : 4 — R"*" we define its matrix Piola transform
@ © 9 s RN by

@(X) = (detB) " *Bp(x)B” = (detV¢)_2(8i¢)<pij(x)(8j¢)T, (4.10)

where X = @(x), and B = B(x) = V& (x).

Note that (4.10) is analogous to the Piola transform for H(div) functions. This suggests the following
surface version.

DEFINITION 4.6 (Surface matrix Piola transform). Let I” be a two-dimensional surface that is locally
parameterized by the chart (U, x), i.e. ® := x(U) C I'". Given the contravariant tensor (p“b U — S,
we define its extrinsic surface matrix Piola transform § : © — S, via the chart, by

1

PR =g 'e0” ey, (4.11)

where X = x(X), e, 1= 3, X, 8up =€y - €gand g :=detgy.
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Moreover, let J = (V1 F' ’}1)1;* € R3*2 where V1 is the surface gradient on T! € yhl, (VpF}) €
R3*3 and P, € R3*? is the projection and restriction onto the tangent space of 7'. Given an extrinsic
tensor @ : I'! — S! on the piecewise linear surface I"! we map it (element-wise) to a tensor ¢ : '™ —
S", for any m, using the map X = F7'(X) and

$®) = Piola(@) ®) := det (@)~ JP, o®P,J", (4.12)
where Q = J7J. The inverse Piola transform is given by
$(X) = Piola '(§)(®) := det (@) P,0 ' T 9 (JQ'P,". (4.13)

Note that (4.11) is similar to the definition of S in (A.8), except for the g~ ! factor.

REMARK 4.1 A tangential tensor ¢ defined on I"! is mapped to a tensor @ on I'”, for m # I, through
the map @ (see (4.2)). To see this more explicitly suppose ¢ : I'" — S'. Then, given a chart for
one triangle T c I'!, with metric 8qp- there is a unique contravariant tensor ¢®? such that ¢ and ¢°°
satisfy (4.11). Furthermore, using the chart for the corresponding triangle 7" C '™, there is a unique
@ : ' — S" that satisfies (4.11) with a different metric g,,. We adopt this approach throughout the
paper.

A simple consequence of Definition 4.6 is the following.

PropPOSITION 4.7 Adopt the hypothesis of Definition 4.6 and recall F’} from Section 4.1. Let
X = 2" X X = thT (note that ¥ = F7 o X), and let z (iz) be the unit conormal on 97"
(dT"); likewise, let  (f) be the unit tangent vector of 7™ (dT'). Moreover, let ¢ € H'(I'™;S™),
@ e H(I''; S'), be related through (4.11) using ¥ and . Then, denoting the surface gradient on 7' by
V1, we have

G o FIt = ™ [(Vpi FiNE 2. (4.14)
Proof. Noting ¢"" = il i, g™ =’ gn, and applying (A.14), gives
(Z)nn ° )~( — |tuéu|_2na§0aﬁ”ﬁa q—)nn ox = |tuéﬂ|—2na¢aﬁnﬁ_

Since &, = (V1F})E,, for all , and f = r*€,|1*€,| ", we have |(VaFPI* = |te, | 2|"e, |,
Combining these results yields the assertion. t

Since F™ is piecewise smooth and continuous with respect to the mesh le it follows that (V1 F7)t
is single-valued at interelement edges, so ¢ is conormal-conormal continuous if and only if ¢ is. So, by
completion, any ¢ = (@', ™) € H,?(F’”; S™) transforms to ¢ = (@', ™) € H}?(Fl; S as follows: o
and @’ are related through the Piola transform (see Remark 4.1) while @" and ¢"" are related through
(4.14). The following norm equivalence is immediate from (4.8):

1@llo.m ~ I@llgps Y@ € HY(I™;:8™), forall 1< 1,m < k,oc. (4.15)
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14 S. W. WALKER

4.3  Mapping forms

The following result is essential for analyzing the geometric error when approximating the solution on
an approximate domain and also for deriving the discrete inf-sup condition on curved elements.

THEOREM 4.8 Let1 </ < ksuchthat! < m, for | < m < k, or m = oo, and recall the mapping

A

discussion in Section 4.1. Let 6 € HS(F’";SV”), 0 € Hg(Fl;S[) and 6 € Hg(Fl;Sl) and assume
they are related through (4.11) in the sense of Remark 4.1. Make the same assumption for @, ¢, @. In
addition, let v € H>(I'™), ¥ € HX(I'"), v € HX(I''), where 7|7 o ®1" = ¥ and 9| o #1 = V. Then,
there holds

" (3.9) = d (6.9) + O 8121 10120, (4.16)

By (@.9) = by, (@.9) + O 19llo,s (912,00 + 19151 ¢1)

_ - - - A= .
b} (0. F" = F) - PVpd) + D0 (o™ i Vs 17
Ele(g:il,h

where .#,"! is the Lagrange interpolation operator onto piecewise linear on I'!, Py : L2(I'") — L2(I'")
is the projection onto piecewise constants and 8 = [(f — ) x v] - £, |B| = Oh)yandv=vo F; is the
unit normal vector of T (see Theorem 4.1).

Proof. From (3.9) we have a” (6,9) = (K&, @) rm = D qme am (Ko, @) 7. Consider a single element
T, the map F7; and associated element T'. Now apply a global rigid motion that maps 7" to 7" and
T! to TV such that T!" c R2. Moreover, let 6, @' be the corresponding mapped tensors using (4.10).
Clearly, from (2.4), (K&,@)n = (K&',9") . Let F}' T' — T™ be the corresponding rotated
map, which can be viewed as a parametrization of 7" (see Appendix A.3 for more details). For ease of
notation let us momentarily drop the ' notation.

Treating F}' as a parametrization (4.11) implies

" (4.18)

(K&, @)gm = (g’ﬂ/zf{ywaﬁ&aﬁ’@yw)
where kywotﬂ =D! [(1 - g)—lgyagwﬁ —-¢(1 = {2)_1§yw§aﬁ], with the metric given by g, =8 =
]T], where J is the 3 x 2 Jacobian matrix given by J = [9,F, 0,F4']. Similarly, (K&,(}))T, =

o~

(§_3/2fywaﬁ6°‘ﬁ, @V“’) o> Where 2. K, s come from using F’.. We then arrive at

(K6, @) — (K6,9) | < CIG 200 191270 (4.19)

where we used that ||I?ywaﬁ — fywaﬁ ooty < Ch!, which follows from (4.3). Since (4.19) also holds
for the unrotated elements, summing over all elements yields (4.16).
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As for (4.17) we start with (3.8) and write it as

b @) == D [(@ VinVn®) g — (™ VuF)y ] (4.20)
Tme’?hm

noting that alon = ¢™m. We proceed as before, i.e. consider a single element 7", the map F7 and
associated element 7', Again, we apply a global rotation and drop the ’ notation. Mapping the first term
in (4.20) from 7™ to T' we see that

(@ V1 Vrud) = (27720, [0,057 = 0,07, ]). . @.21)

where FZ/}; are the Christoffel symbols of the second kind (depending on the induced metric g). By

. o = ~—15T ~ab - . .
using the parametrization we have I oZS =@ 'J a)7a, dg(F7 - a;), where 2°° is the inverse metric,

and {a, a,, a5} are the canonical basis vectors in R3. Using the estimates in (4.3) for F;' we can express
(4.21) as

~ ~ - - ~—1/2 - -
(@.VouVn¥) pm = (‘P“ﬂ’aaaﬁ")p + ((g 2 _ 1)<p“’3,3a3ﬂv)T1

= (0.0, 8,85 P -a0) | = (0.0, =), 0 Y -2) .

(4.22)

where we introduced Z]}/ = g—l/z@‘lfai)y and (Siy = 1 if i = y and zero otherwise for 1 < y < 2,
1 < i < 3. A similar result holds for (@, Vi VTzfz) 1 by replacing m with [ in (4.22), and replacing g
N aTs o a
with g = J J, for J = [8,F%, 3,F%].
Next, let Aj := (@, Vu VynV) 1y — (@, Vi Viub) 1y and expand:

Ay == (#9,9,87 0,05(Ff — Fy1 - al-))T1 + (@2 -, 3a8ﬂ9)T1

= (70,7} = aDadpF -a0) = (6°7.0,5@] =)0, 0 (FF = Fi1-a))

(4.23)

Tl_

Note that g7 — 27V2|| o1y < CL 1@ — ) oty < CHand (1G] — 8] || oo (71) < Ch, for all
T! € ﬂhl using (4.3). Thus, the last three terms in (4.23) are O(hl)II(?JIILz(Tz)IIVTzf/IIHl(Tz). Furthermore,
letting QZ/S = 83/ E)O(BB([F’%1 — FIT] - a;), and using the piecewise projection Py|1 : L*(TYY — R onto
constants, we have that

((;,aﬂayp’ o ﬂ)T’ - ((;aﬁpoayv, Qgﬁ)T1 + (@“ﬁ 9,7 — Poayv],QZ,S)T1

< (@“ﬁpoayv, Qgﬂ)T1 + CHI 20 | Vg (4.24)
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16 S. W. WALKER

where we used the approximation property of P, and || QZﬂ ll ooty < Ch=1 forall T! € le. Note that

((,5“'3 Pyd, 7, QZ,S)T1 = (9. V1V [(F} — F}) - PgVi7]) 11, and the same result holds in the unrotated
coordinates. Therefore,

(@, Vo Viu®) g = (8, Vit VD) 1 + OB 2y | VPl g1

- (@, V1 Vo [(F — FL) - Py v])Tl. (4.25)

Next, consider the second term in (4.20). Again, we focus on a single element 7", map itto T I and
apply a global rotation to obtain 7" and TV {x; = 0}. Let 7, i’ in R3 be the oriented unit tangent and
conormal vectors of E)Tl/, which point in the plane {x; = 0}. It behooves us to introduce I;*T = [I,,0]

so that I;*Tﬁ' € R?. We now drop the ’ notation for simplicity.
Let 12 be the conormal of 37", and let us abuse notation with z = i o F'}. By (4.14) ¢" o F} =

@™ |JZ|~2; note that the arc-length measure on 7™ is given by ds(g) = |J7|ds, where d5 is the arc-
length measure on d7"'. Applying a change of variable yields

(- Vil = (TG B ) (426)

T!

where we used (4.14), (A.9) and V17 € R3. A similar result holds for (9", 7 - V), ., by replacing m
with / in (4.26), and replacing g with g, etc.
Define Ay := (¢" it - Vu ),y — (@™, 72 - Vi), -, and expand:

Ay =((Jat = Jat) gi vps) (107 1) g @I P - T V)

aT!

{0 = 0@ V) (V)

s

aT!
(4.27)

where R? 5 77 = flT]g_lI;*T — ﬁTjg_ll;*T. Let o = |JE|~' — |JE|~! and note that from (4.3),
lo] = O(K') and ||J7~' — 1] = O(h). Using (A.17) we get

A, = <Ot(,5nn,ﬁ : VT”_})E)TI + O(hl+1)||¢_7nn||L2(aTl)||VT1‘_’||L2(3T1)
+ (@nn, ,BE : VTll_))aTl - <¢m, (n - VTI (F';Z - FZT)] : VT”_}>3T1’ (4.28)

where 8 was defined earlier. By the approximation properties of ﬂhl ! and using (3.2), we have

- 1,1- - 1,1-
WPV EY = Vi I e < C(||VT| 0 =2 D zay

+ W\ V1 Vi (v — fhl’lv)uLz(Tl)) < Ch| V1 Vyibll 2y (4.29)

220z AInr 0z uo Jasn 119 s92UBIOS UESH NS AG $S8YSEY/Z900EIP/WNUBWIEEO L 0 L/10P/SI0Ie-90uBADE/eUfEWI/W0D dNO™dlWspeoe)/:SA]Y WOJj POPEOUMOQ



THE SURFACE HELLAN-HERRMANN-JOHNSON METHOD 17

and similarly 2'/2|| V19 — PoVrivll 271y < ChlIVy1 Vvl 2. Applying (3.2) to | V719l 12¢571) in
(4.28) and combining with the above estimates yield

Ay = {ag™. it Vv), .+ OB 16™ | 2o ) IV Pl oy

+ <(/—)nn“32. Vri jh“v)@ a <¢—,nn’,—l Vpl(Ff = Fp) - PoVp ‘_}]>3T1' (430

T!

This estimate also holds for the unrotated element, and for all T! € yhl.

Now note that the mapped tangent vectors, and the mapped normal vector v, is continuous across
edges in &), which implies that o and B are continuous across edges. Since @™ is also continuous, and
setting a1 := o1, this implies that

> [(a@nn,ﬁ V), + <¢“ﬂ, BtV ﬂh‘"v)aTI]

TleZ)]
_ _ _ _ - 1,1-
= > fap @™ [ Vil + 3 (974 Vs
E'eé)] Elesy,

- — - - - < 1,1-
<Ot D B 2@k P - Vu il gy + D (wnn,ﬂt-vﬂfk V>Ev (4.31)
E‘eé”hl E'eéaalﬁ

where the internal edge terms in the second sum cancel out. Combining the above results and summing
over all 7" € .7, prove (4.17). O

A simple consequence of Theorem 4.8 is
by (9.v) = b}, (@.9) + O )11l - (4.32)

5. Finite element approximation
5.1 Curved Lagrange spaces

Let r > 0 be an integer and m > 1 be an integer or co. The (continuous) Lagrange finite element space
of degree r + 1 is defined on I'"™ via the mapping F7:

Wi = Wi ey = (v e HE(T™) [Vl o Fi € P, (TY), VT € T}, (5.1)

where we will usually suppress the r 4 1 superscript, i.e. we make the abbreviation WZ”H = W}". For
the case m = oo (the exact domain) we simply write W),.

Again, owing to the continuous embedding Hz(I'') CO(I'1) (see (4.6)), we can define the
Lagrange interpolation operator fhl : Hﬁ([’ h - W}%, Babuska et al. (1980) defined on each element
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18 S. W. WALKER

T' e 7! by
(ﬂhl V)(X) —v(x) =0, V vertices x of 7",

(Flv—v)gds =0, VYge 2 _,(EY, VE' € 3T",
E! r (5.2)

/Tl (Flv —v)gdS =0, Vge 2, ,(Th.

Then, given v € Hi(]“m), we define the global interpolation operator, .#;" : Hi(Fm) — W, element-
wise through fh’”v|Tm oFf = fhl (voF7). Note that vo F™ € CO(I'") because v € CO(I'"™) and F™ is
continuous over I"!. The approximation properties of &, are standard. We also denote ﬂ}:" " to be the
above Lagrange interpolant on I onto continuous piecewise polynomials of degree s, and we make
the following abbreviation Jhm”H ="

5.2 The HHJ curved finite element space

We start with a space of tangential, tensor-valued functions defined on curved surfaces, with special
continuity properties and state the conforming finite element space V} for ¥, C Hg(l“m; S™)in (3.10),
where S™ = S™(I'™) is the space of symmetric, tangential tensors on "™, In addition, we define an
interpolation operator for this space while accounting for the effect of curved surface elements.

Forp > 3/2 let

MM = (@ € LX(T™;8™) | @lypm € WP (T™;S™)VT™ € T3, 53
with ¢ conormal-conormal continuous}, .

where the conormal-conormal continuity condition holds at inter-element boundaries, i.e. for any pair
of triangles (77, T;") that share an edge E" = T_[,"ﬂT_,’f, we have nlon | n = n} on,| gn, where n, (n,)
is the outer conormal of 97}" (aT,;"); note that, in general, n, # —n, (on E™) unless m = oo. Clearly,
AP C H,?(Fm; S™) with 9" = n”¢’n on each mesh edge. We assume p > 3/2 for simplicity to
ensure that the trace of a function in . (I""™) onto the mesh skeleton &}" is in L2(@@}f”).

We can use (4.11) to build the global, conforming, HHJ finite element space (on curved elements)
by mapping from a reference element (see Section 4.2 for details), i.e. V' = V)"(I'™) C .y (I'™) is
defined by

VINT™) := {@ € MIIT™) | @lpm o FIF == Piola(p), € 2, (T';SY), VI € "},  (5.4)

using the Piola transform in (4.12). Note that V,’l” is isomorphic to V! for 1 < m < k and m = oo. Note
that, by (3.2) and an inverse inequality, we have the following equivalence

10llopm = 1011 2(mys Yo € VI (5.5)
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Next, we define the following tensor-valued interpolation operator T} : ./} (I'') — V] Brezzi &
Raviart (1976); Babuska e al. (1980) defined on each element 7' e ﬂhl by

/lnT [n,ﬁq)—q)]nqu:o, Vg e 2,(EY), VE' € oT",
E (5.6)
/Tl [H;l(p—q)]:ndS:O, Vne,@r_l(Tl;S).

Recall Theorem 4.8 and Definition 4.6. Given ¢ € .#(I"™) we define the global interpolation
operator, IT}" : ./ (I'™) — V)", element-wise through

1"9| o Fi = Piola(IT} $)(®), with x = Fir(%), (5.7)

where @(X) := Piola™! (@)(x) (i.e. see (4.13)). The operator [1;" clearly extends to H,?(Fm; S™), as
well as Wh! (Ir'™;8™), and satisfies many basic approximation results, which can be found in Arnold
& Walker (2020, Supp. Mater.). Note that the degrees of freedom for V,{ are given by (5.6), (Brezzi &
Raviart, 1976, Lem. 3), (Li, 2018).

On affine elements we have a Fortin-like property involving b}l (-,-) (Brezzi & Raviart, 1976;
Babuska et al., 1980; Blum & Rannacher, 1990):

b} (<p - n,iq),ehvh) =0, YoeHNI':SY), v, ewW,

b} (¢h, (v — f,}v)eh) —0, Yo,cVl, veHAI), (5.8)

which holds for any piecewise constant function 8, defined on le (Brezzi & Raviart, 1976; Babuska et
al., 1980; Blum & Rannacher, 1990). However, (5.8) does not hold on curved elements, but instead we
have the following result.

LEMMA 5.1 Let1 < m < k, orm = 00, and set r > 0 to be the degree of HHJ space V", and r + 1 to
be the degree of the Lagrange space W}". Moreover, assume V;" and W}" impose no essential boundary
conditions. Then, the following estimates hold:

|bl]:ln ((011, V- jhmv)’ < C||(ph||L2(1"m> (”V[‘m(v — jhmv)”LZ(pm) + hllth;1Vrm(V — jhmV)HL;(yhm)) N

‘b;ln (¢ - H%w: Vh)| < C”(o - H}’;n(p”[-]g(rm)”Vl"mvh”LZ([‘m),
(5.9)

for all ¢ € H,?(Fm; S™), v, e W' andallg, € V", v e H,ZI(F’"), where C is an independent constant.
Note that C =0 if m = 1.

Proof. The result follows by setting / = 1 in (4.17), using (4.3) and (5.8), and equivalence of norms.
In other words, for the first estimate in (5.9), replace v with v — Z"v in (4.17), set ¢ = @, € V', use
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(5.8), and (5.5) to get

|bg ((ph,v - jhmv)| < C||(_0h||L2(1~|) (”VFI (\_/ - jhl\_})”LZ(Fl) + h||V1~1VF] (‘_; — jhl‘_})”LZ(le)),
(5.10)

then use equivalence of norms: (4.9), (4.15). For the second estimate replace ¢ with ¢ — IT;"¢ in (4.17),
set v =v, € W}", use (5.8), and an inverse inequality to get

|65 (¢ — 1370, v,)| < Clle = T30l 1 IV 15l 2 1y 5.11)
followed by equivalence of norms. 0

5.3 The HHJ mixed formulation
We pose (3.10) on I'"™ with continuous skeleton spaces denoted #," = ¥, (I""™) and %, = %" (I'"™).
Fixing the polynomial degree r > 0 the conforming finite element spaces are

Vit ch", Wy c (5.12)

where we abuse notation by now enforcing essential boundary conditions directly in the definitions of
V3t and W;'. The conforming finite element approximation to (3.10) is as follows. Let HCIS(F’”) ={ve
HY(I'™) | v =0, on 2" U X"}. Given f € (HL(I"'™))* find ¢}, € V", w;, € W/ such that

d" (o,,9) +b) (p,w,) =0, Vo € V",

(5.13)
bZl (Uh,V) = - (fa V)[‘m B Yv e W;ln

The well posedness of (5.13) is established in the next section, i.e. we prove the classic Ladyzhenskaya-
Babuska-Brezzi (LBB) conditions (Boffi et al., 2013). With this, we have the following a priori
estimate:

||Wh||2,h,m + ||ah||0,h,m < CHf”(Hcls(rm))*- (5.14)

Note that LBB conditions for (5.13), for the case m = 1, were originally shown in Blum & Rannacher
(1990) for flat domains.

5.3.1 Well posedness. Obviously, we have

a" (o,9) < Apllollzrmyll@ll2rmys 16} (@, < Boll@llopmllvilapm (5.15)
forall o, ¢ € H;(l)(F’”;S) DVhve Hﬁ(l“m) D W, and we have coercivity of a™ (-, -), which is a
curved element version of Babuska ez al. (1980, Thm. 2).
LEMMA 5.2 Assume the domain I"™ is piecewise C¥*! consisting of curved elements as described in

Section 4. Then there is a constant o, > 0, independent of 4 and m, such that

" (0,0) > min(KDIlo 17 pmy > @ollo 5, Vo € Vi, Vh >0, (5.16)
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where «, depends on K.

Proof. Clearly, a" (0,0) > C0||a||]2d2 (rmy’ where C, depends on K, pap- Furthermore, by (5.5),

lo 1l 2¢my = € Io Nl gy SO then et := C/C2. O

5.3.2 Inf-sup. The stability of the surface HHJ method, as well as its convergence, depends crucially
on the following choice of surface approximation: let F ’}’ T 7T forall T! ¢ 9}!1 and 1 < m <k,
be given by

Fi' =F} .= 7"Fp = 7w}, (5.17)

where fhl ™ is the Lagrange interpolation operator in (5.2) onto degree m polynomials; we simplify the
notation by writing F7' = I?'ﬁ This choice is necessary to guarantee optimal convergence of the HHJ
method when m = r + 1. If m > r + 1, the standard Lagrange interpolant can be used.

Next, we have a surface finite element version of the inf-sup condition in Blum & Rannacher (1990,
Lem. 5.1).

LEMMA 5.3 Assume the surface '™ C R3, with 1 < m < k or m = oo consists of curved elements
as described in Section 4 and satisfying (5.17). Then, for any degree r > 0, there is a constant 8, > 0,
independent of 4 and m, such that for all / sufficiently small,

by (@, V)]

> Bolvllypm Vv e W, Yh>0. (5.18)
Qev ||¢||0,h,m

Proof. We start with the case m = 1, which is addressed in Lemma A.3:

by, (@, V) _ i}
|h_—| > Collvllyyys V9 € Wy, Vi >0, (5.19)
@eV) @llop1

on the piecewise linear domain I"! with triangulation ﬂhl, and holds for any degree » > 0 of the HHJ
space.

Next, we recall the mapped variables introduced in Theorem 4.8. Because of boundary conditions,
the choice of surface parametrization (5.17) and the Fortin property (5.8), the identity (4.17) reduces to

by (@, %) = by, (9, %) + O @llg sy (19ll2s01 + Vlg1erny)s (5.20)

where we set [ = 1. From (4.15) we have that ||¢||0,h’1 ~ ||(b||0’h’m. Then, combining (4.7) with (5.20),
we get

@] . @)

— > - — C,h|v| . 5.21)
10110 j0m " 1@ llon Al

Taking the supremum, using (5.19), and the equivalence of norms (4.9), proves (5.18) when 4 is
sufficiently small. (]
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REMARK 5.1 By (4.7), (5.18) holds with [|v]|, , ,, replaced by [v|y: arm with a different inf-sup constant.

Therefore, (5.15), (5.16) and (5.18) imply by the standard theory of mixed methods that (5.13) is
well posed in the mesh-dependent norms.

6. Error analysis

We prove convergence of the surface HHJ method while accounting for the approximation of the surface
using curved elements (see Section 4). The main difficulties are dealing with higher derivatives of the
nonlinear map and handling the jump terms in the mesh dependent norms when affected by a nonlinear
map. The key ingredients here are Theorem 4.1, (5.8) and (5.17).

In deriving the error estimates we make the following regularity hypothesis, which assumes the
Kirchhoff plate regularity for the flat domains (taken from Blum & Rannacher, 1980, Thm. 2, and Blum
& Rannacher, 1990, Table 1) also applies to the surface case.

Hyporuesis 1 (Regularity). Let H (') = {v € H'(I') | v = 0, on X, U X}, and let
f e (HCIS(F))*. Assume I satisfies the assumptions in Section 3.1, with k > ¢ — 1, where ¢ € [3, 00)
is the assumed measure of elliptic regularity in the following sense. The weak solution w € # of
(2.5) satisfies w € W*P(I") for some value of p € (py,2], where 3/2 < p, < 2 depends on the
angles at the corners of I'. For technical reasons we assume p > 3/2 here (recall (5.3)). Note that
0 =CV Vrwe W=2(I';S).

6.1 Estimate the PDE error

First, we derive an error estimate that ignores the geometric error, i.e. the continuous and discrete
problems are posed on the exact domain.

THEOREM 6.1 Adopt Hypothesis 1 and note that 0 = CVV wand w € # also satisfy (3.10) on the
true domain I". Furthermore, let » > 0 be the degree of V;,, and let o), € V,, w, € W, be the discrete
solution of (5.13) on I". Then, we obtain

lo = apllos + Vv = wll 2y < CHMNCH2IZD=2/P,
whenr > 1:  [w—w,l,, < CRMMHL=D=2/p, (6.1)

whenr =0: ||V1-(W - Wh)“LZ([‘) S Ch,

where C > 0 depends on f, the domain I" and the shape regularity of the mesh.

Proof. With coercivity and the inf-sup condition in hand, the proof is a standard application of error
estimates for mixed methods, so we omit the details. See Arnold & Walker (2020, Supp. Mat.) for a
proof in the case of flat domains. g

The above result generalizes (Blum & Rannacher, 1990, Thm. 5.1) to surfaces.

6.2 Estimate the geometric error

Next, we approximate the domain using curved surface elements.
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LEMMA 6.2 Recall the map ¥ : I'"" — I', with ¥7 := ¥"™|, from Section 4.1, and adopt (5.17)
and the hypothesis of 6.1. Let 6, € V', W, € W} be the discrete solution of (5.13), with f replaced
by]~r = f o W"pu,, where u, is the change in area when mapping from I" to I'™*. Take (o, w;,) from
Theorem 6.1, and let o, € V', w;, € W;" be the mapped discrete solutions onto /"™ using (4.11). In
other words, o, o ¥ and @, are related through the matrix Piola transform (recall Remark 4.1), and
Wy, = wj, o W™, element-wise. Similarly, we map the test functions ¢, € V,, v, € W, to @, € V",
V;, € W', Then, we obtain the error equations for the geometric error:

a" (&), = 64 @) + b (Pp, Wy, — W) + B} (), — 6, 93) = Eg(@y, 7). 6.2)
for all (v, @;,) € W) x V', where

[Eo (@1 9 < CH (19l + 19 2m) 11 i, rpye- (6.3)

where ¢ = m when m = r + 1, otherwise ¢ = m — 1.

Proof. We will need 6,9, € V}}, Wy, V), € W,{ as in Theorem 4.8; recall the notation from Theorem
4.1. Applying (4.17) with m, [ replaced by co, m, respectively, we get

by, (@4 v) = B3 (@1 91) + OW™N@ 0. (D lla g + 1P a1 omy)

— b}, (@, (F — F™) - PyVyuvy), (6.4)

where we note the boundary conditions (either v;, or ¢"" vanishes on 01" 1). Recalling (5.17), i.e. F" :=
fhl’mF, if m = r 4 1, the Fortin property (5.8) yields b}l ((bh, (F—F")-PyVpi T/h) =0.Ifm#Ar+1
then a straightforward estimate shows by, (@, (F — F™) - PyV71v,) < CR" M@ ll0.5m 19 12,4 Where
we used equivalence of norms (4.9), (4.15).

Therefore, using (4.16) and (4.32), the first line in (5.13) (with m = c0) maps to

a" (G, @p) + by (@4, W4) =11, Yoy, € V', (6.5)
where 1 < m < kand C > 0 is a constant depending only on I such that
L1 < ChIN@l 2 omy (1G4l 2y + 174l ) (6.6)
where g was defined earlier. The second equation in (5.13) (with m = co) maps to
by (64 9) = — (f o Wy V) o + L VD, € WY, (6.7)
where, for some constant C > 0 depending only on I,
IL| < Chq||5h||L2(rm) ||‘A’h||2,h,m- (6.8)
Then, subtracting (5.13) (with 1 < m < k) for the solution (¢, W;,) from the above equations, combin-

ing everything, noting the a priori estimate (5.14), and the fact that |[f|| (HL (I'm))* < CI[fII(HgS(,«))*, gives
(6.2) and (6.3). O
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THEOREM 6.3 Adopt the hypothesis of Lemma 6.2. Then, the following error estimate holds
16, = & wllopm + 1Wh = Willo g < CRUF Il g,y (6.9)

for some uniform constant C > 0.

Proof. From (6.2), choose v, = 0 and use Lemma 5.3 to get

~ ~ |} @h’f"h_ﬁ’h | |a™ ah_&h"ﬁh | + |E0((A0h,0)|
Bollivy, = Wylla g < sup — @ Ve qup 1 - 1)
Ppevy 195110 5 m Ppevin @5ll0,5m
< CAylloy, = apllopm + Chq”f”(ygs(r))*, (6.10)
where we used the norm equivalence (4.15). Next, choose ¢, = ¢, — 6, and ¥, = — (W, — W;,) in (6.2)

to get

~ ~ 2 ~ A~ ~
0[0||O'h—0'h||L2(1_,m) g am (ah - Uh,O'h — O’h)

< ChY (116, — 6 yllo pm + 104 — Wyl pm) It oy

< Chl (”a:h - &hHO,h,m + Chq”f”(Hés(F))*) ”f”(HgS(F))*
< CUD W Iy (e + CHNG s = S yllzcrm W oz oy
AN2)£12 X~ A2
< C(h ) Hf”(Hgs(r))* + 2 ||ah 6h||L2(F"’)’ (611)

where we used (6.10), norm equivalence (5.5) and a weighted Cauchy inequality. Then, by combining
the above results, we get the assertion. O

6.3  Estimate the total error
We will combine Theorem 6.1 and Theorem 6.3 to get the total error.

THEOREM 6.4 (general error estimate). Adopt the hypotheses of Theorem 6.1 and Lemma 6.2. If
m > r+ 1, then

llo =640 (@™ Ml + IV (w =y, 0 (F™) g2y < CRMHHED=2P,
r>1: w0 @™ ,, < ChAmnCtL=h=2/p, (6.12)

r=0: |[Vrw—y,0 @) Dl < Ch,

where C > 0 depends on f, the domain I” and the shape regularity of the mesh.
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Proof. By the triangle inequality and using the properties of the map ¥ we have

lo —6,0 @™ Mou<llo =0 @ Moy + 15,0 @ =60 @™ g,

< o — O'h”(),h + ||0'h - 311 o ('I’m)_l ”0,h + C”Eh - 6h||0,h,m- (6.13)
Focusing on the middle term the Piola transform in (4.12) yields

o), —&,0 W™ lop < Cllo,oF —a,0F"|,; < Ch't! o ll0,m < cn! Wl ey, cryyes
(6.14)

where we use the approximation properties in (4.3). Whence,
”o. _ 6.h ° (Wm)fl ”(),h < CmaX (hr+1’hmin(r+2,lfl)72/p)’ (615)

where C > 0 depends on f. Taking a similar approach for the other terms involving w — wy, o (w1
delivers the estimates. (]

COROLLARY 6.5 Adopt the hypothesis of Theorem 6.4, but assume ", X' are smooth, and the data and
solution (o, w) are smooth. If r > 0 is the degree of V), then

lo =640 ™) oy + IV =iy, 0 (™ 2ep) + hllw — iy, 0 (™7, < CHH,
(6.16)

where C > 0 depends on w, the domain I" and the shape regularity of the mesh.

REMARK 6.1 From Theorem 6.3, if m < r + 1, the error is sub-optimal, i.e., is O(hm’l) for a smooth
solution. However, the numerical experiments in Section 7 have better rates. When m < r 4 1 the worst
case error for 6, is O(h"~1/?) and for W), (in HYis O(W™).

6.4 Inhomogeneous boundary conditions

We now explain how to extend the above theory to handle nonvanishing boundary conditions. First,
construct a function g € W*?(I"), such that the displacement satisfies w = g on X, U X, 3,w = 9,¢ on
Y., and & (w — g) = 0. Next, construct a function p € WI’Z’P(F ;'S), such that the conormal-conormal
moment satisfies n’on = n’ pn on X, U X}, where t > 3,3/2 < p < 2 (recall Hypothesis 1). In

addition, let ¢; in wi=3p (X)) and Sp € R, forallp € ”//):f (recall (3.1)) such that

—n-(divpo) —t- VF(nTat) = Gy, on X,

— [[nTat]]p =gy, forallp € Vype (6.17)
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Then (3.10) is replaced by the problem of determining (o, w) = (6 + p,w + g), with ¢ € ¥,
w € #, (i.e. with homogeneous boundary conditions) such that

a(0,9) +b,(@.W) = —a(p.@) = b, (9.9 + (¢".n-Vrg)y . Vo e,

by, (&’V) =—{\vir—0b,(p,v) — (S'f, z gpv(p) Yy € Vﬂh (6.18)

PEVs;

Note that the right-hand side in the first equation of (6.18) simplifies to —a (p, @) — éh (9, g), where
bh (9,v) :==Dby (@,v) — ( ,n - VFV)E (i.e. it has no boundary term).

Similarly, the corresponding (mtermedlate) discrete problem (5.13), on the exact domain, is replaced
by finding (o, w,) = (6, + p, W), + g3,), With o, € V,, w;, € W, such that

a (6, 91) + by, (040 3) = —a (py,, 01) — by, (0485,
—(en"n - Virgy) g, + (0" Vrg) s . Yo, €V,

(6.19)
by, (64.vi) = = Vi) — by (03 v) — (Seo i) = Z SVu(p), Vv, € Wy,
P€7/Ef
where p, = P,p,and P, : Hg(F) — V,, is the L*>(I") projection, i.e. p,, satisfies
(pn — P»‘Ph)yh + <nT[,0h - p]n,soﬂ“)& =0, forall g, € V}, (6.20)
and g, = .%,8. An error estimate between the solutions of (6.18) and (6.19), analogous to

Theorem 6.1, follows similarly with the following additional steps. First, estimate b, (p - Pp vh) <
o — pulloplvillan note llp — ppllo, < o — IT,plly, and use the approximation properties of IT),

(Brezzi & Raviart, 1976; Brezzi et al., 1980; Arnold & Walker, 2020). Next, estimate l;h (¢h, g— gh)
and (pp",n - V(g — gp)) 5, With (5.9).

Flnally, the discrete problem on the discrete domain is to find (& s wh) (é nt o o v;;/h + gh), with
ah eVy ,Wy, € W, such that

a” (6h’é’h) + by (‘ﬁh’f"h) =—d" (py 95) — by (@181
(‘/A’En’ Z Vrmgh S]) V(.Aah € V;rln,
o7 518) =~y — 8 )

(gf, vh s~ Z gpvh(p) v, € W',
J ISR

6.21)

where p;, := P}"p, with p given by p o W™ = Piola(p)(X) (recall (4.12)), and P} : Hg(l“’”) — Vi'is

the L>(I"™) projection on I, gy = "8, withg :=go W™, & := (Vpg) oW and & 1= g0 ™. To
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obtain an analogous result to Theorem 6.4 we need to generalize Lemma 6.2, i.e. we need to show that
d" (34— 64 04) + 0 (D4 — ) + 1 (34— 6409 ) = B (@), (6.22)
forall ¢, € V;" and v, € W}, where

|E; (@), V)] < CR® (||‘Ph||o,h + ||Vh||2,h)

'(||P||Wf72,p(r;3)+||g||Wt»p(1“) + ||§f||Ll(2f) + ”&h”O,h + ||V'Vh||2,h), (6.23)

where s is the exponent appearing in (6.12). This also follows the same outline, but we note the
following: (1) Estimating b} (@ 8 — gh) with (4.17) is simpler because the last boundary term in (4.17)
does not appear; then use Lemma 5.1; (2) noting that g, = g;, o ¥"", ((p;l‘“, n-Vy(g, — g))z is mapped
to ((Z)E“,ﬁ Vw8, — g)) s (plus residual terms) and is compared against (g?);}“,fz (Vim8, — é])zm;

(3) finally, estimate (g?);l‘", n-[Ving — é]) o using similar arguments as in the proof of Theorem 4.8.

With this, generalizing Theorems 6.3 and C6.4, and Corollary 6.5, is immediate and we obtain the
following.

THEOREM 6.6 (Inhomogeneous boundary conditions). Adopt the hypotheses of Theorem 6.4, except
assume that (o, w) satisfies (6.18) and (6, W;,) solves (6.21). If m > r + 1 then (o, w) and (6, W;,)
satisfy the same estimates as in (6.12). In addition, if I" and X are smooth, and the data and solution
(o, w) are smooth, then if r > 0 is the degree of V,,, then (o, w) and (6, W;,) satisfy the same estimates
as in (6.16).

7. Numerical results

We present numerical results for several different domains, both with and without boundary. The discrete
domains were generated by either interpolating charts on a sequence of uniformly refined grids, or by
creating an initial piecewise linear triangulation of the implicit, closed surface (using Walker, 2013) and
interpolating the closest point map. As above, the finite element spaces V;, and W), are of degree r and
r—+ 1, respectively, where r > 0 and the geometric approximation degree is denoted m. All computations
were done with the Matlab/C++ finite element toolbox FELICITY (Walker, 2018), where we used the
‘backslash’ command in Matlab to solve the linear systems.

From (5.17) recall that F™ := ﬂhl ™! which is possible to implement, but inconvenient. Instead,
we first compute F""*! by standard nodal interpolation, then we define F™ := ,]hl MEHL which is easy
to implement over the piecewise linear triangulation of I” ! Moreover, the accuracy is not affected.

As for the boundary data g;,, & and p,, only need to be computed on the boundary X"; in fact only the
boundary part of the L? projection P}’ needs to be computed. For the free conditions, S, 1s implemented
exactly since a corner coincides with a fixed vertex in the mesh. The other free condition ¢; can be

~m+1,m+1
eﬂh

computed exactly at any point on X} using the manufactured solution, so that Sp on E;"“Ll,

cm+1,m+1
where .7,

is the standard nodal interpolation onto degree m + 1 polynomials, is well defined
because X" interpolates ;. Then, we define &; := w, (jhm+1’m+l gf) o @™+ on X, where @,

denotes the (local) change in length between X{" and E;"H.
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TABLE 1  EoC for the saddle square with simply-supported boundary conditions. Ny is the number of
triangles in the final mesh after multiple uniform refinements. Italics indicate the case m = r+ 1, which
is the optimal case proven in this paper

Ny m r ||VAVh||L2 |VAVh|Hl ||Wh||2,h ||6'h||o,h
221 1 0 2.00 1.98 0.00 1.00
221 1 1 2.00 1.01 0.00 0.57
219 1 2 2.00 1.02 0.01 0.63
221 2 1 3.93 2.93 1.84 2.00
219 2 2 3.63 2.02 1.03 2.24
217 2 3 6.27 2.00 1.00 1.69
217 3 2 6.23 3.99 2.98 2.95
217 3 3 6.89 6.08 3.97 3.93
215 3 4 11.00 7.59 4.22 3.88
217 4 3 6.89 6.67 3.99 4.00
215 4 4 10.84 10.66 5.00 5.02
215 5 4 10.83 10.66 5.00 5.02

For convenience, the errors we compute are [|w — Wyl 2¢rmys |V pm (W =Wyl 2 pmys W =Wy llo s
llo — & llo,m» Where the exact solution has been extended by analytic continuation. These errors can be
related to the ones in (6.16) by basic arguments and a triangle inequality; a similar approach was used
in Arnold & Walker (2020, Sec. 6.1). The estimated order of convergence (EoC) is computed by using
the ratio of the error between two successive uniform refinements for the final mesh size.

7.1  Saddle surface

7.1.1 Square. The domain is given by (U, x), where U = [0,1] x [0,1] and x(u;,u,) =
(1, uy,cos(2m (uy — 0.5)) — cos(2m (u; — 0.5))). The exact solution, on the reference domain, is

wo x(uy,uy) = sin(6.5u;) cos(5.9u,). (7.1)

Table 1 shows the EoC for the case of simply-supported boundary conditions; the clamped case
gave similar numbers and free boundary conditions had slightly better rates. The optimal orders of
convergence, based on the degree of the elements, is  + 1 for the three quantities |Wy, |1, ||6 nllo,, and
r for ||vAvh||2yh. The convergence is a bit better than expected. For example, when m = 1 and r = 1,2,
the convergence rate for ||G || 0.1 18 reduced, but not as much as our analysis suggests (see Remark 6.1).
Similarly, when m = 2 and r = 3, the EoC for ||6h||0,h is reduced. However, W, is not so adversely
affected.

7.1.2  Three-leaf domain. The domain is given by (U, x), where the boundary of U is parametrized
by

x(t) = [1 4+ 0.4 cos(3r)] cos(r), y(t) =[1+ (0.4 4 0.22sin(¢)) cos(3¢)] sin(?), (7.2)
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TABLE 2 EoC for the saddle three-leaf domain with simply-supported boundary conditions. Ny is
the number of triangles in the final mesh after multiple uniform refinements. Italics indicate the case
m = r+ 1, which is the optimal case proven in this paper

Ny m r ||Wh||L2 |Wh|H1 ||VAVh||2,h ”&h”O,h
218 1 0 1.99 145 0.00 1.00
216 1 1 1.15 1.07 0.07 0.54
216 1 2 1.04 1.02 0.02 0.47
216 2 1 3.27 2.14 1.13 1.99
216 2 2 3.00 3.03 1.94 1.58
214 2 3 2.94 2.54 1.53 1.71
216 3 2 4.07 3.04 2.03 2.99
214 3 3 5.06 4.03 2.99 2.54
214 3 4 4.85 3.56 2.52 2.39
214 4 3 5.06 4.04 3.03 4.00
214 4 4 6.03 5.01 3.95 3.67
214 5 4 6.03 5.02 4.01 4.99
1

F1G. 4. The surface Kirchhoff plate problem on a spherical cap.

for 0 < t < 2m; this choice of domain avoids any spurious symmetries (e.g. the unit disk; see Arnold
& Walker, 2020, Sec. 6.2). The surface parametrization is given by x (uy,u,) = (uy, u,, (U, — 0.5)2 —
(u; — 0.5)%). The exact solution, on the reference domain, is

wo x(uy,uy) = sin(2mu;) cos(2mwu,). (7.3)

The curved element mapping is composed from two maps (recall (5.17)). The first map is a Lenoir-
type map (Lenoir, 1986) described in Arnold & Walker (2020) that creates a curved triangulation
that optimally approximates U; the second map is the parametrization x. We then apply (5.17) to the
composed map.

Table 2 shows the EoC for the case of simply-supported boundary conditions; the clamped case
gave similar numbers and free boundary conditions had slightly better rates. The optimal orders of
convergence, based on the degree of the elements, is 7 + 1 for the three quantities |Wy, |41, |6, llo,, and
r for ||vAvh||2,h. The convergence is a bit better than expected. For example, whenever m < r 4 1, the
convergence rate for ||o h”O,h is roughly oV 2), which is not as bad as our analysis suggests (see
Remark 6.1). However, w;, is not so adversely affected.
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TABLE 3 EoC for the spherical cap with simply-supported boundary conditions. Ny is the number of
triangles in the final mesh after multiple uniform refinements. Italics indicate the case m = r+ 1, which
is the optimal case proven in this paper

Ny m r ||VAVh||L2 |VAVh|Hl ||Wh||2,h ||6'h||o,h
220 1 0 2.00 1.00 0.00 1.00
218 1 1 1.21 1.09 0.15 0.57
218 1 2 1.12 1.02 0.02 0.52
218 2 1 3.00 2.00 1.00 2.00
218 2 2 3.51 2.68 1.76 2.46
216 2 3 3.03 2.03 1.06 2.01
218 3 2 4.00 3.00 2.00 3.00
216 3 3 4.96 3.97 2.98 3.73
214 3 4 4.08 3.15 2.23 2.65
216 4 3 5.00 4.00 3.00 4.00
214 4 4 5.99 5.00 4.00 4.98
214 5 4 5.99 5.00 4.00 4.99

TABLE 4  Eigenvalues for the spherical cap with free boundary conditions for m = 3 and r = 2 (the
results were similar for other choices of m = 3 and r = 2). Level refers to the refinement level. The
eigenvalue A (not shown) is machine precision ~ 1014, Note that Ay, A3 are not zero, but are much
smaller than the other eigenvalues listed

]eVel )\,2 )L3 )\.4 )\,5 )\’6

=1 429.1073 4.49.1073 8.13- 107! 9.00- 10! 9.97 - 107!
=2 1.28-1073 1.35-1073 2.90- 107! 3.45.107! 5.37-107!
£=3 3.51-10~* 3.72-10~% 7.84.1072 9.44 . 1072 1.33.107!
=4 9.19-107° 9.78 - 107 2.07-1072 2.52.1072 3.50- 1072
=5 2.35.107° 2.51-107° 5.31-1073 6.51-1073 9.01-1073
=6 5.96-107° 6.35-107° 1.35.1073 1.66 - 1073 2.29.1073
=1 1.50 - 107 1.60 - 1079 3.39.10~* 4181074 576107

7.2 Spherical cap

The domain is given by (U, x), where U is the unit disk, centered at the origin, and x (u;,u,) =
(U, u,, [(1.5)% — (u% + u%)]l/2 — [(1.5)2 — 12]Y/2). The exact solution, on the reference domain, is

wo x(uy,uy) = sin(6.7u;) cos(6.1u,). (7.4)

The curved element mapping is composed from two maps analogous to Section 7.1.2. The numerical
solution Wy, is shown in Fig. 4 for the case of simply-supported boundary conditions; Table 3 shows the
corresponding EoC. The clamped case gave similar rates and free boundary conditions had better rates.
The format is similar to Section 7.1. The convergence is again better than expected. For example, when
m = 1 and r = 1,2, the convergence rate for ||6'h||0’h is reduced, but not as much as our analysis
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0.05
. 0.3
0.18;\ 0
1
1 f-0.05
0.05
R 0.3
0'18;\ 0
1 ,
1 [-0.05

Fic. 5. Killing fields on a spherical cap. Top shows z; (in color) with gradient (Killing) field V -z, as black arrows. Bottom
shows z3.

TABLE 5  EoC for the torus, same format as earlier EoC tables

Ny m r Wl 2 Wy | g1 ||VAVh||2,h ||6h||o,h
221 1 0 2.00 1.00 0.00 1.00
221 1 1 2.00 2.00 1.00 1.00
219 1 2 2.00 2.00 1.00 1.00
221 2 1 3.98 2.00 1.00 2.01
219 2 2 3.96 2.00 1.00 2.01
217 2 3 4.03 2.00 1.00 2.00
219 3 2 4.70 3.00 2.00 2.99
217 3 3 5.82 3.00 2.00 2.99
217 3 4 4.17 3.00 2.01 2.99
217 4 3 6.04 4.02 3.00 4.05
217 4 4 5.30 4.00 3.00 4.05
217 5 4 7.66 5.00 3.99 4.96

suggests (see Remark 6.1). For the other cases there is no reduction below the rate given by m; e.g. the
rate for [|W, ||, , is always at least O(h™~1). In addition, W), is not so adversely affected.

When uniformly free boundary conditions are used on the spherical cap domain, the null-space
Z(I') of the covariant Hessian contains three linearly independent functions {zi}?zlz the constant
function z; and two of the isometric rotations of the sphere, z,, z;, which are illustrated in Fig. 5. Note
that the other rotation (not present) cannot be represented as the gradient of a function. Eigenvalues of
the discrete finite element system were computed with Matlab and are shown in Table 4, where {Ai}?zl
are the corresponding eigenvalues of {zi}?zl. The first three eigenvalues of the continuous problem are
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FIG. 6. The surface biharmonic problem on a genus-5 surface.

TABLE 6  EoC for the genus-5 surface; same format as earlier EoC tables

Ny m r ||VAVh||L2 |VAVh|H1 ||VAVh||2,h ||&h||o,h
220 1 0 1.99 1.17 0.00 1.05
220 1 1 2.00 2.00 1.00 1.06
218 1 2 1.99 1.99 0.99 1.07
220 2 1 3.98 2.00 1.00 2.02
218 2 2 3.95 2.20 1.06 2.47
218 2 3 3.97 2.21 1.06 241
218 3 2 6.64 3.01 2.00 2.97
218 3 3 5.87 3.02 2.01 2.99
216 3 4 5.82 3.44 2.16 3.06
218 4 3 5.58 4.09 3.00 4.06
216 4 4 5.17 4.05 3.06 4.12
216 5 4 4.70 517 4.03 5.07

zero, but for the numerical approximation, only A is machine precision; A,, A5 are not zero, but are
much smaller than the other eigenvalues and appear to converge to zero (cf. Reusken, 2018, Sec. 6).
7.3 Torus

The domain is a torus described by the zero level set of the function: b(x,y,z) = o2+ y2 —(6/ 10)% +
3/ 22— (1 /4). The exact solution, extended everywhere, is

w(x,y,z) = sin(1.1x) 4 cos(1.2y) + sin(1.3z). (7.5)

The ‘parametrization’ is built from the closest point map. Table 5 shows the EoC. The convergence is
better than expected. For instance, the convergence rate for [w,, ;1 and [l , is O(hminGmr+1)y
7.4  Biharmonic on a genus-5 surface

The domain is a genus-5 surface described by the zero level set of the function: b(x,y,z) = (x* + y* +
-2+ y2 +22)+0.4 (see Fig. 6). We solve the biharmonic problem A%w = f on I" by modifying the
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method in the following way. In terms of index notation one can show that f r (VeVAw) VgVyz dS(g) =
Ir (Vg VAWV, V¥zdS(g) — |, r kG(VOw)V,zdS(g), where kg is the Gauss curvature of the manifold
(do Carmo, 1992; Berger, 2003; Petersen, 2006). Therefore, solving the biharmonic problem: find
w € # (I") such that fr ApwArz = {f,z)p, for all z € W (I") (recall (2.3)) is equivalent to finding
w € # (I') such that (cf. Reusken, 2018, Lem. 5.6)

/ VrVrw: VFVFz+/ kgVrw-Vpz=(f,z)p, forallz € #(I'). (7.6)
r r

The discrete mixed method for (7.6) is the following modification of (5.13): find o, € V}', w; € W)
such that

d" (a,,9) + b (@.w,) =0, Vo € V)",

(7.7)
by (oh, v) - (wh, v) =—{f,V)m, Yve W),
where ¢ (W, v) := [ kGVw- V2. When kg > 0 the convergence of this scheme can be established
by standard mixed finite element theory (Boffi ez al., 2013). In fact, if ¢ (-, -) is only weakly coercive
(kg slightly negative), then one can still show convergence; see Kellogg & Liu (1996). However, for
general surfaces, convergence is not obvious and is a point of future work.
We now present a numerical example illustrating that convergence seems to hold even for very
general surfaces. The exact solution, extended everywhere, is given by (see Fig. 6)

w(x,y,z) = cos(0.9x) + sin(1.1y) + cos(1.3z). (7.8)

Table 6 shows the EoC. The convergence is better than expected; the convergence rate for [W;, |1 and
61l is at least O(A™nCmr+1)),

8. Conclusion

We have demonstrated that the classic HHJ method for the Kirchhoff plate equation extends to general
embedded surfaces in R either closed or with boundary that have a combination of clamped, simply-
supported and free conditions imposed. Moreover, optimal convergence is guaranteed so long as
m = r 4+ 1, where m is the degree of surface approximation and r 4 1 is the degree of the Lagrange
displacement variable. If m < r+ 1 some degradation in convergence occurs. The numerical experiment
in Section 7.1.2 gave the best test of the method, but the convergence was still better than our estimates
suggest when m < r + 1. All other examples had slightly better rates. When m < r + 1 the error
estimates could be improved in the case of closed surfaces characterized by a signed distance function.
Indeed, the closest point map enjoys nice approximation properties. But for surfaces with boundary, the
parametric approach is more convenient, though multiple charts may be required.

It is worth noting that the classic Ciarlet-Raviart method for solving the biharmonic problem
on flat domains is not appropriate when nonclamped boundary conditions are used, and the same
holds for surfaces. This is connected to the classic Babuska paradox (Babuska & Pitkdranta, 1990),
which concerns polygonal approximation of the domain. However, as was shown in Arnold & Walker
(2020) for flat domains, the lowest order surface HHJ method converges optimally with only piecewise
linear approximation of the domain, despite the fact that curvature of the boundary is important for
accurately capturing boundary conditions (e.g. simply-supported conditions). This is a manifestation
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of the geometrically nonconforming aspect of the HHJ method, originally noted in Arnold & Walker
(2020).

Adapting the surface HHJ method to solve the surface biharmonic problem on closed surfaces
requires an extra (lower order) term in the formulation involving the Gauss curvature (see Section 7.4).
The theory here extends readily to surfaces of positive, or slightly negative, Gauss curvature. For general
surfaces it is not obvious; however, the method appears to perform optimally.
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A. Appendix

A.1  Intrinsic differential geometry

We review the differential geometry tools needed for working on manifolds (Hebey, 1996; do Carmo,
1976, 1992; Kreyszig, 1991; Ciarlet, 2013). Specifically, we review the basic notation of covariant,
contravariant and other differential geometry concepts.

Consider a d-dimensional Riemannian manifold (I', g,,), where g, is the given metric tensor
(discussed below) defined over a (reference) domain U C R A point in U is denoted by ', u?, ..., u? );
in the special case of d = 2 that we are mainly concerned with, we may use (u,v) € U. We refer to
variables defined on U as intrinsic quantities.

Tensor index notation. We use lower-case Greek indices (o, 8,7y, etc.), which take values in
{1,2,...,d} when referring to intrinsic variables. For example, 9, is the partial derivative with respect
to the coordinate u* for ¢ € {1,2,...,d}. Covariant vectors are denoted with lower indices, e.g.
(v1, Vv, ...,vy), and contravariant vectors are denoted with upper indices, e.g. (vl,vz, ...,vd). The Bth
component of a covariant (contravariant) derivative is denoted by Vg (V#). Similar considerations hold
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for tensors. Furthermore, we use the letters a-h (with a different font for emphasis) as a nonnumerical
label to indicate a covariant, contravariant or mixed tensor. For example, v, refers to a covariant vector
(not just a single component), i.e. v, = (v{, ..., v;). When convenient, we use bold-face for vector and
tensor quantities instead of writing out indices.

Main concepts. The given metric g, is a symmetric, covariant tensor with component functions
8up - U — R, forl < «,B8 < d, which we assume are at least C ! and is uniformly positive definite.

We write g := detg,, and the inverse metric tensor g%% is contravariant with components denoted
g*#, where 8ay g = 85 . Note that v* may be converted to vy, via vg = gg,v*; similarly, w, may be
converted to w® by w* = g w ;. When convenient, we write g,, = g = [g,4]> ) and g =gl =

[g"‘ﬂ]g f=1 in standard matrix notation for the metric and inverse metric, respectively. Let T, = T,(I")

(T? = T2(I")) be the set of covariant (contravariant) 2-tensors on I". Moreover, S, CT,and S?cT?

are subsets of symmetric tensors; so then g, € S, and g% e s%.
The Christoffel symbols Fl]k (of the second kind) are defined by

1
Fayﬁ = Eg#y (aagﬁ'u + aﬁgua - au,gaﬂ) ’ 1 < o, ﬂ, 14 g 27 (Al)

where Fa’/ﬂ = Fﬁya (do Carmo, 1976, 1992). With this we recall the definition of covariant (contravariant)
derivatives, denoted V,, (V¥), where f is a scalar, vy, is a covariant vector and v* is a contravariant vector:

Vol = f. Vo Vaf = 05f — 0N T,

(A.2)
Vavﬁ = Bavﬁ — vyl“ga, VavV = 8av” + vﬁFﬂya, v = (@)—laa(v“\/g),
and for a contravariant tensor r%°:
Vot = 0, 4+ P+ Y T, VsVer™ = (V&) 952 V,or™). (A.3)

The metric satisfies V. B = 0, Vyg“ﬁ =0, Vyg =0,forl <a,B,y <2 (doCarmo, 1992).

Let n, be the conormal vector of dU, and n* = g’”’ny. Viewing n as a ‘vector’ in R it has unit

y8a

length under the R? Euclidean metric. If d = 2 let t* be the oriented (contravariant) tangent vector of
90U, which has unit length in the Euclidean metric and satisfies n,* = 0. Moreover, g = t*1, /(n"n ),
which implies that ds(g) := \/ﬂTM dl for d = 2, and we have the following ‘orthogonal’ decomposition

o o

5% = (A4)

Iz uy -
ntn, ',

A.2  Extrinsic differential geometry

Suppose that the manifold I" is embedded in R”, with n > d, and that it is represented by a family of
charts {(U;, x;)}, where a single chart consists of a pair (U, x), with U C R4 (reference domain) and
x : U — R”" (do Carmo, 1992). For simplicity of exposition assume there is only one chart (U, ),
where I = x (U). We refer to variables in R” as extrinsic quantities.

Tensor index notation. We use lower-case Latin letters starting with i (i.e. i,j, k, [, etc.), which take
values in {1, 2, ..., n}, when referring to components of extrinsic (ambient space) quantities. For example,
x=" . x™MT eR" and x' : U — Rforeachi € {1,2,...,n}. A point x € R” has its jth coordinate
denoted by x/. Moreover, 0y is the partial derivative with respect to coordinate x*. Repeated indices are
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summed over. We typically bold-face extrinsic vectors and tensors, e.g. let w be a (covariant) 2-tensor
in R" with components wij for i,j € {1,2,...,n}. The canonical (orthonormal) basis in R" is denoted by

{ak}le, where a; = (1,0, ..., O)T (column vector), etc. With the Kronecker delta 8{ we have the dual
basis {a} of {a,} by the formula a, - &/ = §/.
Differential geometry in the ambient space. The tangent space 7, (I"), ata point X € I', is a subspace
of R" spanned by {e,,e,, ..., e;} (the covariant basis) where

e, =d,xu"), 1<a<d whereu®=@u,. . ,u))=x"'x). (A.5)

In this case the metric tensor g, is given by g,4 = €, - €4, for I < &, f < d. The contravariant tangent
basis is given by {e!, e, ..., e?}, where e = eag"‘ﬂ = (Bax)g“ﬁ (Ciarlet, 2013). Sometimes, we express
8 =8 = JTJ. where J = [e},...,e;] is an n X d matrix.

Given a vector v € R" it is in the tangent space 7, (I") if there exists a (contravariant) vector v* such
that v(x) = v¥e,ox “1(x). Alternatively, one can write it in terms of a co-vector v, and the contravariant
basis: v(X) = v, e%ox ~1(x). Moreover, any covariant (contravariant) vector v, (v%) has a corresponding
extrinsic version given by v = v e* (v = v¥e,). We define the tangent bundle:

T ={(x,v) | xeI',v(x) € T,(IN}, (A.6)

thus, we say v € T(I") if v(x) € T,(I") for every x € I'; in this case we write v : I — T(I"). In
addition, let R"*" be the space of (extrinsic) 2-tensors, and define the subset of tensors on the tangent
bundle of I":

T=T) ={w: T - R |w= w"‘ﬂea ® eg, for some we e T2(IM)1, (A7)
and define the set of symmetric tensors on the tangent bundle of I":
S=8(I") = {weT) | w=w"e, ® e, for some w e S*(IN)}. (A.8)

Next, we introduce extrinsic differential operators via their intrinsic counterpart, starting with the
surface gradient Vf : I' — T(I") defined in local coordinates by

(Vrf) o x = (Vges =0,(f o x)gP (@px)" = V(fo g™ 'J", (A9)
for any differentiable function f : I' — R. The (extrinsic) surface gradient of a tangential vector field
veTT)isVprvo x = eygV“(Vﬁva)gﬂ“e; = e,8""(9pvy — vyl )gﬁ”e ,sothen Vv e T.
Moreover, (V- -v) ox =tr(Vpv ° xX) = g”“(Vﬂva)gﬂ’.*eM.- e, = vﬁ(nga)gﬂﬂgw = 85(Vﬁv7’) =
Vy v¥. The (covariant) surface Hessian, an element of S, is given by

(VrVEf) o x == €,8"[V, Veflge) = e,8"[0,05(f o X) — 9, (f o X)Tg1e?e],  (A.10)
and using (A.3), the covariant surface divergence and double surface divergence is given by
divpr)ox :==efV,r*f,  (divydivyr) o x := VgV, r*, forallr e T. (A.11)

Special case of a surface. Suppose d = 2 and n = 3. Let T = x(Y), where Y C U, be a one-
dimensional curve embedded in I", and let £ be the unit tangent vector of 7" and let n be the conormal
vector of 7" (¢ and n are both tangent to I"). In local coordinates we have

tOl e n /3 e,B

fd o R n = N A12
°X Y o |t%e,] °X Y |nﬁel3| ( )
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where |a| denotes the Euclidean length of the vector a € R3, ¢ is the (contravariant) tangent vector of
Y and ny, is the (covariant) normal vector of Y. Furthermore, letv : I' — R be the surface unit normal
vector of I", which satisfies n = ¢ x v, Walker (2015) on dI". With the ambient space R3 available the
tangent space projection P : R3 — R3, defined on I', is given by

P=1—v®v=tQt+nQn, (A.13)

and note that (in local coordinates) Jg~'JT = P o x (Walker, 2015).
From Definition 4.6 we have the identity:

T
1 nye’ n,e’
T _ P o B
n' on =- e el 24—
¢ ox)y g( /nun“) of ﬂ( nun/‘)
1

_ o . Ba @y — af,
= o n“npe e, eg - €“n, = ; tunago ng =
2 w

where we used g = 17, /(n"'n ).

A.3  Parametrization via curved element map

Recall F ZT : T' — T from Section 4.1. It is useful to consider this map as a parametrization of 7" in the
following sense. Apply a rigid rotation of coordinates x to X’ so that 7 — T*' (for any s) and TV c R2.
In the rotated coordinates we view F IT/ as a function of two variables, so that (Tl/,F IT,) is a local chart
for TV . Next, let J/ = [BIFIT/, 82F[T/] be the 3 x 2 Jacobian matrix with induced metric g’ = (J')7J. In
addition, define the 3 x 2 matrix 13*/ = [a, a,], where {a|, a,, a5} are the canonical basis vectors of R3,
(P*/)TI;*/ =1,, and I;*/(I;*/)T =P = I; — v ® V', where v’ = aj is the unit normal of TV,

All results derived in the rotated coordinates can be mapped back to the original coordinates. For
example, let P, = [b;,b,], where b,, b, are any two orthogonal unit vectors in RR3 pointing in the plane
of T', and note that I;*Tli* =1,,and I;*I;*T =P:=1, — v ® v (see (A.13)), where ¥ = b, x b, is the
unit normal of 7. Then, J = (V1 F5)P,, g = J'J, and by (4.3),

J—P,|=0(h), g=P, P PP, +0M) =1I,+0m), (A.15)

so g is invertible for 4 sufficiently small. Note that, in terms of F'., the surface gradient (A.9) of
f: T — R can be written as (Vyif) o Fl. = (Vuf)P,g~'JT, where f := f o F.

A4 Technical estimates
By elementary geometry we have the following estimate.

LEMMA A.1 Let a, b be unit vectors, with respect to the Euclidean norm, in R". If |a—b| = y < V2
then |(a — b) - b| < (3/4)y2.

LEMMA A2 Let T € ., with unit conormal s, and unit tangent ¢, vectors (in R?) defined on 37.
Suppose m > [ > 1 and consider the corresponding elements 7" € ", T € F! and T € J}!, i.e.
TS = FST(TI), forany m > s > 1 or s = oo (recall the discussion in Section 4.1). Let J = (VTIFT)P_*,
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g=J TJ and recall (4.4) and the notation introduced there. Then, on T, the following holds
[(ﬁ o F™) — (o FIT)] (@ o M) = O(h™),
T . e
[(ﬁ oF™) — (o FZT)] (PoFT) = pi'P+ 0(*) = O(h)), (A.16)
T e Al T _ -
a'Jg' —Jg HP, =—li- Vp(F7 — FpI"P+ 00" = o),
where 8 = [(f — H xv]-t | Bl = O(hl) and B is continuous across edges of the mesh. Furthermore,
o P Jg P, — GioF)Jg P,
= Bt'P — [ - Vi (Fp—F))"P + 0(h'™") = o), (A.17)
(fi o F’;’)Tjg—lﬁf — il = 0(h)e"P + O(h?), where ¢ € R with |c| = 1.

Proof. Referring to Section A.3 we rotate coordinates so that 7!  R? and we simplify notation by
dropping ". We also abuse notation and write # = i o FJ} andin = i o F IT From (A.12) we have that

it =Jg P, ii/|Jg'P, 1| (note that i - a5 = 0).

_ The first line of (A.16) follows immediately from (4.4) and Lemma A.1. Next, note that jg—lj r_
PoF7 =P =1;—7® 7V (see (A.13)), i.e. the tangent space projection onto 7", where ¥ = v o F7 is
the unit normal vector of 7". Estimating wlT = (fz — ﬁ)Tf’ gives wlT =0+ [ —h)-Ala"P +
[Gi — ) -1 P = OW?) + [t — h) - ' P, where we used the first line of (A.16). Moreover,

fA—n) t=0EFxv—txd)-t=[F—0 xv] -t
=[G—D) xv] - I+[E—D) x (P —v)]-I=B+ 00", (A.18)

where g := [ — 1) x v] -7 (and B = O(K)), and we used (4.4); hence, w! = BEP + Oy =
,BZTI_’ + O(Wt1) so we obtain the second line of (A.16). Also note that B is continuous across element

boundaries. _ . .
Next, let wg =nl(Jg~' — Jgr_l)P* and estimate

wi=alJg~' - P)P," i’ (Jg~' - P,)P,"
=aP,@, - )i B, —aP,@, - J)ig P,
=a'P,p," - JHig P —iP,®," -1 P,
+a'p,p," 7z -Jg e,
—a'P,J —JDig B, +ouy =P, —JHEL + 0w, (A19)
where we used (4.3) and (A.15). Again, referring to Section A.3 we find that
wh =al [V (Fy — FINTP 4+ ok, (A.20)

so we obtain the third line of (A.16).
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As for (A.17) letzT = ﬁTjg_ll;*T - ﬁTjg_ll;*T, where z € R3, and expand:
I =@-wJg P, +aJg - Je P,
=G-w"Jg T PP +a-aT @, -7Hep,”
+a-n'de ' —Jg P, +aTde —Jg P, = wlP+2l +2f +wl. a2

Since |z;| = O(h'*") = |z,| combining with the above results yields the first line of (A.17).
Now set [ = 1, so that the first line of (A.17) simplifies to

alJg ' P," —i"P,P," = Bi'P — [ii - Vpr (F — F)ITP + 0(hY), (A.22)
and note that ﬁTI;*I;*T =n!. Since |8| = O(h), and IV (F7 — FIT)| = O(h), we get the second line of
(A.17). O
A.5 Discrete inf-sup condition

The discrete inf-sup condition for the HHJ method was proved for flat polygonal domains in Blum &
Rannacher (1990, pf. of Lem. 5.1). Their proof readily extends to piecewise linear surface triangulations,
mutatis mutandis (which we omit). The final result we need is as follows.

LEMMA A.3 Assume I"! is a piecewise linear triangulation in R that interpolates a surface I satisfying
the conditions in Section 3.1. Then,

b} (. V)

> Colvllypy. Vv e Wy, Vi >0, (A.23)
peV) lellon

holds for any degree r > 0, where C;; > 0 is independent of .
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